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1. Introduction

These notes are based on a series of lectures given by the authors
at Georg-August-Universität in Göttingen in June 22 - July 2, 1998.
The authors would like to thank Professors Manfred Denker and Hartje
Kriete for their hospitality.

For a treatment of the classical iteration theory one may see [5]
and [33]. We use these texts as the basic references for such material.
The material in Sections 1−3 on rational semigroup dynamics is largely
taken from the papers [15] and [16] by Aimo Hinkkanen and Gaven
Martin. The material in Section 4 is taken from the papers [32], [30]
and [31] by Rich Stankewitz. The material from Sections 5 and 6 is
taken from the papers [8], [7] and [6] by David Boyd.

The study of the dynamics of rational semigroups is a generaliza-
tion of the study of the dynamics associated with the iteration of a
rational function defined on the Riemann sphere. A main focus of this
study is to see how far and in what sense does the classical theory
of Fatou and Julia extend to this new setting. In particular, it is of
interest to understand to what extent such main results as Sullivan’s
no-wandering-domains theorem and the Classification of fixed compo-
nents theorem hold in this more general setting. We are also interested
in learning what new phenomena can occur and what new insight this
might lend to the classical theory.

In what follows all notions of convergence will be with respect to the
spherical metric d on the Riemann sphere C.

A rational semigroup G is a semigroup of rational functions of degree
greater than or equal to two defined on the Riemann sphere C with the
semigroup operation being functional composition. When a semigroup
G is generated by the functions {f1, f2, . . . , fn, . . . }, we write this as

(1.1) G = 〈f1, f2, . . . , fn, . . .〉.

In [15], p. 360 the definitions of the set of normality, often called the
Fatou set, and the Julia set of a rational semigroup are as follows:

Definition 1.1. For a rational semigroup G we define the set of nor-
mality of G, N(G), by

N(G) = {z ∈ C : ∃ a neighborhood of z on which G is a normal family}
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and define the Julia set of G, J(G), by

J(G) = C \N(G).

Clearly from these definitions we see that N(G) is an open set and
therefore its complement J(G) is a compact set. These definitions
generalize the case of iteration of a single rational function and we
write N(〈h〉) = N(h) = Nh and J(〈h〉) = J(h) = Jh.

Note that J(G) ⊃ J(g) and N(G) ⊂ N(g) for all g ∈ G.

Definition 1.2. If h is a map of a set Y into itself, a subset X of Y is:

i) forward invariant under h if h(X) ⊂ X;

ii) backward invariant under h if h−1(X) ⊂ X;

iii) completely invariant under h if h(X) ⊂ X and h−1(X) ⊂ X.

It is well known that the set of normality of h and the Julia set of h
are completely invariant under h (see [5], p. 54), in fact,
(1.2)
h(N(h)) = N(h) = h−1(N(h)) and h(J(h)) = J(h) = h−1(J(h)).

Theorem 1.1 (Montel’s Theorem). The family of all analytic maps f
from a domain Ω to C \ {0, 1,∞} is normal in Ω.

By using Montel’s Theorem one can obtain the following result.

Property 1.1. The set J(h) is the smallest closed completely invariant
(under h) set which contains three or more points (see [5], p. 67).

In fact, this may be chosen as an alternate definition to the definition
of J(h) given in Definition 1.1.

Proposition 1.1 ([15], p. 360). The set N(G) is forward invariant
under each element of G and J(G) is backward invariant under each
element of G.

Proof. We make use of the fact that a family of continuous functions
defined on a domain of the Riemann sphere is equicontinuous if, and
only if, it is a normal family. Let g ∈ G and z ∈ N(G). For ε > 0 there
exists a neighborhood 4 of z such that diamf(4) < ε for all f ∈ G.
Hence diamh(g(4)) = diam(h ◦ g)(4) < ε for all h ∈ G. Hence G is
equicontinuous on g(4), and we conclude that g(N(G)) ⊂ N(G). ¤

Remark 1.1. Since J(G) is backward invariant we can characterize J(G)
as the smallest closed set that contains three or more points which is
backward invariant under each element of G. This follows since the
complement of such a set is forward invariant under each element of G
and therefore in the set of normality of G by Montel’s theorem.
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Proposition 1.2 ([34], Lemma 1.1.4). If G = 〈g1, . . . , gN〉, then J(G) =
∪Ni=1g

−1
i (J(G)) and N(G) = ∩Ni=1g

−1
i (N(G)).

Proof. By Proposition 1.1 we have

N(G) ⊂ ∩Ni=1g
−1
i (N(G)).

Take any z0 ∈ ∩Ni=1g
−1
i (N(G)) and set wj = gj(z0) ∈ N(G). For any

ε > 0 there is a neighborhood 4j of wj for each j = 1, . . . , N such
that if f ∈ G, then diamf(4j) < ε for each j = 1, . . . , N . Consider

the neighborhood 4 = ∩Nj=1g
−1
j (4j) of z0 and note that for any f ∈ G

we have diam(f ◦ gj)(4) = diamf(gj(4)) ≤ diamf(4j) < ε for each
j = 1, . . . , N . Hence G ◦ gj = {h ◦ gj : h ∈ G} is equicontinuous at z0.
Since G = (∪Ni=1G ◦ gj) ∪ (∪Ni=1gj) we see that G is equicontinuous at
z0.

The corresponding statement for J(G) readily follows. ¤

The sets N(G) and J(G) are, however, not necessarily completely
invariant under the elements of G. This is in contrast to the case of
single function dynamics as noted in (1.2).

Example 1.1. Let a ∈ C, |a| > 1 and G = 〈z2, z2/a〉. One can easily
show that J(G) = {z : 1 ≤ |z| ≤ |a|} (see [15], p. 360). Note that
J(z2) = {z : |z| = 1} and J(z2/a) = {z : |z| = |a|}. Clearly in this
example J(G) is not completely invariant.

We will study completely invariant Julia sets for rational semigroups
in Section 4.

Note also that J(G) has nonempty interior and yet J(G) 6= C. This
is not possible for the Julia set of a single rational function.

1.1. The expanding property of the Julia set. Let G be a ratio-
nal semigroup. A point z ∈ C is called exceptional if its backward
orbit O−(z) = {w : ∃g ∈ G such that g(w) = z} is finite. The set of
exceptional points is denoted by E(G). When G = 〈f〉, we denote the
set of exceptional points by E(f).

For any rational function f of degree at least 2, it is well known that
|E(f)| ≤ 2 where |E(f)| denotes the cardinality of the set E(f) (see
[5], Theorem 4.1.2). If |E(f)| = 1, then f is conjugate to a polynomial.
If |E(f)| = 2, then f is conjugate to a map of the form z 7→ zd where
d ∈ Z and |d| ≥ 2. For general semigroups of rational functions, we
have the following proposition.

Proposition 1.3 ([15], Lemma 3.4). Let G be a rational semigroup.
Then |E(G)| ≤ 2. If |E(G)| = 1, then G is conjugate to a polynomial
semigroup. If |E(G)| = 2, then G is conjugate to a semigroup whose
elements are all of the form azn for a ∈ C and n ∈ Z.
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Remark 1.2. If G is a finitely generated semigroup, then E(G) ⊂ N(G).
This need not be the case if G is not finitely generated. We leave it to
the reader to provide an example of such a semigroup.

Proposition 1.4 ([15], Lemma 3.2). Let G be rational semigroup and
let a ∈ C \ E(G). Then J(G) is a subset of the accumulations points
of O−(a).

Let G be a rational semigroup and select an element g ∈ G. Note
that J(g) ⊂ J(G). We will now show how J(G) can be “built up” from
J(g).

For a collection of sets A, and a function h, we denote new collections
of sets by h(A) = {h(A) : A ∈ A} and h−1(A) = {h−1(A) : A ∈ A}.

Consider the countable collection of sets

F0 = {J(g)},
Fn+1 =

⋃

f∈G
f−1(Fn),

and F =
∞⋃

n=0

Fn.

Since J(G) is backward invariant under each f ∈ G, closed, and

contains J(g), we have J(G) ⊃ ⋃A∈F A.

Lemma 1.1 ([32], Lemma 3). We have J(G) =
⋃
A∈F A.

Proof. Since the set on the right is closed, backward invariant under
each f in G (since rational functions are continuous open maps) and
clearly contains more that three points, it must contain J(G) as the
complement is then in the set of normality of G. ¤

Remark 1.3. In fact, if we had let F0 = {{a, b, c}} where a, b, c are
three points known to be in J(G) (for example, if a, b, c ∈ J(g)) and
we defined each Fn and F as above in terms of this new collection
F0, then we would arrive at the same description of J(G) as given in
Lemma 1.1. This is due to the minimality condition for Julia sets as
noted in Property 1.1.

Corollary 1.1 ([15], Lemma 3.1). The set J(G) is perfect.

Proof. Since J(g) is perfect (see [5], p. 68) and backward and forward
images of perfect sets under rational maps are perfect, we see that each
set in E is perfect by a routine inductive argument. The corollary then
follows since the closure of a union of perfect sets is perfect. ¤
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The above proof due to Rich Stankewitz (see [32]) is given as an
alternative to the original proof found in [15].

Theorem 1.2 ([15], Theorem 3.1 and Corollary 3.1). If G is a rational
semigroup, then the repelling fixed points of the elements of G are dense
in J(G). Hence also

J(G) =
⋃

g∈G
J(g).

Proof. The proof will follow along the lines of that of Baker in [2]. As
the repelling fixed points of any element g ∈ G are in J(g) and each
J(g) ⊂ J(G), we have that the repelling fixed points of the elements of
G are in J(G). We will now show that such points are dense in J(G).
Pick z0 ∈ J(G) and let U be a neighborhood of z0. We will show that
U contains a repelling point of some element of G.

Since J(G) is perfect, we may find disks Bj = {z : |z−aj| < ε} ⊂ U \
(E(G)∪{z0}) with disjoint closures, centered at finite points aj ∈ J(G),
for 1 ≤ j ≤ 5. We denote the spherical derivative of a meromorphic
function by f#; thus f#(z) = |f ′(z)|/(1 + |f(z)|2), with the usual
modification if z = ∞ or f(z) = ∞. Let C be the positive constant
associated with the set {Bj : 1 ≤ j ≤ 5} by the Ahlfors Five Island
Theorem (see Theorem 7.4 below). Thus C is chosen so that if f is any
meromorphic function defined on the unit disk with f#(0) > C, then
the unit disk contains a simply connected subdomain that is mapped
conformally by f onto some Bj.

If 1 ≤ j ≤ 5, then G is not normal in any neighborhood of aj. Thus
by Marty’s criterion (see [28], p. 75), there is some fj ∈ G and a point
bj ∈ Dj = {z : |z−aj| < ε/3} such that f#(bj) > 3C/ε.Write Ej = {z :
|z−bj| < ε/3} ⊂ Bj. Then gj(z) = fj(bj+z) is meromorphic in the disc

centered at the origin of radius ε/3 with g#j (0) = f#j (bj) > 3C/ε. Hence
we deduce that gj maps some simply connected subdomain of the disc
centered at the origin of radius ε/3 conformally onto some Bi, where
1 ≤ i ≤ 5. Thus the corresponding fj maps some simply connected
subdomain of Ej, and consequently some simply connected relatively
compact subdomain of Bj, conformally onto some Bi. Repeating this
argument at most five times, we find some k with 1 ≤ k ≤ 5, and an
element g ∈ G arising as a composition of the fj, such that g maps some
simply connected relatively compact subdomain of Bk conformally onto
Bk. It now follows that some branch of g−1 has an attracting fixed
point, and hence g has a repelling fixed point in Bk ⊂ U. ¤

The iterates of a single rational function f expand open sets which
meet J(f) as explained in the following proposition.
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Proposition 1.5 ([5], Theorem 6.9.4). Let f be a rational function
with deg f ≥ 2, let W be a non-empty open set intersecting J(f), and
let K be a compact subset of C \E(f). Then there exists an integer N
such that K ⊂ fn(W ) for all n ≥ N .

Correspondingly, there is an expanding property for finitely gen-
erated semigroups of rational functions. For a rational semigroup
G = 〈f1, . . . , fk〉 we define the length of a word g = fin ◦ fin−1

◦ · · · ◦ fi1
with ij ∈ {1, . . . , k} to be l(g) = n. We note that it is possible for an
element of G to be represented by multiple words.

Proposition 1.6 ([7], Lemma 1). Let G = 〈f1, . . . , fk〉 be a finitely
generated rational semigroup with deg fj ≥ 2 for j = 1, . . . , k, let W be
a non-empty open set intersecting J(G), and let K be a compact subset
of C \ E(G). Then there exists a positive integer N such that for all
n ≥ N ,

K ⊂
⋃

l(g)=n

g(W )

where g ranges over the words of G of length n.

We leave the proof of Proposition 1.6 as an exercise.

2. Uniformly Perfect Sets

In this section we show that J(G) is uniformly perfect when G is
finitely generated. Uniformly perfect sets were introduced by A. F.
Beardon and Ch. Pommerenke in 1979 in [3]. We begin with some
preliminary definitions.

Definition 2.1. A conformal annulus is an open subset A of C that
can be conformally mapped onto the genuine annulus Ann(0; r1, r2) =
{z : 0 ≤ r1 < |z| < r2 ≤ ∞} and the modulus of such a conformal
annulus is given by

mod(A) = 1

2π
log

r2
r1
.

We note that mod(A) is a conformal invariant.

Definition 2.2. A conformal annulus A is said to separate a set F if
F intersects both components of C \ A and F ∩ A = ∅.
Definition 2.3. A closed curve γ is said to separate a set F if F
intersects more than one component of C \ γ and F ∩ γ = ∅.
Definition 2.4. A closed curve γ is said to separate the nonempty sets
A and B if there does not exist a component of C \ γ that intersects
both A and B and if γ is disjoint from both A and B.
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Definition 2.5. ([27], p. 192) We say that a compact subset F ⊂ C
is uniformly perfect if F has at least two points and if the moduli of
conformal annuli in C \ F which separate F are bounded.

Remark 2.1. Uniformly perfect sets are necessarily perfect (see [27],
p. 192).

Remark 2.2. By a scaling and normal families argument one can show
that conformal annuli of large modulus contain genuine annuli of large
modulus. Thus the compact set E is uniformly perfect if, and only if,
there is a c > 0 such that for any finite z0 ∈ E and r > 0 (and r < r0
when ∞ /∈ E), the Euclidean annulus {z : cr < |z − z0| < r} meets E.

Remark 2.3. For a hyperbolic domain U ⊂ C it is known (from esti-
mates when U = C \ {0, 1}) that the hyperbolic density λU(z)→ +∞
as z tends to any finite point on the boundary of U .

Lemma 2.1. Thus the boundary of a domain D is uniformly perfect
if, and only if, there is a positive constant δ such that every Jordan
curve in D separating ∂D has hyperbolic length at least δ, with respect
to the hyperbolic metric in D.

Proof. We observe in the annulus of radii 1 and R > 1, the circle of
radius

√
R has hyperbolic length 2π2/ logR. This can be calculated

using the density for the annulus in [23], p. 12. Hence, if ∂D is not
uniformly perfect then there exist separating annuli An of modulus
1
2π

logRn →∞. The circle centered at the center of An of radius
√
Rn

therefore has hyperbolic length less than or equal to 2π2/ logRn → 0.
(Note that the hyperbolic density in D is less than the hyperbolic
density in An.)

Suppose that ∂D is uniformly perfect. We may also assume that
∞ ∈ ∂D since the property of being uniformly perfect is invariant
under Möbius maps (see [27], p. 192). Since ∂D is uniformly perfect
there exists a c > 0 such that

λ(z) >
c

δ(z)

where λ(z) denotes the hyperbolic density on D and δ(z) denotes the
(Euclidean) distance from z to ∂D (see [3], p. 476). Let γ be a curve
in D that separates ∂D. Let z ∈ ∂D be a finite point that lies in a
bounded component of C\γ. Letting R denote the maximum distance
from z to a point on γ, we see that since γ “winds around” z we must
have ∫

γ

|dz| ≥ 2R.
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Hence the hyperbolic length of γ satisfies

l(γ) =

∫

γ

λ(z)|dz| ≥ c

R

∫

γ

|dz| ≥ 2c.

¤

Claim 2.1. Let U be a domain in C such that #(C \ U) ≥ 3 and let
γn be (smooth) curves in U . Then if the hyperbolic length of γn tends
to 0, the spherical lengths of γn also tend to 0.

2.1. Logarithmic capacity. In this section we state Pommerenke’s
criterion in terms of logarithmic capacity for a set to be uniformly
perfect. We state a few facts about logarithmic capacity, but for a
more thorough treatment see [1].

Definition 2.6. For a measure ν on a compact set F we define the
logarithmic potential of ν by

pν(z) = −
∫

F

log |z − ζ| dν(ζ).

Definition 2.7. For a measure ν on a compact set F we define

Sν = sup
z∈F

pν(z).

We note that Sν may be infinite, as is the case when ν = δz0 for some
z0 ∈ F .

¿From all the measures ν with total measure ν(F ) = 1, there is
one that minimizes Sν (see [1], p. 25). This measure is called the
equilibrium measure.

Definition 2.8. If we call

S = min{Sν : ν is a measure of total measure ν(F ) = 1},
then we define the capacity of F by

cap(F ) = e−S.

If S =∞, i.e., no ν can be chosen such that Sν is finite, then we say
that F is a set of zero capacity.

We note that one can show that cap({w : |w − z| ≤ r}) = r.
Pommerenke [27] has shown that a set E is uniformly perfect if, and

only if, there exists a constant δ > 0 such that

(2.1) cap(E ∩ {w : |w − z| ≤ r}) ≥ δr

for all z ∈ E whenever 0 < r < diam(E). We note that if 2.1 holds
for all r < r0 then 2.1 holds for 0 < r < diam(E) if δ is replaced by

δr0
diam(E)

. This immediately implies the following lemma.
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Remark 2.4. Note that this implies that if E is uniformly perfect then
each component of C \ E is regular for the Dirichlet problem.

Lemma 2.2. The union of finitely many uniformly perfect sets is uni-
formly perfect.

Lemma 2.3. If A is a uniformly perfect set and B is a compact set
which does not contain A, then A \ B contains a uniformly perfect
subset X.

Proof. Let z be a finite point in A \ B and let ε > 0 be chosen such

that 4(z, ε) ∩B = ∅. Observe that A ∩4(z, ε) is a perfect and closed

set. If A ∩4(z, ε) is not totally disconnected, then we may select for

X any component of A ∩4(z, ε) which is not a single point, for it will
then be a compact and connected set with more than one point and
hence uniformly perfect. If A ∩4(z, ε) is totally disconnected, then one
may find a simple closed curve in 4(z, ε) \ A which separates A (see
Lemma 2.4). Letting D denote the component of C\A which does not
intersect C\4(z, ε) (i.e., the inside component) we let X = D∩A and
note that it is uniformly perfect as can be seen by using Pommerenke’s
criterion above and the fact that A is uniformly perfect. To see this we
use the fact that X is then both open in A and compact and therefore
there exists a r0 > 0 such that every point of X is at a distance at least
r0 from A \X. ¤

Lemma 2.4. If A ∩4(z, ε) is (nonempty) totally disconnected, perfect
and closed, then there exists a simple closed curve γ in 4(z, ε)\A which
separates A.

Proof. We see in [18], p. 100 that A ∩4(z, ε) is homeomorphic to the

middle third Cantor set C. Let f : A ∩4(z, ε) → C be a homeomor-
phism. Consider the open set f(4(z0, δ)) ∩ A) in C where z0 ∈ A
and δ is small enough so that 4(z0, δ) is a subset of 4(z, ε) and so
that A is not contained in 4(z0, δ). Since C contains infinitely many
small copies of itself, we may find such a copy C ′ in f(4(z0, δ) ∩ A).
Note that C ′ is open in C. Now f−1(C ′) is open in A ∩4(z, ε) and as

such equals the intersection of A ∩4(z, ε) with an open subset U of

4(z0, δ). Since C ′ is closed in C, f−1(C ′) is closed in A ∩4(z, ε) and
hence no points of f−1(C ′) can approach the boundary of U . Say that
all the points of f−1(C ′) are always a distance ρ from the boundary
of U . Using a grid of squares of size ρ/4 we can construct a simple
polygonal path γ ⊂ U \ A that separates A. ¤
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Note that the set f−1(C ′) in the proof of Lemma 2.4 can be seen to
be uniformly perfect when A is uniformly perfect once it was known
that f−1(C ′) is both compact and open in A∩4(z, ε) by Pommerenke’s
criterion (without having to find a curve γ).

2.2. Julia sets of finitely generated rational semigroups are
uniformly perfect. It is known that the Julia set of a rational func-
tion is uniformly perfect. Several proofs of this fact have been given,
namely by Eremenko [11], Hinkkanen [13], and Mañé and da Rocha [22].

We first point out the following fact.

Claim 2.2. Let γ be a simple closed curve in C and let f be a rational
function. Let D be a component of C\γ and C a component of C\f(γ).
Then if f(D) ∩ C 6= ∅, then C ⊂ f(D).

Proof. If C is a proper subset of f(D) then there would exist a point
w ∈ ∂f(D) ∩ C. This implies that there exists a point z ∈ D with
f(z) = w. The point z cannot be in D else w = f(z) ∈ f(D). Hence
z ∈ ∂D ⊂ γ and w = f(z) ∈ f(γ). ¤

Theorem 2.1 ([16], Theorem 3.1). Let G = 〈g1, g2, . . . , gN〉 be a
finitely generated rational semigroup. Then the Julia set J(G) is uni-
formly perfect.

