Hannah Dunco's Project 2 for CS120, Spring 2020

The final resulting image of this program is a collage made up of four panels. Since various helper functions are required to create the unique image in each of these panels, I have grouped my code so that the helper functions for each panel are together and the helper functions for the final collage function (the ones that create the panel images themselves) are together as well.

general helper functions

```python
def scale(source, ScaleFactor):
    canvas = makeEmptyPicture(int(getWidth(source) * ScaleFactor), int(getHeight(source) * ScaleFactor))
    sourceX = 0
    for targetX in range(0, ScaleFactor * getWidth(source)):
        sourceY = 0
        for targetY in range(0, ScaleFactor * getHeight(source)):
            px_in = getPixel(source, int(sourceX), int(sourceY))
            color = getColor(px_in)
            setColor(getPixel(canvas, targetX, targetY), color)
            sourceY = sourceY + 1.00 / ScaleFactor
        sourceX = sourceX + 1.00 / ScaleFactor
    return canvas
```

```python
def complexCopy(source, canvas, targetX):
    targetX = int(targetX)
    for x in range(0, getWidth(source)):
        targetY = 0
        ...
for y in range(0, getHeight(source)):
    color = getColor(getPixel(source, x, y))
    setColor(getPixel(canvas, targetX, targetY), color)
    targetY = targetY + 1
    targetX = targetX + 1
return canvas

# helper functions for first picture

# this function performs posterization, but with the goal of the resulting image having all of the
# colors of the rainbow in it
def rainbowPost(source):
    for px in getPixels(source):
        r = getRed(px)
        g = getGreen(px)
        b = getBlue(px)
        luminance = (r + g + b) / 6
        if luminance < 12:
            setColor(px, magenta)
        elif 12 <= luminance <= 24:
            setColor(px, red)
        elif 24 < luminance < 36:
            setColor(px, orange)
        elif 36 <= luminance < 48:
            setColor(px, yellow)
        elif 48 <= luminance < 60:
            setColor(px, green)
        elif 60 <= luminance < 72:
            setColor(px, blue)
        else:
            setColor(px, white)
    return source

# helper functions for second picture

# this function creates a "smeared" effect by taking the colors of the pixels in a specific column
# (where x=1275) and applying them to every column in the photo
def smearLeft2Right(source, canvas, targetX, target_Y):
    for targetX in range(0, getWidth(canvas)):
        targetY = target_Y
        for SourceY in range(0, getHeight(source)):
            color = getColor(getPixel(source, 1275, SourceY))
            setColor(getPixel(canvas, targetX, targetY), color)
def smudgeBackground(pic):
    canvas = makeEmptyPicture(getWidth(pic), getHeight(pic))
    smearLeft2Right(pic, canvas, 0, 0)
    return (canvas)

# this function shrinks our original photo down and copies it so that it is centered in our smeared background/frame
def copy2Frame(source, canvas, ScaleFactor):
    targetX = int(getWidth(canvas) * .5 * ScaleFactor)
    for x in range(0, getWidth(source)):
        targetY = int(getHeight(canvas) * .5 * ScaleFactor)
        for y in range(0, getHeight(source)):
            color = getColor(getPixel(source, x, y))
            setColor(getPixel(canvas, targetX, targetY), color)
            targetY = targetY + 1
        targetX = targetX + 1
    return canvas

# helper functions for third picture

# the goal for the third panel was to make my friend look like an alien. this function achieves this and turns his face green by increasing the value of the green component in each pixel and decreasing the value of the red and blue components in each as well.
def makeGreen(pic):
    for x in range(0, getWidth(pic)):
        for y in range(0, getHeight(pic)):
            px = getPixel(pic, x, y)
            red = getRed(px)
            green = getGreen(px)
            blue = getBlue(px)
            setColor(px, makeColor(red * .5, green * 1.5, blue * .5))
    return pic

# this function is a bit similar to the last, however I am tinting it red this time, and I added input parameters so that I could apply the effect to a select portion of the photo. I wanted just the irises and pupils of my friends eyes to turn red, so I found some conditions that would apply to those pixels only, however because of the lighting, I had to create separate functions for each eye since the different colors required different constraints.
