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Abstract

Let G be a semigroup of complex polynomials (under the operation of com-
position of functions) such that there exists a bounded set in the plane which
contains any finite critical value of any map g ∈ G. We discuss the dynamics
of such polynomial semigroups as well the structure of the Julia set of G. In
general, the Julia set of such a semigroup G may be disconnected, and each Fa-
tou component of such G is either simply connected or doubly connected. In
this paper, we show that for any two distinct Fatou components of certain types
(e.g., two doubly connected components of the Fatou set), the boundaries are
separated by a Cantor set of quasicircles (with uniform dilatation) inside the
Julia set of G. Furthermore, we provide results concerning the (semi) hyperbolic-
ity of such semigroups as well as discuss various topological consequences of the
postcritically boundedness condition.
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1 Introduction

A rational semigroup is a semigroup generated by non-constant rational maps on the Rie-
mann sphere C with the semigroup operation being the composition of maps. We denote by
〈hλ : λ ∈ Λ〉 the rational semigroup generated by the family of maps {hλ : λ ∈ Λ}. A poly-
nomial semigroup is a semigroup generated by non-constant polynomial maps. Research
on the dynamics of rational semigroups was initiated by A. Hinkkanen and G.J. Martin in [2],
who were interested in the role of the dynamics of polynomial semigroups while studying
various one-complex-dimensional moduli spaces for discrete groups. Also, F. Ren, Z. Gong,
and W. Zhou studied such semigroups from the perspective of random dynamical systems
(see [18], [1]).

The polynomial maps fc(z) = z2 + c for c in the Mandelbrot set are such that the
orbit of the sole critical point {fn

c (0)} is bounded, which in turn leads to many important
dynamic and structural properties. It is then natural to look at the more general situation
of polynomial semigroups with bounded postcritical set. We discuss the dynamics of such
polynomial semigroups as well the structure of their Julia sets. For some properties of
polynomial semigroups with bounded finite postcritical set, also see [12], [14].

Note that the research of polynomial semigroups is deeply related to the research of
random dynamics of polynomials (See [16]).

Definition 1 Let G be a rational semigroup. We set

F (G) = {z ∈ C | G is normal in a neighborhood of z} and J(G) = C \ F (G).

We call F (G) the Fatou set of G and J(G) the Julia set of G. The Fatou set and Julia
set of the semigroup generated by a single map g is denoted by F (g) and J(g), respectively.

From the definition, we get that F (G) is forward invariant under each element of G,
i.e., g(F (G)) ⊂ F (G) for all g ∈ G, and thus J(G) is backward invariant under each
element of G, i.e., g−1(J(G)) ⊂ J(G) for all g ∈ G (see [2], p. 360). The sets F (G) and
J(G) are, however, not necessarily completely invariant under the elements of G. This is in
contrast to the case of single function dynamics, i.e., the dynamics of semigroups generated
by a single rational function. For a treatment of alternatively defined completely invariant
Julia sets of rational semigroups the reader is referred to [4], [5], [6] and [7].

Note that J(G) contains the Julia set of each element of G. Moreover, the following
result due to Hinkkanen and Martin holds.

Theorem 2 ([2], Corollary 3.1) For rational semigroups G with ](J(G)) ≥ 3, we have

J(G) =
⋃

f∈G

J(f).

The backward orbit of z is given by G−1(z) = ∪g∈Gg−1({z}) and the forward orbit
of z is given by G(z) = ∪g∈Gg({z}) . For any subset A of C, we set G−1(A) = ∪g∈Gg−1(A).
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For any polynomial g, we set K(g) := {z ∈ C | ∪n∈N gn({z}) is bounded in C}, which
is known as the filled in Julia set of g. We note that J(g) = ∂K(g) and that K(g) is
the polynomial hull of J(g). The appropriate extension (to our situation with polynomial
semigroups) of the concept of filled in Julia set is as follows.

Definition 3 For a polynomial semigroup G, we set

K̂(G) := {z ∈ C | G(z) is bounded in C}.

Remark 4 We note that for all g ∈ G, we have K̂(G) ⊂ K(g) and g(K̂(G)) ⊂ K̂(G).

Definition 5 The postcritical set of a rational semigroup G is defined by

P (G) =
⋃
g∈G

{all critical values of g : C→ C} (⊂ C).

We say that G is hyperbolic if P (G) ⊂ F (G) and we say that G is subhyperbolic if both
#{P (G) ∩ J(G)} < +∞ and P (G) ∩ F (G) is a compact set.

