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Abstract. We give an example of two rational functions with non-equal Julia sets that generate

a rational semigroup whose completely invariant Julia set is a closed line segment. We also give

an example of polynomials with unequal Julia sets that generate a non nearly Abelian polynomial

semigroup with the property that the Julia set of one generator is equal to the Julia set of the

semigroup. These examples show that certain conjectures in the field of dynamics of rational

semigroups do not hold as stated and therefore require modification.

1. Introduction

In [3], Hinkkanen and Martin develop a theory of dynamics of rational semigroups as a gener-

alization of the classical theory of the dynamics of the iteration of a rational function defined on

the complex sphere C. In that paper and in subsequent communications, they put forth several

conjectures, some of which will be addressed here. In particular we provide counterexamples to

Conjectures 1.1, 1.2 and 1.4. In light of these examples the conjectures are then suitably modified

and as such remain open questions. We begin by developing the necessary background to state these

questions.

In what follows all notions of convergence will be with respect to the spherical metric on the

Riemann sphere C. A rational semigroup G is a semigroup of rational functions of degree at least two

defined on the Riemann sphere C with the semigroup operation being functional composition. (One

may wish to allow some or all of the maps in G to be Möbius, for example, when one is considering

Kleinian groups as in [8], but since the examples constructed here all contain maps of degree two

or more, we will use our simplified definition to avoid any technical complications which are not

pertinent to this paper.) When a semigroup G is generated by the functions {f1, f2, . . . , fn, . . . }, we

write this as

(1.1) G = 〈f1, f2, . . . , fn, . . .〉.

On p. 360 of [3], the definitions of the set of normality, often called the Fatou set, and the Julia

set of a rational semigroup are as follows:
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Definition 1.1. For a rational semigroup G we define the set of normality of G, N(G), by

N(G) = {z ∈ C : ∃ a neighborhood of z on which G is a normal family}

and define the Julia set of G, J(G), by

J(G) = C \N(G).

Clearly from these definitions we see that N(G) is an open set and therefore its complement J(G)

is a compact set. These definitions generalize the case of iteration of a single rational function and

we write N(〈h〉) = Nh and J(〈h〉) = Jh. Note that J(G) contains the Julia set of each element of G.

For research on (semi-)hyperbolicity and Hausdorff dimension of Julia sets of rational semigroups,

see [9, 10, 11, 12].

Definition 1.2. If h is a map of a set Y into itself, a subset X of Y is:

i) forward invariant under h if h(X) ⊂ X;

ii) backward invariant under h if h−1(X) ⊂ X;

iii) completely invariant under h if h(X) ⊂ X and h−1(X) ⊂ X.

It is well known that for a rational function h, the set of normality of h and the Julia set of h are

completely invariant under h (see [2], p. 54), i.e.,

(1.2) h(Nh) = Nh = h−1(Nh) and h(Jh) = Jh = h−1(Jh).

In fact, the following property holds.

Property 1.1. For a rational map h of degree at least two the set Jh is the smallest closed completely

invariant (under h) set which contains three or more points (see [2], p. 67).

From Definition 1.1, it follows that N(G) is forward invariant under each element of G and J(G) is

backward invariant under each element of G (see [3], p. 360). The sets N(G) and J(G) are, however,

not necessarily completely invariant under the elements of G. This is in contrast to the case of single

function dynamics as noted in (1.2). However, we could have generalized the classical notion of the

Julia set of a single function in such a way as to force the Julia set of a rational semigroup to be

completely invariant under each element of the semigroup. Thus we give the following definition.

Definition 1.3. For a rational semigroup G we define the completely invariant Julia set of G

E(G) =
⋂

{S : S is closed, completely invariant under each g ∈ G,#(S) ≥ 3}

where #(S) denotes the cardinality of S.

We note that E(G) exists, is closed, is completely invariant under each element of G and contains

the Julia set of each element of G by Property 1.1.
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Definition 1.4. For a rational semigroup G we define the completely invariant set of normality

of G, W (G), to be the complement of E(G), i.e.,

W (G) = C \ E(G).

Note that W (G) is open and it is also completely invariant under each element of G.

We state the following conjectures which are due to A. Hinkkanen and G. Martin (see [7]).

Conjecture 1.1. If G is a rational semigroup which contains two maps f and g such that Jf 6= Jg

and E(G) 6= C, then W (G) has exactly two components, each of which is simply connected, and

E(G) is equal to the boundary of each of these components.

