Beckett Neal

Completed

Originals


```
from jes4py import *
from math import radians, cos, sin
# Made By Beckett Neal
# 10/21/24
# Project2
# Titled: The Vitruvian Collage
def collage():
    setMediaPath()
    torso = makePicture(getMediaPath("mLeft1.jpg"))
    facearmleg = makePicture(getMediaPath("mScary.jpg"))
    sign = makePicture(getMediaPath("Sign.png"))
    specialcolor = makeColor(231,201,147)
    art = makeEmptyPicture(1000, 736, specialcolor)
    facemake(facearmleg,art)
   armsmake(facearmleg, art)
   armsmake2(facearmleg, art)
   torsomake(torso, art)
   legsmake(torso, art)
   finishtouch (art, torso)
   mirror(art)
   makecircle(art)
    signed = signature(art, specialcolor, sign, offset x=480, offset y=180)
    explore(art)
def signature(art, specialcolor, sign, offset x=0, offset y=0):
    #ReverseChromaKey signature
    sign width = getWidth(sign)
    sign height = getHeight(sign)
    for x in range(sign width):
        for y in range(sign height):
            signpix = getPixel(sign, x, y)
            artpix = getPixel(art, x + offset x, y + offset y)
            r=getRed(signpix)
            g=getGreen(signpix)
            b=getBlue(signpix)
            if r == 255:
                if q == 255:
                    if b ==255:
                        setColor(artpix, specialcolor)
            else:
                setColor(artpix,black)
    return art
def makecircle(art):
    #utilizing the math module and the equation to make a circle,
    #I was able to calculate an orgin point, utilize a radius,
    #then using my knowledge of said circle equation, make a function
```

```
#that utilizes the math cosine and sine to find the positioning of a pixel
    #needed to make a circle in the required given field.
    centerheight = getHeight(art)//2 -10 #358
   centerwidth = getWidth(art)//2 #500
    radius = 135
    for i in range (0,360):
       theta = radians(i)
        x = round(centerwidth + radius *cos(theta))
        y = round(centerheight + radius *sin(theta))
        pixel = getPixel(art,x,y)
        setColor(pixel,black)
def finishtouch(art,torso):
    #this function is just making sure to clean up unwanted pixels from the crops,
    #and to also add the original image into the collage.
   height = getHeight(art)
    width = getWidth(art)
    specialcolor = makeColor(231,201,147)
    for x in range (0, width):
        for y in range(0, height):
            pixel = getPixel(art, x, y)
            bluecolor = int(getBlue(pixel))
            greencolor = int(getGreen(pixel))
            redcolor = int(getRed(pixel))
            if bluecolor > 60:
                if redcolor <= 45:
                    if greencolor <= 60:
                        setColor(pixel, specialcolor)
    startx = getWidth(art)//2 - 500 + 200
    starty = 215
    for x in range (0, \text{getWidth (torso)}):
        for y in range(0, getHeight(torso)):
            pixel = getPixel(torso, x, y)
            color = getColor(pixel)
            newx = startx + (x - 0)
            newy = starty + (y - 0)
            copypix = getPixel(art, newx, newy)
            setColor(copypix,color)
def mirror(picture):
    #this was our mirror function in an old assignment utilized for the entire
    #collage.
   width = getWidth(picture)
   mirror point = width // 2
    for x in range(0, mirror point):
        for y in range(0, getHeight(picture)):
            left pixel = getPixel(picture, x, y)
            right pixel = getPixel(picture, width - x - 1, y)
            color = getColor(left pixel)
            setColor(right pixel, color)
def facemake(pic, art):
    #this function replicates the face from an image and puts it into collage.
    facewidth = 45-33
    faceheight = 40-0
    art center x = getWidth(art) // 2
    art center y = getHeight(art) // 2
    startx = art center x - facewidth
    starty = art center y - faceheight\frac{1}{2} -116
```

```
for x in range (33,45):
        for y in range (0, 40):
            pixel = getPixel(pic,x,y)
            color = getColor(pixel)
            newx = startx + (x - 33)
            newy = starty + (y - 0)
            copypix = getPixel(art,newx,newy)
            setColor(copypix,color)
def torsomake(pic, art):
    #this function takes half of a torso and places it in the center offset of
    #the art canvas.
    torsowidth = 60 - 40
    torsoheight = 148 - 55
    art center x = getWidth(art) // 2
    art center y = getHeight(art) // 2
    #allign torso
    startx = art center x - torsowidth
    starty = art center y - torsoheight // 2 - 40
    for x in range (40, 60):
        for y in range (55, 148):
            pixel = getPixel(pic, x, y)
            color = getColor(pixel)
            newx = startx + (x - 40)
            newy = starty + (y - 55)
            copypix = getPixel(art,newx,newy)
            setColor(copypix, color)
def armsmake(pic, art):
    #this function takes the arms of said picture, and places them into the canvas.
    armwidth = 54 - 6
    armheight = 100 - 40
    art center x = getWidth(art) // 2
    art center y = getHeight(art) // 2
    #allign arms
    startx = art center x - armwidth
    starty = art_center_y - armheight
    for x in range (6, 54):
        for y in range (40, 100):
            pixel = getPixel(pic, x, y)
            color = getColor(pixel)
            newx = startx + (x - 6)
            newy = starty + (y - 40) - 40
            copypix = getPixel(art, newx, newy)
            setColor(copypix,color)
def armsmake2(pic,art):
    #this one was tough. I took the same arm function, except this time I needed
    #to straighten the arms out. My first thought was to draw a 3x3 of pixels on my
    #board and trying to figure out how to adjust the x and y accordingly. I
    #struggled. I realized however I could use similar logic of the circle function
    #onto the arms, except changing the radians needed for the degree needed.
    armwidth = 54 - 6
    armheight = 100 - 40
   art center x = getWidth(art) // 2
    art center y = getHeight(art) // 2
    startx = art center x - armwidth
```

```
starty = art center y - armheight
    theta = radians(-30) #radians for arms
    #center of "armbox"
   x c = (6 + 54) / 2
    y c = (40 + 100) / 2
    for x in range(6, 54):
        for y in range (40, 100):
            pixel = getPixel(pic, x, y)
            color = getColor(pixel)
            x_{translated} = x - x_{translated} = x - x_{translated}
            y translated = y - y c #vice versa with y
            #utilize sin and cos to find position of new cord
            x rotated = (x translated * cos(theta)) - (y translated * sin(theta))
            y_rotated = (x_translated * sin(theta)) + (y_translated * cos(theta)) #^
            newx = round(startx + x rotated)
            newy = round(starty + y rotated) +15
            copypix = getPixel(art, newx, newy)
            setColor(copypix, color)
def legsmake(pic, art):
    #function to create legs
    legswidth = 54 - 0
    legsheight = 260 - 184
   art center x = getWidth(art) // 2
   art center y = getHeight(art) // 2
    #leg align
    startx = art center x - legswidth
    starty = art center y - legsheight // 2
    for x in range (0, 54):
        for y in range (184, 260):
           pixel = getPixel(pic, x, y)
            color = getColor(pixel)
            newx = startx + (x - 0)
            newy = starty + (y - 184) + 40
            copypix = getPixel(art,newx,newy)
            setColor(copypix,color)
```