For research on (semi-)hyperbolicity and Hausdorff dimension of Julia sets of rational
semigroups see [8, 9, 10, 15, 11].

Definition 6 The finite postcritical set (or, the planar postcritical set) of a polynomial
semigroup G is defined by

P ∗(G) = P (G) \ {∞}.

Definition 7 Let G be the set of all polynomial semigroups G with the following properties:

• each element of G is of degree at least two, and

• P ∗(G) is bounded in C.

Moreover, we set Gdis := {G ∈ G | J(G) is disconnected}.

Remark 8 Since P (G) is forward invariant under G, we see that G ∈ G implies P ∗(G) ⊂
K̂(G), and thus P ∗(G) ⊂ K(g) for all g ∈ G.

Remark 9 For a polynomial g of degree two or more, it is well known that 〈g〉 ∈ G implies
J(g) is connected. (Hence, for any g ∈ G ∈ G, we have that J(g) is connected.) We note,
however, that the analogous result for polynomial semigroups does not hold as there are many
examples where G ∈ G, but J(G) is not connected (see [17]). See also [13] for an analysis
of the number of connected components of J(G) involving the inverse limit of connected
components of the realizations of the nerves of finite coverings U of J(G), where U consists
of backward images of J(G) under maps in G.
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The aim of this paper is to investigate what can be said about the structure of the Julia
sets and the dynamics of semigroups G ∈ G? We begin by examining the structure of the
Julia set and note that a natural order (that is respected by the backward action of the maps
in G) can be placed on the components of J(G), which then leads to implications on the
connectedness of Fatou components.

Definition 10 For a polynomial semigroup G ∈ G, we denote by J = JG the set of all
connected components of J(G) which do not include ∞.

Definition 11 We place a partial order on the space of all non-empty compact connected
sets in C as follows. For any connected compact sets K1 and K2 in C, “K1 ≤ K2” indicates
that K1 = K2 or K1 is included in a bounded component of C \ K2. Also, “K1 < K2”
indicates K1 ≤ K2 and K1 6= K2. We call ≤ the surrounding order and read K1 < K2 as
“K1 is surrounded by K2”.

Theorem 12 ([12]) Let G ∈ G (possibly infinitely generated). Then

1. (J , ≤) is totally ordered.

2. Each connected component of F (G) is either simply or doubly connected.

3. For any g ∈ G and any connected component J of J(G), we have that g−1(J) is
connected. Let g∗(J) be the connected component of J(G) containing g−1(J). If J ∈ J ,
then g∗(J) ∈ J . If J1, J2 ∈ J and J1 ≤ J2, then both g−1(J1) ≤ g−1(J2) and g∗(J1) ≤
g∗(J2).

With this order and the following notation we will then be able to state our main results.
Let h1, · · · , hm be rational functions on C. Let Σm = {1, · · · ,m}N be the one-sided shift

space and let σ : Σm → Σm be the shift map, i.e., σ(x1, x2, · · · ) = (x2, x3, · · · ). Let f̃ : Σm ×
C→ Σm × C be the map defined by f̃(x, y) = (σ(x), hx1(y)), where x = (x1, x2, · · · ) ∈ Σm.
This is called the skew product map associated with {h1, · · · , hm}. Let π : Σm×C→ Σm and
πC : Σm × C → C be the natural projections. We set f̃n

x := f̃n|π−1x : π−1x → π−1σn(x) ⊂
Σm × C and we denote by Fx(f̃) the set of points y ∈ π−1x which has a neighborhood U in
π−1x such that {f̃n

x : U → Σm×C}n∈N is normal. Furthermore, we set Jx(f̃) := π−1x\Fx(f̃).

Remark 13 Note that πC(Jx(f̃)) is equal to the set of points z ∈ C where the sequence of
rational functions {hxn ◦ · · · ◦ hx1}n∈N is not normal. This is sometimes called the Julia set
along the trajectory (sequence) x ∈ Σm.

Theorem 14 Let G ∈ G and let A and B be disjoint subsets of C. Suppose that we have
one of the following conditions:

• A and B are doubly connected components of F (G).

• A is a doubly connected component of F (G) and B is a connected component of F (G)
with ∞ ∈ B .
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• A = K̂(G) and B is a doubly connected component of F (G).

Then ∂A ∩ ∂B = ∅. Furthermore, A and B are separated by a Cantor family of quasicircles
with uniform dilatation which all lie in J(G). More precisely, there exist two elements α1, α2 ∈
G satisfying all of the following.