Conjecture 1.2. If G is a rational semigroup which contains two maps f and g such that Jf 6= Jg

and E(G) 6= C, then E(G) is a simple closed curve in C.

In section 2 we give a method for constructing functions (as well as providing concrete functions)

whose Julia sets are unequal, but which generate a semigroup whose completely invariant Julia set

is a line segment. Hence the above conjectures do not hold. But since the only completely invariant

Julia sets of rational semigroups which are known at this time (when the semigroup contains two

maps with unequal Julia sets) are C (see [6] and [7]) or sets which are Möbius equivalent to a line

segment or circle, the authors put forth the following conjecture, which is currently unresolved.

Conjecture 1.3. If G is a rational semigroup which contains two maps f and g such that Jf 6= Jg

and E(G) is not the whole Riemann sphere, then E(G) is Möbius equivalent to a line segment or a

circle.

Remark 1.1. We briefly explain some evidence that compels us to pose Conjecture 1.3 the way

we did. Our example of a rational semigroup G with E(G) being a line segment is rigid since G

contains a Tchebycheff polynomial, which is known to be postcritically finite (and hence, rigid). On

the other hand, an example of a rational semigroup G with E(G) being a (unit) circle generated

by rational functions f1, . . . , fn with non-equal Julia sets is easily constructed by choosing finite

Blaschke products as the fj ’s. However, it seems difficult to quasiconformally deform f1, . . . , fn

simultaneously so that the completely invariant Julia set of the resulting rational semigroup is not

a circle.

In section 3 we provide a counterexample to the following conjecture also due to Hinkkanen and

Martin [4].

Conjecture 1.4. Let G be a polynomial semigroup such that Jh = J(G) for some h ∈ G. Then

Jf = Jg for all f, g ∈ G (and hence G is nearly abelian by Theorem 3.2).

In our counterexample J(G) is a closed line segment. Since no other types of counterexamples

are known, we modify this conjecture as follows and note that it remains unresolved.
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Conjecture 1.5. Let G be a polynomial semigroup such that Jh = J(G) for some h ∈ G where

J(G) is not a line segment. Then Jf = Jg for all f, g ∈ G (and hence G is nearly abelian by

Corollary 3.2).

2. Counterexamples to Conjectures 1.1 and 1.2

We begin this section with some notation and lemmas. Let φ(z) = z2−1
z2+1 and denote the upper

half plane as U = {z : =z > 0}. Then φ maps U one-to-one onto Ω = C \ [−1, 1] and φ maps R
two-to-one onto I = [−1, 1]. We call a map f odd if f(−z) = −f(z) and we call a map f even if

f(−z) = f(z).

Lemma 2.1. A function f is an odd rational map such that f(U) = U if and only if it has the form

(2.1) f(z) = az − b
z
−

N
∑

j=1

Bjz
z2 −Aj

where a, b, Aj , Bj ≥ 0.

Proof. Let f be an odd rational map such that f(U) = U . Then any preimage of infinity must be real

(else there would exist a preimage of infinity in U) and simple (else there would be points in U that

map outside of U). Again, since f(U) = U , it follows that f must be of the form az− b
z −

∑k
j=1

cj

z−aj

where a, b, cj ≥ 0 and aj ∈ R. Since f(R) = R and f(−z) = −f(z) we conclude that the poles other

than the one which might possibly exist at the origin must come in pairs of real numbers symmetric

about the origin. Hence f(z) = az − b
z −

∑N
j=1

bj

z−aj
−

∑N
j=1

bj

z+aj
where bj > 0, which can be

algebraically reduced to (2.1).

Let f be a map of the form (2.1). Hence f is odd, rational, maps U into U (since each term in

the sum does), and maps R into R (since the coefficients are all real). From this it easily follows

that f(U) = U . �

Lemma 2.2. Let f be a rational map. Then [f(z)]2 is even if and only if f is even or odd.

Proof. Suppose [f(z)]2 = [f(−z)]2. Then an analytic square root of [f(−z)]2 (defined locally away

from the zeroes and poles of f) is either f(z) or −f(z). The identity theorem can then be used to

show that f(−z) is either f(z) or −f(z) globally, i.e., f is either even or odd.

The reverse implication is immediate. �

Lemma 2.3. Let f be a rational map. Then φ ◦ f is even if and only if [f(z)]2 is even.

