
UNIFORMLY PERFECT ANALYTIC AND CONFORMAL ATTRACTOR SETS

RICH STANKEWITZ

Abstract. Conditions are given which imply that analytic iterated function systems (IFS’s) in

the complex plane C have uniformly perfect attractor sets. In particular, it is shown that the

attractor set of a finitely generated conformal IFS is uniformly perfect when it contains two or

more points. Also, an example of a finitely generated analytic attractor set which is not uniformly

perfect is given.

1. Introduction and results

Consider an iterated function system (IFS) G = 〈gi : i ∈ I〉, the set of all finite compositions

of non-constant generating maps {gi : i ∈ I} for some index set I, where each function maps the

open connected set U ⊂ C into a compact set K ⊂ U such that there exists 0 < s < 1 and a

metric d on K where d(gi(z), gi(w)) ≤ sd(z, w) for all z, w ∈ K and all i ∈ I. Thus this system

is uniformly contracting on the metric space (K, d). We say that G is an IFS on (U,K). We

define the attractor set A by A = A(G) = A′, the closure of A′ in the Euclidean topology, where

A′ = A′(G) = {z : there exists g ∈ G such that g(z) = z} is the set of (attracting) fixed points of G.

We will suppress the dependence on G when there is no chance for confusion. We define an IFS and

its corresponding attractor set to be analytic (respectively conformal) if all the maps are analytic

(respectively conformal) on U . In an analytic IFS, we note that we may, and will, take the metric

d to be the hyperbolic metric on U (see section 2).

We note that when the IFS G = 〈g1, . . . , gN 〉, we have that A is the unique compact set such that

A = ∪N
i=1gi(A)(1.1)

(see [4], p. 724). We also point out that in [6, 7] the limit set J of a conformal IFS is defined in

such a way so that J ⊃ A′ and J = A. In [6, 7] conformal IFS’s are defined differently, and non

equivalently, and so the reader should observe that the definition above does not match exactly the

definitions that one may find in the literature.
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In [11] certain conformal attractor sets have been shown to be uniformly perfect, that is, these

sets are uniformly thick near each of their points (see section 2), when the generating maps are

Möbius. We note that in [11], the result in Corollary 3.3 is only stated for attractor sets generated

by linear maps, but clearly more general cases are handled by Theorem 3.1. In this reference critical

use was made of the fact that the generating maps were globally defined (and had globally defined

inverses). Such restrictions are not needed in the following theorem.

Theorem 1.1. Let G = 〈gi : i ∈ I〉 be an analytic IFS on (U,K) where there exist 0 < δ < diam(A)

and C > 0 such that we have the following:

(I) if a ∈ A and i ∈ I, then gi is one-to-one on 4(a, δ),

(II) if a ∈ A and gi(a) = a′, then the branch hi of g−1
i such that hi(a′) = a is defined on 4(a′, δ),

(III) if a ∈ A and gi(a) = a′, then the branch hi of g−1
i such that hi(a′) = a satisfies

|hi(z)− hi(a′)| ≤ C|z − a′| for all z ∈ 4(a′, δ/10).

Then, if the attractor set A has infinitely many points, then A is uniformly perfect.

Above and throughout we use the following notation. Let q be a metric. For a set F ⊂ C, let

diamq(F ) = sup{q(z, w) : z, w ∈ F} and F q
ε = {z : distq(z, F ) < ε} where distq(z, F ) = inf{q(z, w) :

w ∈ F}. Also let 4q(w, r) = {z : q(z, w) < r} and Cq(w, r) = {z : q(z, w) = r}. If no metric is

noted, then it is assumed that the metric is the Euclidean metric.

Remark 1.1. Suppose δ satisfies (I) in Theorem 1.1. Then there exists (see proof at the end of

section 2) δ′ > 0 such that each g ∈ G is one-to-one on 4(a, δ′). Hence in the proof of Theorem 1.1

we will replace δ by δ′ and assume that each g ∈ G is one-to-one on 4(a, δ) when a ∈ A.