1. There exists an open set U in C with α−1
1 (U)∩α−1

2 (U) = ∅ and α−1
1 (U)∪α−1

2 (U) ⊂ U.

2. H = 〈α1, α2〉 is hyperbolic.

3. Let f̃ : Σ2 × C→ Σ2 × C be the skew product map associated with {α1, α2}. Then

(a) J(H) =
⋃

x∈Σ2
πC(Jx(f̃)) (disjoint union),

(b) for any component J of J(H), there exists an x ∈ Σ2 with J = πC(Jx(f̃)) and

(c) there exists a constant K ≥ 1 such that any component J of J(H) is a K-
quasicircle.

4. {πC(Jx(f̃))}x∈Σ2 is totally ordered with ≤, consisting of mutually disjoint subsets of
J(H). Furthermore, for each x ∈ Σ2, the set πC(Jx(f̃)) separates A and B.

Remark 15 It should be noted that in the above theorem, the quasicircles πC(Jx(f̃)) are all
disjoint components of J(H), but may all lie in the same component of J(G).

Example 16 We give an example of a semigroup G ∈ G such that J(G) is a Cantor set of
round circles. Let f1(z) = azk and f2(z) = bzj for some positive integers k and j. Then J(f1)
and J(f2) are both circles centered at the origin. Let A denote the closed annulus between
J(f1) and J(f2). For positive integers m1 and m2 large enough, we see that the iterates
g1 = fm1

1 and g2 = fm2
2 will yield A1 = g−1

1 (A) ∪ g−1
2 (A) ⊂ A where g−1

1 (A) ∩ g−1
2 (A) = ∅.

Now iteratively define An+1 = g−1
1 (An)∪ g−1

2 (An) and note that for G = 〈g1, g2〉 we have that
J(G) = ∩∞n=1An, since J(G) is the smallest closed backward invariant (under each element
of G) set which contains three or more points.

The next results concern the (semi-)hyperbolicity of polynomial semigroups in G, and
in particular show how one can build larger (semi-)hyperbolic polynomial semigroups in G
from smaller ones by including maps with certain properties. For this result we need to note
the existence of a minimal element in J and state a few of its properties.

Theorem 17 ([12]) Let G be a polynomial semigroup in Gdis. Then there is a unique ele-
ment Jmin ∈ J such that Jmin meets (and therefore contains) ∂K̂. Furthermore, we have the
following

• Jmin ≤ J for all J ∈ J .
• P ∗(G) is contained in the polynomial hull of Jmin.

5



Definition 18 A rational semigroup H is semi-hyperbolic if for each z ∈ J(H) there
exists a neighborhood U of z and a number N ∈ N such that for each g ∈ H we have
deg(g : V → U) ≤ N for each connected component V of g−1(U).

Theorem 19 Let H ∈ G and let G = 〈H, h1, . . . , hn〉 be a polynomial semigroup generated
by H and h1, · · · , hn. Suppose

(1) G ∈ Gdis,
(2) J(hj) ∩ Jmin(G) = ∅ for each j = 1, · · · , n, and
(3) H is semi-hyperbolic.

Then, G is semi-hyperbolic.

Remark 20 Theorem 19 would not hold if we were to replace both instances of the word
semi-hyperbolic with the word hyperbolic (see Example 37). However, with an additional
hypothesis we do get the following:

Theorem 21 Let H ∈ G and let G = 〈H, h1, . . . , hn〉 be a polynomial semigroup generated
by H and h1, · · · , hn. Suppose

(1) G ∈ Gdis,
(2) J(hj) ∩ Jmin(G) = ∅ for each j = 1, · · · , n,
(3) P ∗(H) ∩ J(H) = ∅. and
(4) For each j = 1, . . . , n, the critical values of hj do not meet Jmin(G).

Then, P ∗(G) ∩ J(G) = ∅.

Remark 22 We note that if in Theorem 21 we replace hypothesis (3) with the hypothesis
“H is hyperbolic”, then the conclusion becomes “G is hyperbolic”. This follows immediately
as one can show that ∞ ∈ F (H) implies ∞ ∈ F (G) (see the proof of Theorem 19 for more
details).

The rest of this paper is organized as follows. In Section 2 we give the necessary back-
ground and tools required, in Section 3 we give the proof of Theorem 14, and in Section 4
we give the proofs of Theorems 19 and 21 along with Example 37.

2 Background and Tools

Although not all connected compact sets in C are comparable in the surrounding order, we
do have the following lemma whose proof we leave to the reader.

