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A Few Methods for Fitting
Circles to Data

Dale Umbach, Kerry N. Jones

Abstract—Five methods are discussed to fit circles to data.
Two of the methods are shown to be highly sensitive to
measurement error. The other three are shown to be quite
stable in this regard. Of the stable methods, two have the
advantage of having closed form solutions. A positive aspect
of all of these models is that they are coordinate free in
the sense that the same estimating circles are produced no
matter where the axes of the coordinate system are located
nor how they are oriented. A natural extension to fitting
spheres to points in 3-space is also given.
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I. Introduction

THE problem of fitting a circle to a collection of points
in the plane is a fairly new one. In particular, it is

an important problem in metrology and microwave mea-
surement. While certainly not the earliest reference to a
problem of this type, Kȧsa, in [4], describes a circle fitting
procedure. In [2], Cox and Jones expand on this idea to fit
circles based on a more general error structure.

In general, suppose that we have a collection of n ≥
3 points in 2-space labeled (x1, y1), (x2, y2), . . . , (xn, yn).
Our basic problem is to find a circle that best represents
the data in some sense. With our circle described by (x−
a)2 + (y − b)2 = r2, we need to determine values for the
center (a, b) and the radius r for the best fitting circle.

A reasonable measure of the fit of the circle (x − a)2 +
(y − b)2 = r2 to the points (x1, y1), (x2, y2), . . . , (xn, yn)
is given by summing the squares of the distances from the
points to the circle. This measure is given by

SS(a, b, r) =
n∑
i=1

(
r −

√
(xi − a)2 + (yi − b)2

)2

[1] discusses numerical algorithms for the minimization SS
over a, b, and r. Gander, Golub, and Strebel in [3] also
discuss this problem. In [4], Kȧsa also presents an alterna-
tive method that we will discuss in Section 2.4. [1] gives a
slight generalization of the Kȧsa method.

II. The Various Methods

For notational convenience, we make the following con-
ventions:

Xij = xi − xj
X̃ijk = XijXjkXki
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X
(2)
ij = x2

i − x2
j

Yij = yj − yj
Ỹijk = YijYjkYki

Y
(2)
ij = y2

i − y2
j

A. Full Least Squares Method

An obvious approach is to choose a, b, and r to minimize
SS. Differentiation of SS yields

∂SS

∂r
= −2

n∑
i=1

√
(xi − a)2 + (yi − b)2 (II.1)

+2nr

∂SS

∂a
= 2r

n∑
i=1

xi − a√
(xi − a)2 + (yi − b)2

−2nx+ 2na

∂SS

∂b
= 2r

n∑
i=1

yi − b√
(xi − a)2 + (yi − b)2

−2ny + 2nb.

Simultaneously equating these partials to zero does not
produce closed form solutions for a, b, and r. However,
many software programs will numerically carry out this
process quite efficiently. We shall refer to this method as
the Full Least Squares method (FLS) with resulting values
of a, b, and r labeled as aF , bF , and rF . The calculation of
the FLS estimates has been discussed in [1] and [3], among
others.

B. Average of Intersections Method

We note that solving (II.1) = 0 for r produces

r =
n∑
i=1

√
(xi − a)2 + (yi − b)2/n. (II.2)

This suggests that if one obtains values of a and b by some
other method, a good value for r can be obtained using
(II.2).

To obtain a value for (a, b), the center of the circle, we
note that for a circle the perpendicular bisectors of all
chords intersect at the center. There are

(
n
3

)
triplets of

points that could each be considered as endpoints of chords
along the circle. Each of these triplets would thus produce
an estimate for the center. Thus, one could average all

(
n
3

)
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of these estimates to obtain a value for the center. Us-
ing these values in (II.2) then produces a value for the
radius. We shall refer to this method as the Average of In-
tersections Method (AI) with resulting values of a, b, and
r labeled as aA, bA, and rA.