Proof. Since φ(z) = ψ(z2) for ψ(z) = z−1
z+1 we see that [f(z)]2 = ψ−1 ◦φ(f(z)) and ψ−1 ◦φ(f(−z)) =

[f(−z)]2. The lemma easily follows. �

Lemma 2.4. If g is an even rational function, then g(z) = h(z2) for some rational map h.
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Proof. For z 6= 0 or ∞ we define h(z) = g(±
√

z) and note that h is well defined since g is even.

Since h is analytic on C \ {0} and can be extended in the obvious way to be continuous on C, h is

rational and satisfies h(z2) = g(z). �

Lemma 2.5. Let f be a rational map such that f(U) = U . Then there exists a rational map f̃ such

that φ ◦ f = f̃ ◦ φ if and only if f is odd (and therefore of the form in Lemma 2.1).

Proof. Let f be odd. Since f(z) = −f(−z) we see that [f(z)]2 is an even rational function and

therefore by Lemma 2.4 [f(z)]2 = h(z2) for some rational map h. Define f̃(z) =
h( 1+z

1−z )−1

h( 1+z
1−z )+1

(hence

f̃ is a rational map as it is a composition of rational maps). Let w = φ(z) = z2−1
z2+1 and note that

z2 = 1+w
1−w . Hence (f̃ ◦ φ)(z) = f̃(w) =

h( 1+w
1−w )−1

h( 1+w
1−w )+1

= [f(z)]2−1
[f(z)]2+1 = (φ ◦ f)(z).

Suppose there exists a rational map f̃ such that φ ◦ f = f̃ ◦ φ. Then f̃ ◦ φ is even since φ is even.

The semi-conjugacy implies φ ◦ f is also even, which by Lemmas 2.3 and 2.2 gives that f is either

even or odd. If f were even, then f(C \ U) = f(U) = U and the preimage of the lower half plane

would be empty. This contradicts the fact that the image of C under a rational map is always C.

Hence we conclude that f must be odd. �

Lemma 2.6. If f̃ is a rational map such that Ω = f̃−1(Ω), then there exists an odd rational map f

such that U = f−1(U) and φ ◦ f = f̃ ◦ φ.

Proof. Let h denote the branch of the inverse of φ which maps Ω onto U . Then f = h ◦ f̃ ◦ φ

maps U onto U properly and is therefore a rational map (Blaschke product of the upper half plane).

Clearly, φ ◦ f = f̃ ◦ φ on U and so by the identity Theorem this semi-conjugacy holds on all of C.

By Lemma 2.5 f is odd. �

Remark 2.1. Lemmas 2.5 and 2.6 classify those rational functions that can be semi-conjugated by

φ.

Lemma 2.7. For rational semigroups G = 〈gj : j ∈ I〉 and H = 〈hj : j ∈ I〉 where there exists

a rational function k satisfying the semi-conjugacy relation k ◦ hj = gj ◦ k for each j ∈ I, we have

J(G) = k(J(H)) and N(G) = k(N(H)).

Proof. We first note that the semi-conjugacy relation on the generators translates to a semi-conjugacy

relation between corresponding elements of the semigroups. More precisely, if h = hj1 ◦· · ·◦hjn ∈ H,

then for g = gj1 ◦ · · · ◦ gjn we have k ◦ h = g ◦ k since k ◦ hj1 ◦ · · · ◦ hjn = gj1 ◦ k ◦ hj2 ◦ · · · ◦ hjn =

gj1 ◦ gj2 ◦ k ◦ hj3 ◦ · · · ◦ hjn = ..... = gj1 ◦ gj2 ◦ · · · ◦ gjn ◦ k.

Let z0 be a point in N(H) and let ∆ be a small open set in N(H) containing z0 such that h(∆) has

spherical diameter less than ε for all h ∈ H. Denoting the Lipschitz constant of k by C (see [2], p. 32),

we see that for any g = gj1 ◦ · · · ◦ gjn ∈ G the diameter of g(k(∆)) = k(hj1 ◦ · · · ◦ hjn(∆)) = k(h(∆))

is less than Cε. Hence k(z0) ∈ N(G) and so we conclude that k(N(H)) ⊂ N(G).
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Let z0 be a repelling fixed point for some h = hj1 ◦ · · · ◦hjn ∈ H, but which is not a critical point

of k. Then for g = gj1 ◦ · · · ◦ gjn we have g ◦ k = k ◦ h and hence g has a fixed point at k(z0) with

the same multiplier as that of h at z0 (using the chain rule and the fact that g = k ◦ h ◦ k−1 for the

branch of k−1 which maps k(z0) to z0). Hence we have shown that the repelling fixed points of the

maps in H, which are not any of the finite number of critical points of k, map under k to repelling

fixed points of maps in G. Since the Julia set of a rational semigroup is a perfect set equal to the

the closure of the set of repelling fixed points of the elements of the semigroup (see [3], Theorem 3.1

and Corollary 3.1), it then follows that k(J(H)) ⊂ J(G).