Lemma 23 Given two connected compact sets A and B in C we must have exactly one of
the following:

1. A < B

2. B < A
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3. A ∩B 6= ∅
4. A and B are outside of each other, i.e., A is a subset of the unbounded component

of C \B and B is a subset of the unbounded component of C \ A.

For various sets of interest in this paper the last case listed above is not possible (see
Corollary 33). We now proceed to show this through a series of results which we will also
find useful later in the paper.

Lemma 24 Let A and B be compact connected subsets of C and suppose there exists a point
p ∈ C such that one of the following holds

(i) {p} < A and {p} < B

(ii) p ∈ A and {p} < B

(iii) {p} < A and p ∈ B

(iv) p ∈ A and p ∈ B.

Then exactly one of the following holds:

1. A < B

2. B < A

3. A ∩B 6= ∅.
Proof: Cases (ii), (iii), and (iv) are trivial, so we detail only case (i). Suppose A∩B = ∅.

Call VA and VB the bounded components of C \A and C \B, respectively, which contain p.
Since VA 6= VB (else A and B are not disjoint) we must have ∂VB ∩ VA 6= ∅ or ∂VA ∩ VB 6= ∅.
But ∂VB ∩ VA 6= ∅ implies B ∩ VA 6= ∅ which implies B ⊂ VA (since B is connected), and
thus B < A. Similarly, ∂VA ∩ VB 6= ∅ implies A < B. QED

Definition 25 For a compact set A ⊂ C we define the polynomial hull PH(A) of A to
be the union of A and all bounded components of C \ A.

Remark 26 With regards to the Lemma 24, we note that if PH(A) and PH(B) share
a common point p, then one of the cases (i) − (iv) must hold, and therefore so does the
conclusion.

Lemma 27 Let g ∈ G ∈ G and suppose P ∗(G) ⊂ PH(A) where A ⊂ C is compact. Then
P ∗(G) ⊂ PH(g−1(A)).

Proof: Suppose z0 ∈ P ∗(G) is in the unbounded component U of C \ g−1(A). Let γ
be a curve in U connecting z0 to ∞. Then Γ = g ◦ γ is a curve in C \ A which connects
g(z0) to ∞ which shows that g(z0) /∈ PH(A). Since P ∗(G) is forward invariant we have that
g(z0) ∈ P ∗(G) \ PH(A) which contradicts our hypothesis. QED
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Corollary 28 Let f, g ∈ G ∈ G. If A is of the form J ∈ J , J(f), g−1(J), or g−1(J(f)),
then P ∗(G) ⊂ PH(A).

Proof: Since by Theorem 17 we have P ∗(G) ⊂ PH(Jmin) and Jmin ≤ J , we must also
have P ∗(G) ⊂ PH(J). By Remark 8 any point p ∈ P ∗(G) must lie in K(f) = PH(J(f)).
The other cases then follow from Lemma 27. QED

An important consequence of Lemma 3.1 in [12] is the following.

Corollary 29 ([12]) Let G ∈ G. If ε > 0 and J ∈ J , then there exists g ∈ G such that
J(g) ⊂ B(J, ε), where B(J, ε) = ∪z∈JB(z, ε) denotes the ε neighborhood of J .

Lemma 30 ([3]) Let X be a compact metric space and let f : X → X be a continuous open
map. Let K be a compact connected subset of X. Then for each connected component B of
f−1(K), we have f(B) = K.

Lemma 31 Let g be a polynomial with d = deg(g) ≥ 1 and let K ⊂ C be a connected
compact set such that the unbounded component U of C \K contains no critical values of g
other than ∞. Then g−1(K) is connected. Further, if K1 is a connected compact set such
K < K1, then g−1(K) < g−1(K1).

Proof: Set V = g−1(U) and note that V contains no finite critical points of g. Thus by
the Riemann-Hurwitz relation we have χ(V )+ δg(V ) = dχ(U), where χ(·) denotes the Euler
characteristic and δ(·) is the deficiency. Since the hypotheses on U imply δg(V ) = d − 1
and χ(U) = 1, we see that χ(V ) = 1. Hence the open and connected set V is simply
connected and thus ∂V is connected. Let A = C \ V and note that ∂A ⊂ ∂V . Suppose B is
a component of g−1(K) which does not meet ∂V . Then B ⊂ A. We note that by Lemma 30
we have g(B) = K ⊃ ∂U . Since g(B) ⊃ ∂U and B ⊂ A we see that g(A) ∩ ∂U 6= ∅.
Thus g(A) ∩ U 6= ∅ by the Open Mapping Theorem, which contradicts the fact that A and
V = g−1(U) are disjoint. Thus, since the connected set ∂V ⊂ g−1(K) meets all the connected
components of g−1(K), we conclude that g−1(K) is connected.

