Hannah Dunco

Completed Original

#Hannah Dunco's Project 2 for CS120, Spring 2020

#The final resulting image of this program is a collage made up of four panels. Since various helper
#functions are required to create the unique image in each of these panels, I have grouped my code so that
#the helper functions for each panel are together and the helper functions for the final collage function
(the ones that create the panel images themselves) are together as well.

#general helper functions

def scale(source, ScaleFactor):
canvas=makeEmptyPicture (int (getWidth (source) *ScaleFactor), int (getHeight (source) *ScaleFactor))
sourceX=0
for targetX in range (0, ScaleFactor*getWidth (source)):
source¥Y=0
for targetY in range (0, ScaleFactor*getHeight (source)):
px_in= getPixel (source, int (sourceX),int (sourceY))
color=getColor (px in)
setColor (getPixel (canvas, targetX, targetY), color)
sourceY=sourceY+1.00/ScaleFactor
sourceX=sourceX+1.00/ScaleFactor
return canvas

def complexCopy (source, canvas, targetX) :
targetX=int (targetX)
for x in range (0,getWidth (source)) :
targetY=0

for v in range (0,getHeight (source)) :
color=getColor (getPixel (source, x,Vy))
setColor (getPixel (canvas, targetX, targetY), color)
targetY=target¥Y+1
targetX=targetX+1
return canvas

#helper functions for first picture

#this function performs posterization, but with the goal of the resulting image having all of the
colors of the rainbow in it
def rainbowPost (source) :
for px in getPixels (source):
r=getRed (px)
g=getGreen (px)
b=getBlue (px)
luminance= (r+g+b) /6
if luminance <12:
setColor (px,magenta)
elif 12<=luminance<=24:
setColor (px, red)
elif 24<luminance<36:
setColor (px,orange)
elif 36<=luminance<48:
setColor (px,yellow)
elif 48<=luminance<60:
setColor (px,green)
elif 60<=luminance<772:
setColor (px,blue)
else:
setColor (px,white)
return source

#helper functions for second picture

#this function creates a "smeared" effect by taking the colors of the pixels in a specific column
(where x=1275) and applying them to every column in the photo
def smearLeft2Right (source, canvas, targetX, target Y):
for targetX in range (0,getWidth (canvas)):
targetY=target Y
for SourceY in range (0,getHeight (source)) :
color=getColor (getPixel (source, 1275, SourceY))
setColor (getPixel (canvas, targetX, targetY), color)

targetY=targetY +1

def smudgeBackground (pic) :
canvas=makeEmptyPicture (getWidth (pic),getHeight (pic))
smearLeft2Right (pic, canvas, 0,0)
return (canvas)

#this function shrinks our original photo down and copies it so that it is centered in our smeared
#background/frame
def copy2Frame (source,canvas, ScaleFactor):
targetX=int (getWidth (canvas) *.5*ScaleFactor)
for x in range (0,getWidth (source)) :
targetY=int (getHeight (canvas) *.5*ScaleFactor)
for v in range (0,getHeight (source)) :
color=getColor (getPixel (source,x,Vy))
setColor (getPixel (canvas, targetX, targetY), color)
targetY=targetY+1
targetX=targetX+1
return canvas

fhelper functions for third picture

#the goal for the third panel was to make my friend look like an alien. this function achieves this
#and turns his face green by increasing the value of the green component in each pixel and decreasing
#the value of the red and blue components in each as well.
def makeGreen (pic) :
for x in range (0,getWidth (pic)):
for y in range (0,getHeight (pic)):
px=getPixel (pic,x,v)
red=getRed (px)
green=getGreen (px)
blue=getBlue (px)
setColor (px,makeColor (red*.5,green*1.5,blue*.5))
return pic

#this function is a bit similar to the last, however I am tinting it red this time, and I added input
#parameters so that I could apply the effect to a select portion of the photo. I wanted just the irises
#and pupils of my friends eyes to turn red, so I found some conditions that would apply to those pixels
#only, however because of the lighting, I had to create separate functions for each eye since the different
#colors required different constraints.
def makeRedRight (pic,x1,x2,vy1l,vy2):

for x in range(xl,x2):

for v in range(yl,y2):

px=getPixel (pic, x,Vy)
red=getRed (px)
green=getGreen (px)
blue=getBlue (px)
if blue<63 and red<57:
setColor (px,makeColor (red*1.8,green*.5,blue*.b5))
return pic

def makeRedLeft (pic,x1,x2,vy1l,y2):
for x in range(xl,x2):
for v in range(yl,y2):

px=getPixel (pic,x,vy)

red=getRed (px)

green=getGreen (px)

blue=getBlue (px)

if blue<63 and red<100:

setColor (px,makeColor (red*1.8,green*.5,blue*.5))

return pic

def copyPortion(pic,canvas,xl,x2,yl,y2):
targetX=0
for SourceX in range(x1,x2):
targetY=0
for SourceY in range(yl,y2):
color=getColor (getPixel (pic, SourceX, SourceY))
setColor (getPixel (canvas, targetX, targetY), color)
targetY=target¥Y+1
targetX=targetX+1
return canvas