Since J(H) = C \ N(H) and J(G) = C \ N(G) the lemma now follows from the fact that

k(C) = C. �

One might expect that a result similar to Lemma 2.7 would hold for completely invariant Julia

sets, however, we require an additional hypothesis as noted in the following lemmas.

Lemma 2.8. Suppose rational functions g, h, k satisfy the semi-conjugacy relation k ◦ h = g ◦ k.

If S̃ is completely invariant under g, then k−1(S̃) is completely invariant under h. Also, if S is

completely invariant under h and k−1(k(S)) = S, then k(S) is completely invariant under g.

The proof of Lemma 2.8 follows readily from the semi-conjugacy and will therefore be omitted.

Lemma 2.9. For rational semigroups G = 〈gj : j ∈ I〉 and H = 〈hj : j ∈ I〉 where there exists

a rational function k satisfying the semi-conjugacy relation k ◦ hj = gj ◦ k for each j ∈ I, we have

k(E(H)) ⊂ E(G) (and thus W (G) ⊂ k(W (H))). If we also have that k−1(k(E(H)) = E(H), then

k(E(H)) = E(G) and W (G) = k(W (H)).

Remark 2.2. The hypothesis k−1(k(E(H))) = E(H) stated above would automatically follow from

the other assumptions if, in addition, k is a (branched) Galois covering. We, however, do not require

that form of the statement because one can easily check that this hypothesis holds in the situations

we consider below.

Proof. Let h = hj1 ◦ · · · ◦hjn ∈ H and consider the corresponding g = gj1 ◦ · · · ◦gjn ∈ G. Since E(G)

is completely invariant under g and k ◦ h = g ◦ k, Lemma 2.8 shows that the closed set k−1(E(G))

is completely invariant under h. Since h ∈ H was arbitrary, we conclude that E(H) ⊂ k−1(E(G)).

Thus k(E(H)) ⊂ E(G).

Similarly one can use Lemma 2.8 to show that k−1(k(E(H)) = E(H) implies E(G) ⊂ k(E(H))

and so E(G) = k(E(H)). When k−1(k(E(H)) = E(H), k maps E(H) in a deg(k)-to-one fashion

onto k(E(H)) = E(G). Since k is a rational map of global degree deg(k), it must then map

W (H) = C \ E(H) onto W (G) = C \ E(G) (also in a deg(k)-to-one fashion). �

Example 2.1 (Counterexamples to Conjectures 1.1 and 1.2 ). Let f be an odd rational map such

that f(U) = U . Then by Lemma 2.5 there exists a rational function f̃ satisfying the semi-conjugacy

relation φ ◦ f = f̃ ◦ φ. Similarly we let g be an odd rational map with g(U) = U and so there exists

a rational map g̃ with φ ◦ g = g̃ ◦ φ. By choosing f and g such that Jf 6= R and Jg = R, we have
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that Jf̃ 6= I and Jg̃ = I by Lemma 2.7. Since R is completely invariant under both f and g we have

E(G) ⊂ R where G = 〈f, g〉. Since E(G) ⊃ Jg = R, we conclude that E(G) = R. For G̃ = 〈f̃ , g̃〉
we see that since φ−1(φ(E(G))) = φ−1(φ(R)) = R = E(G), we must have E(G̃) = φ(R) = I. Since

Jf̃ 6= Jg̃, G̃ is a counterexample to Conjectures 1.1 and 1.2.

Specifically we may select f(z) = 2z − 1
z and g(z) = z2−1

2z . Hence Jf is a Cantor subset of I

(see [2], p.21). Since g is the conjugate of z 7→ z2 under z 7→ i 1+z
1−z we see that Jg = R. In this case

one can calculate (via the proof of Lemma 2.5) that f̃(z) = 3z+5z2

1+3z+4z2 and g̃(z) = 2z2 − 1.

In the next example, we construct a semigroup G that provides a counterexample to Conjec-

tures 1.1 and 1.2 with the additional property that J(G) ( E(G).