Let V1 = g−1(U1) where U1 is the unbounded component of C \ K1. Since K < K1

implies K ∩K1 = ∅, we get that g−1(K) ∩ g−1(K1) = ∅ which implies ∂V ∩ ∂V1 = ∅ since
∂V ⊂ g−1(K) and ∂V1 ⊂ g−1(K1). Since ∞ ∈ V ∩V1, it is easy to show then that ∂V < ∂V1.
Since g−1(K) ⊃ ∂V and g−1(K1) ⊃ ∂V1, it quickly follows that g−1(K) < g−1(K1). QED

Corollary 32 Let g, h ∈ G ∈ G and J ∈ J . Then g−1(J) and g−1(J(h)) are connected.
Furthermore, J1 < J2 for J1, J2 ∈ J implies g−1(J1) < g−1(J2), and J(h1) < J(h2) for
h1, h2 ∈ G implies g−1(J(h1)) < g−1(J(h2)).

Proof: The result follows immediately from Lemma 31 once it is shown that the un-
bounded components U and U ′ of C \J and C \J(h), respectively, contain no critical values
of g other than ∞. Suppose U contains a finite critical value z0 of g. Let γ be a path in
U connecting z0 to ∞ and let ε = dist(γ, J). By Corollary 29 we see that B(J, ε/2) con-
tains J(f) for some f ∈ G. Since J(f) cannot meet γ, the point z0 lies in the unbounded
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component of C \ J(f) and thus fn(z0) →∞, which contradicts the hypothesis that P ∗(G)
is bounded. Hence U contains no critical values of g other than ∞. The condition on U ′

follows from the fact that P ∗(g) ⊂ P ∗(G) ⊂ K(h). QED

Corollary 33 Let f, g ∈ G ∈ G. For any two sets A and B of the form J ∈ J , J(f), g−1(J),
or g−1(J(f)), exactly one of the following must hold:

1. A < B

2. B < A

3. A ∩B 6= ∅.

Proof: This follows immediately from Corollary 32, Corollary 28 and Remark 26. QED

3 Proof of Theorem 14

Definition 34 For compact connected sets K1 and K2 in C such that K1 < K2 we define
Ann(K1, K2) = U ∩ V where U is the bounded component of C \K2 which contains K1, and
V is the unbounded component of C \K1. Thus Ann(K1, K2) is the open doubly connected
region “between” K1 and K2.

Remark 35 For any connected compact set A ⊂ Ann(K1, K2) we immediately see that
A < K2 and, by Lemma 23, either K1 and A are outside of each other or K1 < A.

Lemma 36 Let f, g ∈ G ∈ G be such that J(f) and J(g) lie in different components of
J(G) with J(f) < J(g). Then for any fixed n,m ∈ N there exists h, k ∈ G such that
f−(n+1)(J(g)) < J(h) < f−n(J(g)) and g−m(J(f)) < J(k) < g−(m+1)(J(f)).

Proof: We claim that g−1(J(f)) > J(f). If g−1(J(f)) ∩ J(f) 6= ∅, then the connected
set ∪∞n=0g

−n(J(f)), which lies in J(G), meets both J(g) and J(f), thus contradicting the
hypothesis that J(f) and J(g) lie in different components of J(G). If g−1(J(f)) < J(f),
then one could easily show that g−1(K(f)) ⊂ K(f) which would imply that J(g) ⊂ K(f),
thus contradicting the hypothesis that J(f) < J(g). Hence, we conclude by Corollary 33
that g−1(J(f)) > J(f).

Let X = g−1(J(f)), A = g−m(J(f)) and B = g−(m+1)(J(f)) and note that J(f) < A < B
from Lemma 31. Choose ` ∈ N large enough so that f−`(B) ⊂ Ann(J(f), X). Then
g−m(f−`(Ann(A,B))) ⊂ g−m(Ann(J(f), X)) ⊂ Ann(A,B) ⊂ Ann(A,B) which implies
that k = f ` ◦ gm ∈ G is such that J(k) ∈ Ann(A,B). Since by Corollary 33 we must have
either J(k) < A or A < J(k), we see by construction that A < J(k) must hold.