Proof. Let J(G) denote the Julia set of G and Ji the Julia set of the
generator gi. Since connected closed sets containing at least two points
are uniformly perfect, we shall assume that J(G) is not connected and
not uniformly perfect. In particular, then N(G) 6= ∅. Since the union
of finitely many uniformly perfect sets is uniformly perfect, we may
assume that J(G) 6= ∪Ni=1Ji. By Remark 1.1, there is h ∈ G such that
h−1(∪Ni=1Ji) * ∪Ni=1Ji. Now h−1(∪Ni=1Ji) is uniformly perfect since each
Ji is uniformly perfect and h is rational (to see this in detail one can
argue as in the proof of Lemma 2 in [13]). By Lemma 2.3 we choose
X to be a uniformly perfect compact subset of

h−1(Jj) \ (
N⋃

i=1

Ji).

Note that J(G) has positive logarithmic capacity. Thus N(G) has
a hyperbolic metric (which is defined in each component of N(G) sep-
arately). Since J(G) is not uniformly perfect, there is a sequence of
simple closed curves γk ⊂ N(G) such that each γk separates J(G) and
such that the hyperbolic length

l(γk)→ 0
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as k → ∞. Since X is uniformly perfect, we may assume that no γk
separates X. Thus for each k there exists Dk a component of C \ γk
such that X ∩Dk = ∅ and J(G) ∩Dk 6= ∅.

For each k = 1, 2, . . . choose hk ∈ G to be an element of shortest
word length such that

X ⊂ hk(Dk).

The existence of these maps follows from the density of the repelling
fixed points of the elements of G in J(G) and the use of Claim 2.2.
(Of course, there may be no uniqueness in the choice for hk even if the
word length is minimal.) Now each hk can be written in the form

hk = gi1 ◦ gi2 ◦ · · · ◦ gim ,
where m = m(k) is as small as possible and each iν ∈ {1, 2, . . . N}
(and each integer iν depends on k). Passing to a subsequence and, if
necessary, relabeling the generators, we may assume that gi1 = g1 for
all k. Let us define fk = gi2 ◦ gi3 ◦ · · · ◦ gim .

We first claim that there are only finitely many k for which hk(γk)
separatesX from J1. To see this, simply note that hk is an analytic map
from N(G) into N(G) and therefore a contraction in the hyperbolic
metric. Thus the length of hk(γk) is less than the length of γk and
this is going to zero. But any curve separating X from J1 has a length
which is bounded below by a fixed constant since both these sets have
positive diameter (see Claim 2.1). Similarly, there are only finitely
many k for which fk(γk) separates X from at least one Ji. Thus, after
passing to a subsequence, we may assume that neither hk(γk) nor fk(γk)
ever separates X from J1. By the minimality in the word length of hk,
the set fk(Dk) does not contain X while g1(fk(Dk)) does. Now fk(γk)
separates X for only finitely many k, because any loop that separates
X has hyperbolic length (in the hyperbolic metric of C \X) bounded
below by a fixed positive constant as X is uniformly perfect (and since
the hyperbolic metric of C \ X is smaller than that of N(G)). Thus,
after again passing to a subsequence, we may assume that fk(γk) never
separates X. Similarly, we may assume that fk(γk) never separates J1.
Write βk = fk(γk). We have arrived at the situation where βk does not
separate X or J1, nor does βk separate X from J1. Thus X and J1 lie in
the same component of C \ βk. This component does not meet fk(Dk)
and in particular fk(Dk) does not meet J1. Now hk(Dk) = g1(fk(Dk))
covers X and therefore must meet J1 as both X and J1 meet the same
component of C \ hk(γ). This is a contradiction, as any z ∈ fk(Dk)
which maps by g1 to a point in J1 must itself be in J1 since g

−1
1 (J1) = J1.

But this contradicts the fact that fk(Dk) foes not meet J1. ¤
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Theorem 2.2 ([16], Theorem 4.1). Let G be a rational semigroup such
that J(G) is uniformly perfect. Suppose that z0 is a superattracting fixed
point of an element h ∈ G. Let A be the union of all the components
of N(h) in which the iterates of h tend to z0. Then either z0 ∈ N(G)
or A ⊂ J(G). In particular, either z0 ∈ N(G) or z0 lies in the interior
of J(G).

Proof. Note first that by the forward invariance of N(G) under G, if
N(G) ∩ A 6= ∅, then N(G) contains points as close to z0 as we like.
We may assume that z0 ∈ J(G) and that N(G) ∩A 6= ∅, for otherwise
there is nothing to prove. Close to z0 we may conformally conjugate
h to z 7→ zd for some d ≥ 2. Let us use the coordinates in which h is
equal to z 7→ zd. In these coordinates, let V be a small disk close to
z0 = 0 contained in N(G). Also hn(V ) ⊂ N(G) for all n ≥ 1, and since
the application of h (that is z 7→ zd) multiplies the argument of a point
in V by d, we see that for all sufficiently large n, the set hn(V ) contains
an annulus centered at z0 = 0. Suppose that Vn is the component of
N(G) containing hn(V ). Now if, for a certain n, the set Vn contains
the annulus {z : r1 < |z| < r2}, then for any k ≥ 1, the set Vn+k
contains the annulus {z : rd

k

1 < |z| < rd
k

2 }. Since {z0} ∪ J(h) ⊂ J(G).
it follows that Vn+k separates J(G). The moduli of these annuli are

equal to log(rd
k

2 /r
dk

1 ) = dk log(r2/r1)→∞ as k →∞. This contradicts
the assumption that J(G) is uniformly perfect. ¤

Corollary 2.1 ([16], Corollary 4.1). If G is a finitely generated rational
semigroup and z0 is a superattracting fixed point of some element of G,
then either z0 lies in (the interior of) the Fatou set of G or in the
interior of the Julia set of G.

Theorem 2.3 ([16], Theorem 5.1). There exists an infinitely generated
rational semigroup G (all of whose elements have degree at least two)
with the property that for any positive integer N , the semigroup G
contains only finitely many elements of degree at most N , such that
J(G) is not uniformly perfect, and such that G contains an element g
with a superattracting fixed point α with α ∈ ∂J(G) ⊂ J(G).

3. Nearly Abelian Semigroups

A natural question regarding rational semigroups is how the alge-
braic structure of the semigroup affects its dynamics. If the algebraic
structure is in some way simple, this may provide information about
the dynamics.

In this section we discuss the concept of nearly abelian semigroups
as introduced in [15].
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As a motivating example we consider the following lemma which is
due to Julia.

Lemma 3.1. Let f and g be rational functions of degree at least two
that commute, i.e., f ◦ g = g ◦ f . Then J(f) = J(g).

Proof. Since g is uniformly continuous on C in the spherical metric,
the family {g ◦ fn : n ≥ 1} is normal on N(f). This is the same family
as {fn ◦ g : n ≥ 1} and so {fn : n ≥ 1} is normal on the open set
g(N(f)). Thus g(N(f)) ⊂ N(f). So all the gn omit J(f) on N(f).
As the degree of f is greater than two, J(f) contains at least three
points and so it follows that the family {gn : n ≥ 1} is normal on
N(f). Hence N(f) ⊂ N(g). By symmetry we obtain N(g) ⊂ N(f).
This gives N(f) = N(g) and hence J(f) = J(g) as desired. ¤

In particular, if the rational semigroup G is abelian, then J(g) =
J(G) for every g ∈ G by Theorem 1.2. However, we are able to obtain
a similar result for a more general class of rational semigroups.

Definition 3.1. A rational semigroup G is nearly abelian if there is a
compact family of Möbius transformations Φ = {φ} with the following
properties:

(i) φ(N(G)) = N(G) for all φ ∈ Φ, and
(ii) for all f, g ∈ there is a φ ∈ Φ such that f ◦ g = φ ◦ g ◦ f .
Note that when G is nearly abelian, the family Φ(G) of Möbius trans-

formations φ for which f ◦g = φ◦g◦f for some f, g ∈ G by assumption
is precompact, i.e., any sequence of elements of Φ(G) contains a sub-
sequence that converges to a Möbius transformation uniformly on C.
Hence we may take Φ to be the closure of Φ(G). We make a couple of
observations that apply when Φ(G) is precompact, although they will
not be used in what follows. First, if φn is any sequence from Φ(G) and
D is any disk, it cannot be the case that φn converges to a constant
function on D. Further, if all the φn have their poles outside a fixed
disk larger than D, this implies a uniform upper and lower bound for
|φ′n| in D.

Here is our first result about nearly abelian semigroups.

Theorem 3.1 ([15], Theorem 4.1). Let G be a nearly abelian semi-
group. Then for each g ∈ G we have J(g) = J(G).

Proof. Let f be a fixed element of G and consider an arbitrary element
g of G. Set J = J(f) and N = C \ J . We will show that J(g) = J .
Assume for a while that this is true. Recall that J = J(f) ⊂ J(G).
On the other hand, for each g ∈ G, g omits J on N so that G is
normal on N . Thus N ⊂ N(G). It now follows that J(G) = J , as
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claimed. (Or one could reach the same conclusion using the fact that

J(G) =
⋃
g∈G J(g). See Theorem 1.2.)

We proceed to prove that if g ∈ G, then J(g) = J . For each n ≥ 1,
there is φn ∈ Φ(G) with fn ◦ g = φn ◦ g ◦fn. We begin by showing that
g(N(f)) ⊂ N(f). Choose some point x ∈ N(f) and a neighborhood
U of x such that U ⊂ N(f). Then g(U) is a neighborhood of g(x).
Consider a sequence of iterates fnj on g(U). As U ⊂ N(f) we may pass
to a subsequence, say fmj , in such a manner that fmj → Ψ uniformly
on U and where Ψ is meromorphic on U . Since g is rational, and hence
uniformly continuous on C, we have g ◦ fmj → g ◦ Ψ = ψ uniformly
on U . Passing to a further subsequence without changing notation,
we may assume that φmj

→ φ uniformly on the sphere, where φ is a
Möbius transformation. Now fmj ◦ g = φmj

◦ g ◦ fmj → φ ◦ ψ = χ
uniformly on U . Hence the family {fn ◦ g : n ≥ 1} is normal on U and
so {fn : n ≥ 1} is normal on g(U). Since N(f) is the maximal open
set on which {fn : n ≥ 1} is normal, we have g(U) ⊂ N(f). Thus
g(x) ∈ N(f) and so g(N(f)) ⊂ N(f). Hence every gn omits J(f) on
N(f), and so the iterates of g form a normal family on N(f). This
implies that N(f) ⊂ N(g). By symmetry, we obtain N(g) ⊂ N(f).
Hence N(g) = N(f) and so J(g) = J(f) = J . ¤

We note that (since every element of G has degree at least two) the
condition φ(N(G)) = N(G) for all φ ∈ Φ may be replaced by the
condition J(f) = J(g) for all f, g ∈ G. For if this latter property holds
there clearly is a set J (of cardinality at least 3) such that J = J(f)
for all f ∈ G. Thus each f ∈ G omits J in C \J and so C \J ⊂ N(G).
Since J = J(f) ⊂ J(G) we have J = J(g) = J(G) for all g ∈ G. Then
applying both sides of the equation f ◦ g = φ ◦ g ◦ f to J we see that
φ(J) = J and hence φ(N(G)) = N(G). As f, g ∈ G are arbitrary, the
result holds for all such φ.

We remark that in many cases the assumed compactness of Φ may
be redundant. It is conjectured that the Möbius symmetry group of
the Julia set of a rational function is of finite order, unless the Julia
set is C or is Möbius equivalent to a circle or a line segment. There are
some partial results towards this conjecture in [8].

A natural question is to what extent does the converse to Theo-
rem 3.1 hold?

A. Beardon has proved the following result.

Theorem 3.2 ([4], Theorem 1). If f and g are polynomials and if
J(f) = J(g), then there is a linear mapping φ(z) = az + b such that
f ◦ g = φ ◦ g ◦ f and |a| = 1.
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Corollary 3.1 ([15], Corollary 4.1). Let F be a family of polynomials
of degree at least 2, and suppose that there is a set J such that J(g) = J
for all g ∈ F . Then G = 〈F〉 is a nearly abelian semigroup.

Proof. As each g ∈ F is a polynomial, J is compact in C. We note
that J(f) = J(g) for all f, g ∈ G since the same is true for any pair of
functions in F . One way to see this is as follows. It suffices to show that
for any f, g ∈ F , we have J(f◦g) = J . It is easy to see that J(f◦g) ⊂ J
since J is backwards invariant under f and g. If J(f ◦ g) 6= J , then by
Remark 4.6 below, there are points of J in the basin of attraction of
infinity for f ◦ g. However, J is also forward invariant under f ◦ g as it
is forward invariant under f and g individually. This is a contradiction
and hence J(f ◦ g) = J as claimed.

As J(f) = J(g) for all f, g ∈ G, the polynomials f and g nearly
commute by Theorem 3.2. We finish by observing that the family of
commutators of the form z 7→ az + b, where |a| = 1, has compact
closure since the numbers b must also be bounded. ¤

The following conjecture is the strongest converse to Theorem 3.1
that we can reasonably expect.

Conjecture 3.1 ([15], Conjecture 4.1). Let G be a rational semigroup
and suppose that for some g ∈ G we have J(g) = J(G) and that J(G) is
not the image under a Möbius transformation of a circle, line segment
or the Riemann sphere. Then G is nearly abelian.

We remark here that the set of all rational functions that share the
same Julia set J where J is Möbius equivalent to the sphere a circle
or a line segment will not even nearly commute, i.e., given any two
such functions f and g there need not be a Möbius transformation φ
such that f ◦ g = φ ◦ g ◦ f . Further, if we restrict ourselves to such
rational functions that do nearly commute, the set of commutators
Φ(G), being a subset of the symmetries of J may be so large as to
not be precompact. It is also relatively easy to construct examples of
rational semigroups such that J(G) = {z : |z| = 1} such that there is
some g ∈ G with J(g) = J(G) yet theer is another element h ∈ G such
that J(h) ( J(G).

3.1. Wandering domains. One of the major differences that appear
when passing from the classical iteration theory to the dynamics of
rational semigroups is the existence of wandering domains. Sullivan’s
result precludes wandering domains in the Fatou set of a rational func-
tion. We first need to establish what a wandering domain would mean
for a rational semigroup.
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Definition 3.2. Let G be a rational semigroup. Given a component
U of N(G) and an element g ∈ G, we let Ug denote the component
of N(G) containing g(U). The component U is called a wandering
domain if there are infinitely many distinct components in {Ug : g ∈
G}. We remark that g(U) is usually a proper subset of Ug, and further
there can be infinitely many distinct elements hj of G such that the
sets hj(U) are all contained in the same component of N(G), yet the
sets hj(U) might still be mutually disjoint.

Hinkkanen and Martin provide an example of an infinitely generated
polynomial semigroup (of finite type) that has a wandering domain.
See [15], §5. They further provide an example where the wandering
domain returns to the same component infinitely often. They have
made the following conjecture.

Conjecture 3.2 ([15], Conjecture 5.1). Let G be a finitely generated
rational semigroup. Then G has no wandering domains.

Some partial results have been made in this direction. One such
result has to do with hyperbolic rational semigroups. A hyperbolic ra-
tional semigroup G satisfies the property that J(G) is disjoint from the
closed post-critical set of G. This generalization of hyperbolic ratio-
nal maps was established independently by Hiroki Sumi in [34] and by
Hinkkanen and Martin in [14]. Both proved that hyperbolic rational
semigroups have no wandering domains. Note that these hyberbolic ra-
tional semigroups need not be finitely generated. Sumi has also estab-
lished a no-wandering-domains theorem for sub- and semi-hyperbolic
rational semigroups. Another no-wandering-domains type result is the
following theorem.

Theorem 3.3 ([15], Theorem 5.1). Let G be a nearly abelian rational
semigroup. Then G has no wandering domains.

Proof. Let f ∈ G be a rational map of degree at least two. Then as G
is nearly abelian, we have J(f) = J(G). Let Φ(G) be the precompact
family associated with the commutative properties of G as in Defini-
tion 3.1. For a single rational function f , the Fatou setN(f) has a finite
number of components that are periodic under f . (See [10], §III, The-
orem 2.7 and §VI, Theorem 4.1. The sharp bounds on the number of
non-repelling cycles and periodic components was found by Shishikura,
see [29].) Further, by Sullivan’s no-wandering-domains theorem, every
component of N(f) maps under some iterate onto a periodic compo-
nent of N(f). Thus we may replace f by a suitable iterate of f to
assume that if U is a periodic component of f , then U is fixed, that
is, f(U) = U . Let U be the collection of all fixed components of f and
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let A be the set of all components of N(G) of the form φ(U), where
φ ∈ Φ(G) and U ∈ U . It is easy to verify from the precompactness
of the family Φ(G), that A consists of a finite number of components
of N(G). (For instance, we may normalize so that ∞ ∈ N(G) and
then observe that there are only finitely many components whose area
is larger than any given constant. Since Φ(G) is precompact, there is
a uniform bound on the amount by which any element of Φ(G) can
decrease the area of any U ∈ U .) We now observe that if g ∈ G and
U ∈ U , then g(U) ∈ A. To see this, simply observe that for every
integer m, we have

g(U) = g(fm(U)) = φm(f
m(g(U))),

and if m is taken sufficiently large, then fm(g(U)) ∈ U . Next let V
be any component of N(G) and suppose that V is wandering. Choose
an infinite sequence gi ∈ G such that the sets gi(V ) = Vi are disjoint.
Choose an integer n such that fn(V ) = U ∈ U . As fn has finite
degree, the collection {fn(Vi)}∞i=1 must contain an infinite number of
components of N(G). However, for each i we see that

fn(Vi) = fn(gi(V )) = (φi ◦ gi ◦ fn)(V ) = φi(gi(U)) ∈ φi(A),
for some φi ∈ Φ(G). However, it is again easy to see from the pre-
compactness of the set Φ(G) that in fact the set {φ(A) : φ ∈ Φ(G)}
is a finite collection of components of N(G), which yields the desired
contradiction. ¤

3.2. Stable Domains. Sullivan’s no-wandering-domains theorem to-
gether with the classification of the periodic components of the Fatou
set of a rational function describe the stable dynamics of an arbitrary
rational function of degree at least two. In this section we present a
partial classification of the dynamics of a rational semigroup on a stable
domain. See [15], pp. 362, 374–379.

Definition 3.3. Recall that we write Ug for the component of N(G)
containing g(U). We define the stabilizer of U to be

GU = {g ∈ G : Ug = U}.
If GU contains an element of degree two or more, we shall say that U
is a stable basin for G.

Clearly, GU is a subsemigroup of G. In particular, N(G) ⊂ N(GU),
where the containment may be strict.

Definition 3.4. Given a stable basin U for G we say that it is

(i) attracting if U is a subdomain of an attracting basin of each
g ∈ GU with deg g ≥ 2;
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(ii) superattracting if U is a subdomain of a superattracting basin
of each g ∈ GU with deg g ≥ 2;

(iii) parabolic if U is a subdomain of a parabolic basin of each
g ∈ GU with deg g ≥ 2;

(iv) Siegel if U is a subdomain of a Siegel disk of each g ∈ GU with
deg g ≥ 2;

(v) Herman if U is a subdomain of a Herman ring of each g ∈ GU

with deg g ≥ 2.

Remark 3.1. This classification is not exhaustive. See Example 3.4
below. However, we will show in Theorem 3.6 that Definition 3.4 is a
complete classification for nearly abelian semigroups.

Before we discuss these definitions, we introduce a concept which in
part generalizes to semigroups the relationship between the dynamics
of a rational function and the dynamics of an iterate of the function.

Definition 3.5. A subsemigroup H of a semigroup G is said to be of
finite index if there is a finite collection of elements {g1, g2, . . . , gn} of
G ∪ {Id} such that

G = g1 ◦H ∪ g2 ◦H ∪ · · · ∪ gn ◦H.

If n is chosen to be as small as possible, we say that H has index n in
G.

For instance the subsemigroup H of a finitely generated semigroup
G consisting of all words of length some multiple of an integer n has
finite index in G. (As, for instance, the words of even length in G.)
Thus 〈f 2, g2, fg, gf〉 has index 3 in 〈f, g〉: we may take g1 = Id, g2 =
f, g3 = g.

Definition 3.6. We say that a subsemigroup H of G has cofinite
index or finite coindex if there is a finite collection of elements
g1, g2, . . . , gn of G ∪ {Id} such that for every g ∈ G there is j ∈
{1, 2, . . . , n} such that

gj ◦ g ∈ H.
The coindex of of H in G is the smallest such number n.

If the semigroup were a group the two notions would coincide. In
the example above, the subsemigroup 〈f 2, g2, fg, gf〉 has coindex 2 as
well as index 3. For the coindex, note that we may take g1 = f and
g2 = Id.

Theorem 3.4 ([15], Theorem 2.4). If H is a finite index or finite
coindex subsemigroup of G, then N(H) = N(G) and J(H) = J(G).
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Proof. It suffices to show that N(H) = N(G), for then it immediately
follows that also J(H) = J(G). Since H is a subsemigroup of G, we
have N(G) ⊂ N(H). It remains to be proved that N(H) ⊂ N(G).

Suppose that H is a finite index subsemigroup of G. If fj is a se-
quence of elements of G, we may pass to a subsequence without chang-
ing notation and assume that each fj can be written as fj = g ◦ hj
where hj ∈ H and g ∈ {g1, . . . , gn}, where g is independent of j and
where the set {g1, . . . , gn} is as in Definition 3.5. If U is a domain with
U ⊂ N(H) then we may pass to a further subsequence and assume
that hj → φ uniformly in U . Hence fj → g ◦ φ uniformly in U . It
follows that U ⊂ N(G) and hence N(H) ⊂ N(G).