A positive aspect of this method is that it yields closed
form solutions. In particular, with

wijk = xiYjk + xjYki + xkYij (II.3)
w̃ijk = x2

iYjk + x2
jYki + x2

kYij

zijk = yiXjk + yjXki + ykXij (II.4)
z̃ijk = y2

iXjk + y2
jXki + y2

kXij ,

we have

aA =
1

2
(
n
3

) n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

w̃ijk − Ỹijk
wijk

bA =
1

2
(
n
3

) n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

z̃ijk − X̃ijk

zijk

rA =
n∑
i=1

√
(xi − aI)2 + (yi − bI)2/n

An obvious drawback to this method is that it fails if
any three of the points are collinear. This is obvious from
the construction, but it also follows from the fact that if
(xi, yi), (xj , yj), and (xk, yk) are collinear then wijk = 0
and zijk = 0 in (II.3) and (II.4). The method is also very
unstable in that small changes in relatively close points can
drastically change some of the approximating centers, thus
producing very different circles.

This method is similar to fitting a circle to each of the
triplets of points, thus getting

(
n
3

)
estimates of the coor-

dinates of the center and the radius, and then averaging
these results for each of the three parameters. It differs
in the calculation of the radius. AI averages the distance
from each of the n points to the same center (aI , bI).

C. Reduced Least Squares Method

This leads to consideration of different estimates of the
center (a, b). Again, if all of the data points lie on a circle
then the perpendicular bisectors of the line segments con-
necting them will intersect at the same point, namely (a, b).
Thus it seems reasonable to locate the center of the circle
at the point where the sum of the distances from (a, b) to
each of the perpendicular bisectors is minimum. Thus, we
seek to minimize

SSR(a, b) =

n−1∑
i=1

n∑
j=i+1

(
aXji + bYji − 0.5(Y (2)

ji +X
(2)
ji )
)2

X2
ji + Y 2

ji

(II.5)

As in the Full Least Squares method, equating the partial
derivatives of SSR to zero does not produce closed form
solutions for a and b. Again, however, numerical solutions

are not difficult. Let us label the resulting values for a and
b as aR and bR. Using these solutions in (II.2) yields the
radius of the fitted circle, rR. We shall refer to this method
as the Reduced Least Squares method (RLS).

As will be discussed in Section 3, this method of estima-
tion is not very stable. In particular, the X2

ji + Y 2
ji in the

denominator of (II.5) becomes problematic when two data
points are very close together.

D. Modified Least Squares Methods

To downweight pairs of points that are close together,
we will consider minimization of

SSM(a, b) =
n−1∑
i=1

n∑
j=i+1

(
aXji + bYji − 0.5(X(2)

ij + Y
(2)
ij )

)2

(II.6)

Differentiation of SSM yields

∂SSM

∂a
= 2b

n−1∑
i=1

n∑
j=i+1

XjiYji −
n−1∑
i=1

n∑
j=i+1

XjiY
(2)
ji

+2a
n−1∑
i=1

n∑
j=i+1

X2
ji −

n−1∑
i=1

n∑
j=i+1

XjiX
(2)
ji

∂SSM

∂b
= 2a

n−1∑
i=1

n∑
j=i+1

YjiXji −
n−1∑
i=1

n∑
j=i+1

YjiX
(2)
ji

+2b
n−1∑
i=1

n∑
j=i+1

Y 2
ji −

n−1∑
i=1

n∑
j=i+1

YjiY
(2)
ji

We note that for any vectors (αi) and (βi),

n−1∑
i=1

n∑
j=i+1

(αj − αi)(βj − βi) =

n
n∑
i=1

αiβi −

(
n∑
i=1

αi

)(
n∑
i=1

βi

)
(II.7)

Noting that (II.7) is n(n − 1)Sαβ , where Sαβ is the usual
covariance, we see that equating these partial derivatives
to zero produces a pair of linear equations whose solution
can be expressed as

aM =
DC −BE
AC −B2

(II.8)

bM =
AE −BD
AC −B2

, (II.9)

where

A = n
n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

= n(n− 1)S2
x (II.10)

B = n
n∑
i=1

xiyi −

(
n∑
i=1

xi

)(
n∑
i=1

yi

)
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= n(n− 1)Sxy (II.11)

C = n
n∑
i=1

y2
i −

(
n∑
i=1

yi

)2

= n(n− 1)S2
y (II.12)

D = 0.5

{
n

n∑
i=1

xiy
2
i −

(
n∑
i=1

xi

)(
n∑
i=1

y2
i

)

+n
n∑
i=1

x3
i −

(
n∑
i=1

xi

)(
n∑
i=1

x2
i

)}
= 0.5n(n− 1)(Sxy2 + Sxx2) (II.13)

E = 0.5

{
n

n∑
i=1

yix
2
i −

(
n∑
i=1

yi

)(
n∑
i=1

x2
i

)

+n
n∑
i=1

y3
i −

(
n∑
i=1

yi

)(
n∑
i=1

y2
i

)}
= 0.5n(n− 1)(Syx2 + Syy2) (II.14)

Again, we find the radius using (II.2) as

rM =
n∑
i=1

√
(xi − aM )2 + (yi − bM )2/n

(II.15)

We shall refer to this as the Modified Least Squares method
(MLS).