The other result is proved similarly. QED

Proof of Theorem 14: We give a proof in the case that A and B are doubly connected
components of F (G). We assume without loss of generality that A is contained in the
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bounded component of C\B. Let ΓA denote the component of ∂A which meets the bounded
component of C \ A and let Γ denote the other component of ∂A. Let ΓB denote the
component of ∂B which meets the unbounded component of C \ B. Let J ∈ J be such
that Γ ⊂ J . Let ε = min{dist(ΓA, J), dist(ΓB, J)}. By Corollary 29 we see that B(J, ε/2)
contains J(g) for some g ∈ G and thus, using Corollary 33, ΓB > J(g) > ΓA.

Let JA ∈ J be such that ΓA ⊂ JA and set ε′ = dist(JA, J(g)). By the Corollary 29 we
see that B(JA, ε′/2) contains J(f) for some f ∈ G and thus J(g) > J(f). Choose m large
enough so that g−m(J(f)) > ΓA. By Lemma 36 there exists k ∈ G such that g−m(J(f)) <
J(k) < g−(m+1)(J(f)) < J(g). By choosing m1,m2 ∈ N large (as in Example 16), we will
find that α1 = km1 and α2 = gm2 generate a subsemigroup H of G where J(H), by Theorem
3.5 in [12], is a Cantor set of topological circles each of which separate A from B and also
satisfy the conclusion of the theorem. QED

4 Proof of Theorems 19 and 21

Example 37 Let f1(z) = z2 + c where c > 0 is small (thus J(f1) is a quasi-circle). Let
z0 ∈ R denoted the finite attracting fixed point of f1. Note that fk

1 (0) increases to z0. Choose

f2(z) = (z−z0)2

(c−z0)
+ z0 and note that J(f2) = C(z0, |c − z0|). For m1,m2 ∈ N large h1 = fm1

1

and h2 = fm2
2 each map B(z0, |c− z0|) into itself and J(G) is disconnected for G = 〈h1, h2〉.

Note that P ∗(G) ⊂ B(z0, |c− z0|) and so G ∈ G. We have H = 〈h2〉 is hyperbolic, but since
f1(0) = c ∈ J(h2) ⊂ J(G), G is not hyperbolic.

By conjugating h2 by a rotation we may assume that {hk
2(c) : k ∈ N} is dense in J(h2)

and therefore we see that H can be hyperbolic and have G fail to even be sub-hyperbolic.
However, Theorem 19 implies that G is semi-hyperbolic.

Lemma 38 Let H1 be a polynomial semigroup in G. Let H2 = 〈H1, h1, . . . , hn〉 be the
semigroup generated by H1 and h1, · · · , hn. Suppose

(1) H2 ∈ Gdis, and
(2) J(hj) ∩ Jmin(H2) = ∅ for j = 1, . . . , n.

Then intK̂(H1) = intK̂(H2), which then implies Jmin(H1) meets Jmin(H2) since ∂K̂(H1) ⊂
Jmin(H1) and ∂K̂(H2) ⊂ Jmin(H2).

Remark 39 We recall the facts given in [12] that for any G ∈ G we have intK̂(G) =
K̂(G)∩F (G). Moreover, for any G ∈ Gdis, if intK̂(G) 6= ∅, then we have g(K̂(G)) ⊂ intK̂(G)
for any g ∈ G such that J(g) ∩ Jmin(G) = ∅.

Proof: First note that since H1 ⊂ H2 we have K̂(H1) ⊃ K̂(H2). Supposing intK̂(H1) =
∅, yields intK̂(H2) = ∅ also. Then by Theorem 1.9 in [12] each g ∈ H2 is of the form
g(z) = a(z− z0)

m + z0 for some z0 ∈ C. Thus, since intK̂(H1) = intK̂(H2) = ∅, we see that
K̂(H1) = {z0} = K̂(H2) and thus the lemma holds.

Now suppose that intK̂(H1) 6= ∅ and that the lemma does not hold. Thus there exists a
point η ∈ ∂K̂(H2) ∩ intK̂(H1).
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We first consider the case that intK̂(H2) 6= ∅. By hypothesis (2) and Remark 39 we
see that hj(K̂(H2)) ⊂ intK̂(H2) for all j = 1, . . . , n. Thus there exists ε > 0 such that

w ∈ K̂(H2) implies hj(B(w, ε)) ⊂ intK̂(H2) for all j = 1, . . . , n. Since intK̂(H1) = K̂(H1)∩
F (H1) by Remark 39, H1 is normal at η and so there exists δ > 0 such that diamf(B(η, δ)) <
ε for all f ∈ H1. We assume that δ < ε and B = B(η, δ) ⊂ intK̂(H1).