#helper functions for fourth picture

#edge detection is the main effect in my fourth panel, and luminance is a calculation that is necessary
#for that effect
def luminance (pixel) :

red=getRed (pixel)

green=getGreen (pixel)

blue=getBlue (pixel)

return (red+green+blue) /3

def edgeDetect (source, threshold) :
for px in getPixels (source):

x=getX (px)
y=getY (px)
if y<getHeight (source)-1 and x<getWidth (source)-1:
botrt=getPixel (source, x+1,y+1)
thislum=luminance (px)
brlum=luminance (botrt)
if abs (brlum-thislum)>threshold:
setColor (px,white)
if abs (brlum-thislum)<=threshold:
setColor (px,black)
return source

#helper function to add my signature

def signatureBottomLeft (background) :
signature=makePicture (getMediaPath ("signature.jpg"))
signature=scale (signature, 1.000000000000/35)
for px in getPixels(signature):
x=getX (px)
y=getY (px)
if (getRed(px)<120 and getGreen (px)<120 and getBlue (px)<120):
bgpx=getPixel (background, getWidth (background) -getWidth (signature) +x, -4
getHeight (background) ~-getHeight (signature) +y)
setColor (bgpx, cyan)
return background

#main function for creation of first picture

def picl (pic):
piclcanvas=makeEmptyPicture (675,1150)
targetX=0
for SourceX in range (250, 925):
targetY=0
for SourceY in range(0,1150):
color=getColor (getPixel (pic, SourceX, SourceY))
setColor (getPixel (piclcanvas, targetX, targetY),color)
targetY=target¥Y+1
targetX=targetX+1
#My original picture is rather large, so I calculated the scaling factor below for each panel to be
#able to size them down appropriately: scalingFactor=[1000/(sum of widths of all four panels prior

#to scaling=6862)]1*[(height of original photo=2545)/ (height of cropped photo for pictures 1&3,
#2545 for 2&4)]

picturel=scale (piclcanvas,0.322507065)

picturel=rainbowPost (picturel)
return picturel

#main function for creation of second picture

def pic2 (pic):
background=smudgeBackground (pic)
background=scale (background, 0.145730108)
original=scale (pic, .5)
original=scale(original,0.145730108)
pic2=copy2Frame (original, background, .5)
return pic2

#main function for creation of third picture

def pic3(pic):
pic3canvas=makeEmptyPicture (733,1145)
#The x1,x2,yl,y2 values below represent the coordinates of the portion of the original picture that
fonly contain my friend's face. The line above this creates a canvas of the dimensions of that specific
#portion so that we can copy it over, effectively "cropping" the photo.
pic3=copyPortion (pic,pic3canvas, 915,1648,320,1465)
pic3=scale (pic3,0.323915392)
pic3=makeGreen (pic3)
#The x and y ranges on the two lines below represent the coordinates containing each of my friend's eyes.
pic3=makeRedRight (pic3,132,150,246,260)
pic3=makeRedLeft (pic3,206,222,227,241)
return (pic3)

#main function for creation of fourth picture

def picéd (pic):
picd=scale (pic,0.145730108)
picd4=edgeDetect (pic4,10)
addRectFilled (pic4, 0, 224, getWidth(pic)-40, 30, white)
addTextWithStyle (pic4, 80, 246,"friendship", makeStyle(serif, italic, 20),red)
return pic4

#main function for creation of final picture collage
def collage():
pic=makePicture (getMediaPath ("brad is stupid.jpg"))
canvas=makeEmptyPicture (1000, 370)
picturel=picl (pic)
picture2=pic2 (pic)
picture3=pic3 (pic)

pictured=pici4 (pic)

complexCopy (picturel, canvas, 0)

complexCopy (picture2,canvas,getWidth (picturel))

complexCopy (picture3, canvas, getWidth (picturel) +getWidth (picture?2))

complexCopy (pictured, canvas, getWidth (picturel) +getWidth (picture?) +getWidth (picture3d))
signatureBottomLeft (canvas)

explore (canvas)

~/ means the line i1s continued on the next line.

