def collage():
 pict=makePicture(getMediaPath("picture.jpg"))
 copy1=makeEmptyPicture(232,320)
 factor=0.167
 #scales original picture down by a factor of 0.167
 scale(pict,copy1,factor)

 copy2= duplicatePicture(copy1)
 copy3= duplicatePicture(copy1)
 copy4= duplicatePicture(copy1)
 copy5= duplicatePicture(copy1)

 canvas=makeEmptyPicture(699, 968) #creates empty canvas to put collage on

 #draws border around the original picture in the collage
 drawBorder(copy1)
 copy(copy1, canvas, 0, getHeight(canvas)-getHeight(copy1)-5)

 #takes the opposite of each of the current values for red, green, and blue of the
 #original picture
 negative(copy1)
 #draws border around the first negative modified picture in the collage
 drawBorder(copy1)
 copy(copy1, canvas, getWidth(copy1), getHeight(canvas)-getHeight(copy1)-5)

 #averages red, green, and blue and replicates it so each color component has the
 #same value of the original picture
 grayScale(copy2)
 #draws border around the grayscale modified picture in the collage
 drawBorder(copy2)
 copy(copy2, canvas, getWidth(copy2)*2, getHeight(canvas)-getHeight(copy2)-5)

 #swaps out the different color values of the original picture
 colorSwapping(copy3)
 #draws border around the first color swapping modified picture in the collage
 drawBorder(copy3)
 copy(copy3, canvas, 0, getHeight(canvas)-(getHeight(copy3)*2)-5)

 #lightens the colors of the pixels of the original picture
 lighten(copy4)
 #draws border around the lightened modified picture in the collage
 drawBorder(copy4)
 copy(copy4, canvas, getWidth(copy4),getHeight(canvas)-(getHeight(copy4)*2)-5)

 #takes the opposite of each of the current values for red, green, and blue of the
 #lightened modified picture
 negative(copy4)
#draws border around the second negative modified picture in the collage
drawBorder(copy4)
copy(copy4, canvas, getWidth(copy4)*2, getHeight(canvas)-(getHeight(copy4)*2)-5)

#swaps out the different color values of the second negative modified picture
colorSwapping(copy4)
#draws border around the second color swapping modified picture in the collage
drawBorder(copy4)
copy(copy4, canvas, 0, getHeight(canvas)-(getHeight(copy4)*3)-5)

blurPict=blur(copy3) #blurs the first color swapping modified picture
#lightens the colors of the pixels of the blurred picture
lighten(blurPict)
#draws border around the lightened blurred modified picture in the collage
drawBorder(blurPict)
copy(blurPict, canvas, getWidth(copy1), getHeight(canvas)-(getHeight(copy1)*3)-5)

#swaps out the different color values of the first negative modified picture
colorSwapping(copy1)
#draws border around the third color swapping modified picture in the collage
drawBorder(copy1)
copy(copy1, canvas, getWidth(copy5)*2, getHeight(canvas)-(getHeight(copy5)*3)-5)
#this copies original and modified pictures to correct position on the canvas
signature=makePicture(getMediaPath("signature.png"))
newSig = scaleSig(signature, 0.15) #scales signature down by a factor of 0.15
#tells where to put the signature on the canvas and what color to make the
#signature
addSig(canvas,newSig, 230, -7, black)

drawBorder(canvas) #adds a border around the canvas
explore(canvas)

def addSig(canvas, signature, toX, toY, color): #puts signature onto canvas
toYStart=toY
for x in range(0, getWidth(signature)):
 toY=toYStart
 for y in range(0, getHeight(signature)):
 p=getPixel(signature,x, y)
 if(getRed(p)<255 and getGreen(p)<255 and getBlue(p)<255):
 setColor(getPixel(canvas, toX, toY), color)
 toY=toY+1
 toX=toX+1
return(canvas)

def scale(pict, copy1, factor): #scales original picture down
sourceX = 0 #sets x to 0
#loops through x coordinates from 0 to width times the scaling factor
for targX in range(0, int(getWidth(pict)*factor)):
 sourceY = 0 #sets y to 0
 #loops through y coordinates from 0 to height times the scaling factor
 for targY in range(0, int(getHeight(pict)*factor)):
 color = getColor(getPixel(pict, int(sourceX), int(sourceY)))
 setColor(getPixel(copy1, targX, targY), color)
 #increments y coordinate of pic by one divided by the scaling factor
 sourceY = sourceY + 1.0 / factor

