1. Prove that a topological space X is limit point compact if and only if it does not contain an infinite closed discrete subspace Y.

2. Prove that a topological space is countably compact if and only if every nested sequence $C_1 \supseteq C_2 \supseteq C_3 \supseteq \cdots$ of closed nonempty subsets of X has nonempty intersection.

3. For each $i \in \mathbb{R}$ let X_i be a T_1 space with more than one element. Prove that $\prod_{i \in \mathbb{R}} X_i$ is not sequentially compact.

4. For each of the following spaces, decide whether or not they are compact, sequentially compact, countably compact, and/or limit point compact:

 (a) $[0, 1]^\mathbb{R}$, where $[0, 1]$ is the unit interval in the standard topology
 (b) S_Ω
 (c) $X \times Y$, where $(X, \mathcal{T}_X) = (\mathbb{N}, \mathcal{P}(\mathbb{N}))$ and $(Y, \mathcal{T}_Y) = (\{0, 1\}, \{\emptyset, \{0, 1\}\})$
 (d) The subspace $Y = [0, 1]$ of \mathbb{R}

5. Prove or disprove:

 (a) If $f : X \rightarrow Y$ is continuous and surjective and X is limit point compact, must Y be limit point compact?
 (b) If C is a closed subset of a limit point compact space X, must the subspace C be limit point compact?
 (c) If C is a limit point compact subspace of a Hausdorff space X, must C be closed in X?

6. Let X be the middle-third Cantor set, that is, the subspace of \mathbb{R} consisting of all points $x \in [0, 1]$ which have a ternary (base 3) expansion $x = 0.a_1a_2a_3 \cdots$ with $a_i \in \{0, 2\}$. Prove the following:

 (a) X is a nonempty compact totally disconnected metric space without isolated points.
 (b) X is homeomorphic to $\{0, 2\}^\mathbb{N}$.
 (c) There is a continuous surjective function $f : X \rightarrow [0, 1]$.
 (d) There is a continuous surjective function $g : X \rightarrow [0, 1] \times [0, 1]$.

A Challenge Problem.
A compact connected Hausdorff space is called a continuum. Prove that no continuum can be written as a countable union of nonempty disjoint closed proper subsets.