Remark 1.2. Suppose δ satisfies (I) in Theorem 1.1. If there exists ε > 0 such that for all a ∈ A and

i ∈ I we have gi(4(a, δ)) ⊃ 4(gi(a), ε), then we see that the branch hi of g−1
i such that hi(gi(a)) = a

is defined on 4(gi(a), ε). Hence we may replace δ by min{δ, ε} to satisfy both (I) and (II).

Corollary 1.1. Let G = 〈gi : i ∈ I〉 be an analytic IFS on (U,K) such that there exists η > 0 where

|g′i(a)| ≥ η for all a ∈ A and all i ∈ I. If A has infinitely many points, then A is uniformly perfect.

Remark 1.3. We show in Lemma 2.4 that the hypotheses of Theorem 1.1 and Corollary 1.1 are

equivalent.

Corollary 1.2. Let G = 〈gi : i ∈ I〉 be a conformal IFS on (U,K) such that there exist η > 0 where

|g′i(a)| ≥ η for all a ∈ A and all i ∈ I. If A contains more than one point, then A is uniformly

perfect.
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Corollary 1.3. Let G = 〈g1, . . . , gN 〉 be a conformal IFS on (U,K). If A contains more than one

point, then A is uniformly perfect.

Uniformly perfect sets, which are defined in section 2, were introduced by A. F. Beardon and

Ch. Pommerenke in 1978 in [1]. Such sets cannot be separated by annuli that are too “fat” (large

ratio of outer to inner radius) and thus near each of its points the set is uniformly “thick” where

this thickness is independent of scaling. See [1, 9, 10] for many interesting equivalent definitions.

Such sets are known to be regular for the Dirichlet problem (see [9], p. 193) and also have positive

Hausdorff dimension (see [5], p. 523). See [6, 7] for a discussion on the Hausdorff dimension, packing

dimension, and other properties of limit sets (attractors) for conformal IFS’s.

This paper is organized as follows. Section 2 contains basic lemmas and definitions. Section 3

contains the proofs of Theorem 1.1 and Corollaries 1.1, 1.2 and 1.3. Section 4 contains examples

of the following: a uniformly perfect conformal attractor set that is generated by maps of the form

z2 + c; a uniformly perfect analytic attractor set that is generated by maps of the form z2 + c; a non

uniformly perfect attractor set which is generated by an infinite number of conformal maps; a (non-

conformal) IFS generated by two analytic maps whose attractor set is perfect though not uniformly

perfect, yet the generating maps are one-to-one on A; analytic attractor sets whose cardinality is

any given integer n.

The author would like to Harold Boas, Marshall Whittlesey, Mohammed Ziane, and especially

Aimo Hinkkanen for productive conversations regarding this subject.

2. Definitions and basic facts

Given an open set U ⊂ C such that there exists a non constant analytic map g with g(U) contained

in a compact set K ⊂ U , then U is hyperbolic, that is, C \ U contains more than one point. This

follows since the image of the plane or the punctured plane under an analytic map is always dense

in the plane and hence could not be contained in a compact subset of U . Hence there exists a

hyperbolic metric on U (see [2], p. 12).

Lemma 2.1. If the analytic function g maps an open connected set U ⊂ C into a compact set K ⊂
U , then there exists 0 < s < 1, which depends on U and K only, such that d(g(z), g(w)) ≤ sd(z, w)

for all z, w ∈ K where d is the hyperbolic metric defined on U .

Proof. If no such s exists then there exist sequences zn, wn ∈ K and analytic maps gn such that

gn(U) ⊂ K where d(gn(zn), gn(wn))/d(zn, wn) → 1. By compactness and normality we may assume

that zn → z, wn → w and gn → g uniformly on K where g(U) ⊂ K. If z 6= w then one can
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show d(gn(zn), gn(wn))/d(zn, wn) → d(g(z), g(w))/d(z, w) < 1 (see [2], p. 12). If z = w, then

then d(gn(zn), gn(wn))/d(zn, wn) → |g′(z)|λ(g(z))/λ(z) < 1 where λ(z) denotes the density of the

hyperbolic metric of U at the point z of U . Thus we have a contradiction and so the lemma

follows.