A different approach was presented in [4]. There, Kȧsa
proposes choosing a, b, and r to minimize

SSK(a, b, r) =
n∑
i=1

(
r2 − (xi − a)2 − (yi − b)2

)2
He indicates that solution for a and b can be obtained by
solving linear equations, but does not describe the result
of the process much further. It can be shown that the
minimization of SSK produces the same center for the
fitted circle as the MLS method. The minimizing value
of r, say rK , is slightly different from rM . It turns out that

rK =

√√√√ n∑
i=1

((xi − aM )2 + (yi − bM )2) /n

By Jensen’s inequality, we see that rK , being the square
root of the average of squares, is at least as large as rM ,
being the corresponding average.

III. Comparison of the Methods

We first note that if the n data points all truly lie on
a circle with center (a∗, b∗) and radius r∗, then all five
methods will produce this circle. For FLS, this follows
since the nonnegative function SS is 0 at (a∗, b∗, r∗). For
AI, this follows from the observation that the intersections
of all of the perpendicular bisectors occur at the same point
(a∗, b∗), and hence each of the n values in (II.2) that are to
be averaged is r∗, and hence rA = r∗. For RLS and MLS,
we note that the terms in SSM in (II.6) are all 0 at (a∗, b∗)
as then are the terms in SSR as well. Again, the radii of

0.5 1 1.5 2

0.5

1

1.5

2

MLS,FLS,
Kasa

RLS

AI

Fig. 1. Fits of FLS, AI, RLS, MLS, and Kȧsa circles to five data
points.

the RLS and MLS methods are r∗ for the same reason as
given for AI. Since the values to be averaged for rM are all
identical, we also have rK = rM = r∗.

If any three points are collinear, then AI fails because the
perpendicular bisectors for this triple are parallel, thus pro-
ducing no intersection point. Thus averaging over the in-
tersection points of all triples fails. The other four methods
produce unique results in this situation, unless, of course,
all of the data points are collinear.

If all of the points are collinear, then all five methods
fail. FLS fails because the larger the radius of the circle,
with appropriate change in the center, the closer the fit to
the data. For MLS and Kȧsa, we note that if all of the
data points are collinear, then S2

xy = S2
xS

2
y , and hence the

denominators of aM and bM in (II.8) and (II.9) are 0 using
(II.10), (II.11), and (II.12). RLS fails because for this case
there will be an infinite collection of points that minimize
the distance from the point (a, b) to the parallel lines that
form the perpendicular bisectors.

To give an indication of how sensitive the methods are
to measurement error, we consider fits to a few collections
of data.

All five methods fit the circle (x−1)2+(y−1)2 = 1 to the
following collection of five points, (0,1), (2,1), (1,0), (1,2),
and (0.015, 1 +

√
0.029775). Suppose that the last data

point, however, was incorrectly recorded as (0.03,1.02), a
point only 0.15329 units away. The results of the fits to
these five points are displayed in Figure 1. As is evident
from the figure, we see that the AI circle was drastically
affected. The fit is not close at all to the circle of radius
1 centered at (1,1). Not quite as drastically affected, but
seriously affected, nonetheless, is the RLS circle. In con-
trast, the FLS, Kȧsa, and MLS circles are not perspectively
different from the circle of radius 1 centered at (1,1). This
strongly suggests that the FLS, Kȧsa, and MLS methods
are robust against measurement error.

Figure 2 contains FLS, MLS, and Kȧsa fits to the follow-
ing seven data points, (0,1), (2,1), (2,1.5), (1.5,0), (0.5,0.7),
(0.5,2), and (1.5,2.2). These three circles are fairly similar,
but not identical. Each seems to describe the data points
well. It is open to interpretation as to which circle best fits
the seven points.