Suppose now that H is a cofinite index subsemigroup of G, and let
{g1, . . . , gn} be as in Definition 3.6. If fj is a sequence of elements of G,
we may pass to a subsequence without changing notation and assume
that hj = g ◦ fj ∈ H where g is fixed with g ∈ {g1, . . . , gn}. Suppose
that z0 ∈ N(H). Let U be a spherical disk with center z0 and with
U ⊂ N(H). We may pass to a further subsequence and assume that
hj → φ uniformly in U . Shrink U , if necessary, so that φ(V ) omits some

non-empty open disk D(U) in C. Let D′(U) be a non-empty open disk
whose closure is contained in D(U). Then the functions fj eventually
omit the set g−1(D′(U)) in U , so the functions fj form a normal family
in U . It follows that G is normal in U , and hence N(H) ⊂ N(G), as
desired. ¤

Remark 3.2. This theorem generalizes the well known fact that for any
rational function f of degree at least two and for any integer n ≥ 1, we
have that J(f) = J(fn).

Example 3.1. Let h be a polynomial of degree at least two with distinct
components A and B of N(h) such that h(A) = h(B) = A and A
contains the (super)attracting fixed point α of h. Let g be a polynomial
of degree at least two with distinct components U and V of N(g) such
that g(U) = g(V ) = U , U ⊂ B, V ⊂ A, and α ∈ V . There is an
integer m ≥ 1 such that hm(V ) ⊂ V and hm(U) ⊂ V . Set f = hm and
G = 〈f, g〉. Hence U and V are components of N(G). It is easy to see
that

GV = {f ◦ F : F ∈ G}.
Thus GV is of coindex 1 in G, while GV is not of finite index in G since
gn ◦f ◦F ∈ G for all F ∈ G and n ≥ 1. Furthermore, GV is not finitely
generated even if G is. For if GV = 〈g1, . . . , gk〉, then gi ∈ G for all i
so that gi = f ◦ Fi where Fi ∈ G. But f ◦ gn ∈ GV for all n ≥ 1, and
not every f ◦ gn can lie in 〈g1, . . . gn〉.
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Theorem 3.5. Let G be a rational semigroup with no wandering do-
mains. Let U be any component of the Fatou set. Then the forward
orbit of U under G, that is, {Ug : g ∈ G}, contains a stable basin of
cofinite index, i.e., a stable basin W such that GW has cofinite index
in G.

Proof. Let G and U be described as above. Since U is not a wandering
domain, the forward orbit of U is finite, where we always include the
domain itself in its forward orbit even if Id /∈ G. Label the components
of the forward orbit U1, U2, . . . , Um, with U1 = U . If for every j there is
a gj ∈ G such that gj(Uj) ⊂ U1, then GU1

is easily seen to have cofinite
index in G. (Namely, if g ∈ G and g(U1) ⊂ Uj, then (gj ◦ g)(U1) ⊂ U1

and hence gj ◦ g ∈ GU1
.) Otherwise choose k ≥ 2 such that U1 does

not lie in the forward orbit of V = Uk. The forward orbit of V is then
contained in {U2, . . . , Um}, so that the number of components in the
forward orbit of V is strictly less than that of U . Proceeding by the
obvious induction we find a component W whose forward orbit has
fewest components, and then W = Ui for some i with 1 ≤ i ≤ m.
Then for every h ∈ G, for the component Wh of the forward orbit of
W there is a function g̃ belonging to a fixed finite subset of G, such
that g̃(Wh) ⊂ W . Thus Wg̃◦h = W so that g̃ ◦ h ∈ GW and it follows
that GW has cofinite index in G. ¤

Corollary 3.2. Let G be a nearly abelian rational semigroup. Let U
be any component of the Fatou set. Then the forward orbit of U under
G, {Ug : g ∈ G}, contains a stable basin of cofinite index.

3.3. Some properties of Stable Basins. We next discuss a few sim-
ple features of some stable basins for rational semigroups.

First we point out that a stable basin can be attracting for a semi-
group G, and yet, there need not be a common attracting cycle fixed
by each g ∈ G. For instance let f(z) = z2 + c and g(z) = z2 + d where
c, d ∈ C. If |c|, |d| are sufficiently small, then the disk D(1/2) of radius
1/2 centered at 0 is mapped into the disk D(1/4) by fn, gn for some
large n. Thus G = 〈fn, gn〉 is a polynomial semigroup which contains
{z : |z| < 1/2} in its Fatou set. This disk contains the attracting cy-
cles for f and g (and hence for fn and gn) and these are different if
c 6= d. Every h ∈ G maps D(1/2) into D(1/4) and thus contains a
(super)attracting fixed point for h. (Question: Is is possible to show
that no h ∈ G is superattracting?)

In the case when G is nearly abelian, we have the following theorem,
whose proof can be found in [15], pp. 376–378.
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Theorem 3.6 ([15], Theorem 6.2). Let G be a nearly abelian rational
semigroup and U a stable component of N(G). Then U is either at-
tracting, superattracting, parabolic, Siegel or Herman (in the sense of
Definition 3.4). In the Siegel case, the basin U contains a single cycle
fixed by each element of GU . If U is of Siegel or Herman type, then
GU is abelian.

3.4. Examples.

Example 3.2 (Common parabolic basins). Set f(z) = z2 − 3/4 and
g = −f . Then f has a parabolic cycle at z = −1/2. Note that if
φ(z) = −z, then f ◦ φ = f and φ2(z) = z, so that g is actually a
conjugate of f and so has a parabolic cycle at 1/2. The semigroup
G = 〈f, g〉 is nearly abelian since

f ◦ g = f ◦ φ ◦ f = f 2 = φ2 ◦ f 2 = φ ◦ φ ◦ f ◦ f = φ ◦ g ◦ f.

(This also follows from Corollary 3.1.) Thus a nearly abelian semigroup
can have different parabolic cycles in the same stable basin. More
precisely, there is a component U of N(G) containing the origin such
that each of f 2 and g2 maps U onto itself and has a parabolic fixed
point on ∂U , the fixed point being −1/2 for f 2 and 1/2 for g2.

Example 3.3 (Common superattracting basins). Set f(z) = (z2−c2)2+c
and g = −c − (z2 − c2)2, i.e., if φ(z) = −z then g = φ ◦ f . Then
c is a superattracting fixed point for f and −c is a superattracting
fixed point for g. As before, we can see that 〈f, g〉 is a nearly abelian
polynomial semigroup. If |c| is small enough, then both f and g map
the disk {z : |z| < 1/2} into itself, and thus f and g have a common
superattracting basin.

Example 3.4 (Mixed Basin). Set f(z) = z/(1+z−z2) and g(z) = λz+z2

where 0 < λ < 1. Then J(g) is a Jordan curve (see [5], Theorem 9.9.3)
while J(f) is a Cantor subset of the real line (can be shown using the
fact that 1/f(1/z) = z+1−1/z). The mapping f has a parabolic fixed
point at 0, N(f) is connected, each of the upper and lower half planes is
completely invariant under f , and there is ε > 0 such that the interval
(0, ε) ⊂ N(f) ∩ N(g) because f((0, ε)) ⊂ (0, ε) and g((0, ε)) ⊂ (0, ε).
Let G = 〈f, g〉. (Note that G is not nearly abelian!) Then each h ∈ G
has an attracting or parabolic fixed point at 0. If ε is small enough
and we set B = {z : |z − ε| < ε}, then f(B) ⊂ B (to see this note
that 1/f(1/z) = z + 1− 1/z). We claim that g(B) ⊂ B. We will leave
the details as an exercise, but we will remark that it suffices to choose
any ε such that 0 < ε < (1− λ)/2. It follows that B ⊂ N(G) 6= ∅ and
therefore that 0 ∈ ∂N(G). Thus the stable basin for G containing B is
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contained in a parabolic basin for f and contained in an attracting basin
for g and with the parabolic/attracting fixed point in its boundary.

4. Completely invariant Julia sets

The material from this section is taken from [32] and [30].
We have seen earlier that the Julia set J(G) of a rational semigroup

G need not be completely invariant under all the elements of G (see
Example 1.1). This is in contrast to the classical situation where J(f)
is completely invariant under each iterate fn.

The question then arises, what if we required the Julia set of the semi-
group G to be completely invariant under each element of G? That is,
what if we extended the definition of a Julia set given in Property 1.1?
We will consider in this section some of the consequences of such an
extension which is given in the following definition.

Definition 4.1. For a rational semigroup G we define the completely
invariant Julia set

I = I(G) =
⋂
{S : S is closed, completely invariant under each g ∈ G,#(S) ≥ 3}

where #(S) denotes the cardinality of S.

We note that I(G) exists, is closed, is completely invariant under
each element of G and contains the Julia set of each element of G by
Property 1.1.

Definition 4.2. For a rational semigroup G we define the completely
invariant set of normality of G, W = W (G), to be the complement of
I(G), i.e.,

W (G) = C \ I(G).

Note that W (G) is open and it is also completely invariant under
each element of G.

So we see that we that in the effort to generalize the dynamics as-
sociated with the iteration of a rational function to the more general
dynamics of rational semigroups, we are able to extend certain key no-
tions in more than one way. In particular, we can define our Julia set in
terms of normality, as we did in defining J(G) or in terms of complete
invariance, as we did in defining I(G). It is of interest to pursue a
greater understanding of how these two extensions differ, and to learn
which is better for studying certain phenomena.

One key difference in the theory is that when studying the action of
the elements of the semigroup, one finds that components of the set
of normality N(G) only map into other components and not onto as
in the action of the elements on the components of the completely in-
variant set of normality W (G) (see Lemma 4.4). This, of course, has a
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large impact on how one works to extend, and even define, the concepts
involved in two cornerstone theorems of iteration theory, the classifi-
cation of the fixed components and Sullivan’s no-wandering-domains
theorem.

We will see below that the extension of the Julia set given by J(G)
is better if one wishes to study the dynamics on the extension of the
set of normality. This is seen in Theorem 4.2 which states that if a
semigroup G is generated by two polynomials with unequal Julia sets,
then I(G) must necessarily be the entire Riemann sphere C. Hence ,
in such a case, the completely invariant set of normality is empty and
so there are no dynamics on its components of which to study. In this
case, however, J(G) is a compact subset of the plane C and hence there
are dynamics on the components of N(G) to be studied. (If the Julia
sets of the two generators are equal, then both J(G) and I(G) are equal
to this common Julia set.) We note that if one is studying dynamics
from the point of view that complete invariance is required, then, of
course, the extension given by I(G) is better.

We now compare the sets I(G) and J(G).

Example 4.1. Suppose that G = 〈f, g〉 and J(f) = J(g). Then I =
J(f) = J(g) since J(f) is completely invariant under f and J(g) is
completely invariant under g. It is easily verified that if J(f) = J(g),
then J(G) = J(f) = J(g).

We will see in the following example, however, that it is not always
the case that J(G) = I(G).

Example 4.2. Let a ∈ C, |a| > 1 and G = 〈z2, z2/a〉. One can easily
show that J(G) = {z : 1 ≤ |z| ≤ |a|} (see [15], p. 360) while I(G) = C.
Note that J(z2) = {z : |z| = 1} and J(z2/a) = {z : |z| = |a|}.

Lemma 4.1 ([32], Corollary 2). For a rational semigroup G, we have
J(G) ⊂ I(G).

Proof. Since the W (G) is forward invariant under each element of G
with complement I(G) which has more than 3 points, it must lie in the
set of normality of G. ¤

Let G be a rational semigroup and select an element g ∈ G. Note
that J(g) ⊂ I(G). We will now show how I(G) can be “built up” from
J(g).

For a collection of sets A, and a function h, we denote new collections
of sets by h(A) = {h(A) : A ∈ A} and h−1(A) = {h−1(A) : A ∈ A}.
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Choose g ∈ G. Let us define the following countable collections of
sets:

E0 = {J(g)},
E1 =

⋃

f∈G
f−1(E0) ∪

⋃

f∈G
f(E0),

En+1 =
⋃

f∈G
f−1(En) ∪

⋃

f∈G
f(En),

and E =
∞⋃

n=0

En.

Since I is completely invariant under each f ∈ G and contains J(g),
we have I ⊃ ⋃A∈E A. Since I is also closed, we have

(4.1) I ⊃
⋃

A∈E
A.

The following lemma shows that these two sets are actually equal.

Lemma 4.2 ([31], Lemma 3.2.1). We have

I =
⋃

A∈E
A.

Proof. We only have I ⊂ ⋃
A∈E A yet to establish. Since the set on

the right is closed and contains J(g) (and therefore more than three
points), it remains only to show that it is also completely invariant
under each f ∈ G.

We will use the fact that for a non-constant rational function h and
a subset B of C we have h−1(B) = h−1(B) since h is a continuous open
map.

Using this fact we see that

f−1(
⋃

A∈E
A) = f−1(

⋃

A∈E
A) =

⋃

A∈E
f−1(A) ⊂

⋃

A∈E
A.

Also, by the continuity of f , we have

f(
⋃

A∈E
A) ⊂ f(

⋃

A∈E
A) =

⋃

A∈E
f(A) ⊂

⋃

A∈E
A.

So we conclude that I ⊂ ⋃A∈E A. ¤

Remark 4.1. In fact, if we had let E0 = {{a, b, c}} where a, b, c are
three points known to be in I(G) (for example, if a, b, c ∈ J(g)) and
we defined each En and E as above in terms of this new collection
E0, then we would arrive at the same description of I(G) as given in
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Lemma 4.2. This is due to the minimality condition for Julia sets as
noted in Property 1.1. For technical reasons we will, however, use the
previous description of I obtained from letting E0 = {J(g)}.
Corollary 4.1 ([31], Corollary 3.2.3). The set I(G) has no isolated
points; i.e., I(G) is perfect.

Proof. Since J(g) is perfect (see [5], p. 68) and backward and forward
images of perfect sets under rational maps are perfect, we see that each
set in E is perfect by a routine inductive argument. The corollary then
follows since the closure of a union of perfect sets is perfect. ¤

Recall the definition of uniformly perfect sets given in Definition 2.5.
It is known that Julia sets of rational functions (see [22], [13], and [11])
and Julia sets of finitely generated rational semigroups (see [16]) are
uniformly perfect. We put forth the following conjecture due to Aimo
Hinkkanen.

Conjecture 4.1. The set I(G) is uniformly perfect when G is finitely
generated.

Lemma 4.3 ([31], Lemma 3.2.5). Let B be a set which is completely
invariant under each f ∈ G. If I ∩ B has nonempty interior relative
to B, then I ⊃ B \ {at most two points}.
Proof. We will use the following elementary fact:

For any sets D and C and any function h we have

(4.2) D ∩ h(C) 6= ∅ if and only if h−1(D) ∩ C 6= ∅.
By hypothesis we select an open disc 4 such that 4 ∩ B ⊂ I and

4 ∩ B 6= ∅. By Lemma 4.2 we see then that there exists a set A in
En, say, such that 4 ∩ A 6= ∅. Since A ∈ En, it can be expressed as
A = hn · · ·h1(J(g)), where each hj ∈ {f : f ∈ G} ∪ {f−1 : f ∈ G}.
Considering each hj as a map on subsets of C, as opposed to a map
on points of C, we can define the “inverse” maps h∗j accordingly, i.e.,

h1 = f implies h∗1 = f−1 and h2 = f−1 implies h∗2 = f . The h∗j are not

true inverses since f−1(f(A)) may properly contain A.
The fact (4.2) does imply, however, that

A ∩4 6= ∅ =⇒ hn · · ·h1(J(g)) ∩4 6= ∅(4.3)

=⇒ hn−1 · · ·h1(J(g)) ∩ h∗n(4) 6= ∅(4.4)

...(4.5)

=⇒ h1(J(g)) ∩ h∗2 · · ·h∗n(4) 6= ∅(4.6)

=⇒ J(g) ∩ h∗1 · · ·h∗n(4) 6= ∅.(4.7)
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Since each h∗j maps open sets to open sets (as each f, f−1 do) we
see that U = h∗1 · · ·h∗n(4) is open. We observe that by the expanding
property of Julia sets (see [5], p.69 ) that we have

⋃∞
n=1 g

n(U) = C \
E(g), where E(g) is the set of (at most two) exceptional points of g.
Since the complete invariance of B and I under each of the maps f ∈ G
implies that U ∩B ⊂ I, we have

B \ E(g) ⊂ B ∩
∞⋃

n=1

gn(U) ⊂
∞⋃

n=1

B ∩ gn(U) =
∞⋃

n=1

gn(B ∩ U) ⊂ E.

The result then follows since I is closed. ¤

Property 4.1 ([31], Corollary 3.2.6). If I(G) has nonempty interior,
then I(G) = C.

Proof. Letting B = C in Lemma 4.3 gives the result. ¤

Corollary 4.2 ([31], Corollary 3.2.10). If J(G) has nonempty interior,
then I = C.

4.1. Components of W(G). It is well known in iteration theory that
the set of normality of a rational function can have only 0, 1, 2, or
infinitely many components (see [5], p. 94). In this section we generalize
this result by showing that the completely invariant set of normality of a
rational semigroup can have only 0, 1, 2, or infinitely many components.
The proof not only generalizes the iteration result, but it also provides
an alternative proof for it. The material in this section is taken entirely
from [30].

Theorem 4.1 ([30], Theorem 1). For a rational semigroup G the set
W (G) can have only 0, 1, 2, or infinitely many components.

Lemma 4.4 ([30], Lemma 1). If W0 is a component of W , then f(W0)
is also a component of W for any f ∈ G.
Proof. Let W1 be the component of W that contains f(W0). We show
that f(W0) = W1. Suppose to the contrary that z ∈W1 \f(W0). Since
f is continuous on the compact setW0 and an open map onW0, we have
∂f(W0) ⊂ f(∂W0) ⊂ f(I) ⊂ I. Let γ be a path in W1 connecting z to
a point w ∈ f(W0). Hence γ must cross ∂f(W0) ⊂ I. This contradicts
the fact that γ ⊂ W1 and so we conclude that f(W0) =W1. ¤

Since the remainder of this section will be devoted to the proof of
Theorem 4.1, we will assume thatW has L components where 2 ≤ L <
+∞. We remark here that the strategy will be to show that each of
the L components of W is simply connected and then the result will
follow by an application of the Riemann-Hurwitz relation.
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Definition 4.3. Let W have components Wj for j = 0, . . . , L− 1.

Remark 4.2. We see by Lemma 4.4 that each f ∈ G (and hence each
f−1 as well) permutes theWj for j = 0, . . . , L−1 since f is a continuous
map of W onto W .

We may assume that∞ ∈W0, else we may impose this condition by
conjugating each f ∈ G by the same rotation of the sphere.

Definition 4.4. For j = 1, . . . , L− 1, we define

Kj = {z /∈ Wj : there exists a simple closed curve γ ⊂ Wj such that Indγ(z) = 1}
where the winding number is given by Indγ(z) = (1/2πi)

∫
γ
1/(w −

z) dw. If z ∈ Kj and the simple closed curve γ ⊂ Wj is such that
Indγ(z) = 1, then we say that γ works for z ∈ Kj.

In order to properly define K0 we first need to move W0 so that it no
longer contains∞. Let φ be a rotation of the sphere so that∞ ∈ φ(W1)

and denote W̃j = φ(Wj) for j = 0, . . . , L− 1.

Definition 4.5. We define

K̃0 = {z /∈ W̃0 : there exists a simple closed curve γ ⊂ W̃0 such that Indγ(z) = 1}
and

K0 = φ−1(K̃0).

If z ∈ K0 and simple closed curve γ ⊂ W̃0 is such that Indγ(φ(z)) = 1,
then we say that the simple closed curve φ−1(γ) works for z ∈ K0.

Remark 4.3. Note that saying φ−1(γ) works for z ∈ K0 does not nec-
essarily imply that Indφ−1(γ)(z) = 1, since it may be the case that
Indγ(φ(∞)) = 1 and hence Indφ−1(γ)(z) = 0 since z lies in the un-

bounded component of C \ φ−1(γ).
Definition 4.6. We define

K =
L−1⋃

j=0

Kj.

Definition 4.7. We define

W ′
j = Wj ∪Kj.

Lemma 4.5 ([30], Lemma 2). For j = 0, . . . , L − 1, the set W ′
j is

open, connected and simply connected. Thus each Kj is the union of
the “holes” in Wj.

Proof. Suppose that 1 ≤ j ≤ L − 1, so that Wj is a bounded domain
in the complex plane. Define A to be the unbounded component of
C \Wj. Hence B = C \ A is open, connected and simply connected.
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Let F be a bounded component of C \Wj. Since A and F are each

components of the closed set C \ Wj, there exists a simple polygon
γ ⊂ Wj which separates A from F (see [25], p. 134). Hence we see

that F ⊂ Kj. Since F was an arbitrary bounded component of C\Wj,

we conclude that Kj contains all the bounded components of C \Wj,
i.e., the “holes” of Wj. Hence W

′
j ⊃ B. Clearly Kj cannot contain any

points of A since any simple closed path γ ⊂ Wj which would wind
around such a point would have to necessarily wind around every point
of A (since A is a component of the complement of Wj) including ∞
which cannot happen. Hence we conclude W ′

j = B and is therefore
open, connected and simply connected.

