1. Consider the knot 5_2 which is depicted on page 126 of your textbook.

 (a) Draw a complete diagram of all states for this knot.

 (b) Use your diagram to compute the Kauffman polynomial $F_{5_2}(t)$.

2. (a) Find a resolving tree for the knot 5_2.

 (b) Find a resolving tree for the knot 6_3.

 (c) Use your resolving tree to find $F_{5_2}(t)$ and $P_{5_2}(x, y)$.

3. Let \bar{K} denote the mirror image of the knot K. Let $F_K(t)$ and $P_K(x, y)$ denote the Kauffman polynomial and the HOMFLY polynomial of K, respectively.

 (a) Use the description in terms of states to show that $F_{\bar{K}}(t) = F_K(t^{-1})$.

 (b) Use skein relations to prove that $P_{\bar{K}}(x, y) = P_K(x^{-1}, y)$.

 (c) Is the knot 5_2 amphicheiral?

4. Prove that all our knot polynomials are invariants of unoriented knots.

5. This problem indicates the various connections between our polynomials.

 (a) Show that $F_L(t)$ can be obtained from $P_L(x, y)$ by substituting $x = t^4\sqrt{-1}$ and $y = (t^2 - t^{-2})\sqrt{-1}$.

 (b) Show that $\nabla_L(z)$ can be obtained from $P_L(x, y)$ by substituting $x = \sqrt{-1}$ and $y = z\sqrt{-1}$.

 (c) Prove that $V_L(s) = F_L(s^{-1/4})$ and that $\Delta_L(w) = \nabla_L(w^{1/2} - w^{-1/2})$.

6. Suppose that the link L can be represented by a diagram $L_1 \cup L_2$ with links L_1 and L_2 that are on different sides of some vertical line in the plane. Prove that the Conway polynomial $\nabla_L(z) = 0$.

[See the reverse side for hints!]
Hints:

3. What effect does taking the mirror image have on (a) a state diagram? or (b) a resolving tree?

4. Think about how changing the orientation of a knot might affect its resolving tree.

5. Some of these substitutions take place in the complex number system, where \(i^{-1} = -i\) for \(i = \sqrt{-1}\). You only have to show that the skein relation of one polynomial becomes the skein relation of the other polynomial under the indicated substitution.

6. Interpret the diagram \(L_1 \cup L_2\) as the smoothing \(L_s\) of a diagram \(L_+\) which equals its diagram \(L_-\). Do this by forming a connected sum of the two links \(L_1\) and \(L_2\) with one extra crossing in between. Now apply the skein relation for \(\nabla(z)\).