These fits point favorably to using the MLS and Kȧsa
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Fig. 2. Fits of FLS, MLS, and Kȧsa circles to seven data points.

methods to fit circles. The robustness of the methods and
the existence of closed form solutions are very appealing
properties. Recall that these circles are concentric, with the
Kȧsa circle outside the MLS circle. Thus, outliers inside the
circles would make the Kȧsa fit seem superior. Whereas,
outliers outside the circles would make the MLS fit seem
superior.

IV. Fitting Spheres in 3-space

These methods are not difficult to generalize to fitting
spheres to points in 3-space. So, suppose that we have a
collection of n ≥ 4 points in 3-space labeled (x1, y1, z1),
(x2, y2, z2), . . . , (xn, yn, zn). The basic problem is to find a
sphere that best represents the data in some sense. With
our sphere described by (x− a)2 + (y− b)2 + (z− c)2 = r2,
we need to determine values for the center (a, b, c) and the
radius r for the best fitting circle.

Based on the comparative results in Section 3, we will
only consider extensions of the FLS, MLS, and Kȧsa meth-
ods. For FLS, we seek to minimize

SS∗(a, b, r)

=
n∑
i=1

(
r −

√
(xi − a)2 + (yi − b)2 + (zi − c)2

)2

As in the 2 dimensional case, one must resort to numerical
solutions.

The derivation of the MLS estimate proceeds in a sim-
ilar manner in 3-space. The plane passing through the
midpoint of any chord of a sphere which is perpendicular
to that chord will pass through the center of the sphere.
Thus we seek the point (a, b, c) which minimizes the sum
of the squares of the distances from (a, b, c) to each of the(
n
2

)
planes formed by pairs of points. This leads to mini-

mization of SSR∗(a, b, c) =

n−1∑
i=1

n∑
j=i+1

(
Xjia+ Yjib+ Zjic

−0.5(X(2)
ji + Y

(2)
ji + Z

(2)
ji )

)2

X2
ji + Y 2

ji + Z2
ji

Minimization of SSR∗ requires a numerical solution. This
solution also suffers in that it is very sensitive to changes
in data points that are close together.

Thus, as in the 2 dimensional case, we consider the mod-
ification produced by instead minimizing SSM∗(a, b, c) =

n−1∑
i=1

n∑
j=i+1

(
aXji + bYji + cZji

−0.5(X(2)
ji + Y

(2)
ji + Z

(2)
ji )

)2

Analogous to the 2 dimensional case, we obtain closed form
solutions, (aM , bM , cM ), to the minimization problem.

Defining the mean squares as in (II.10) through (II.14),
we obtain

aM =


(Sxx2 + Sxy2 + Sxz2)(S2

yS
2
z − S2

yz)
+(Syx2 + Syy2 + Syz2)(SxzSyz − SxyS2

z )
+(Szx2 + Szy2 + Szz2)(SxySyz − SxzS2

y)


2
{

S2
xS

2
yS

2
z + 2SxySyzSxz

−S2
xS

2
yz − S2

yS
2
xz − S2

zS
2
xy

}

bM =

 (Sxx2 + Sxy2 + Sxz2)(SxzSyz − SxyS2
z )

+(Syx2 + Syy2 + Syz2)(S2
xS

2
z − S2

xz)
+(Szx2 + Szy2 + Szz2)(SxySxz − SyzS2

x)


2
{

S2
xS

2
yS

2
z + 2SxySyzSxz

−S2
xS

2
yz − S2

yS
2
xz − S2

zS
2
xy

}

cM =


(Sxx2 + Sxy2 + Sxz2)(SxySyz − SxyS2

y)
+(Syx2 + Syy2 + Syz2)(SxzSxy − SyzS2

x)
+(Szx2 + Szy2 + Szz2)(S2

xS
2
y − S2

xy)


2
{

S2
xS

2
yS

2
z + 2SxySyzSxz

−S2
xS

2
yz − S2

yS
2
xz − S2

zS
2
xy

}
Analogous to (II.15), we find

rM =
n∑
i=1

√
(xi − aM )2 + (yi − bM )2 + (zi − cM )2/n

For this problem, it is not difficult to show that the fit
of [4] has the center described by aM , bM , and cM . The
radius for the fitted circle is

rK =

√√√√ n∑
i=1

((xi − aM )2 + (yi − bM )2 + (zi − cM )2) /n
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