1. Do Exercise 1.9 on page 19 of the text.

2. Do Exercise S-1.4 on page 24 of the text.

3. Do Exercise 2.1 on page 27 of the text.

4. Let $U \subseteq X \subseteq \mathbb{R}^n$.
 Suppose that U is open in X. Prove that $X \setminus U$ is closed in X.

5. Do Exercise S-1.2 on page 23 of the text.

6. Consider the six surfaces depicted on Handout 1 (attached).
 All six surfaces are topologically equivalent. It is a fact, however, that all but one of them can be deformed into each another (by a so-called ambient isotopy) within \mathbb{R}^3. Identify the surface which is not isotopic to the other five within \mathbb{R}^3, by describing isotopies between all other five surfaces (using sketches and words).