Example 2.2. Consider f(z) = 2z − 1/z as in Example 2.1. Let ϕ(z) = 2z, and set g(z) = (ϕ ◦ f ◦
ϕ−1)(z) = 2z− 4/z. Note that Jg = ϕ(Jf ) = 2Jf and that R is completely invariant under g. Hence

for G = 〈f, g〉, we have E(G) ⊂ R.

Suppose that E(G) 6= R. Since R is completely invariant under both f and g, it follows from

Lemma 3.2.5 in [5] that if E(G) contains a non-degenerate interval in the real line, then E(G) = R.

Hence we may select an open interval L = (x, y) in R \ E(G) with both x, y large. Since the length

of the intervals fn(L) tends to +∞, we may assume that y − x is large. By expanding the interval

we may also assume that x, y ∈ E(G) (note that we used here that ∞ is a non-isolated point in

E(G) which follows since 2 ∈ Jg ⊂ E(G) and fn(2) →∞).

Since x is large, we can use the fact that f(x) is slightly greater than g(x) to see that g−1({f(x)})
contains a point slightly larger than x (and hence less than y). But by the complete invariance of

the set E(G) under f and g, we get g−1({f(x)}) ⊂ E(G). This is a contradiction since the interval

(x, y) does not meet E(G). We conclude that E(G) = R.

Since ∞ is an attracting fixed point under both f and g, we see that small neighborhoods of ∞
map inside themselves under each map in G. Hence ∞ ∈ N(G) and so J(G) 6= R.

As in Example 2.1 we may semi-conjugate the odd rational maps f and g by φ to get maps f̃(z) =
3z+5z2

1+3z+4z2 and g̃(z) = 5z2+40z−29
3z2+40z−27 . Hence for G̃ = 〈f̃ , g̃〉 we have J(G̃) = φ(J(G)) ( φ(R) = I and

E(G̃) = φ(E(G)) = φ(R) = I. Since Jf̃ 6= Jg̃ (otherwise one would have E(G̃) = J(G̃) = Jf̃ = Jg̃),

we see that G̃ is a counterexample to Conjectures 1.1 and 1.2.

3. Counterexamples to Conjecture 1.4

In [3], p. 366 Hinkkanen and Martin give the following definition.

Definition 3.1. A rational semigroup G is nearly abelian if there is a compact family of Möbius

transformations Φ = {φ} with the following properties:

(i) φ(N(G)) = N(G) for all φ ∈ Φ, and

(ii) for all f, g ∈ G there is a φ ∈ Φ such that f ◦ g = φ ◦ g ◦ f .

Theorem 3.1 ([3], Theorem 4.1). Let G be a nearly abelian semigroup. Then for each g ∈ G we

have Jg = J(G).
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A natural question is to what extent does the converse to Theorem 3.1 hold. Using a result

of A. Beardon (see [1], Theorem 1) Hinkkanen and Martin have proved the following result for

polynomial semigroups.

Theorem 3.2 ([3], Corollary 4.1). Let F be a family of polynomials of degree at least 2, and suppose

that there is a set J such that Jg = J for all g ∈ F . Then G = 〈F〉 is a nearly abelian semigroup.

Note that under the hypotheses of Theorem 3.2 we have Jh = J(G) for each generator h ∈ F . So

we see that Conjecture 1.4 is suggesting that if Jh = J(G) for just one h ∈ G, then G is still nearly

abelian. However, this is not the case as we see by the following counterexample.

Example 3.1 (Counterexample to Conjecture 1.4). Let f(z) = z2− 2, g(z) = 4z2− 2 and G = 〈f, g〉.
It is well known that f is a conjugate of 2z2 − 1 by z 7→ 2z and so Jf = [−2, 2] (see [2], p. 9).

It can easily be seen that g maps [−1, 1] onto [−2, 2] in a two-to-one fashion. Since g−1([−1, 1]) ⊂
g−1([−2, 2]) = [−1, 1] it follows that Jg ⊂ [−1, 1]. In particular Jg ( Jf . We also note that C\[−2, 2]

is forward invariant under both f and g and as such must lie in N(G) by Montel’s Theorem. It

follows that J(G) = [−2, 2] = Jf , yet Jf 6= Jg.

We remark that any map g that maps a proper sub-interval of [−2, 2] onto [−2, 2] in a deg(g)-

to-one fashion would suffice in the above example and such functions can easily be obtained by

constructing real polynomials with appropriate graphs. Also, f may be replaced by any Tchebycheff

polynomial (see section 1.4 of [2]), normalized so that Jf = [−2, 2].
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