We show that φ(W ′
0) is open, connected and simply connected us-

ing the same argument as above, and this implies that W ′
0 is open,

connected and simply connected. ¤

Definition 4.8. We define

W ′ =
L−1⋃

j=0

W ′
j .

Note that we have W ′ =W ∪K.
Lemma 4.6 ([30], Lemma 3). If for some distinct r, s ∈ {0, . . . , L−1},
we have W ′

r∩W ′
s 6= ∅, then either W ′

r ⊂ W ′
s or W

′
s ⊂ W ′

r. In particular,
if Wr ∩W ′

s 6= ∅ for some distinct r, s ∈ {0, . . . , L− 1}, then W ′
r ⊂ W ′

s.

Proof. Let z ∈ W ′
r ∩ W ′

s. Since Wr ∩ Ws = ∅, we may assume that
z ∈ Ks, say. Let γs work for z ∈ Ks. Let Iγs be the component of

C \ γs which contains z. Note that Iγs \ Ws = {z : γs works for z}
whether or not s = 0 (see Definitions 4.4 and 4.5 and Remark 4.3).
Since z ∈ W ′

r, we have two cases, either z ∈ Kr or z ∈ Wr.
Suppose that z ∈ Kr and let γr work for z ∈ Kr. As γs ∩ γr = ∅

(since Wr ∩Ws = ∅) we see that either γr ⊂ Iγs or γs ⊂ Iγr , where Iγr
is the component of C \ γr which contains z. By switching the roles of
r and s, if necessary, we assume γr ⊂ Iγs and we note that this can be
done since z ∈ Kr ∩Ks. In particular, Wr ∩ Iγs 6= ∅.

If z ∈Wr, then we still get Wr ∩ Iγs 6= ∅ since z ∈ Iγs .
Since Wr ∩ Iγs 6= ∅, Wr ∩Ws = ∅, Wr is connected, and γs ⊂ Ws, we

conclude that Wr ⊂ Iγs . Hence Wr ⊂ W ′
s since γs then works for every

z ∈ Wr. Since W
′
s is simply connected we see that W ′

r ⊂ W ′
s. ¤

Lemma 4.7 ([30], Lemma 4). The boundary of W ′
0 is a nondegenerate

continuum and as such contains more than three points.
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Proof. We will first show thatW ′
0∩W ′

1 = ∅. The setW ′
1 cannot contain

W ′
0 as∞ ∈W ′

0 andW
′
1 is a bounded subset of C (sinceW1 is a bounded

subset of C). The same argument also shows that φ(W ′
0) cannot contain

φ(W ′
1) where φ is as in Definition 4.5, and so we conclude that W ′

0

cannot contain W ′
1. By Lemma 4.6 we conclude that W ′

0 ∩W ′
1 = ∅.

SinceW ′
0 is simply connected, ∂W ′

0 contains a nondegenerate contin-
uum unless ∂W ′

0 consists of just a single point. If ∂W ′
0 consists of just

a single point, then W ′
0 ∪ ∂W ′

0 = C, but this contradicts the fact that
W ′

0 ∩W ′
1 = ∅. ¤

Lemma 4.8 ([30], Lemma 5). For each j = 0, . . . , L − 1, we have

J(f) ⊂ ∂Wj for each f ∈ G. Since J(G) = ∪f∈GJ(f), we have J(G) ⊂
∂Wj for each j = 0, . . . , L− 1.

Proof. Since f permutes theWj by Remark 4.2, we may select a positive
integer n so that fn(Wj) = Wj = f−n(Wj) for each j = 0, . . . , L − 1.

Then we have
⋃∞
k=1 f

−kn(Wj) ⊃ J(fn) = J(f) (see [5], p. 71 and

p. 51). But since
⋃∞
k=1 f

−kn(Wj) = Wj we see that ∂Wj ⊃ J(f), since
Wj ∩ J(f) = ∅. ¤

Lemma 4.9 ([30], Lemma 6). We have Wr * W ′
s for distinct r, s ∈

{0, . . . , L − 1}, and therefore, by Lemma 4.6, the W ′
j are disjoint for

j = 0, . . . , L− 1.

Proof. If L = 2, then the proof of Lemma 4.7 shows that W ′
0∩W ′

1 = ∅.
We assume now that L ≥ 3. We will first show that no bounded W ′

s

can contain any Wr with r 6= s. Suppose that this does occur. Then
there exists a simple closed curve γs ⊂ Ws such that Wr ⊂ Iγs where

Iγs is the component of C \ γs which contains the points z such that
Indγs(z) = 1. Hence, by Lemma 4.8, J(G) ⊂ ∂Wr ⊂ Wr ⊂ Iγs . But

since W0 ⊂ C \ Iγs we see that J(G) ⊂ ∂W0 ⊂ W0 ⊂ C \ Iγs . This
contradiction implies no bounded W ′

s can contain any Wr.
We see that W ′

0 cannot contain any Wr with r ≥ 1 by the following
similar argument. If Wr ⊂ W ′

0, then there exists a simple closed curve

γ ⊂ W̃0 such that Indγ(z) = 1 for every z ∈ W̃r. Let Iγ be the

component of C \ γ which contains W̃r. So φ(J(G)) ⊂ φ(∂Wr) =

∂φ(Wr) = ∂W̃r ⊂ Iγ. Since W̃1 ⊂ C \ Iγ (recall ∞ ∈ W̃1), we see that

φ(J(G)) ⊂ φ(∂W1) = ∂φ(W1) = ∂W̃1 ⊂ C \ Iγ. This contradiction
implies W ′

0 cannot contain any Wr with r ≥ 1. ¤

Corollary 4.3 ([30], Corollary 1). The set K has no interior and
therefore each Kj ⊂ ∂Wj.
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Proof. By Lemma 4.9 we see that each Kj ⊂ I and hence K ⊂ I. The
Corollary then follows from Property 4.1. ¤

Corollary 4.4 ([30], Corollary 2). We have ∂Wj = Kj ∪ ∂W ′
j.

Proof. By Corollary 4.3 we get Kj ∪ ∂W ′
j ⊂ ∂Wj. We also have ∂Wj =

Wj \Wj ⊂ W ′
j \Wj = (W ′

j ∪ ∂W ′
j) \Wj = (Wj ∪ Kj ∪ ∂W ′

j) \Wj =
Kj ∪ ∂W ′

j . ¤

Lemma 4.10 ([30], Lemma 7). We have f(K) ⊂ K for all f ∈ G.
Proof. Let z ∈ Kj be such that γ ⊂ Wj works for z.

Suppose that Wl = f(Wj) 6= W0. So W
′
j contains no poles of f , else

such a pole would be in Wj (by the complete invariance of W under f
since ∞ ∈ W0 ⊂ W and Lemma 4.9) and hence f(Wj) = W0. By the
argument principle, f(γ) ⊂ Wl winds around f(z), thus f(z) ∈ Kl as
f(z) /∈ Wl by the complete invariance of W under the map f . Note
that f(γ) might not work for f(z) ∈ Kl since it might not be simple,
but f(z) ∈ Kl since it cannot be in the unbounded component of C\Wl

and have a curve in Wl, namely f(γ), wind around it.

Now suppose that f(Wj) = W0. So (φ ◦ f)(Wj) = W̃0 is bounded
and W ′

j contains no poles of φ ◦ f (else f(Wj) = W1). So (φ ◦ f)(γ)
winds around (φ ◦ f)(z) and hence (φ ◦ f)(z) ∈ K̃0, i.e., f(z) ∈ K0.

So f(Kj) ⊂ K and hence we conclude f(K) ⊂ K. ¤

Lemma 4.11 ([30], Lemma 8). We have for all f ∈ G, f(W ′)∩∂W ′
0 =

∅. Also W ′ ⊂ N(G) and in particular K ∩ J(G) = ∅.
Proof. We have f(W ′) = f(W ∪K) = f(W ) ∪ f(K) ⊂ W ∪K = W ′.
Since W ′ ∩ ∂W ′

0 = ∅ (since W ′ is open), Lemma 4.7 and Montel’s
Theorem finish the proof. ¤

Corollary 4.5 ([30], Corollary 3). We have J(G) ⊂ ∂W ′
j for each

j = 0, . . . , L− 1.

Proof. This follows immediately from Lemma 4.8, Corollary 4.4 and
Lemma 4.11. ¤

Remark 4.4. It is of interest to note that for any positive integer n
there exist disjoint simply connected domains D1, . . . , Dn in C with
∂D1 = ∂D2 = · · · = ∂Dn (see [18], p. 143). Thus Corollary 4.5 does
not imply that L < 3 from a purely topological perspective.

Lemma 4.12 ([30], Lemma 9). We have f−1(K) ⊂ K for all f ∈ G.
Hence by Lemma 4.10, K is completely invariant under each f ∈ G.
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Proof. Let z ∈ Kj ⊂ ∂Wj and say f(w) = z. Define Wk = f−1(Wj)
by Remark 4.2. We obtain sequences zn ∈ Wj such that zn → z,
and wn ∈ Wk such that wn → w and f(wn) = zn. Hence we see
that w ∈ ∂Wk, else w ∈ Wk and z = f(w) ∈ Wj. If w /∈ Kk, then
w ∈ ∂W ′

k by Corollary 4.4. Let Γ be the component of ∂Wj that
contains f(∂W ′

k). Since z ∈ Γ, the set Γ must be one of the components
of Kj. By Corollary 4.5 we see that there exists a ζ ∈ ∂W ′

k ∩ J(f).
Hence f(ζ) ∈ Kj ∩ J(f) which is a contradiction since we know by
Lemma 4.11 that K is disjoint from J(G) ⊃ J(f). This contradiction
implies w ∈ Kk and hence f−1(K) ⊂ K. ¤

Lemma 4.13 ([30], Lemma 10). If W has L components where 2 ≤
L < +∞, then each is simply connected.

Proof. SinceK andW are each completely invariant under each f ∈ G,
so is W ′ = W ∪K. By Lemma 4.11 we see that C \W ′ is completely
invariant under each f ∈ G, closed, and contains J(G). Hence I ⊂
C \W ′. This implies that W = W ′ and hence each component of W is
then simply connected. ¤

We are now able to present the proof of Theorem 4.1.

Proof of Theorem 4.1. If W has L components where 2 ≤ L < +∞,
then each is simply connected by Lemma 4.13. Select a map f ∈ G.
Letting n ≥ 1 be selected so that each of the components Wj of W is
completely invariant under fn, we get by the Riemann-Hurwitz relation
(see [33], p. 7)

δfn(Wj) = deg(fn)− 1

where we write δg(B) =
∑

z∈B[vg(z)−1] and vg(z) is the valency of the
map g at the point z.

Hence we obtain

L(deg(fn)− 1) =
L−1∑

j=0

δfn(Wj) ≤ δfn(C) = 2(deg(fn)− 1)

and so L ≤ 2. The last equality follows from Theorem 2.7.1 in [5]. ¤

Remark 4.5. Note that if L = 2, then each component of W is neces-
sarily simply connected.

We know from iteration theory that each of the four possibilities
(0, 1, 2,∞) for the number of components of the set of normality can be
achieved. So by constructing semigroups G such that all the elements
have the same Julia set we know that the only four possibilities for the
number of components of the completely invariant set of normality of
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G can also be achieved. However, it does not seem possible that all
four possibilities can be achieved if we restrict ourselves to the cases
where two elements of the semigroup G have nonequal Julia sets. For
example, if G contains two polynomials with nonequal Julia sets then
the completely invariant set of normality is necessarily empty (see [32],
Theorem 1).

We do have the following examples however.

Example 4.3. Consider f(z) = 2z − 1
z
. One can easily show that the

extended real line R is completely invariant under f and that J(f) is a
Cantor subset of the interval [−1, 1] (see [5], p. 21). Let φ(z) = i 1+z

1−z ,

h(z) = z2, and set g(z) = (φ ◦ h ◦ φ−1)(z) = z2−1
2z
. Hence J(g) =

φ(J(h)) = R, (see [5], p. 50). So we see that I(〈f, g〉) = R 6= C, but
J(f) ( J(g). Note that J(f) ( J(g) = I in this example. We also
point out that J(〈f, g〉) = R = I.

Example 4.4. Consider f(z) = 2z − 1
z
as in Example 4.3. Let φ(z) =

z + 1, and set g(z) = (φ ◦ f ◦ φ−1)(z) = 2z − 1
z−1 − 1.

Claim 4.1. In Example 4.4 we have J(〈f, g〉) = [−1, 2] and I(G) = R.

Proof. Define A = [−1, 2]. Since f is a strictly increasing map of each
of the intervals

A1 =

[
−1, 1−

√
3

2

]
⊂ A and A2 =

[
1

2
,
1 +

√
3

2

]
⊂ A

onto the interval A, we can define two branches, say f1 and f2, of f
−1

on A by f1(A) = A1 and f2(A) = A2. As |f ′(z)| > 2 on A1 and A2, we
see that f1 and f2 are contractions on A.

Since g is a strictly increasing map of each of the intervals

A3 =

[
1−

√
3

2
,
1

2

]
⊂ A and A4 =

[
1 +

√
3

2
, 2

]
⊂ A

onto the interval A = [−1, 2], we can define two branches, say g1 and
g2, of g

−1 on A by g1(A) = A3 and g2(A) = A4. As |g′(z)| > 2 on A3

and A4, we see that g1 and g2 are contractions on A.
We note that A is backward invariant under both f and g since

Aj ⊂ A for 1 ≤ j ≤ 4, and so J(〈f, g〉) ⊂ A = [−1, 2].
We next note that we can define an iterated function system on A

using the functions f1, f2, g1, and g2. Let W (X) = f1(X) ∪ f2(X) ∪
g1(X)∪g2(X) for any compact subset X ⊂ A.We note thatW (A) = A
and so by Iterated Function Systems (IFS) theory, A is the unique
attractor set for this IFS. Let B = J(f) ∪ J(g) and note that by the
backward invariance of J(〈f, g〉) we get W n(B) ⊂ J(〈f, g〉) for all n.
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Since J(〈f, g〉) is closed and W n(B) → A in the Hausdorff metric, we
see that A ⊂ J(〈f, g〉).

Since [−1, 2] = J(G) ⊂ I(G) and R is completely invariant under
both f and g, we see by Lemma 4.3 that I(G) = R. ¤

So we see that it is possible for a completely invariant set of normality
of a semigroup G which contains two elements with nonequal Julia sets,
to have 0 or exactly 2 components. We feel that the interplay between
functions with nonequal Julia sets and the fact that if I(G) has interior
then I(G) = C demands that only under special circumstances can we
have W (G) be nonempty, when two elements of the semigroup G have
nonequal Julia sets.

We state the following conjectures which are due to Aimo Hinkkanen
and Gaven Martin.

Conjecture 4.2. If G is a rational semigroup which contains two maps
f and g such that J(f) 6= J(g) and I(G) 6= C, then W (G) has exactly
two components, each of which is simply connected, and I(G) is equal
to the boundary of each of these components.

Conjecture 4.3. If G is a rational semigroup which contains two maps
f and g such that J(f) 6= J(g) and I(G) 6= C, then I(G) is a simple
closed curve in C.

Of course Conjecture 4.2 would follow from Conjecture 4.3.
We finish by including some comments on the number of components

of the set of normality N(G) of a rational semigroup G. It is not known
if the set N(G) must have only 0, 1, 2, or infinitely many components
when G is a finitely generated rational semigroup. However, for each
positive integer n, an example of an infinitely generated polynomial
semigroup G can be constructed with the property that N(G) has
exactly n components. These examples were constructed by David
Boyd in [6].

4.2. Polynomial semigroups. The material from this section comes
entirely from [32]. When the semigroup G contains only elements with
the same Julia set J , then we have seen that I(G) = J = J(G). If,
however, there are two functions with nonequal Julia sets, then we do
not expect that J(G) should necessarily equal I(G), see Example 1.1.
For example, if the functions with nonequal Julia sets are polynomials,
then we will show that I(G) must coincide with the entire Riemann
sphere. Specifically, we prove the following theorems.

Theorem 4.2 ([32], Theorem 1). For polynomials f and g of degree
greater than or equal to two, J(f) 6= J(g) implies I(G) = C where
G = 〈f, g〉.
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The following theorem follows immediately.

Theorem 4.3 ([32], Theorem 2). For a rational semigroup G′ which
contains two polynomials f and g of degree greater than or equal to
two, J(f) 6= J(g) implies I(G′) = C.

We first establish the necessary lemmas.

Lemma 4.14 ([32], Lemma 4). If f and g are polynomials of degree
greater than or equal to two and J(f) 6= J(g), then ∞ ∈ I.
Proof. Denoting the unbounded components of the respective Fatou
sets of f and g by F∞ and G∞, we recall (see [5], p. 54 and p. 82) that
J(f) = ∂F∞ and J(g) = ∂G∞.

Since F∞ and G∞ are domains with nonempty intersection and
∂F∞ 6= ∂G∞, we have J(f) ∩G∞ 6= ∅ or J(g) ∩ F∞ 6= ∅.

Hence we may select z ∈ J(g)∩F∞, say. Denoting the nth iterate of
f by fn, we see that fn(z)→∞, and by the forward invariance under
the map f of the set I we get that each fn(z) ∈ I. Since I is closed we
see then that ∞ ∈ I. ¤

Remark 4.6. Since it will be necessary later, we make special note of the
fact used in the above proof that J(f) 6= J(g) implies J(f) ∩ G∞ 6= ∅
or J(g) ∩ F∞ 6= ∅.
Remark 4.7. Note that the proof above shows also that ∞ is not an
isolated point of I when J(f) 6= J(g). This, of course, also follows from
Corollary 4.1 and Lemma 4.14.

The disc centered at the point z with radius r will be denoted4(z, r).

Lemma 4.15 ([32], Lemma 5). Suppose that 4(0, r∗) = A∪B where A
is open, A and B are disjoint, and both A and B are nonempty. If both
A and B are completely invariant under the map L(z) = zj defined on
4(0, r∗) where 0 < r∗ < 1 and j ≥ 2, then the set A is a union of open
annuli centered at the origin and hence B is a union of circles centered
at the origin. Furthermore, each of A and B contains a sequence of
circles tending to zero.

Proof. Let z0 = reiθ ∈ A. Since A is open we may choose δ > 0 such
that the arc αz0 = {reiω : |θ − ω| ≤ δ

2
} ⊂ A.

Fix a positive integer n such that jnδ > 2π. Since Ln(z) = zj
n

we
get

Ln(αz0) = C(0, rj
n

)

where C(z, r) = {ζ : |ζ − z| = r}.
By the forward invariance of A under L, we see that C(0, rj

n

) ⊂ A.
But now by the backward invariance of A, we get

C(0, r) = L−n(C(0, rj
n

)) ⊂ A.



36 DAVID BOYD AND RICH STANKEWITZ

Thus for any reiθ ∈ A, we have C(0, r) ⊂ A. Hence A, being open,
must be a union of open annuli centered at the origin and therefore
B, being the complement of A in 4(0, r∗), must be a union of circles
centered at the origin.

We also note that if C(0, r) ⊂ A, then C(0, rj
n

) ⊂ A is a sequence
of circles tending to zero. Similarly we obtain a sequence of circles in
B tending to zero. ¤

Lemma 4.16 ([32], Lemma 6). Let L : 4(0, r∗) → 4(0, r∗), where
0 < r∗ < 1, be an analytic function such that L(0) = 0. Let B be
a set with empty interior which is a union of circles centered at the
origin and which contains a sequence of circles tending to zero. If B is
forward invariant under the map L, then L is of the form

L(z) = azj

for some non-zero complex number a and some positive integer j.

Proof. Since L(0) = 0, we have, near z = 0,

L(z) = azj + a1z
j+1 + · · ·

= azj(1 +
a1
a
z + · · · )

for some non-zero complex number a and some positive integer j.
Let h(z) = L(z)/azj and note that h(z) is analytic and tends to 1 as

z tends to 0. We shall prove that h(z) ≡ 1 and the lemma then follows.
Let Cn = C(0, rn) be sequence of circles contained in B with rn → 0.

We claim that each L(Cn) is contained in another circle centered at the
origin of, say, radius r′n. If not, then the connected set L(Cn) would
contain points of all moduli between, say, r′ and r′′. This, however,
would imply that B would contain the annulus between the circles
C(0, r′) and C(0, r′′). Thus we have L(Cn) ⊂ C(0, r′n).

So we see then that h(Cn) ⊂ C(0, r′n/|a|rjn).
But for large n we see that if h were non-constant, then h(Cn) would

be a path which stays near h(0) = 1 and winds around h(0) = 1.
Since h(Cn) is contained in a circle centered at the origin, this cannot
happen. We thus conclude that h is constant. ¤

Lemma 4.17 ([32], Lemma 7). If B ⊂ 4(0, r∗) for 0 < r∗ < 1 is a
nonempty relatively closed set which is completely invariant under the
maps H : z 7→ zj and K : z 7→ azm defined on 4(0, r∗) where a is
a nonzero complex number and j,m are integers with j,m ≥ 2, then
B = 4(0, r∗) or |a| = 1.

Proof. We may assume that |a| ≤ 1 by the following reasoning. Sup-
pose that |a| ≥ 1. Let b be a complex number such that bm−1 = a and
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define ψ(z) = bz. Since ψ◦H◦ψ−1(z) = zj/bj−1 and ψ◦K◦ψ−1(z) = zm,
we see that the lemma would then imply that ψ(B) = 4(0, |b|r∗)
or |b| = 1. Since we know that ψ(B) = 4(0, |b|r∗) exactly when
B = 4(0, r∗), and |b| = 1 exactly when |a| = 1, we may then assume
that |a| ≤ 1.