We now show that g ∈ H2 implies g(B) lies in the bounded set intK̂(H1) which gives the
contradiction that η ∈ B ⊂ intK̂(H2). If g ∈ H1, then g(B) ⊂ g(intK̂(H1)) ⊂ intK̂(H1).
If g /∈ H1, then we may write g = k2hjk1 where k1 ∈ H1 ∪ {id}, k2 ∈ H2 ∪ {id} and

j ∈ {1, . . . , n}. Then k1(B) ⊂ intK̂(H1) with diamk1(B) < ε and k1(η) ∈ K̂(H2) (since
η ∈ K̂(H2)). Then hj(k1(B)) ⊂ hj(B(k1(η), ε)) ⊂ intK̂(H2) and so g(B) = k2(hj(k1(B))) ⊂
k2(intK̂(H2)) ⊂ intK̂(H2). This concludes the proof in the case that intK̂(H2) 6= ∅.

If intK̂(H2) = ∅, then by Theorem 1.9 in [12] we have K̂(H2) = {z0} and each g ∈ H2 is
of the form g(z) = a(z−z0)

m+z0 which implies K̂(H1) = {z0} or K̂(H1) = B(z0, ρ) for some
ρ > 0. If K̂(H1) = {z0}, then we are done. Otherwise, the proof of the lemma then follows
by using the above argument with B = B(z0, r) where r = min{ρ, minj=1,...,n dist(z0, J(hj))}.
QED

Definition 40 Let G be a rational semigroup and let N be a positive integer. We define
SHN(G) to be the set of all z ∈ C such that there exists a neighborhood U of z such that for
all g ∈ G we have deg(g : V → U) ≤ N for each connected component V of g−1(U).

Definition 41 Let G be a rational semigroup. We define UH(G) = C \ ∪∞N=1SHN(G).

Remark 42 For a rational semigroup G we note that each SHN(G) is open and thus UH(G)
is closed.

Remark 43 For a rational semigroup G we see that UH(G) ⊂ P (G). This holds since for
z /∈ P (G) and U = B(z, δ) such that U ∩ P (G) = ∅ it must be the case (by an application of
the Riemann Hurwitz relation) that deg(g : V → U) = 1 for each connected component V of
g−1(U).

Remark 44 We note from Lemma 1.14 in [10] that, the attracting cycles of g, parabolic
cycles of g, and the boundary of every Siegel disk of g are contained in UH(〈g〉), for any
polynomial g with deg(g) ≥ 2. Hence we may conclude that such points are also in UH(G)
for any G containing g.

Theorem 45 Let H ∈ G and let G = 〈H, h1, . . . , hm〉 be a polynomial semigroup generated
by H and h1, · · · , hm. Suppose

(1) G ∈ Gdis,
(2) J(hj) ∩ Jmin(G) = ∅ for each j = 1, · · · ,m, and
(3) C ∩ J(H) ∩ UH(H) = ∅.

Then, C ∩ J(G) ∩ UH(G) = ∅.
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Remark 46 This theorem does not require that H or G be finitely generated.

Proof: Assume the conditions stated in the hypotheses. Since UH(G) ⊂ P (G) and
P ∗(G) ∩ J(G) ⊂ Jmin(G), we have only to show Jmin(G) ⊂ C \ UH(G).

If #Jmin(G) = 1, then Theorem 1.9 in [12] implies that there exists z0 ∈ C such that each
map in G is of the form a(z−z0)

n +z0 and Jmin(G) = {z0}. We also then see that UH(H) =
P (H) = {z0,∞}. Letting r = min{dist(J(H), z0), minj=1,...,m dist(J(hj), z0)} > 0, one can
easily show that B(z0, r) is forward invariant under each map in G and thus z0 /∈ J(G).
This contradiction shows that #Jmin(G) > 1. This, together with hypothesis (2), implies

h−1
j (Jmin(G)) ∩ Jmin(G) = ∅ for j = 1, . . . ,m (else ∪∞n=1h

−1
j (Jmin(G)) would be a connected

set in J(G) meeting both Jmin(G) and J(hj) contradicting hypothesis (3)), which in turn
implies

h−1
j (J(G)) ∩ A = ∅ (I)

where A = PH(Jmin).
Let d = minj=1,...,m dist(h−1

j (J(G)), A) > 0. By (I) there exists d1 > 0 such that for all

j = 1, . . . , m, for all z ∈ J(G), and all components U of h−1
j (B(z, d1)) we have

U ∩B(A, d/2) = ∅. (II)

Now by Lemma 38 and by hypothesis (3) we have UH(H) ∩C ⊂ P ∗(H) ∩ F (H) ⊂ K̂(H) ∩
F (H) = intK̂(H) = intK̂(G) ⊂ F (G) and so, taking compliments, Jmin(G) ⊂ C \ UH(H).