def makeRedRight(pic, x1, x2, y1, y2):
    for x in range(x1, x2):
        for y in range(y1, y2):
px=getPixel(pic,x,y)
red=getRed(px)
green=getGreen(px)
blue=getBlue(px)
if blue<63 and red<57:
    setColor(px,makeColor(red*1.8,green*.5,blue*.5))
return pic

def makeRedLeft(pic,x1,x2,y1,y2):
    for x in range(x1,x2):
        for y in range(y1,y2):
            px=getPixel(pic,x,y)
            red=getRed(px)
            green=getGreen(px)
            blue=getBlue(px)
            if blue<63 and red<100:
                setColor(px,makeColor(red*1.8,green*.5,blue*.5))
    return pic

def copyPortion(pic,canvas,x1,x2,y1,y2):
    targetX=0
    for SourceX in range(x1,x2):
        targetY=0
        for SourceY in range(y1,y2):
            color=getColor(getPixel(pic,SourceX,SourceY))
            setColor(getPixel(canvas,targetX,targetY),color)
            targetY=targetY+1
        targetX=targetX+1
    return canvas

#helper functions for fourth picture

#edge detection is the main effect in my fourth panel, and luminance is a calculation that is necessary
#for that effect

def luminance(pixel):
    red=getRed(pixel)
    green=getGreen(pixel)
    blue=getBlue(pixel)
    return(red+green+blue)/3

def edgeDetect(source,threshold):
    for px in getPixels(source):
        red=getRed(px)
        green=getGreen(px)
        blue=getBlue(px)
        if (red<threshold and green<threshold and blue<threshold):
            setColor(px,makeColor(red*1.8,green*.5,blue*.5))
        return px
x=getX(px)
y=getY(px)
if y<get_height(source)-1 and x<get_width(source)-1:
    botrt=getPixel(source,x+1,y+1)
    thislum=luminance(px)
    brlum=luminance(botrt)
    if abs(brlum-thislum)>threshold:
        setColor(px,white)
    if abs(brlum-thislum)<=threshold:
        setColor(px,black)
return source

#helper function to add my signature

def signatureBottomLeft(background):
    signature=makePicture(getMediaPath("signature.jpg"))
    signature=scale(signature,1.000000000000/35)
    for px in getPixels(signature):
        x=getX(px)
        y=getY(px)
        if (getRed(px)<120 and getGreen(px)<120 and getBlue(px)<120):
            bgpx=getPixel(background,getWidth(background)-getWidth(signature)+x,
                          getHeight(background)-getHeight(signature)+y)
            setColor(bgpx,cyan)
    return background

#main function for creation of first picture

def pic1(pic):
    pic1canvas=makeEmptyPicture(675,1150)
    targetX=0
    for SourceX in range(250,925):
        targetY=0
        for SourceY in range(0,1150):
            color=getColor(getPixel(pic,SourceX,SourceY))
            setColor(getPixel(pic1canvas,targetX,targetY),color)
            targetY=targetY+1
        targetX=targetX+1
    #My original picture is rather large, so I calculated the scaling factor below for each panel to be #able to size them down appropriately: scalingFactor=[1000/(sum of widths of all four panels prior #to scaling=6862)]*[(height of original photo=2545)/(height of cropped photo for pictures 1&3, #2545 for 2&4)]
picture1=scale(pic1canvas,0.322507065)
picture1=rainbowPost(picture1)
return picture1

#main function for creation of second picture

def pic2(pic):
    background=smudgeBackground(pic)
    background=scale(background,0.145730108)
    original=scale(pic,.5)
    original=scale(original,0.145730108)
    pic2=copy2Frame(original,background,.5)
    return pic2

#main function for creation of third picture

def pic3(pic):
    pic3canvas=makeEmptyPicture(733,1145)
    pic3=copyPortion(pic,pic3canvas,915,1648,320,1465)
    pic3=scale(pic3,0.323915392)
    pic3=makeGreen(pic3)
    pic3=makeRedRight(pic3,132,150,246,260)
    pic3=makeRedLeft(pic3,206,222,227,241)
    return(pic3)

#main function for creation of fourth picture

def pic4(pic):
    pic4=scale(pic,0.145730108)
    pic4=edgeDetect(pic4,10)
    addRectFilled(pic4, 0, 224, getWidth(pic)-40, 30, white)
    addTextWithStyle(pic4, 80, 246,"friendship", makeStyle(serif, italic, 20),red)
    return pic4

#main function for creation of final picture collage

def collage():
    pic=makePicture(getMediaPath("brad_is_stupid.jpg"))
    canvas=makeEmptyPicture(1000,370)
    picture1=pic1(pic)
    picture2=pic2(pic)
    picture3=pic3(pic)
picture4=pic4(pic)
complexCopy(picture1,canvas,0)
complexCopy(picture2,canvas,getWidth(picture1))
complexCopy(picture3,canvas,getWidth(picture1)+getWidth(picture2))
complexCopy(picture4,canvas,getWidth(picture1)+getWidth(picture2)+getWidth(picture3))
signatureBottomLeft(canvas)
explot(canvas)

// means the line is continued on the next line.