We will assume that |a| < 1 and show that this then implies that
B = 4(0, r∗).

We first note that by Lemma 4.15, B is a union of circles centered
at the origin and B contains a sequence of circles tending to zero. If
C(0, ρ) ⊂ B, then by the forward invariance of B under H, we see that
C(0, ρj) ⊂ B. Also we get that if C(0, ρ) ⊂ B, then by the forward
invariance of B under K, we have C(0, |a|ρm) ⊂ B. Using a change of
coordinates r = log ρ this invariance can be stated in terms of the new
functions

(4.8) t(r) = jr and s(r) = mr + c

where c = log |a| < 0.
So the action of H and K on 4(0, r∗) is replaced by the action of t

and s on I = [−∞, log r∗), respectively. In particular, we define

B′ = {log ρ : C(0, ρ) ⊂ B} ∪ {−∞}

keeping in mind that B is a union of circles centered at the origin.
Then

s(B′) ⊂ B′,(4.9)

s−1(B′) ∩ I ⊂ B′,(4.10)

t(B′) ⊂ B′,(4.11)

t−1(B′) ∩ I ⊂ B′,(4.12)

B′ is closed in the relative topology on I.(4.13)

In order to make calculations a bit easier we rewrite s(r) = r0 +
m(r − r0) where r0 = −c/(m− 1) > 0.

Hence

sn(r) = r0 +mn(r − r0),

s−n(r) = r0 +m−n(r − r0),

tn(r) = jnr,

t−n(r) = j−nr.
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Consider

(t−n ◦ s−n ◦ tn ◦ sn)(r) = r − r0 +
r0
jn

+
r0
mn

− r0
mnjn

.

Let

dn =
r0
jn

+
r0
mn

− r0
mnjn

= r0
mn + jn − 1

mnjn

and note that 0 < dn ≤ r0 with dn → 0 as n→∞.
We also note that (t−n ◦ s−n ◦ tn ◦ sn)(r) = r − r0 + dn implies that

(s−n◦t−n◦sn◦tn)(r) = r+r0−dn since these two functions are inverses
of each other.

We claim that (−∞, log r∗ − r0] ⊂ B′.
Let us suppose that this is not the case, and suppose that (r′, r̃) is

an interval disjoint from B ′ with −∞ < r′ < r̃ ≤ log r∗ − r0. Since B
′

is a closed subset of [−∞, log r∗−r0], we may assume that this interval
is expanded so that r′ ∈ B′. Note that here we used the fact that B
contains a sequence of circles going to 0, hence B ′ contains a sequence
of points going to −∞.

Let r′n = (t−n ◦ s−n ◦ tn ◦ sn)(r′) = r′− r0+dn. We claim that each r′n
is in B′. This is almost obvious from the invariance of B ′ under s and t
in (4.9) through (4.12), but some care needs to be taken to insure that
each application of s, t, s−1, and t−1 takes points to the right domain.
By (4.9) we see that s(r′), s2(r′), . . . , sn(r′) ∈ B′. Hence by (4.11) we
get (t ◦ sn)(r′), (t2 ◦ sn)(r′), . . . , (tn ◦ sn)(r′) ∈ B′.

Since s−1(r) > r for r ∈ (−∞, r0) we see that because (s
−n◦tn◦sn)(r′)

is clearly less than r′ (as t(r) < r for r ∈ (−∞, 0)), also each of
(s−1 ◦ tn ◦ sn)(r′), . . . , (s−n ◦ tn ◦ sn)(r′) must be less than r′ < log r∗.
Hence by (4.10) we see that each of these points lies in B ′.

Similarly, since t−1(r) > r for r ∈ (−∞, 0) and (t−n ◦ s−n ◦ tn ◦
sn)(r′) = r′ − r0 + dn ≤ r′ < log r∗ < 0, also each of (t−1 ◦ s−n ◦ tn ◦
sn)(r′), . . . , (t−n ◦ s−n ◦ tn ◦ sn)(r′) lies in I = [−∞, log r∗). Hence by
(4.12) each of these points is in B ′ and so each r′n ∈ B′.

Hence we conclude that r′− r0 ∈ B′ since B′ is relatively closed in I
and r′n → r′ − r0 ∈ I. Note also that r′n↘r′ − r0.

Now we claim that for any r′′ ∈ B′ ∩ (−∞, log r∗ − r0), we have
r′′ + r0 ∈ B′. Let r′′n = (s−n ◦ t−n ◦ sn ◦ tn)(r′′) = r′′ + r0 − dn. Noting
that each r′′n < r′′ + r0 < log r∗ we may again use the invariance of B ′

under s and t in (4.9) through (4.12) in a similar fashion as above to
obtain that each r′′n ∈ B′. Thus also the limit r′′ + r0 ∈ B′.

Consider again r′n↘r′ − r0. By applying the above claim to each
r′n ≤ r′ < log r∗ − r0, we get that each r′n + r0 ∈ B′. Since r′n + r0↘r′

we then see that we have contradicted the statement that (r′, r̃) is
disjoint from B ′.
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So we conclude that (−∞, log r∗− r0] ⊂ B′. Clearly then by the par-
tial backward invariance of B ′ under the map t we get [−∞, log r∗) ⊂
B′. Hence we conclude that 4(0, r∗) = B. ¤

In order to avoid some technical difficulties we will make use of the
following well known result.

Theorem 4.1. A polynomial f of degree k is conjugate near ∞ to the
map z 7→ zk near the origin. More specifically, there exists a neighbor-
hood U of ∞ such that we have a univalent

φ : U →4(0, r∗) for 0 < r∗ < 1 with φ(∞) = 0 and φ◦f◦φ−1(z) = zk.

Proof. After conjugating f by z 7→ 1/z we may apply Theorem 6.10.1
in [5], p. 150 to obtain the desired result. ¤

We will denote the conjugate function of f by F , i.e.,

F (z) = φ ◦ f ◦ φ−1(z) = zk.

In order to further simplify some of the following proofs we will
assume that φ(U) = D = 4(0, r∗). Note that U is forward invariant
under f since D = 4(0, r∗) is forward invariant under F . We may and
will also assume that U is forward invariant under g as well.

We now define a corresponding function for g using the same con-
jugating map as we did for f . Let G be the function defined on
D = 4(0, r∗) given by

G = φ ◦ g ◦ φ−1.
Note that G(D) ⊂ D.

Via this change of coordinates, we will use the mappings F and G
to obtain information about the mappings f and g. In transferring to
this simpler coordinate system we make the following definitions.

Let W ′ denote the image of W under φ, i.e., W ′ = φ(U ∩W ). Let
I ′ denote the image of I under φ, i.e., I ′ = φ(U ∩ I). Thus W ′ is open
and I ′ is closed in the relative topology of D. Note that W ′ and I ′

are disjoint since W and I are disjoint and φ is univalent. Also since
W ∪ I = C it easily follows that W ′ ∪ I ′ = φ(U) = D.

By the forward invariance of W ∩ U under f we see that

(4.14) F (W ′) = F ◦ φ(W ∩ U) = φ ◦ f(W ∩ U) ⊂ φ(W ∩ U) = W ′.

Similarly we get

(4.15) F (I ′) ⊂ I ′.

Since I ′ and W ′ are disjoint and forward invariant under F , and
since I ′ ∪W ′ = D, we see that
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F−1(I ′) ∩D ⊂ I ′,(4.16)

F−1(W ′) ∩D ⊂ W ′.(4.17)

Note that in the same way as we obtained the results for F we get

G(W ′) ⊂ W ′,(4.18)

G(I ′) ⊂ I ′,(4.19)

G−1(I ′) ∩D ⊂ I ′,(4.20)

G−1(W ′) ∩D ⊂ W ′.(4.21)

Lemma 4.18 ([32], Lemma 8). If G(z) = azl with |a| = 1, then
J(f) = J(g).

Proof. The proof relies on the use of Green’s functions. It is well known
that the unbounded components F∞ and G∞ support Green’s functions
with pole at ∞ which we will denote by Gf and Gg respectively. It is
also well known that on U we have

Gf (z) = − log |φ(z)|
since φ is a map which conjugates f to z 7→ zk (see [5], p. 206).

Since for ψ(z) = bz where bl−1 = a, the function ψ ◦ φ conjugates g
in U to z 7→ zl, we get in U ,

Gg(z) = − log |ψ ◦ φ(z)| = − log |bφ(z)| = − log |φ(z)|
where the last equality uses the fact that |a| = 1, and so |b| = 1.

Hence Gf = Gg in U . Since Gf and Gg are each harmonic away from
∞ we get that Gf = Gg on the unbounded component C of F∞ ∩G∞.

We claim that this implies that J(f) = J(g). Assuming that J(f) 6=
J(g), we see by Remark 4.6 that there exists a point which lies in the
Julia set of one function, yet in the unbounded component of the Fatou
set of the other function. Let us therefore suppose that z ′0 ∈ J(g)∩F∞.
Let γ be a path in F∞ connecting z′0 to∞.We see that γ must intersect
∂C somewhere, say at z0. Since z0 ∈ F∞∩∂C we get z0 ∈ ∂G∞ = J(g).

We may select a sequence zn ∈ C such that zn → z0. Since z0 lies on
the boundary of the domain of the Green’s function Gg, i.e., z0 ∈ J(g),
we have Gg(zn) → 0 (see [5], p.207). Since z0 lies in the domain of
the Green’s function Gf we see that Gf (zn)→ Gf (z0) > 0. We cannot
have both of these happen since Gf (zn) = Gg(zn) and so we conclude
that J(g) ∩ F∞ = ∅. Hence we conclude that J(f) = J(g). ¤

We now are able to prove Theorem 4.2.
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Proof of Theorem 4.2. Consider whether or not I has nonempty inte-
rior. If Io 6= ∅, then by Lemma 4.1 we get I = C.

If Io = ∅, then Lemma 4.15 implies that the set W ′ is a union of
open annuli centered at the origin and hence I ′ is a union of circles
centered at the origin. Since Io = ∅, the set I ′ has empty interior.

Since we know by Remark 4.7 that there exists a sequence of points
in I tending to infinity when J(f) 6= J(g), also I ′ must contain a
corresponding sequence of circles tending to zero. By Lemma 4.16 we
see that the function G is of the form

G(z) = azl

for some non-zero complex number a.
By considering the set I ′, we see that Lemma 4.17 implies that |a| =

1. We see that Lemma 4.18 then implies J(f) = J(g). ¤

5. An Invariant measure for finitely generated rational

semigroups

As stated in Proposition 1.4, the Julia set of a rational semigroup
is contained in the set of accumulation points of the backward orbit
of any non-exceptional point a. When a ∈ J(G), we have in fact that

J(G) = O−(a). When G is finitely generated, this serves as the basis
for a computer algorithm for making an approximate picture of the
Julia set. See [26], pp. 35–38 and [24], Appendix E for a discussion
of the single generator case. Many are familiar with these pictures in
the classical cyclic semigroup case. Experimental evidence indicates
that while this procedure often does yield a believable picture, there
are certain phenomena which prevent this finite process from giving a
complete picture.

Consider the following construction. Let f be a rational function of
with deg f = d ≥ 2 and let a ∈ C \ E(f). Then for n ≥ 1 define

µna =
1

dn

∑

fn(z)=a

δz

where δz is the unit point mass measure at z and the sum is taken
over all solutions to fn(z) = a counted according to multiplicity. As
there are exactly dn such solutions, the measure µna is a probability
measure. Thus µan is the probability measure evenly distributed (up to
multiplicity) over the preimages of a under fn. The following result
was established by Lyubich in [20].
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Theorem 5.1 (Lyubich). The measures µan converge weakly to a unique
regular Borel probability measure µ = µf independently and locally uni-

formly in a ∈ C \ E(f). The closed support of µ is J(f). Further, µ
satisfies the following properties. For any Borel set E, we have

µ(E) = µ
(
f−1(E)

)
.

We further have

µ(E) ≥ 1

d
µ (f(E))

where equality holds if f is injective on E.

Recall that a sequence of measures µn on a space X converges weakly
to the measure µ if

∫
φ dµn →

∫
φ dµ for every continuous function φ

on X.
Roughly, the measure µ has the largest concentration of its support

on the part of the Julia set that is best approximated by the above
mentioned computer scheme. There is much known about this measure
µ. We list a few facts here. For a polynomial f , Brolin showed in [9]
that the measure µ is the harmonic measure of J(f) as seen from
infinity. Lyubich showed that µ is the measure of maximal entropy for
the function f .

Results similar to those of Lyubich were established independently
by A. Freire, A. Lopes, and R. Mañé in [19] and [21].

For a finitely generated rational semigroup G, a similar computer
scheme can be implemented to create an approximate picture of J(G).
As in the cyclic case there are observable instances where no reasonable
number of iterations in the computer algorithm will fill in large areas
known to belong to the Julia set. For example, consider G = 〈f, g〉
where f(z) = z2+2z and g(z) = z2+z/2. It is easy to check that −1 is
a superattracting fixed point for f and that g(−1) = 1/2 is a repelling
fixed point for g. Hence the full component of N(f) containing −1,
which in this case is the disk of radius 1 centered at −1, is contained
in J(G). See Corollary 2.1. However Figure 1 indicates a large gap in
the picture near −1, and the same gap appears in very high numbers
of iterations in the program.

A natural question is to what extent does Lyubich’s result generalize
to rational semigroups? It turns out that the results substantially go
through but with some important differences.

The discussion below is influenced by Steinmetz’s presentation of
Lyubich’s result in [33].

Let G = 〈f1, . . . , fk〉 be a finitely generated rational semigroup with
deg fj = dj ≥ 2. We remark that in this setting the semigroup has a
“best” generating set. We say that a generating set is minimal if no
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Figure 1. Julia set of 〈z2 + 2z, z2 + z/2〉

generator can be expressed as a word in the remaining generators. We
have the following result, whose proof is left as an exercise.

Lemma 5.1 ([7], Lemma 2). Every finitely generated rational semi-
group G such that deg g ≥ 2 for all g ∈ G has a unique minimal
generating set.

While the statements of the following results hold for an arbitrary
generating set, the conditions of some are likely only to be satisfied by
the minimal generating set, and hence from now on, when we refer to
the generating set for a finitely generated rational semigroup, we will
assume that it is the minimal generating set.

Let a ∈ C \ E(G). For any integer n ≥ 1 we define

(5.1) µan =
1

dn

∑

g(z)=a
l(g)=n

δz

where here d = d1 + · · · + dk and the sum is taken over all solutions,
counted according to multiplicity, to the equations g(z) = a as g ranges
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over all words in G of length n. Since there are exactly dn such solu-
tions, the measure µan is a probability measure. (Note that in this
sum we may have multiple words representing the same group element.
This is fine, as this mirrors how the computer algorithm would work. In
most cases this will not be an issue as an arbitrary rational semigroup
is likely to be free on its generating set.)

The results we wish to discuss follow.

Theorem 5.2 ([7], Theorem 1). Let G = 〈f1, . . . , fk〉 be a finitely gen-
erated rational semigroup with deg fj = dj ≥ 2 and d = d1 + · · · + dk.
Then the measures µan defined by (5.1) converge weakly to a regular
Borel probability measure µ = µG independently of and locally uni-
formly in a ∈ C \ E(G). The closed support of µ is J(G). Further, µ
satisfies the following inequalities. For any Borel set E ⊂ C,

(5.2) µ(E) +
k∑

i=1

1

d
µ

(
fi

(
k⋃

j=1

f−1j (E)

)
\ E
)

≤ µ

(
k⋃

j=1

f−1j (E)

)

≤ µ(E) +
k∑

i=1

dj
d
µ

(
fi

(
k⋃

j=1

f−1j (E)

)
\ E
)

and also

(5.3) µ(E) ≥ 1

d

k∑

j=1

µ (fj(E)) .

We also have the following corollary, indicating conditions that guar-
antee that the measure µG is invariant under the generating set of G.

Corollary 5.1 ([7], Corollary 1). The equalities

(5.4) µ(E) = µ

(
k⋃

j=1

f−1j (E)

)
=

k∑

j=1

µ(f−1j (E))

hold for every Borel set E ⊂ J(G) if for all integers 1 ≤ i, j ≤ k, i 6= j,

µ
(
f−1i (J(G)) ∩ f−1j (J(G))

)
= 0.

5.1. Discussion of the inequalities (5.2). Given a Borel set E ⊂ C,
a point a ∈ C \ E(G), and a positive integer n, the measure µan(E) is
the proportion of the total number of preimages of a under length n

words of G that lie in E. Consider the measure µan+1

(⋃k
j=1 f

−1
j (E)

)
.
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Each preimage of a under a length n word lying in E has a total of d
preimages under the generators fj that lie in

⋃k
j=1 f

−1
j (E). Thus from

(5.1) we see that

(5.5) µan(E) ≤ µan+1

(
k⋃

j=1

f−1j (E)

)

However, it is possible that some preimage of a under a length n word
that lies outside of E will itself have a preimage in

⋃k
j=1 f

−1
j (E) under

some generator, assuming that k, the number of generators, is at least
2. Hence the inequality in (5.5) may be strict. The sums found in
(5.2) represent a lower and upper bound on this error for the limiting
measure.

5.2. Discussion and Proof of Corollary 5.1. We first note that as
it is possible that f−1j (N(G)) ∩ J(G) 6= ∅ for some generator fj, we
cannot expect (5.4) to hold for every Borel set E, since µ(N(G)) = 0
and the µ-measure of any open set meeting J(G) is positive. Thus
some restriction is necessary.

We give a proof of Corollary 5.1, assuming the truth of Theorem 5.2.

Examining the inequalities (5.2), we see that µ(E) = µ
(⋃k

j=1 f
−1
j (E)

)

if and only if µ
(
fi

(⋃k
j=1 f

−1
j (E)

)
\ E
)
= 0 for i = 1, . . . , k. Assume

that
µ
(
f−1i (J(G)) ∩ f−1j (J(G))

)
= 0

for all i 6= j. Hence given any Borel subset E ⊂ J(G), and l ∈
{1, . . . , k}, it follows that we need to show

(5.6) µ

(
fl

(
k⋃

j=1

f−1j (E)

)
\ E
)

= 0.

It suffices to show that(
fl

(
k⋃

j=1

f−1j (E)

)
\ E
)
∩ J(G)

has µ-measure 0. However,

(
fl

(
k⋃

j=1

f−1j (E)

)
\ E
)
∩ J(G) ⊂

⋃

j 6=l

(
fl(f

−1
j (E)) ∩ J(G)

)

since any point in fl

(⋃k
j=1 f

−1
j (E)

)
\ E must lie in some fl(f

−1
j (E))

for j 6= l. Any point in fl(f
−1
j (E)) ∩ J(G) is the image under fl of a
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point in f−1j (E) ∩ f−1l (J(G)). Since E ⊂ J(G), we have shown that
⋃

j 6=l

(
fl(f

−1
j (E)) ∩ J(G)

)
⊂
⋃

j 6=l
fl
(
f−1j (J(G)) ∩ f−1l (J(G))

)
.

We are assuming that f−1j (J(G)) ∩ f−1l (J(G)) has µ-measure 0 for all
j 6= l. By examining the inequality (5.3) of Theorem 5.2 we may
conclude that if µ(F ) = 0 for any Borel set F , then µ(g(F )) = 0 for all
g ∈ G. Hence the set

⋃

j 6=l
fl
(
f−1j (J(G)) ∩ f−1l (J(G))

)

also has µ-measure 0. The above inclusions now imply (5.6) and so we

also have µ(E) = µ
(⋃k

j=1 f
−1
j (E)

)
as claimed. It is an easy exercise

to show that

µ

(
k⋃

j=1

f−1j (E)

)
=

k∑

j=1

µ(f−1j (E))

under the assumptions of the theorem. ¤

Remark 5.1. We believe that the sufficient conditions of the corollary
are also necessary, but as of this writing a complete proof has not been
established.

Example 5.1. Let f(z) = z2 and let g(z) = z2/a for some a > 1. Let
G = 〈f, g〉. It is shown in [15], Example 1, that J(G) = {z : 1 ≤
|z| ≤ a}. We explicitly construct µ for this semigroup and show that
µ satisfies the conditions of Corollary 5.1.

The preimages of z0 = −
√
a = elog(

√
a)+iπ under f and g are

{e 1
2
log(

√
a)+iπ2 , e

1
2
log(

√
a)+i 3π2 , e

3
2
log(

√
a)+iπ2 , e

3
2
log(

√
a)+i 3π2 }.

We inductively calculate the preimages of z0 under length n words.
Assume that the preimages of z0 under the length n words of G are

znj,k = exp

(
2j − 1

2n
log
(√

a
)
+ i

(2k − 1)π

2n

)

for j, k = 1, . . . , 2n. The preimages under f and g of a given point znj,k
are {

exp

(
2j − 1

2n+1
log
(√

a
)
+ i

(2k − 1)π

2n+1

)
,

exp

(
2j − 1

2n+1
log
(√

a
)
+ i

(2k − 1)π

2n+1
+ iπ

)
,

exp

(
2j − 1

2n+1
log
(√

a
)
+ log

(√
a
)
+ i

(2k − 1)π

2n+1

)
,
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exp

(
2j − 1

2n+1
log
(√

a
)
+ log

(√
a
)
i
(2k − 1)π

2n+1
+ iπ

)}
.

After reordering, induction yields that the preimages of z0 under the
length n words of G for all n ≥ 1 are

znj,k = exp

(
2j − 1

2n
log
(√

a
)
+ i

(2k − 1)π

2n

)

for j, k = 1, . . . , 2n. Thus

µ−
√
a

n =
1

4n

2n∑

j,k=1

δzn
j,k
.