Claim: There exists b ∈ UH(H) ∩ intK̂(H).
Proof of claim: Note that intK̂(H) = intK̂(G) 6= ∅. Let g0 ∈ H and consider the iterates
{gn

0 } at any w ∈ intK̂(H) ⊂ F (H). Hypothesis (3) implies UH(H) ∩ C ⊂ F (H) which
implies that g0 cannot have a cycle of Siegel disks nor a parabolic cycle (see Remark 44).
Thus by Sullivan’s No Wandering Domains Theorem the orbit {gn

0 (w)}must be drawn toward
an attracting cycle. By replacing, if necessary, g0 by an iterate we may assume that gn

0 (w)
approaches a fixed point b of g0. Thus b ∈ UH(H)∩C ⊂ P ∗(H)∩F (H) ⊂ K̂(H)∩F (H) =
intK̂(H) which completes the proof of the claim.

Now let z ∈ Jmin(G) ⊂ C \ UH(H). Then there exists δ > 0 such that B(z, 2δ) ⊂
C \ UH(H). Since g(UH(H)) ⊂ UH(H) for each g ∈ H, we must have g(b) /∈ B(z, 2δ).
Since H is normal at b, there exists ε1 > 0 such that g ∈ H gives g(B(b, ε1)) ∩ B(z, δ) = ∅,
which implies g−1(B(z, δ)) ∩ B(b, ε1) = ∅. Since z ∈ C \ UH(H) there exists δ1 < δ and
N ∈ N such that for all h ∈ H and for all components V of h−1(B(z, δ1)) we have deg(h :
V → B(z, δ1)) ≤ N .

Fix h ∈ H and consider a component V of h−1(B(z, δ1)) and note that the maximum
principle implies that V is simply connected. Let φV,h : B(0, 1) → V be the Riemann map
chosen such that h◦φV,h(0) = z. By applying the distortion Theorem 1.10 in [10], there exists
0 < δ2 < δ1 such that any component W of (h ◦ φV,h)

−1(B(z, δ2)) is such that diamW ≤ c
where c > 0 is a small number independent of h, to be specified later.

The family {φV,h} is normal on B(0, 1) since φV,h(B(0, 1)) = V does not meet B(b, ε1).
Thus
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diamφV,h(W ) < d1/10 (III)

when c is sufficiently small.
Let g ∈ G. If g ∈ H, then deg(g : V → B(z, δ2)) ≤ N where V is any component of

g−1(B(z, δ2)). If g /∈ H, then we write g = hhjg1 where g1 ∈ G ∪ {id}, h ∈ H ∪ {id} and
j ∈ {1, . . . , m}. Let V0 be a component of h−1

j h−1(B(z, δ2)). Thus we have deg(hhj : V0 →
B(z, δ2)) ≤ NM where M = maxj=1,...,m{deg hj}. By (III) we have diamhj(V0) < d1/10.
By the definition of d1 we have V0 ∩ B(A, d/2) = ∅ and thus V0 ∩ P (G) = ∅. Using the
maximum principle applied to the polynomial hhj implies V0 is simply connected and hence
each branch of g−1

1 is well defined on V0. So for all components V1 of g−1(B(z, δ2)) we have
deg(g : V1 → B(z, δ2)) ≤ NM .

In the above, N depends on z, but what we have shown is that z ∈ Jmin(G) implies
z ∈ Jmin(G) ∩ SHN(H) for some N , which in turn implies z ∈ Jmin(G) ∩ SHNM(G), thus
giving z /∈ UH(G). QED

Proof of Theorem 19: Assume the hypotheses hold. Since H is semi-hyperbolic, the
point ∞, which is an attracting fixed point for every map in H and therefore in UH(H),
must lie in F (H). From this it follows easily that ∞ ∈ F (G) since there must then be a
neighborhood of ∞ which is forward invariant under the finite number of maps hj as well as
each map in H. Applying Theorem 45 now gives the desired conclusion. QED

Proof of Theorem 21: The proof follows the same line at the proof of Theorem 45.
We note that the usual Koebe Distortion Theorem applies, and on the domains of interest
in the proof each hj is one-to-one by hypothesis (4) and h ∈ H is one-to-one by hypothesis
(3). We omit the details. QED
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