Lemma 2.2. Let G = 〈gi : i ∈ I〉 be an IFS on (U,K). Then for any g ∈ G, we have g(A) ⊂ A.

Proof. Suppose a ∈ A′(G) and so f(a) = a for some f ∈ G with, say, f = gi1 ◦gi2 ◦· · ·◦gik
where each

ij ∈ I. Say g = gi′1 ◦gi′2 ◦· · ·◦gi′n where each i′j ∈ I. Letting Ã = A(〈gi1 , gi2 , . . . , gik
, gi′1 , gi′2 , . . . , gi′n〉)

we see by (1.1) that g(a) ∈ g(Ã) ⊂ Ã ⊂ A(G). Hence g(A′(G)) ⊂ A(G) and the lemma follows from

the continuity of g.

Lemma 2.3. Let η > 0, r > 0,M > 0, a ∈ C and let F denote the family of maps {f : 4(a, r) →
4(0, M) such that f is analytic and |f ′(a)| ≥ η}. Then there exists ρ > 0 such that each f ∈ F is

one-to-one on 4(a, ρ).

Remark 2.1. Any ρ such that Mρ(2r − ρ)/(r(r − ρ)2) < η will suffice will satisfy the conclusion of

Lemma 2.3.

Proof. Fix ρ such that Mρ(2r − ρ)/(r(r − ρ)2) < η. For |z − a| < r we may obtain by estimates

on the Cauchy integral formula that |f ′′(z)| ≤ 2Mr/(r − |z − a|)3. Hence for |z − a| ≤ ρ we

have |f ′(z) − f ′(a)| = | ∫ z

a
f ′′(s) ds| ≤ 2Mr

∫ |z−a|
0

(r − t)−3 dt = Mr[(r − |z − a|)−2 − r−2] ≤
Mρ(2r − ρ)/(r(r − ρ)2) < η ≤ |f ′(a)| where the integral is over the straight line path. This suffices

to show that f is one-to-one on 4(a, ρ) (see [3], p. 293).

Lemma 2.4. Let G = 〈gi : i ∈ I〉 be an analytic IFS on (U,K). Then there exist 0 < δ < diam(A)

and C > 0 such that conditions (I)-(III) of Theorem 1.1 hold if and only if there exists η > 0 such

that we have |g′i(a)| ≥ η for all a ∈ A and all i ∈ I.

Proof. Let 0 < δ < diam(A) and C > 0 be such that conditions (I)-(III) hold. If there does not

exist η > 0 such that we have |g′i(a)| ≥ η for all a ∈ A and all i ∈ I, then there exist an ∈ A and

gn ∈ {gi : i ∈ I} such that g′n(an) → 0. Let a′n = gn(an) and let hn be the branch of the inverse

of gn such that hn(a′n) = an. Conditions (II) and (III) imply, in particular, that hn(4(a′n, δ/10)) ⊂
4(an, Cδ/10). But by the Koebe 1/4 theorem we have hn(4(a′n, δ/10)) ⊃ 4(an, |h′n(a′n)|δ/40)

which gives a contradiction for large n since |h′n(a′n)| = 1/|g′n(an)| → ∞.

Suppose η > 0 is such that |g′i(a)| ≥ η for all a ∈ A and all i ∈ I. Note that since K is compact

there exists M > 0 such that each gi maps U into some 4(0,M). Let r > 0 be such that Ar ⊂ U .
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By Lemma 2.3 setting δ = ρ we see that condition (I) is satisfied. By the Koebe 1/4 theorem each

gi(4(a, δ)) ⊃ 4(gi(a), δη/4) and so (see Remark 1.2) we may replace δ by min{δ, δη/4} to satisfy

both (I) and (II). Since the branch hi of g−1
i such that hi(gi(a)) = a is defined on 4(gi(a), δ) we see

that |h′i(gi(a))| = 1/|g′i(a)| ≤ 1/η and so by Lemma 2.9 we see that condition (III) is satisfied with

C = 100/(81η).