Let

R = {w = u+ iv : 0 ≤ u ≤ log a, 0 ≤ v < 2π}.
We think of R as the set log(J(G)). Let

wn
j,k = log(znj,k) =

2j − 1

2n+1
log(a) + i

(2k − 1)π

2n

and let

µ̄n =
1

4n

2n∑

j,k=1

δwn
j,k
.

Note that for any set E ⊂ J(G), we have that µ−
√
a

n (E) = µ̄n(log(E)).
The measures µ̄n converge weakly tom/(2π log(a)) wherem is Lebesgue
measure restricted to R. To see this one need just consider the defini-
tion of the Riemann integral. This implies that

µ(E) =
m(log(E))

2π log(a)

where µ is the measure from the conclusion of Theorem 5.2. Since

f−1(J(G)) ∩ g−1(J(G)) = {z : |z| = √a},
we have µ (f−1(J(G)) ∩ g−1(J(G))) = 0 and so G satisfies the condi-
tions of Corollary 5.1.

We further remark that it is easy to construct examples of rational
semigroups G = 〈f1, . . . , fk〉 where f−1i (J(G)) ∩ f−1j (J(G)) = ∅ for all
i 6= j. Such G clearly satisfy the conditions of Corollary 5.1.

5.3. Proof of Theorem 5.2. We break the proof up into several parts,
dealing with each of the statements of Theorem 5.2 separately.
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5.4. Proof of the weak convergence of µa
n. Consider the Banach

space C(K) of continuous real valued functions on a compact set K ⊂
C \ E(G) with norm ‖φ‖ = max{|φ(z)| : z ∈ K}. For our purposes it
will suffice to consider such K where K contains at least three points
and where f−1j (K) ⊂ K for each generator fj. These assumptions

guarantee that g−1(K) ⊂ K for all g ∈ G and hence J(G) ⊂ K by
Remark 1.1.

For z ∈ K, define the function

(5.7) (Tφ)(z) =

∫

K

φ(ζ)dµz1(ζ) =
1

d

d∑

j=1

φ(zj)

where the points zj are the solutions of fi(w) = z, listed according to
multiplicity, for all i with i = 1, . . . , k.

The function Tφ is continuous on the compact set K. For if ε > 0 is
given, we may choose δ1 > 0 so that if q(a, b) < δ1, where q(·, ·) is the
chordal metric, and a, b ∈ K then |φ(a)−φ(b)| < ε and we may further
choose δ2 > 0 so that if q(z, z′) < δ2 the solutions of the equations
f(w) = z, f(w) = z′ may be ordered so that q(zj, z

′
j) < δ1. Then

|(Tφ)(z) − (Tφ)(z′)| ≤ d−1
∑d

j=1 |φ(zj) − φ(z′j)| < ε. The action of T

on C(K) is clearly linear, hence T : C(K)→ C(K) is a linear operator.
By considering φ ≡ 1, it is immediate that the operator norm ‖T‖ of
T satisfies

‖T‖ = sup{‖Tφ‖ : ‖φ‖ = 1} = 1.

Hence T is a continuous linear operator from C(K) to itself.
Recursively define Tmφ via Tmφ = T (Tm−1φ). Then

(5.8) (Tmφ)(z) =
1

dm

dm∑

j=1

φ(zmj ) =

∫

K

φ(ζ) dµzm(ζ)

where here the points zmj are the solutions to the equations g(w) = z,
listed according to multiplicity where g ranges over the length m words
of G. We see this as follows. Assume 5.8 holds for m− 1. Then

(Tmφ)(z) = (T (Tm−1φ))(z) =
1

d

d∑

i=1

(Tm−1φ)(z1i ) =
1

d

d∑

i=1

1

dm−1

dm−1∑

k=1

φ(zm−1i,k )

where the points z1i are the solutions to f(w) = z under length one
words of G and the points zm−1i,k represent the solutions of the equations

g(w) = z1i where g ranges over the length m − 1 words of G, which
thus in total also represent the solutions of h(w) = z as h ranges
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over the length m words of G. Hence (Tmφ)(z) = d−m
∑dm

j=1 φ(z
m
j ) =∫

K
φ(ζ) dµzm(ζ) by induction.

5.5. Relationships between φ and Tmφ. We establish some re-
lationships between φ and Tmφ when ‖φ‖ 6= 0. Recall that K is
compact and backwards invariant under the generators of the semi-
group. For a given integer m ≥ 1, choose z0 = z0(m) ∈ K so that
‖Tmφ‖ = |(Tmφ)(z0)|. Then

‖Tmφ‖ = |(Tmφ)(z0)| ≤
1

dm

dm∑

j=1

|φ((z0)j)| ≤ ‖φ‖

with equality if and only if φ((z0)j) = ±‖φ‖ where the sign depends
only on m and not on j. We remark that if φ is not identically ‖φ‖ or
−‖φ‖ on J(G), then there is an integer m such that ‖T lφ‖ < ‖φ‖ for
all l ≥ m. We see this as follows. If there is a point w ∈ J(G) and a
neighborhood U of w such that |φ(u)| < ‖φ‖ for all u ∈ U ∩K, then,
since w ∈ J(G), Proposition 1.6 implies that there exists an integer N
such that for all n ≥ N , we have K ⊂ ⋃l(g)=n g(U). In particular, if

m ≥ N there is a solution (z0)j to g(w) = z0 in U for some word g of
lengthm. Similarly if there are points w1, w2 ∈ J(G) with φ(w1) = ‖φ‖
and φ(w2) = −‖φ‖, then there are disjoint neighborhoods Ui of wi on
which |φ| is close to ±‖φ‖ respectively, such that for each i the equation
g(z) = z0 has a solution in Ui for some word g of length m. Hence in
either case we see that if φ is not identically ‖φ‖ or −‖φ‖ on J(G),
then ‖Tmφ‖ < ‖φ‖ for this and all larger m. Clearly for constant φ,
we have ‖Tmφ‖ = ‖φ‖ for all m.

Similarly we see that the minimal value of Tmφ is nondecreasing inm
as follows. Choose z0 ∈ K so that min{(Tφ)(z) : z ∈ K} = (Tφ)(z0).
Then

min{(Tφ)(z) : z ∈ K} = (Tφ)(z0) =
1

d

d∑

j=1

φ((z0)j) ≥ min{φ(z) : z ∈ K}.

Further, equality holds if and only if φ((z0)j) = min{φ(z) : z ∈ K} for
all j. Then by induction, for all m ≥ 1, we have that

min{(Tm+1φ)(z) : z ∈ K} ≥ min{(Tmφ)(z) : z ∈ K} ≥ min{φ(z) : z ∈ K}.
Our goal is to show that the sequence Tmφ converges uniformly on

K to a constant function lφ. To do this we need the following lemma.

Lemma 5.2. For every φ ∈ C(K), the family {Tmφ : m = 1, 2, . . . } is
equicontinuous.
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The proof of Lemma 5.2, which is somewhat technical, comes later.
For now assume that the lemma has been established.

5.6. Convergence of Tmφ. Given the lemma, we show the uniform
convergence of the functions Tmφ as follows. The Arzelà–Ascoli The-
orem gives that every subsequence of Tmφ has a uniformly convergent
subsequence which must converge to a continuous function. Thus as-
suming that T nkφ converges uniformly on K to the continuous function
ψ and by passing to a further subsequence, if necessary, we may assume
that mk = nk+1 − nk → ∞ and that Tmkψ converges uniformly to a
continuous function χ. Then

‖T nk+1φ− Tmkψ‖ = ‖Tmk(T nkφ− ψ)‖ ≤ ‖T nkφ− ψ‖ → 0.

Thus χ = ψ, i.e., Tmkψ → ψ. It follows from previous considerations
that for all m, ‖Tmψ‖ ≤ ‖ψ‖. Also for mk ≥ m,

‖ψ‖ = lim
mk→∞

‖Tmkψ‖ = lim
mk→∞

‖Tmk−m(Tmψ)‖ ≤ ‖Tmψ‖

hence ‖Tmψ‖ = ‖ψ‖ for all m. We may then conclude, as noted above,
that either ψ ≡ ‖ψ‖ or ψ ≡ −‖ψ‖ on J(G). For convenience, assume
that ψ ≡ ‖ψ‖ on J(G). We will show that in fact, ψ ≡ ‖ψ‖ on all of
K. Assume that this is not the case. (We are necessarily now assuming
that K \ J(G) 6= ∅.) Then

c = min{ψ(z) : z ∈ K} < ‖ψ‖.
Recall that T does not decrease the minimum value. Hence we have
that

min{(Tmkψ)(z) : z ∈ K}
is nondecreasing in k. This implies that since Tmkψ → ψ, we must
have that

min{(Tmkψ)(z) : z ∈ K} = c

for all k. Choose zk ∈ K so that Tmk(zk) = c. First assume that
infinitely many zk are the same point. By passing to a subsequence if
necessary, we may then assume that zk = z0 for all k. As we have seen
before, (Tmkψ)(z0) = min{ψ(z) : z ∈ K} = c if and only if ψ(z) = c
on every preimage of z0 under all words of G of length mk. Recall that
we are assuming ψ ≡ ‖ψ‖ on J(G). Let U be a neighborhood of J(G)
so that ψ(z) > c for all z ∈ U ∩ K. By Proposition 1.6 there exists
an integer N such that z0 ∈

⋃
l(g)=n g(U) for all integers n ≥ N . In

particular, z0 has a preimage in U under some length mk word when
mk ≥ N . Hence (Tmkψ)(z0) > c which is a contradiction. For the next
case, since K is compact, by passing to a subsequence if necessary, we
may assume that zk → z0 ∈ K. Take a small closed neighborhood D
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of z0 in K. Again by Proposition 1.6 there exists an integer N such
that

D ⊂
⋃

l(g)=n

g(U)

for n ≥ N . Assume that zk ∈ D for all mk ≥ N1 ≥ N . Then zk
has a preimage in U under some length mk word whenever mk ≥ N1.
Again this contradicts the assumption that Tmk(zk) = c. Thus ψ ≡ lφ
is constant. Further, for m > nk,

‖Tmφ− lφ‖ = ‖Tm−nk(T nk(φ− lφ))‖ ≤ ‖T nk(φ− lφ)‖ → 0

so we can see that Tmφ→ lφ uniformly on K as m→∞, as claimed.

5.7. The existence and regularity of µ. For functions φ and φ′

continuous on K, we have

|lφ − lφ′ | = lim
m→∞

‖Tm(φ− φ′)‖ ≤ ‖φ− φ′‖,

l may be considered as a continuous linear functional on C(K) and by
the Riesz Representation Theorem may be represented uniquely in the
form

lφ =

∫

K

φ(ζ)dµK(ζ)

for a regular Borel measure µK .
Hence for all φ ∈ C(K) and for all a ∈ K,

lim
m→∞

∫

K

φ(ζ) dµam(ζ) =

∫

K

φ(ζ) dµK(ζ)

where the convergence is uniform in a ∈ K. However, as J(G) ⊂ K for
all sets K under consideration, we see that µK = µ is independent of
K and so can be considered as a measure on C. Setting φ ≡ 1, we see
that µ is a probability measure. This will complete our proof that the
measures µan converge weakly to the regular Borel probability measure
µ, independently of and localy uniformly in a, once we have proven
Lemma 5.2.

5.8. Proof of Lemma 5.2. We now proceed with a proof of Lemma 5.2.
It suffices to prove local equicontinuity.

Let Cj denote the set of critical points of fj. Then CV1 =
⋃k
j=1 fj(Cj)

is the set of the critical values of the length one words of G,

CV2 =
k⋃

j1,j2=1

fj2(fj1(Cj1)) ∪
k⋃

j=1

fj(Cj) =
k⋃

j=1

fj(CV1) ∪ CV1
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is the set of the critical values of the length two words of G and in
general,

CVn =
k⋃

j=1

fj(CVn−1) ∪ CVn−1 =
n⋃

m=1

k⋃

j1,j2,...,jm=1

(fjm ◦ · · · ◦ fj1)(Cj1)

is the set of the critical values of the length n words of G.
Let U be a simply connected domain. Assume that CVl is disjoint

from U . Then for n ≤ l there are exactly dn single valued analytic in-
verse functions on U from length n elements of G. In general, let σn(U)
denote the total number of single valued analytic inverse functions on
U from the length n words of G. Let τ denote the total number of
distinct critical values of the functions fj. We claim that for all n,

(5.9) dn − σn ≤ τkl
n−l∑

j=1

djkn−l−j.

The claim is clearly true for n ≤ l. For a given function fi1 ◦ · · · ◦ fin ,
let σ(i1,...,in)(U) denote the number of its single valued analytic inverse

functions on U . Then σn(U) =
∑k

i1,...,in=1 σ(i1,...,in)(U). The images of
U under the inverses of fi1 ◦ · · · ◦ fin are mutually disjoint and simply
connected. Then at least σ(i1,...,in)− τ of them contain no critical value
of any fi. Thus fi1 ◦ · · · ◦fin ◦fi has σ(i1,...,in,i)(U) ≥ di(σ(i1,...,in)(U)− τ)
inverses on U . In particular,

σn+1 =
k∑

i=1

k∑

i1,...,in

σ(i1,...,in,i) ≥
k∑

i=1

k∑

i1,...,in

di(σ(i1,...,in) − τ) = d(σn − knτ).

Then by induction,

σn+1 ≥ d(σn − knτ) ≥ d(dn − τkl
n−l∑

j=1

djkn−l−j − knτ)

= dn+1 − τkl
n+1−l∑

j=1

djkn+1−l−j

which gives the claim. Note that this estimate depends on U only in
the fact that U misses CVl.

Let ε > 0 be given. There is a positive integer L depending on ε so
that if U is a simply connected domain that misses CVL, then for all
n ≥ 1,

dn − σn(U)

dn
≤ τ

(
k

d

)L n−L∑

j=1

(
k

d

)n−L−j
≤ τ

(
k

d

)L ∞∑

i=0

(
k

d

)i
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= τ

(
k

d

)L
d

d− k
<

ε

4‖φ‖ ,

recalling that d ≥ 2k.
Case 1. Assume that z0 ∈ K and z0 /∈ CVL. Let U = ∆(z0, 2ρ) be

a chordal neighborhood of z0 that misses CVL. Let h
n
1 , . . . , h

n
σn denote

the single valued analytic inverses on U from the length n elements of
G. It is shown in [17], Corollary 2.2, that the collection {hnj : n ≥
1, 1 ≤ j ≤ σn} forms a normal family on U . Hence given η > 0, we
may choose δ > 0 so that if z, ζ ∈ K, q(z, ζ) < δ, q(z, z0) < ρ, and
q(ζ, z0) < ρ, then q(hnj (z), h

n
j (ζ)) < η for all j and n. Further assume

that η was chosen so that |φ(u)−φ(v)| < ε/2 whenever q(u, v) < η and
u, v ∈ K.

Thus when z, ζ ∈ K, q(z, ζ) < δ, q(z, z0) < ρ, and q(ζ, z0) < ρ, we
have

|(T nφ)(z)− (T nφ)(ζ)| = |d−n
dn∑

j=1

(φ(zj)− φ(ζj))|

≤ d−n
σn∑

j=1

|φ(hnj (z))− φ(hnj (ζ))|+ 2‖φ‖d
n − σn
dn

< ε.

We make the remark that this technique will work for ε′ < ε if one
looks at points in K \ CVM for a sufficiently large choice of M > L.
Case 2. Now assume that z0 ∈ K ∩ CVL. Choose M > L so that

for all n ≥ 1, as in Case 1,

|(T nφ)(u)− (T nφ)(v)| < ε/2

for points u, v in suitable neighborhoods of points in K \CVM . Recall
that CVL ⊂ CVM whenever L < M . As K ∩ CVM is finite, one can
show that there exists an integer κ such that for any a ∈ K, there
exists a word g of length κ such that g(z) = a has at least one solution
outside of K ∩ CVM . Recall that g−1(K) ⊂ K for all g ∈ G. We wish
to find, as in Case 1, a δ > 0 such that if u, v ∈ K, q(u, z0) < δ/2, and
q(v, z0) < δ/2, then

|(T nφ)(u)− (T nφ)(v)| < ε

for all n ≥ 1.
Given a positive integer n, let Sn denote the set of solutions, listed

according to multiplicity, of g(z) = z0 where g ranges over the length
nκ words of G. The cardinality of Sn is dnκ. We inductively divide the
sets Sn as follows.

The integer κ was chosen such that there is at least one solution
in S1 outside of K ∩ CVM . Let S1(1) consist of this single point and
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let S1(2) consist of the remaining dκ − 1 points. For n = 2, let S2(1)
be the dκ preimages of S1(1), let S2(2) be the dκ − 1 preimages under
length κ words of the points in S1(2) guaranteed to be outside of K ∩
CVM , and let S2(3) be the remaining (dκ− 1)2 points in S2. Note that
dκ + (dκ − 1) + (dκ − 1)2 = d2κ. Suppose that the sets Sl have been
broken into sets Sl(j) for 1 ≤ l ≤ n− 1 and 1 ≤ j ≤ l + 1 where Sl(j)
contains d(l−j)κ(dκ− 1)j−1 points for j = 1, . . . , l and Sl(l+1) contains
(dκ − 1)l points. In particular, we assume that for j = 1, . . . , l − 1,
Sl(j) consists of the preimages of the set Sj(j) under words of length
(l− j)κ. We also assume that Sl(l) consists of the preimages of Sl−1(l)
under length κ words guaranteed to be outside of K ∩ CVM . We then
define Sn(j) for 1 ≤ j ≤ n+ 1 as follows. For j = 1, . . . , n− 1, the set
Sn(j) consists of the d(n−j)κ(dκ − 1)j−1 points which are preimages of
the set Sn−1(j) under length κ words. Note that Sn(j) consists of the
preimage of Sj(j) under all length (n − j)κ words. We define the set
Sn(n) to consist of (dκ − 1)n−1 points which are preimages of Sn−1(n)
guaranteed to be outside of K ∩CVM . The set Sn(n+1) then consists
of the remaining (dκ− 1)n preimages of Sn−1(n). Note that the sum of
the number of elements in the sets Sn(j) is given by

n∑

j=1

d(n−j)κ(dκ − 1)j−1 + (dκ − 1)n = dnκ.

We choose N large enough so that
(
dκ − 1

dκ

)N

<
ε

4‖φ‖ .

With N and κ now fixed we may choose η > 0 so that for all n ≥ 1,

|(T nφ)(a)− (T nφ)(b)| < ε

2

for all points a, b ∈ K such that q(a, w) < η and q(b, w) < η whenever
w ∈ Sj(j) for j = 1, . . . , N , recalling that Sj(j) ∩ CVM = ∅ and hence
we have the estimate from our choice of M .

Pick u, v ∈ K such that q(u, z0) < δ/2 and q(v, z0) < δ/2 where δ is
yet to be specified. Consider
(5.10)

|(T n+Nκφ)(u)−(T n+Nκφ)(v)| = d−Nκ

∣∣∣∣∣∣

dNκ∑

j=1

(T nφ)(zNj (u))− (T nφ)(zNj (v))

∣∣∣∣∣∣

where zNj (u) are the solutions to g(z) = u for length Nκ words and

zNj (v) is defined similarly. We now choose δ small enough so that for
each j = 1, . . . , N , and each point w in Sj(j) there is a solution to
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g(z) = u and g(z) = v for some word g of length jκ within q-distance
η of w. We denote the collection of these pairs of preimages of u and v
collectively by S̄j(j). As the elements in Sj(j) do not arise as preimages
of points in Si(i) under length (j − i)κ words for i < j, the number δ
may be chosen so that the same may be said of the sets S̄j(j). We now
divide the sum in (5.10) as follows. Recall that SN(j) consists of the
preimages of Sj(j) under length (N − j)κ words. Let S̄N(j) denote the
preimages under all length (N−j)κ words of the pairs of points in S̄j(j)
for j = 1, . . . , N and let S̄N(N + 1) denote the remaining preimages of
u and v under length Nκ words. The remark after the construction of
the sets S̄j(j) shows that the sets S̄N(j) are well defined and account
for all preimages of u and v under length Nκ words. We remark that
the cardinality of S̄l(j) was constructed to be the same as that of Sl(j)
for 1 ≤ l ≤ N and 1 ≤ j ≤ l + 1. We let

∑
S̄N (j) denote the sum over

the pairs in S̄N(j). Note that for j = 1, . . . , N ,
∑

S̄N (j)

(T nφ)(zN(u))− (T nφ)(zN(v))

= d(N−j)κ
∑

S̄j(j)

(T n+(N−j)κφ)(zj(u))− (T n+(N−j)κφ)(zj(v))

where zj(u) stand for solutions of g(z) = u for length jκ words and
zj(v) is defined similarly.

Thus if u, v ∈ K, q(u, z0) < δ/2 and q(v, z0) < δ/2, then

|(T n+Nκφ)(u)−(T n+Nκφ)(v)| ≤ d−Nκ

dNκ∑

i=1

|(T nφ)(zNi (u))−(T nφ)(zNi (v))|

= d−Nκ

N+1∑

j=1

∑

S̄N (j)

|(T nφ)(zN(u))− (T nφ)(zN(v))|

=
N∑

j=1

d−jκ
∑

S̄j(j)

|(T n+(N−j)κφ)(zj(u))− (T n+(N−j)κφ)(zj(v))|

+d−Nκ
∑

S̄N (N+1)

|(T nφ)(zN(u))− (T nφ)(zN(v))|

≤
N∑

j=1

(dκ − 1)j−1

djκ
ε

2
+

(
dκ − 1

dκ

)N

2‖φ‖

<
ε

2dκ

∞∑

j=0

(
dκ − 1

dκ

)j

+
ε

2
= ε
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for all n ≥ 1. We then use the continuity of the functions T nφ to get
the estimate |(Tmφ)(u)− (Tmφ)(v)| < ε for m = 1, . . . , Nκ, shrinking
δ if necessary.