← means the line is continued on the next line
sourceX = sourceX + 1.0 / factor

def scaleSig(pict, factor):
 # scales signature picture down
 copy1 = makeEmptyPicture(int(getWidth(pict) * factor), int(getHeight(pict) * factor))
 sourceX = 0
 for targX in range(0, int(getWidth(pict) * factor)):
 sourceY = 0
 for targY in range(0, int(getHeight(pict) * factor)):
 color = getColor(getPixel(pict, int(sourceX), int(sourceY)))
 setColor(getPixel(copy1, targX, targY), color)
 sourceY = sourceY + 1.0 / factor
 sourceX = sourceX + 1.0 / factor
 return copy1

copy function that allows each picture to be copied onto the canvas
def copy(source, target, targX, targY):
 targetX = targX
 for sourceX in range(0, getWidth(source)):
 targetY = targY
 for sourceY in range(0, getHeight(source)):
 px = getPixel(source, sourceX, sourceY)
 tx = getPixel(target, targetX, targetY)
 setColor(tx, getColor(px))
 targetY = targetY + 1
 targetX = targetX + 1

creates negative by taking the opposite of each of the current values for red, green, and blue of the picture
def negative(pict):
 for pixel in getPixels(pict):
 r = getRed(pixel)
 g = getGreen(pixel)
 b = getBlue(pixel)
 negColor = makeColor(255 - r, 255 - g, 255 - b)
 setColor(pixel, negColor)

averages red, green, and blue and replicates it so each color component has the same value of the picture
def grayScale(pict):
 for px in getPixels(pict):
 intensity = (getRed(px) + getGreen(px) + getBlue(px)) / 3
 grayColor = makeColor(intensity, intensity, intensity)
 setColor(px, grayColor)

def colorSwapping(pict):
 # swaps out the different color values of the picture
 for p in getPixels(pict):
 r = getRed(p)
 g = getGreen(p)
 b = getBlue(p)
 setRed(p, b) # changes the red value to the original blue value
 setGreen(p, r) # changes the green value to the original red value
 setBlue(p, g) # changes the blue value to the original green value

- means the line is continued on the next line
def lighten(copy4):
 #this lightens the colors of the pixels of
 #the picture
 for x in range(0, getWidth(copy4)):
 for y in range(0, getHeight(copy4)):
 px = getPixel(copy4, x, y)
 color = getColor(px)
 color = makeLighter(makeLighter(color))
 setColor(px, color)

def blur(pict):
 #blurs the picture by reducing the pixelation
 blurPict = duplicatePicture(pict)
 for x in range(1, getWidth(pict)-1):
 for y in range(1, getHeight(pict)-1):
 top = getPixel(pict, x, y-1)
 left = getPixel(pict, x-1, y)
 bottom = getPixel(pict, x, y+1)
 right = getPixel(pict, x+1, y)
 center = getPixel(blurPict, x, y)
 #calculates avg color values
 newRed = (getRed(top) + getRed(left) + getRed(bottom) + getRed(right) + getRed(center)) / 5
 newGreen = (getGreen(top) + getGreen(left) + getGreen(bottom) + getGreen(right) + getGreen(center)) / 5
 newBlue = (getBlue(top) + getBlue(left) + getBlue(bottom) + getBlue(right) + getBlue(center)) / 5
 setColor(center, makeColor(newRed, newGreen, newBlue))
 return blurPict

def drawBorder(pict):
 #creates a black border
 width = getWidth(pict)
 height = getHeight(pict)
 for px in getPixels(pict):
 x = getX(px)
 y = getY(px)
 if (x<5 or x>width-6 or y<5 or y>height-6):
 setColor(px, black)