1. Let \mathcal{T} be a subbasis for a topology \mathcal{T} on X.
 (a) Prove that $\mathcal{T} = \bigcap \{ \mathcal{T}' \mid \mathcal{T}' \text{ is a topology on } X \text{ and } \mathcal{T} \subseteq \mathcal{T}' \}$.
 (b) Prove that \mathcal{T} is the smallest topology on X which contains \mathcal{T}.

2. Let (X, d_X) and (Y, d_Y) be two metric spaces.
 (a) Prove that each of the following formulas defines a metric on $X \times Y$:
 (i) $d((a_1, a_2), (b_1, b_2)) = \sqrt{(d_X(a_1, b_1))^2 + (d_Y(a_2, b_2))^2}$
 (ii) $\sigma((a_1, a_2), (b_1, b_2)) = d_X(a_1, b_1) + d_Y(a_2, b_2)$
 (iii) $\rho((a_1, a_2), (b_1, b_2)) = \max\{d_X(a_1, b_1), d_Y(a_2, b_2)\}$
 (b) For $X = Y = \mathbb{R}$ and their standard metrics $d_X(a_1, a_2) = |a_1 - a_2|$ and $d_Y(b_1, b_2) = |b_1 - b_2|$, sketch the three ϵ-balls centered at $a = (0, 0)$ of radius $\epsilon = 1$: (i) $B_d(a, \epsilon)$; (ii) $B_\sigma(a, \epsilon)$; (iii) $B_\rho(a, \epsilon)$.

3. Find a linearly ordered set X and a convex subset Y of X, such that Y is not any type of interval of X.

4. Prove that the order topology on $\mathbb{R} \times \mathbb{R}$ induced by the dictionary order agrees with the product topology $\mathbb{R}_d \times \mathbb{R}$, where \mathbb{R}_d denotes \mathbb{R} in the discrete topology.

5. Let L be a straight line in the Euclidean plane.
 (a) Describe the subspace topology on L when viewed as a subspace of $\mathbb{R}_l \times \mathbb{R}$.
 (b) Describe the subspace topology on L when viewed as a subspace of $\mathbb{R}_l \times \mathbb{R}_l$.
 [Consider cases: (i) L is horizontal, (ii) L is vertical, (iii) L has positive slope, (iv) L has negative slope.]

6. Prove that there is no metric $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ on \mathbb{R} such that its metric topology agrees with the lower limit topology.