Thus Cases 1 and 2 show that {T nφ} is equicontinuous at each point
of K. This completes the proof of Lemma 5.2 and hence establishes
the weak convergence of the measures µan independently and locally
uniformly in a ∈ C \ E(G). The regularity of the limiting measure µ
has also been established.

5.9. Proof of the inequalities (5.2). The inequalities (5.2) of The-
orem 5.2 are established as follows. For any continuous real valued
function φ on C and for a ∈ J(G),

∫
φ(ζ) dµ(ζ) = lim

m→∞

∫
φ(ζ) dµam(ζ) = lim

m→∞
d−m

∑

g(z)=a
l(g)=m

φ(z)

(5.11)

= lim
m→∞

d−m
k∑

j=1

∑

h(fj(z))=a
l(h)=m−1

φ(z) =
k∑

j=1

dj
d

lim
m→∞

d−m+1
∑

h(z)=a
l(h)=m−1

φj(z)

=
k∑

j=1

dj
d

lim
m→∞

∫
φj(ζ) dµ

a
m−1(ζ) =

k∑

j=1

dj
d

∫
φj(ζ) dµ(ζ)

where φj(z) = d−1j
∑dj

i=1 φ(zi,j(z)) with the zi,j(z) ranging over the
solutions of fj(w) = z. As the solutions depend continuously on z, the
function φj(z) is continuous for each j = 1, . . . , k.

Remark 5.2. This shows that
∫
φ(ζ) dµ(ζ) =

∫
(Tφ)(ζ) dµ(ζ)

where T is the continuous linear operator defined on the space of con-
tinuous functions on C defined by (5.7). Hence the measure µ is T ∗

invariant.

For any compact set K, let the functions φn be continuous and uni-
formly bounded, and let φn decrease to χ⋃k

j=1 f
−1
j (K) as n→∞. Thus

(5.12)

∫
φn(ζ) dµ(ζ)→

∫
χ⋃k

j=1 f
−1
j (K)(ζ) dµ(ζ) = µ(

k⋃

j=1

f−1j (K)).
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Recall from (5.11) that

(5.13)

∫
φn(ζ) dµ(ζ) =

k∑

j=1

dj
d

∫
φnj (ζ) dµ(ζ).

We remark that for any point z ∈ C, and for any j = 1, . . . , k,

lim
n→∞

φnj (z) = lim
n→∞

d−1j

dj∑

i=1

φn(zi,j(z)) = d−1j

dj∑

i=1

χ⋃k
l=1 f

−1
l

(K)(zi,j(z)).

For any z ∈ K, and j = 1, . . . , k, as each zi,j(z) ∈
⋃k
l=1 f

−1
l (K), it

follows that φnj (z) decreases to χK(z). Hence

(5.14) lim
n→∞

∫

K

φnj (ζ) dµ(ζ) =

∫

K

χK(ζ) dµ(ζ) = µ(K)

for each j = 1, . . . , k.

For z ∈ fj
(⋃k

i=1 f
−1
i (K)

)
\K the number counted according to mul-

tiplicity of elements in f−1j (z)∩⋃k
i=1 f

−1
i (K) can be any integer between

1 and dj. This integer could vary as z ranges over fj

(⋃k
i=1 f

−1
i (K)

)
\K.

Thus for such z,

1

dj
χfj(

⋃k
i=1 f

−1
i (K))\K(z)

≤ lim
n→∞

φnj (z) = d−1j

dj∑

l=1

χ⋃k
i=1 f

−1
i (K)(zl,j(z))

≤ χfj(
⋃k
i=1 f

−1
i (K))\K(z)

and so

(5.15)
1

dj
µ

(
fj

(
k⋃

i=1

f−1i (K)

)
\K

)

≤ lim
n→∞

∫

fj(
⋃k
i=1 f

−1
i (K))\K

φnj (ζ) dµ(ζ)

≤ µ

(
fj

(
k⋃

i=1

f−1i (K)

)
\K

)
.
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For any z /∈ fj
(⋃k

i=1 f
−1
i (K)

)
we obviously have f−1j (z)∩⋃k

i=1 f
−1
i (K) =

∅ and so limn→∞ φ
n
j (z) = 0 for j = 1, . . . , k. Hence

(5.16) lim
n→∞

∫

C\fj(
⋃k
i=1 f

−1
i (K))

φnj (ζ) dµ(ζ) = 0.

Together, (5.12), (5.13), (5.14), (5.15), and (5.16) yield the inequal-
ities (5.2) for any compact subset K of C.

We also have the inequalities (5.2) for any open set U . We repeat
the above argument replacing K by U and replacing the functions
φn by continuous, uniformly bounded functions ψn which increase to
χ⋃k

j=1 f
−1
j (U). Routine, but tedious, arguments, making use of the reg-

ularity of µ, may now be used to extend the inequalities (5.2) to all
Borel sets.

5.10. Proof of the inequality (5.3). Now we establish the inequal-
ity (5.3) of Theorem 5.2. Let U be open and let the functions φn

be nonnegative, continuous on C, and increase to χU . What we have
shown in (5.11) is that

∫
φn(ζ) dµ(ζ) =

1

d

∫ k∑

j=1

dj∑

i=1

φn(zi,j(ζ)) dµ(ζ)

where the points zi,j(ζ) are the solutions to fj(z) = ζ. In particular,
when ζ ∈ fj(U), there is at least one solution to fj(z) = ζ in U . Hence
for ζ ∈ fj(U),

lim
n→∞

dj∑

i=1

φn(zi,j(ζ)) ≥ χfj(U)(ζ)

and so

µ(U) =

∫
χU(ζ) dµ(ζ) = lim

n→∞

∫
φn(ζ) dµ(ζ)

≥ lim
n→∞

1

d

k∑

j=1

∫

fj(U)

dj∑

i=1

φn(zi,j(ζ)) dµ(ζ) ≥
1

d

k∑

j=1

∫

fj(U)

χfj(U)(ζ) dµ(ζ)

=
1

d

k∑

j=1

µ(fj(U)).

This establishes (5.3) for open sets. Now let E be a Borel set and let
the set U be open and contain E. Then

µ(U) ≥ 1

d

k∑

j=1

µ(fj(U)) ≥
1

d

k∑

j=1

µ(fj(E)).
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Taking the infimum over such sets U establishes (5.3) by the regularity
of µ.

5.11. The Support of µ. We now prove the statement about the
closed support of µ. Since the measure µ is independent from the initial
point a, if we take a ∈ J(G) it is immediate that supp(µ) ⊂ J(G).
Given ε > 0 and z ∈ J(G), let φ be continuous on C with 0 ≤ φ ≤ 1 on

C, φ ≡ 1 on ∆(z, ε/2) and φ ≡ 0 off of ∆(z, ε). The expanding property
established in Proposition 1.6 guarantees that there is an integerN such
that J(G) ⊂ ⋃l(g)=N g(∆(z, ε/2)). Recalling that h−1(J(G)) ⊂ J(G)
for all h ∈ G, as g ranges over the words of length m+N , the equations
g(w) = a for fixed a ∈ J(G) have at least dm solutions in ∆(z, ε/2) for
any positive integer m. Thus

µ(∆(z, ε)) =

∫
χ∆(z,ε)(ζ) dµ(ζ) ≥

∫
φ(ζ) dµ(ζ) = lim

m→∞

∫
φ(ζ) dµam+N(ζ)

≥ lim
m→∞

∫

∆(z, ε
2
)

φ(ζ) dµam+N(ζ) ≥ d−N .

Hence supp(µ) = J(G).
With this, we have completed the proof of Theorem 5.2.

6. The Filled-in Julia Set for Polynomial Semigroups of

Finite Type

The material in this section is taken from [6].
For a polynomial f of degree at least two, the filled-in Julia set,

denoted by K(f), is defined to be the set of points z ∈ C such that the
forward orbit {fn(z)} is bounded. The complement of K(f), the set
of points which tend to ∞ under iteration of f , is called the basin of
attraction of∞ and is denoted A∞(f). It is well known thatK(f) is the
union of J(f) and the bounded components ofN(f). Also, A∞(f) is the
component of N(f) containing ∞. Further, we have J(f) = ∂K(f) =
∂A∞(f). (See [10], §III.4.) We have the following proposition.

Proposition 6.1. Let f be a polynomial of degree at least two. Then
the following are equivalent:

(1) A∞(f) is simply connected.
(2) J(f) is connected.
(3) K(f) is connected.
(4) f has no finite critical point in A∞(f).

For a proof see [5], Theorem 9.5.1 together with the fact that a
domain is simply connected if and only if its complement is connected.
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Proposition 6.1 is one of the many instances where the critical points
of a rational function play a strong role in its dynamics. In this chapter
we point out one of the differences in the role played by the critical
points of the functions in a rational semigroup.

6.1. Polynomial Semigroups of Finite Type. Hinkkanen and Mar-
tin considered the generalization of the filled-in Julia set to more gen-
eral polynomial semigroups. However, there are some questions about
the proper generalization.

If G is a polynomial semigroup, one need not have any point z where
the set G(z) = {g(z) : g ∈ G} is bounded. See Remark 6.5 below.
However, it is also possible to construct polynomial semigroups where
for every point z ∈ C, the set G(z) has a finite accumulation point.
To see this consider G = 〈z2, z2/2, z2/3, . . . 〉. Hinkkanen and Martin
invented the concept of a polynomial semigroup of finite type as a nat-
ural compromise between the two extremes. It turns out that various
one-complex-dimansional moduni spaces for discrete groups can be de-
scribed as the complements of the filled-in Julia sets (defined below) for
certain polynomial semigroups of finite type. See [15] for a discussion.

We summarize the definition and main theorem on polynomial semi-
groups of finite type found in [15].

Definition 6.1. We say that a polynomial semigroup G is of finite
type if it satisfies the following conditions:

(1) For any positive integer N , there are only finitely many poly-
nomials in G whose degree is less than N .

(2) There is a domainD in C, whose complement C\D is a bounded
continuum, such that each g ∈ G maps D into itself, that is
g(D) ⊂ D.

Remark 6.1. It is easy to see that every finitely generated polynomial
semigroup where the generators have degree at least two is of finite
type. More generally, if G is of finite type, G can only have finitely
many generators of a given degree. Lastly, any degree 1 elements in
G must be generated by a single elliptic Möbius transformation, i.e.,
must be finite order rotations around some point in C.

Definition 6.2. Let G be a polynomial semigroup of finite type. The
filled-in Julia set of G, denoted K(G), is the closure of the set of
points z ∈ C such that G(z) = {g(z) : g ∈ G} has a finite limit point.
The complement of K(G), denoted A(G) = C \K(G), is the basin of
attraction of ∞ for G.

Remark 6.2. It is clear that K(g) ⊂ K(G) for all g ∈ G and that
g−1(K(G)) ⊂ K(G) for all g ∈ G. Either of these two statements
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imply that J(G) ⊂ K(G); the first by Theorem 1.2 and the second by
Property 1.1.

The following example, provided by Hinkkanen and Martin, shows
that the set A(G) need not be connected.

Example 6.1. Let Dj = {z : |z − aj| ≤ rj} for 1 ≤ j ≤ 3 be disks
that are tangent to each other outside (with disjoint interiors). Let B
be a very large disk containing all the Dj well in its interior. Define
G = 〈g1, g2, g3〉, where gj(z) = aj + (cj(z − aj))

nj and cj > 0 is chosen
so that J(gj) = ∂Dj while the positive integer nj ≥ 2 is so chosen
that for a suitable ε > 0, to be specified, we have g−1j (B) ⊂ Bj = {z :
|z − aj| ≤ rj + ε}. Choose ε so small that there is still an open set W
in between (in the interstice of) the disks Bj for 1 ≤ j ≤ 3. Now it

is easily seen that K(G) ⊂ ⋃3
j=1Bj. Furthermore, if z ∈ W , then any

gj maps z outside B so that G(z) clusters only to infinity. So in this
case the complement of K(G) has a bounded component and is not
connected.

Hinkkanen and Martin’s main result on polynomial semigroups of
finite type in [15] is the following.

Proposition 6.2 ([15], Theorem 7.2). Let G be a polynomial semigroup
of finite type. Then there is a domain V ⊃ D, where D is as in
Definition 6.1, containing a neighborhood of ∞, such that V coincides
with the unbounded component of the complement of the set

⋃

g∈G
g−1

(
⋃

h∈G
K(h)

)
,

and has the following property: for any z ∈ V (and hence any z ∈
D) and for any compact subset K of C, there are only finitely many
g ∈ G such that g(z) ∈ K, and, furthermore, V is the largest domain
containing the point at infinity that has this property.

Our first result is that V , which may be thought of as the immediate
basin of attraction for infinity, arises from simpler sets than the one in
Proposition 6.2.

Theorem 6.1 ([6], Theorem 5.1.7). Let G be a polynomial semigroup
of finite type and let V be as in Proposition 6.2. Then V is also the
unbounded component of the complements of K(G),

⋃
g∈GK(g), and

J(G). In particular, V is a component of N(G).
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Proof. That V is the unbounded component of A(G) = C \K(G) was
shown in the proof of Proposition 6.2. For notational simplicity let

(6.1) K1(G) =
⋃

g∈G
g−1

(
⋃

h∈G
K(h)

)
.

We remark that K1(G) is the smallest, closed set containing K(g) for
all g ∈ G that is backwards invariant under each g ∈ G. Also let

(6.2) K2(G) =
⋃

g∈G
K(g).

We remark that

(6.3) J(G) ⊂ K2(G) ⊂ K1(G) ⊂ K(G).

The first inclusion follows from the fact that

J(G) =
⋃

g∈G
J(g) ⊂

⋃

g∈G
K(g) = K2(G).

See Theorem 1.2. The second inclusion of (6.3) follows from the fact
that

g−1(K(g)) = K(g)

for all polynomials g. The final inclusion follows from Remark 6.2.
Thus if V ′ and V ′′ are the unbounded components of C \K2(G) and

C \ J(G), respectively, we have the inclusions

V ⊂ V ′ ⊂ V ′′.

Recall that V is maximal with respect to the property that given
any point z ∈ V and any compact set K ∈ C, there are only finitely
many g ∈ G such that g(z) ∈ K. We wish to show that V ′′ also has
this property, and hence V = V ′ = V ′′. The proof closely follows that
of Proposition 6.2. We reproduce the relevant facts here.

Recall that J(G) =
⋃
g∈G J(g) (Theorem 1.2). For each g ∈ G of

degree at least two, let Sg(z) denote the Green’s function of A∞(g)
with pole at infinity. For any z ∈ V ′′, z lies in A∞(g) so Sg(z) > 0 for
all g ∈ G. Further,

(6.4) Sg(g(z)) = (deg g)Sg(z)

for all z ∈ A∞(g) (see [10], p. 35.) See the same reference to establish
the fact that the logarithmic capacity of J(g) satisfies cap(J(g)) =
1/M1/(n−1) where n = deg g and M is the modulus of the leading
coefficient of g. Hence the logarithmic capacity of J(g) is positive. Let
T (z) denote the Green’s function of V ′′ with pole at infinity. As V ′′

is contained in the complement of J(g) and as both T (z) and Sg(z)
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have logarithmic singularities at ∞, we see that for each g ∈ G the
function T (z)−Sg(z) is bounded and harmonic in V ′′, non-positive on
the boundary of V ′′ and hence non-positive on V ′′. Thus Sg(z) ≥ T (z).
Hence for each z ∈ V ′′

inf{Sg(z) : g ∈ G} ≥ T (z) > 0.

Let N ≥ 1. By assumption, there are only finitely many g ∈ G with
deg g ≤ N . Thus for z ∈ V ′′, the numbers Sg(g(z)) = (deg g)Sg(z) ≥
(deg g)T (z) tend to ∞ as g runs over the elements of G so that the
numbers deg g are non-decreasing. We wish to show that this implies
that the numbers g(z) also tend to ∞.

For each g ∈ G of degree at least two, the set J(g) is compact and
lies in a fixed disk of radius R centered at the origin. Here R depends
on V ′′ only. We know from the above that cap(J(g)) is positive, so
c = − log(cap(J(g))) is well defined. There is a probability measure m
on J(g) such that

(6.5) Sg(z)− c =

∫

J(g)

log |z − w| dm(w).

See [33], §1.5. Suppose that |g(z)| < r. If cap(J(g)) > L > 0, then
using (6.5), we see that

Sg(g(z)) = c+

∫

J(g)

log |g(z)− w| dm(w) < − log(L) + log(R + r)

since |g(z)| < r, J(g) ⊂ ∆(0, R), and m is a probability measure on
J(g). If there were a positive lower bound on cap(J(g)) for g ∈ G and
|g(z)| < r for infinitely many g ∈ G, we would have an upper bound
on Sg(g(z)) for infinitely many g ∈ G which is a contradiction.

The point z ∈ V ′′ is at a fixed positive distance d from every J(g).
For a given large r, consider two disjoint subsets of elements of G. First
consider those g ∈ G for which cap(K(g)) > d/2 and |g(z)| < r. From
the comments above, we see that there can be only finitely many such
g.

Next, consider those g ∈ G for which |g(z)| < r and cap(J(g)) ≤
d/2. Let g be a member of this latter set and set n = deg g and
L = cap(J(g)). Then

∫

J(g)

log |z − w| dm(w) ≥
∫

J(g)

log d dm(w) = log d

since the distance between z and J(g) is at least d, while
∫

J(g)

log |g(z)− w| dm(w) < log(R + r)
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since |g(z)| < r and J(g) ⊂ ∆(0, R). Since Sg(g(z)) = nSg(z) we see
that

log(R + r)− log(L) > Sg(g(z)) = nSg(z)

= n

(∫

J(g)

log |z − w| dm(w)− log(L)

)
≥ n(log(d)− log(L)),

hence

log(R + r) > n log d+ (n− 1)(− logL)(6.6)

≥ n log d+ (n− 1)(− log(d/2))(6.7)

= n log 2 + log(d/2).(6.8)

For a given r this last equation implies an upper bound for n = deg g,
say n < n(r, d, R). By assumption, there are only finitely many g ∈ G
whose degree is at most n(r, d, R), and so in this second class there are
at most finitely many g ∈ G. Hence for any large r and any z ∈ V ′′

there are only finitely many g ∈ G for which |g(z)| < r. This shows
that V = V ′′ and hence V = V ′ = V ′′. ¤

We have just shown that the sets J(G), K2(G), K1(G) and K(G)
share the same unbounded component of their complements. We have
also shown that

J(G) ⊂ K2(G) ⊂ K1(G) ⊂ K(G).

We now show through a series of examples that the inclusions above
can be strict.

Example 6.2. Let G = 〈z2, z2/a〉 with a > 1. Then J(G) = {z : 1 ≤
|z| ≤ a} (see [15], Example 1) but K2(G) = K(G) = {z : |z| ≤ a}.
Example 6.3. Let f1(z) = z2, f2(z) = (z−10)2+10, and letG = 〈f1, f2〉.
Note that K(f1) = ∆(0, 1) and K(f2) = ∆(10, 1) where ∆(a, r) is the
disk of radius r centered at a. We will show that K2(G) is a proper
subset of K1(G).

Let U = C \∆(5, 9). We will show that

fj(U) ⊂ U for j = 1, 2

from which it follows that g(U) ⊂ U for all g ∈ G. A straightforward
calculation yields that on ∂U ,

|f1(9eiθ + 5)− 5| ≥ 11.

Thus by the minimum principle, f1(U) ⊂ U . A similar calculation also
yields

|f2(9eiθ + 5)− 5| ≥ 11,

hence f2(U) ⊂ U as well.
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For any g ∈ G, this shows that g(U) ⊂ U and hence U ⊂ N(g) by
Montel’s Theorem (Proposition 1.1). In particular, U ⊂ A∞(g) for all
g ∈ G. Hence U ⊂ V , where V is the domain from Proposition 6.2.

Let N = ∆
(√

10, 1/(3
√
10)
)
. We claim that N ⊂ K1(G). To see

this, we can show that on ∂N ,

∣∣∣∣f1
(

eiθ

3
√
10

+
√
10

)
− 10

∣∣∣∣ < 1

and so by the maximum principle we see that f1(N) ⊂ K(f2) =
∆(10, 1) and thus N ⊂ K1(G) by definition.

We also have that f2(N) ⊂ U , for on ∂N ,

∣∣∣∣f2
(

eiθ

3
√
10

+
√
10

)
− 5

∣∣∣∣ > 43.

We claim that this shows that N ∩ K(g) = ∅ for all g ∈ G. Recall
that g(U) ⊂ U for all g ∈ G. Let g = gn ◦ gn−1 ◦ · · · ◦ g1 where each
gj equals f1 or f2. If g1 = f2, then g(N) ⊂ U since f2(N) ⊂ U . If
g1 = f1, then g

2(N) ⊂ U . We see this as follows. We first show that

f1(K(f2)) = f1(∆(10, 1)) ⊂ U by calculating

|f1(eiθ + 10)− 5| ≥ 76.