Lemma 2.5. Let G = 〈gi : i ∈ I〉 be an IFS such that for each g ∈ G there exists a positive integer

Ng such that for each a ∈ A the set g−1({a}) has at most Ng elements. If A has infinitely many

elements, then A is perfect and hence, by the Baire category theorem is uncountable.

Proof. If a ∈ A = A′ were isolated it would have to be an attracting fixed point for some element

f ∈ G. Suppose 4(a, r) ∩ A = {a}. For some positive integer n, we have fn(A) ⊂ 4(a, r) since

a ∈ fn(A) and diamd(fn(A)) → 0 as n → ∞. By Lemma 2.2 we see that fn(A) = {a} and this

contradicts the hypothesis on the integer Nfn .

Remark 2.2. If G is an analytic IFS, then the proof of Lemma 2.5 and the identity theorem for

non-constant analytic maps imply that the attractor set A is perfect when A has infinitely many

elements.

Lemma 2.6. Let G = 〈gi : i ∈ I〉 be an analytic IFS such that each g′i never takes the value

zero on A. If a ∈ A′, then there exists two sequences of maps F1 = gi1 , F2 = gi1 ◦ gi2 , . . . , Fm =

gi1 ◦ gi2 ◦ · · · ◦ gim , . . . where each ij ∈ I and H1 = hi1 ,H2 = hi2 ◦ hi1 , . . . , Hm = him ◦ · · · ◦ hi1 , . . .

where each hij is a branch of g−1
ij

, such that for each positive integer m we have (Hm ◦ Fm)(z) = z

(on a small neighborhood of Hm(a)) and Hm(a) ∈ A.

Proof. Suppose g(a) = a for g ∈ G and so g = gi1 ◦ gi2 ◦ · · · ◦ gik
for some choice of ij ∈ I. Let

hi1 be the branch of g−1
i1

such that hi1(a) = (gi2 ◦ · · · ◦ gik
)(a) ∈ A by Lemma 2.2. Similarly choose

hi2 , . . . , hik
to be branches of g−1

i2
, . . . , g−1

ik
, respectively, so that hi2(hi1(a)) = (gi3 ◦ · · · ◦ gik

)(a) ∈
A, . . . , hij ((hij−1 ◦ · · · ◦ hi1)(a)) = (gij+1 ◦ · · · ◦ gik

)(a) ∈ A, . . . , hik
((hik−1 ◦ · · · ◦ hi1)(a)) = a ∈ A.

We define F1 = gi1 , F2 = gi1 ◦ gi2 , . . . , Fk = gi1 ◦ gi2 ◦ · · · ◦ gik
, Fk+1 = gi1 ◦ gi2 ◦ · · · ◦ gik

◦ gi1 , . . . .

For Fm = gi1 ◦ gi2 ◦ · · · ◦ gim we define Hm = him ◦ · · · ◦ hi1 and we are done.

Definition 2.1. A true annulus A = Ann(w; r,R) = {z : r < |z −w| < R} is said to separate a set

F if F intersects both components of C \ A and F ∩ A = ∅.

Definition 2.2. [[9], p. 192] A compact subset F ⊂ C is uniformly perfect if there exists M > 1

such that whenever w ∈ F, 0 < R < diam(F ), R/r > M, then Ann(w; r,R) ∩ F 6= ∅.
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Lemma 2.7. [[10], p. 315] Let F be a perfect compact subset of C and let An = Ann(zn; rn, Rn) be

annuli which separate F , have zn ∈ F and Rn/rn →∞. Then Rn → 0.

