1. Which of the following subspaces of \mathbb{R}^2 are connected?
 (a) $(\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q})$
 (b) $(\mathbb{R} \times \mathbb{R}) \setminus (\mathbb{Q} \times \mathbb{Q})$

2. A nonempty connected subset C of a topological space X is called a component of X if there is no connected subset D of X with $C \subseteq D$ and $C \neq D$.
 Prove that the collection \mathcal{C} of all components partitions X into closed subsets.

3. Let X be a topological space. Prove that the following are equivalent:
 (a) X is connected.
 (b) For every collection \mathcal{U} of open subsets of X with $X = \bigcup \mathcal{U}$ and every two points $x, y \in X$, there are finitely many $U_1, U_2, \ldots, U_n \in \mathcal{U}$ such that $x \in U_1, U_i \cap U_{i+1} \neq \emptyset$ for all $1 \leq i < n$, and $y \in U_n$.

4. Let X be a connected topological space with finitely many elements.
 Prove that for every $x, y \in X$ there is a continuous function $f : [0, 1] \to X$ such that $f(0) = x$ and $f(1) = y$.

5. A topological space X is called zero-dimensional, if for every $x \in X$ and every neighborhood U of x in X, there is a neighborhood V of x in X such that $x \in V \subseteq U$ and $\text{bdy}(V) = \emptyset$. A topological space X is called totally disconnected if its only nonempty connected subspaces are one-point sets.
 Prove the following:
 (a) Every discrete space is zero-dimensional.
 (b) Both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are zero-dimensional, but \mathbb{R} is not zero-dimensional.
 (c) Every metric space with countably many elements is zero-dimensional.
 (d) Every zero-dimensional T_1 space is totally disconnected.

A Challenge Problem. Construct a countable connected Hausdorff space X with an element $x_0 \in X$ such that $X \setminus \{x_0\}$ is totally disconnected but not zero-dimensional.