Thus by the minimum principle we see that f1(K(f2)) ⊂ U . Since
g1 = f1, then g

2 = h ◦ f1 ◦ fk2 ◦ f1 for some k ≥ 0 and some h ∈ G or
h(z) = z. What we have shown above gives that

g2(N) = (h◦f1◦fk2 ◦f1)(N) ⊂ (h◦f1◦fk2 )(K(f2)) = h(f1(K(f2))) ⊂ h(U) ⊂ U.

Hence N ∩ K(g) = ∅ for all g ∈ G, i.e. N ∩
(⋃

g∈GK(g)
)

= ∅. In

particular, this shows that
√
10 ∈ K1(G)\K2(G), so K2(G) is a proper

subset of K1(G) as claimed.

Example 6.4. Let G be the semigroup from Example 6.3. We construct
a subsemigroup H of G such that K1(H) is a proper subset of K(H).

Let h0 = f1, h1 = f2 ◦ f1, and in general let hn = fn2 ◦ f1. Let H =
〈h0, h1, . . . 〉. Note that any subsemigroup of a polynomial semigroup of
finite type is itself a polynomial semigroup of finite type. Let N and U
be as in the previous example. We have shown that hn(N) ⊂ ∆(10, 1)
for n = 0, 1, 2, . . . . Thus N ⊂ K(H) by definition. However we have
also shown in the previous example that hn(hm(N)) ⊂ U for all m,
n ≥ 0 and that h(U) ⊂ U for all h ∈ H. Recall that U ∩K(g) = ∅ for
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all g ∈ G. Hence if h, g ∈ H, we have g(N) ∩K(h) = ∅. Thus

N ∩
(
⋃

g∈H
g−1

(
⋃

h∈H
K(h)

))
= ∅

and in particular, K1(H) is a proper subset of K(H).

Remark 6.3. This last example gives an infinitely generated polyno-
mial semigroup H of finite type such that K(H) \ K1(H) 6= ∅. No
such example for a finitely generated polynomial semigroup is as of yet
known.

6.2. Relationship Between Critical Points and K(G). As stated
in Proposition 6.1, for a polynomial f of degree at least 2, the set
A∞(f) is simply connected if and only if it contains no finite critical
point of f . We show now through two examples that for a polynomial
semigroup G of finite type, there is in general no relationship between
the connectivity of the set V from Proposition 6.2 and the location of
the critical points of the elements of G.

Example 6.5. In this example we construct a finitely generated poly-
nomial semigroup such that V is not simply connected, yet the finite
critical points of every element g in G lie in K(G).

Let G be the semigroup constructed in Example 6.3, i.e, G = 〈f1, f2〉
where f1(z) = z2 and f2(z) = (z − 10)2 + 10. Recall that K(f1) =

∆(0, 1) and that K(f2) = ∆(10, 1). By Proposition 6.2, there exists a
number R > 0 so that the set G(z) = {g(z) : g ∈ G} clusters only at
infinity for all z ∈ {z : |z − 5| ≥ R}.

Let S = {z = x + iy : |x − 5| ≤ 1, |y| ≤ R + 1}. Note that
S ⊂ A∞(fj) for j = 1, 2. Thus we may choose integers n1, n2 ≥ 1 so
that f

nj
j (S) ⊂ C \∆(5, R) for j = 1, 2.

Let G′ = 〈fn1

1 , fn2

2 〉. We have shown that G′(z) clusters only to
infinity for z ∈ S ∪ (C \ ∆(5, R)). Hence S ∪ (C \ ∆(5, R)) ⊂ V
where V is the unbounded component of the complement of K(G′). In
particular, since K(f

nj
j ) ⊂ K(G′) for j = 1, 2, this shows that V is

multiply connected.
However, all of the finite critical points for elements in G′ lie in

K(G′). The chain rule shows that any finite critical point for an element
of G′ is a preimage of the critical points of the generators, namely 0
and 10. These two points are in K(G′) which is backwards invariant
under any element of G′. Hence all finite critical points of elements of
G′ are in K(G′) as claimed.

Example 6.6. For our next example, we construct a finitely generated
polynomial semigroup G such that the set V from Proposition 6.2 is
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simply connected, yet contains a finite critical point of an element of
G.

Let g0(z) = z2+1. As is easily seen, gn0 (0)→∞ hence J(g0) is totally
disconnected (see [10], Theorem 4.2). Further, we see that the set of
purely real and purely imaginary numbers belong to N(g0) = A∞(g0)
as follows. For x real, |x2 + 1| = x2 + 1 > |x| and hence gn0 (x) → ∞.
Since N(g0) is completely invariant under g0 and g0(iy) = −y + 1 ∈ R
for y ∈ R, we have iR ⊂ N(g0) as well.

We may find positive numbers r1, r2 and δ so that J(g0) is contained
in the compact set

C = {reiθ : 0 < r1 ≤ r ≤ r2, 0 < δ ≤ |θ| ≤ π}

The set C may be covered by finitely many disks ∆(αj, εj), j = 1, . . . , n,

so that the union
⋃n
j=1∆(αj, εj) is connected and does not contain the

set {z + iy : x ≥ 0, y = 0}. Define

gj(z) =
(z − αj)

2

εj
+ αj

for j = 1, . . . , n. Note that K(gj) = ∆(αj, εj).
Let G = 〈g0, g1, . . . , gn〉. By Proposition 6.2 there exists a number

R > 0 so that the forward orbit G(z) accumulates only at infinity for
all z with |z| ≥ R. We may construct a domain D that contains 0

such that {z : |z| ≥ R} ⊂ D, yet D ∩
(⋃n

j=0K(gj)
)

= ∅. For each

j = 0, . . . , n, choose an integer mj ≥ 1 so that g
mj

j (D) ⊂ {z : |z| > R}.
Let G′ = 〈gm0

0 , gm1

1 , . . . gmn
n 〉. Let V be the set from Proposition 6.2 for

the semigroup G′. Note that 0 ∈ D ⊂ V . In particular, V contains
a finite critical point for an element from G′, namely gm0

0 . We now
show that V , which is the unbounded component of the complement
of K1(G

′) (see (6.1)), is simply connected. To do this, we need the
following lemmas.

Lemma 6.1 ([5], Lemma 5.7.2)). Let g be a rational function of degree
d and let K be a compact connected subset of C. Then g−1(K) has at
most d components and each is mapped onto K by g.

Lemma 6.2 ([6], Lemma 5.2.4). Let G = 〈f1, f2, . . . , fk〉 be a finitely
generated polynomial semigroup such that the set

E0 =
k⋃

j=1

K(fj)
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is connected. Then the set

K1(G) =
⋃

g∈G
g−1

(
⋃

h∈G
K(h)

)

is also connected.

Proof. Let

E1 =
k⋃

j=1

f−1j (E0).

Note that E0 ⊂ E1 since K(fj) = f−1j (K(fj)) ⊂ f−1j (E0) for 1 ≤ j ≤ k.
Further note that E1 is connected since each connected component of
f−1j (E0), of which there are only finitely many by Lemma 6.1, must
meet K(fj) and hence must meet the connected set E0. A finite union
of connected sets each meeting a given connected set such that the
union contains this set must itself be connected. Hence E1 is connected.

In general, define

Em =
k⋃

j=1

f−1j (Em−1).

As before, we can show that Em−1 ⊂ Em and Em is connected for all
m. Eachg set Em clearly is compact in C.

Let E∞ ≡
⋃∞
m=0Em. We see that E∞ is connected, for if there were

open sets A and B such that A ∩ B = ∅ = A ∩ B and such that
E∞ ⊂ A ∪B, since each Em is connected and Em ⊂ Em+1, the set E∞
would lie completely in A or in B. Thus E∞ is connected.

We remark that

(6.9) E∞ =
⋃

g∈G
g−1 (E0)

since by construction, Em consists of the preimages of E0 under the
length n words of G for n ≤ m.

We now complete the proof that K1(G) is connected. Let

K0(G) =
⋃

g∈G
g−1

(
⋃

h∈G
K(h)

)
,

so K1(G) = K0(G). Note that E∞ ⊂ K0(G). We will show that
E∞ ∪K0(G) is connected. From there we see that K1(G) is connected,
since

K1(G) = E∞ ∪K0(G)

and the closure of a connected set is connected.
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Now for the proof that E∞ ∪ K0(G) is connected. First we see

that J(G) ⊂ E∞, for J(G) =
⋃
g∈G J(g) (Theorem 1.2) and J(g) ⊂⋃∞

n=0 g
−n(z) for all but at most two z ∈ C (Proposition 1.4), in partic-

ular for some z ∈ E0. We then use (6.9) to conclude that J(G) ⊂ E∞.
Next we see that every component of g−1(K(h)) meets J(G) and hence
meets E∞ for any g, h ∈ G since J(G) is backwards invariant under all
elements of G. Thus the union of E∞ and the components of g−1(K(h))
for all g, h ∈ G, i.e., E∞ ∪ K0(G), is connected and hence K1(G) is
connected. ¤

Remark 6.4. Some questions remain about Lemma 6.2, namely must
any of J(G), K2(G) or K(G) be connected under the assumptions of
the lemma?

The construction of Example 6.6 is concluded for our semigroup

G′ = 〈gm0

0 , gm1

1 , . . . , gmn
n 〉

since by construction
⋃n
j=1K(g

mj

j ) is connected and so K1(G
′) is also

connected by Lemma 6.2. As V is a component of the complement of
the closed, connected set K1(G), it is simply connected.

6.3. Alternative Definitions for K(G). The following theorem, which
appears in [14], provides another characterization of K(G) and relates
it to the set of points whose orbit under G is bounded.

Recall that G(z) = {g(z) : g ∈ G}.
Proposition 6.3 (in [14]). If G is a polynomial semigroup of finite
type, and if V is as in Proposition 6.2, so that V is the unbounded
component of the complement of K(G), and if R > 0 is such that V
contains {z : |z| > R}, then

(6.10) B(G) ≡ {z : G(z) bounded} =
⋂

g∈G
{z : |g(z)| ≤ R}

is a compact set whose complement is connected. Furthermore,

(6.11) B(G) ⊂ K(G) =
⋃

n>R

⋂

N≥2

⋃

g∈G
deg g≥N

{z : |g(z)| ≤ n}.

Remark 6.5. It is often the case that B(G) = ∅. If f(z) = z2, g(z) =

(z − 10)2 + 10 and G = 〈f, g〉, then since K(f) = ∆(0, 1) and K(g) =

∆(10, 1), it is easy to see that B(G) = ∅.
The following question was posed by Hinkannen and Martin. As-

sume there exists a number R1 > R so that if G(z) clusters to a finite
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point, then it clusters to a point w with |w| ≤ R1. In this case, the
characterization of K(G) in Proposition 6.3 simplifies to

(6.12) K(G) =
⋂

N≥2

⋃

g∈G
deg g≥N

{z : |g(z)| ≤ R1}.

We see this as follows. Assume that

z ∈
⋂

N≥2

⋃

g∈G
deg g≥N

{z : |g(z)| ≤ R1}.

In particular, this implies that there exists a sequence of distinct ele-
ments g ∈ G such that |g(z)| ≤ R1. Hence G(z) has a finite accumula-
tion point, i.e., z ∈ K(G). Since K(G) is closed, we see that

⋂

N≥2

⋃

g∈G
deg g≥N

{z : |g(z)| ≤ R1} ⊂ K(G).

Now assume that z is such that G(z) has a finite accumulation point.

We are assuming that it must accumulate somewhere in ∆(0, R1).
Hence there is a sequence of elements gn ∈ G so that |g(z)| ≤ R1.
Since G is of finite type, we see that the degree of the functions gn
must tend to infinity as n→∞. Hence

z ∈
⋂

N≥2

⋃

g∈G
deg g≥N

{z : |g(z)| ≤ R1}.

Since K(G) was defined to be the closure of such points, we see that

K(G) ⊂
⋂

N≥2

⋃

g∈G
deg g≥N

{z : |g(z)| ≤ R1}

and so we have established (6.12) assuming the existence of the number
R1. Must such a numberR1 always exist? WhenG is finitely generated,
the answer is affirmative.

Theorem 6.2 ([6], Theorem 5.3.3). Let G be a finitely generated poly-
nomial semigroup where the degree of the generators is at least two.
Let V be as in Proposition 6.2 and let R > 0 be such that V contains
{z : |z| > R}. Then there exists a number R1 > R > 0 so that if z is
any point such that G(z) has a finite cluster point, then G(z) clusters
to some point w such that |w| ≤ R1. Hence

K(G) =
⋂

N≥2

⋃

g∈G
deg g≥N

{z : |g(z)| ≤ R1}.
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Proof. The set equality was established above, assuming the existence
of the number R1. Assume that no such number R1 exists, i.e., given
any R1 > R > 0, there is a point z0 ∈ C so that G(z0) accumulates in
C but not in the closed disk of radius R1. Viewing the semigroup G
as words in the generators {g1, . . . , gk}, we see that there must be an
integerM so that if the length of g is at leastM , then |g(z0)| > R1 > R.
Let h1, . . . , hkM be the words in G of length M in G. If G(z0) is to
have a finite accumulation point, then G(hi(z0)) must also have a finite
accumulation point for some i, 1 ≤ i ≤ kM . To see this we simply note
that the words of length at least M are given by

kM⋃

i=1

G ◦ hi

where G ◦ hi = {g ◦ hi : g ∈ G}, and any sequence from this collection
must have an infinite subsequence from some G ◦ hi. But from our
original assumption, |hi(z0)| > R1 > R for 1 ≤ i ≤ kM , so G(hi(z0))
accumulates only to infinity. This is a contradiction. ¤

Remark 6.6. Theorem 6.2 provides the basis for a computer algorithm
for generating an approximate picture ofK(G) when G is finitely gener-
ated. Namely, for a suitable number R1 and a suitable positive integer
N , one colors the pixel p black if and only if for each integer 1 ≤ n ≤ N ,
at least one word g of length n satisfies |g(p)| ≤ R1.

Remark 6.7. We have shown that if G is a finitely generated polynomial
semigroup, and z is such thatG(z) has a finite accumulation point, then
it must have an accumulation point in a disk centered at 0 of radius
R1, where R1 is independent of z. We make the simple remark that
G(z) need not have all its accumulation points in this disk.

Let f(z) = z2 and g(z) = (z − 10)2 + 10. Let G = 〈f, g〉. If w ∈
∆(10, 1), then

lim
n→∞

gn(w) = 10.

Then for any fixed k ≥ 1,

lim
n→∞

fk(gn(w)) = 102
k

,

so the accumulation points of G(w) accumulate to infinity.

7. Ahlfors Theory of Covering Surfaces

Let f(z) be meromorphic on a domain Ω. We define the spherical
derivative by

f#(z) =
|f ′(z)|

1 + |f(z)|2 .
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If f(z) is meromorphic in |z| ≤ r, denote

L(r) =

∫

|z|=r
f#(z)|dz| =

∫ 2π

0

|f ′(reiθ)|r
1 + |f(reiθ)|2dθ,

and

S(r) =
1

π

∫∫

|z|<r

|f ′(z)|2
(1 + |f(z)|2)2dx dy =

1

π

∫ 2π

0

∫ r

0

|f ′(ρeiθ)|2ρ
(1 + |f(ρeiθ)|2)2dρ dθ

(7.1)

i.e., L(r)= the length of the image of the circle |z| = r on the Riemann
sphere; S(r) = (1/π)∗area of the image of the disk |z| < r on the
Riemann sphere, determined with regard to multiplicity.

Let us suppose f(z) is meromorphic in |z| ≤ r. Let D be a domain
on C, and let I(r,D) denote the area of the image f({|z| ≤ r}) which
lies over D (with regard to multiplicity). Let I0(D) denote the area
of D. In this section all domains will be taken to be Jordan domains
each of which is bounded by a sectionally analytic (s.a.) Jordan curve

(see [12], p.126). Setting S(r,D) = I(r,D)
I0(D)

(see [28], p. 29) we state

Theorem 7.1 (First Fundamental Theorem). There is a constant h1 =
h1(D) such that

|S(r)− S(r,D)| ≤ h1L(r).

Furthermore, suppose 4 is a subdomain of |z| < r, with 4∩ {|z| =
r} = ∅, which is mapped by f(z) in a p-to-one fashion onto D. Then
4 is called an island over D of multiplicity p, and in this instance, such
an island contributes the quantity p to S(r,D). If p = 1, we say 4 is
a simple island.

Theorem 7.2 (Second Fundamental Theorem). Let D1, . . . , Dq, q ≥
3, be Jordan domains on the w-sphere having disjoint closures. Then
there exists a constant h2 depending only on the domains Dj such that

q∑

j=1

(S(r)− n(r,Dj)) ≤ 2S(r) + h2L(r),

where n(r,D) is the total number of distinct islands over D in |z| < r
without regard to multiplicity.

Proof. This is almost the same statement as is Theorem 5.5 in [12]. We
will translate the necessary notations. Suppose that the domain Dj is
covered by the islands Di

j for i = 1, . . . , k(j). Each island Di
j is mapped

by f onto Dj such that each point is covered equally often (counting
multiplicity). Let n(Di

j) denote this multiplicity. Letting ρ(Di
j) denote
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the Euler characteristic of Di
j we define the excess n1(D

i
j) of the island

Di
j by

n1(D
i
j) = n(Di

j) + ρ(Di
j).

Writing n1 = (n−1)+(ρ+1) = (n−1)+(l−1) where l(D) denotes the
number of components of C\D, we see that n1 is equal to the excess of
the multiplicity of the island over 1 plus the excess of the connectivity
of the island over 1. If n = 1, the map is univalent and the island is
necessarily simply connected so that n1 = 0. Otherwise n1 > 0.

Let n(Dj) =
∑k(j)

i=1 n(D
i
j) and n1(Dj) =

∑k(j)
i=1 n1(D

i
j).

So n1(Dj)−n(Dj) =
∑k(j)

i=1 ρ(D
i
j) ≥

∑k(j)
i=1 (−1) = −k(j) = −n(r,Dj).

Hence

q∑

j=1

(S(r)− n(r,Dj)) ≤
q∑

j=1

(S(r)− n(Dj) + n1(Dj)) ≤ 2S(r) + h2L(r)

where the last inequality is the statement in Theorem 5.5 in [12]. ¤

Theorem 7.3. Let D1, . . . , D5 be Jordan domains on the w-sphere
having disjoint closures. Let f be meromorphic on the unit disc with
no simple islands over any of the Dj. Then there exists an H depending
only on the Dj’s such that

S(r) < HL(r)

for all 0 ≤ r < 1.

Proof. Since each island over Dj has multiplicity greater than or equal
to two, S(r,Dj) ≥ 2n(r,Dj) for each j.

By the First Fundamental Theorem (Theorem 7.1) S(r,Dj) ≤ S(r)+
hjL(r) where hj is the constant depending only on Dj.

So n(r.Dj) ≤ 1
2
S(r.Dj) ≤ 1

2
(S(r) + hjL(r)) and so

5∑

j=1

n(r,Dj) ≤
5

2
S(r) +

1

2

5∑

j=1

hjL(r).

So by the Second Fundamental Theorem (Theorem 7.2), we have

5S(r) ≤
5∑

j=1

n(r,Dj)+2S(r)+h̃L(r) ≤ 5

2
S(r)+

1

2

5∑

j=1

hjL(r)+2S(r)+h̃L(r)

and so for H = 2h̃+
∑5

j=1 hj we have S(r) < HL(r). ¤
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Lemma 7.1. Let f be meromorphic on the unit disc such that S(r) <
HL(r) for all 0 ≤ r < 1, then there exists a constant h2 depending only
on H such that

F#(0) < h2.

Proof. See [28], p. 84. ¤

Theorem 7.4 (Ahlfors Five Island Theorem). Let D1, . . . , D5 be Jor-
dan domains on the w-sphere having disjoint closures. Let f be mero-
morphic on the unit disc. Then there exists a constant C depending
only on the domains Dj and not on f(z) such that if

f#(0) > C

then f(z) maps an island in the unit disc univalently onto some Dj. If
|z| < R is used instead of the unit disk, then for the latter conclusion
we require f#(0) > C

R
.

Proof. The conclusion follows immediately from Theorem 7.3 and Lemma 7.1.
¤

Theorem 7.5 (Ahlfors Three Island Theorem). Let D1, . . . , D3 be
bounded Jordan domains on the w-sphere having disjoint closures. Let
f be analytic on the unit disc. Then there exists a constant C depending
only on the domains Dj and not on f(z) such that if

f#(0) > C

then f(z) maps an island in the unit disc univalently onto some Dj. If
|z| < R is used instead of the unit disk, then for the latter conclusion
we require f#(0) > C

R
.

Proof. Let D4 be a Jordan domain containing ∞ that is mutually dis-
joint from each of D1, D2 and D3. Since f is analytic, there are no
islands over D4, i.e., n(r,D4) = 0. As in the proof of Theorem 7.3 we
suppose that there are no simple islands and so n(r,Dj) ≤ 1

2
S(r,Dj) ≤

1
2
(S(r) + hjL(r)) for j = 1, . . . , 3. Hence by the Second Fundamental

Theorem (Theorem 7.2) we see that

4S(r) ≤
4∑

j=1

n(r,Dj)+2S(r)+h̃L(r) ≤ 3

2
S(r)+

1

2

3∑

j=1

hjL(r)+2S(r)+h̃L(r)

and so for H = 2h̃+
∑3

j=1 hj we have S(r) < HL(r).
Lemma 7.1 can now be used to finish the proof. ¤

For similar existence of a simple island results for f(z) with regularly
exhaustible Riemann surfaces see [12], p. 148 and [28], p. 30.
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