Proof. Since F is compact we may assume that zn → w ∈ F . We also see that Rn ≤ diam(F ) and

hence rn → 0. If there exists δ > 0 such that Rn > δ along some subsequence of Rn then one can

show that 4(w, δ) ∩ F = {w} since 4(w, δ) \ {w} is contained in the “limit” of this subsequence of

An. This contradicts the hypothesis that F is perfect.

Lemma 2.8. Let δ > 0 and let g be analytic and univalent on 4(0, δ) with g(0) = 0 such that the

there exists z with |z| ≤ δ/10 and |g(z)| = R. Then g(4(0, δ)) ⊃ 4(0, 2R) and hence g−1 is defined

on 4(0, 2R).

Proof. Defining the univalent map K(z) = 1
δg′(0)g(δz) on 4(0, 1) we have K(0) = 0 and K ′(0) = 1.

By hypothesis there exists a point z′ = z/δ such that |z′| ≤ 1/10 and |K(z′)| = R
δ|g′(0)| . By the Koebe

distortion theorem and the maximum modulus theorem (see [2], p. 3) we see that for |z| ≤ 1/10 we

have

|K(z)| ≤ 1/10
(1− 1/10)2

and so
R

δ|g′(0)| ≤
10
81

.

By the Koebe 1/4 theorem (see [2], p. 2) we have K(4(0, 1)) ⊃ 4(0, 1/4) and so we conclude

that g(4(0, δ)) ⊃ 4(0, δ|g′(0)|/4) ⊃ 4(0, 2R).

Lemma 2.9. Let η > 0 and let g be analytic and univalent on 4(a, δ) with |g′(a)| ≤ 1/η. If

|z − a| ≤ δ/10, then |g(z)− g(a)| ≤ 100|z − a|/(81η).

Proof. This follows from the Koebe distortion theorem in much the same manner as the proof of

Lemma 2.8 and therefore we omit the details.

Lemma 2.10. Let g be univalent on 4(0, 2R) with g(0) = 0. If R > 9r, then g(Ann(0; r,R)) ⊃
Ann(0; r′, R′) for some R′ > r′ > 0 such that R′/r′ ≥ R/(9r).

Proof. The univalent map h(z) = g(2Rz)
2Rg′(0) defined in 4(0, 1) is such that h(0) = 0 and h′(0) = 1. By

the Koebe distortion theorem we have

|h(z)| ≤ r/(2R)
[1− (r/(2R))]2

on |z| = r/(2R) and |h(z)| ≥ 1/2
[1 + (1/2)]2

on |z| = 1/2.
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So

|g(z)| ≤ r|g′(0)|
[1− (r/(2R))]2

= r′ on |z| = r and |g(z)| ≥ R|g′(0)|
[1 + (1/2)]2

= R′ on |z| = R.

Hence g(Ann(0; r,R)) ⊃ Ann(0; r′, R′) where R′
r′ = R[1−(r/(2R))]2

r[1+(1/2)]2 ≥ R/(9r) since r < R.

Lemma 2.11. Let ρ > 0. If p and q are metrics that induce the same topology on a compact

topological space F , then there exists r > 0 such that 4p(a, r) ⊂ 4q(a, ρ) for all a ∈ F .

Proof. Consider the open cover {4q(a, ρ/2) : a ∈ F} of F . By the Lebesgue number lemma (see [8],

p. 179) applied to the compact metric space (F, p), there exists R > 0 such that for each a ∈ F there

exists a′ ∈ F such that 4p(a,R/3) ⊂ 4q(a′, ρ/2) ⊂ 4q(a, ρ). Hence we see the result follows with

r = R/3.

Proof of Remark 1.1. Let d be the hyperbolic metric on U and recall that the hyperbolic and Eu-

clidean metrics induce the same topology on U . Since A is compact one may apply Lemma 2.11

twice to obtain δ′, r > 0 such that 4(a, δ′) ⊂ 4d(a, r) ⊂ 4(a, δ) for all a ∈ A. Hence for any f ∈ G

we have that f(4(a, δ′)) ⊂ f(4d(a, r)) ⊂ 4d(f(a), r) ⊂ 4(f(a), δ). Note that we used the fact that

f(A) ⊂ A.

