1. Let X be a Hausdorff space. Prove that if X has infinitely many elements, then X has infinitely many pairwise disjoint open subsets.

2. Consider the set $X = (\mathbb{N} \times \mathbb{N}) \cup \{\ast\}$. For each function $f : \mathbb{N} \to \mathbb{N}$ we define a subset $B(f)$ of X by $B(f) = \{\ast\} \cup \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid f(m) \leq n\}$.

 (a) Show that the collection of all subsets B of X, which are either of the form $B = \{(m, n)\}$ with $m, n \in \mathbb{N}$ or of the form $B = B(f)$ for some function $f : \mathbb{N} \to \mathbb{N}$, form a basis for some topology T on X.

 (b) Prove that (X, T) has no countable neighborhood basis at the point \ast.

 (c) Is the following true: if a topological space has countably many elements, then it must have a countable neighborhood basis at every point?

Definition.
Let X be a topological space, let $x \in X$ and let $A \subseteq X$. We call x an *uncountable limit point* of A if for every neighborhood U of x, the set $U \cap (A \setminus \{x\})$ is uncountable.

3. Let X be a topological space with a countable basis \mathcal{B} and let $A \subseteq X$ be an uncountable subset. Prove that all but countably many points of A are uncountable limit points of A.

4. Let Y be a subspace of both a Hausdorff space X_1 and a Hausdorff space X_2 such that $\text{cl}_{X_1}(Y) = X_1$ and $\text{cl}_{X_2}(Y) = X_2$.

Suppose that the identity function $i : Y \to Y$ can be extended to a continuous function $f : X_1 \to X_2$ as well as to a continuous function $g : X_2 \to X_1$.

Prove that X_1 and X_2 are homeomorphic.

5. (a) Prove that the following statement is equivalent to the axiom of choice: given an indexed collection $\{X_i \mid i \in I\}$ of nonempty sets with $I \neq \emptyset$, the Cartesian product $\prod_{i \in I} X_i$ is not empty.

(b) Let I be an uncountable index set. For each $i \in I$, let X_i be a topological T_1 space with more than one element. Prove that the topological product $\prod_{i \in I} X_i$ does not have a countable neighborhood basis at any of its points.

(c) Prove that a topological product of uncountably many metric spaces, each having more than one element, is never metrizable.