Let g ∈ G and say it can be written as g = gik
◦ · · · ◦ gi2 ◦ gi1 . Note that gi1 is one-to-one on

4(a, δ′). Since from above gi1(4(a, δ′)) ⊂ 4(gi1(a), δ) we use (property (I)) the fact that gi2 is

one-to-one on 4(gi1(a), δ) to conclude that gi2 ◦ gi1 is one-to-one on 4(a, δ′) and again from above

(gi2 ◦ gi1)(4(a, δ′)) ⊂ 4((gi2 ◦ gi1)(a), δ) . We then proceed inductively to show that each map

gim ◦ · · · ◦ gi2 ◦ gi1 including g is one-to-one on 4(a, δ′).

3. Proof of the Theorem and Corollaries

Proof of Theorem 1.1. Let the hypotheses of the theorem be satisfied. Recall that d is the hyperbolic

metric on U . Since K is a compact subset of U there exists ε > 0 such that Kd
ε ⊂ U . Let s̃ < 1 be

the uniform contraction coefficient on Kd
ε for the generating maps as given by Lemma 2.1. Since we

may shrink δ and still satisfy conditions (I)-(III) of the theorem we will assume (see Lemma 2.11)

that for each a ∈ A we have 4(a, δ/(10C)) ⊂ 4d(a, ε).

Suppose A contains infinitely many points, but is not uniformly perfect. Hence there exist annuli

An = Ann(an; rn, Rn) that separate A where Rn/rn → ∞ and each an ∈ A. Since A′ is dense

in A a simple geometric argument allows one to assume that each an ∈ A′. Since A is perfect

(see Remark 2.2) we must have both rn and Rn tending to zero by Lemma 2.7. We assume all

Rn < δ/(10C) and Rn > 9rn.
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The method of proof will be to show that the An can be expanded by certain locally defined

inverses of maps in G given in Lemma 2.6, such that the expanded (conformal) annuli contain

true annuli of large ratio of outer to inner radius. The Koebe 1/4 theorem (Lemma 2.8) and the

hypothesis on δ is used to show that the chosen inverse maps are well defined on 4(an, 2Rn). The

deformation that occurs since the maps are not linear (similitudes) is controlled by the use of the

Koebe distortion theorem (see Lemma 2.10). The expanded true annuli are constructed so that the

outer radii do not tend to zero, yet these annuli do separate A. This contradicts the fact that A is

perfect (see Lemma 2.7). We now carry out this program.

Since an ∈ A′ we may construct sequences of maps Fm and Hm for m = 1, 2, . . . as given by

Lemma 2.6. Note that the maps Fm and Hm depend on n. There exists m such that

Fm(4(Hm(an), δ/(10C))) ⊂ Fm(4d(Hm(an), ε)) ⊂ 4d(an, s̃mε) ⊂ 4(an, Rn).(3.1)

The first inclusion follows from the choice of δ as stated at the beginning of the proof and the

last inclusion follows from the fact that the Euclidean and the hyperbolic metrics induce the same

topology on U .

We define fn = Fm∗ where m∗ is the smallest integer m such that Fm(4(Hm(an), δ/(10C))) ⊂
4(an, Rn) and define its “inverse” by kn = Hm∗ . Therefore Fm∗−1(4(Hm∗−1(an), δ/(10C))) ∩
C(an, Rn) 6= ∅. Choose z ∈ 4(Hm∗−1(an), δ/(10C)) so that we have |Fm∗−1(z) − an| = Rn. By

the choice of δ we see that him∗ (z) is defined and since |fn(him∗ (z)) − an| = Rn we also have

δ/(10C) ≤ |him∗ (z) − kn(an)| by the definition of fn. By the choice of C and property (III) we

conclude

δ/(10C) ≤ |him∗ (z)− kn(an)| ≤ δ/10.

We note that (see Remark 1.1) fn is one-to-one on 4(kn(an), δ). By Lemma 2.8 we have that kn is

defined on 4(an, 2Rn) and Lemma 2.10 shows that kn(An) contains the annulus

Bn = Ann(kn(an); r′n, R′n)

where R′n = dist(kn(C(an, Rn)), kn(an)) and r′n = max{|kn(z) − kn(an)| : |z − an| = rn} satisfy

R′n/r′n ≥ Rn

9rn
→ ∞. By construction each δ/(10C) ≤ R′n ≤ δ/10 (the lower bound follows from

the condition that fn(4(kn(an), δ/(10C))) ⊂ 4(an, Rn)). Each Bn separates A since fn(Bn) ⊂ An

and fn(A) ⊂ A (Lemma 2.2). Thus we see by Lemma 2.7 that we have obtained the desired

contradiction.

Proof of Corollary 1.1. The corollary follows directly from Lemma 2.4 and Theorem 1.1.
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Proof of Corollary 1.2. Suppose A contains two or more points. Let z ∈ A′ with, say, f(z) = z and

let w ∈ A \ {z}. Since fn(w) are distinct points in A (which tend to z) we see that A contains

infinitely many points. The result follows from Corollary 1.1.

Proof of Corollary 1.3. Since each gi for i ∈ I is conformal, we have that each g′i is never zero on A.

Since A is compact η = mini=1...N infa∈A |g′i(a)| > 0 and so the result follows from Corollary 1.2.

4. Examples

Example 4.1. Let G = 〈g1, . . . , gN 〉 where gi(z) = z2 + ci and each ci is chosen as follows. Fix

0 < ε < 1/2 and choose the ci ∈ Ann(0; ε2, ε − ε2) ⊂ 4(0, 1/4) so that there exists a half plane

H with the origin on its boundary which contains ∪N
i=14(ci, ε

2). Choose a connected open set U

which is contained H such that U ⊃ ∪N
i=14(ci, ε

2) and U ⊂ 4(0, ε). Since each gi(4(0, ε)) ⊂ U we

see that each gi(U) ⊂ U. With this U and K = ∪N
i=1gi(U) the IFS G is conformal (even though

the generating maps are not globally conformal) and by Corollary 1.3 the resulting attractor set is

uniformly perfect.

Example 4.2. Let G = 〈gi : i ∈ I〉 where each gi(z) = z2 + ci and each ci is chosen as follows. Fix

0 < ε < 1/2 and ρ > 0 such that 2ρ < ε − 2ε2. Choose ci ∈ Ann(0; ρ + ε2, ε − ε2 − ρ) ⊂ 4(0, 1/4).

Hence for U = 4(0, ε) and K = Ann(0; ρ, ε− ρ) we have gi(U) = 4(ci, ε
2) ⊂ K. Hence A ⊂ K

and we see that for η = 2ρ and a ∈ A each |g′i(a)| = 2|a| ≥ η for i ∈ I. By Corollary 1.1, if A has

infinitely many points, then A is uniformly perfect.

If A has three or more points, then A has infinitely many points thus A is uniformly perfect.

This follows since g1(A) ⊂ 4(c1, ε
2) and so there exists a point a ∈ A ∩ 4(c1, ε

2) other than the

attracting fixed point of g1. Hence the points of the form gn
1 (a) are distinct since g1 is one-to-one

on 4(c1, ε
2). We see that A has three or more points if it is not the case that G = 〈g1, g2〉 where,

denoting the attracting fixed points of gi by ai, a2 = ±a1. (If G were such an IFS, then we would

have A = {a1, a2}.) For example, one can check that if c1 > 0 then c2 6= c1 and c2 6= c1−1+
√

1− 4c1

implies A is uniformly perfect. Also, if three of the maps gi are distinct, then A is uniformly perfect.

Example 4.3. We construct a conformal IFS G such that A is not uniformly perfect. Choose se-

quences an and bn of positive real numbers such that 1 > b1 > a1 > b2 > a2 > . . . where an↘0, bn↘0

and an/bn+1 → ∞. Then the maps gn(z) = (bn − an)z + an are such that the conformal IFS

G = 〈gn : n ≥ 1〉 (where U is an appropriately defined neighborhood of the interval [0, 1]) has an

attractor set A that is separated by each of the annuli Ann(0; bn+1, an). Thus this attractor set is
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not uniformly perfect. We note that any attempt to apply Theorem 1.1 breaks down since neither

a choice of δ nor a choice of C can be found to satisfy its hypotheses.

Example 4.4. We construct an example of a finitely generated (polynomial) IFS which has an at-

tractor set which is not uniformly perfect. Let f(z) = z23 and g(z) = (z − 1/2)2 + 1/2. Let

I = [0, 3/4], I1/10 = {z : |z − w| ≤ 1/10 for some w ∈ I} and let U = I1/10 ∪ 4(1/2, 0.37).

Since U ⊂ 4(0, 0.9) ∩ 4(1/2, 0.601) we see that f(U) ⊂ f(4(0, 0.9)) ⊂ 4(0, 1/10) ⊂ U and

g(U) ⊂ g(4(1/2, 0.601)) ⊂ 4(1/2, 0.37) ⊂ U . Hence G = 〈f, g〉 is an IFS defined on (U,K) where

K = f(U) ∪ g(U). Since f(I) ∪ g(I) ⊂ I we see that A ⊂ f(I) ∪ g(I). Let V be the open interval

((3/4)23, 1/2) and note that V ∩A = ∅. We claim that fn(V ) ∩A = ∅ for all n = 1, 2, . . . .

Proof. We first show that f(V ) ∩ A = ∅. Suppose a ∈ f(V ) ∩ A. Since A = f(A) ∪ g(A) and

f(V ) ∩ g(A) ⊂ f(I) ∩ g(I) = ∅ we conclude that a ∈ f(V ) ∩ f(A). Hence there exists a1 ∈ A such

that f(a1) = a. Since f is one-to-one on I ⊃ A ∪ V we must then have a1 ∈ V . This contradiction

shows that f(V ) ∩ A = ∅. One can then use this argument in an inductive manner to conclude

fn(V ) ∩A = ∅ for all n = 1, 2, . . . .

Since fn(V ) = ((3/4)23
n+1

, 2−23n

) we see that Ann(0; (3/4)23
n+1

, 2−23n

) separates A and thus A

is not uniformly perfect. We note, however, that since each map in G is a polynomial and so has

finite degree, Lemma 2.5 implies A is perfect since A contains the infinitely many points of the form

fn(1/2).

Remark 4.1. We note that in Example 4.4 it can be shown that both f and g are one-to-one on A,

but not on any open set containing A and thus we may not apply Corollary 1.3. To see that g is

one-to-one on A ⊂ f(I) ∪ g(I) we note that g(g(I)) ∩ g(f(I)) = ∅ and both g|g(I) and g|f(I) are

one-to-one.

Example 4.5. We give an example that demonstrates that it is possible for the attractor set of a

(non conformal) IFS which is generated by analytic maps to have cardinality any finite number.

Fix a positive integer n. Consider the complex polynomial f0(z) = c + (zn − cn)2 which has a

super-attracting fixed point at c, i.e., f0(c) = c and f ′0(c) = 0. For α = e2πi/n we see that f0(αkc) = c

for k = 0, . . . , n − 1. Hence fk(z) = αkf0(z) has a super-attracting fixed point at αkc and maps

each αjc to αkc for j = 0, . . . , n − 1. It is elementary to verify that for small values of c and for

a suitable choice of r > 0 we get that fk(4(0, r)) ⊂ K for k = 0, . . . , n − 1 where K is a suitably

chosen compact subset of 4(0, r). Hence these functions generate an iterated function system on

(U,K) where U = 4(0, r).
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One can easily see by (1.1) that A = {αkc : 0 ≤ k ≤ n−1}. So for any n there exists an attractor

set A such that card(A) = n.
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