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Abstract. Conditions are given which imply that certain non-autonomous an-
alytic iterated function systems (NIFS’s) in the complex plane C have uniformly
perfect attractor sets, while other conditions imply the attractor is pointwise
thin, and thus hereditarily non uniformly perfect. Examples are given to il-

lustrate the main theorems, as well as to indicate how they generalize other
results. Examples are also given to illustrate how possible generalizations of

corresponding results for autonomous IFS’s do not hold in general in this more
flexible setting. Further, applications to non-autonomous Julia sets are given.

Lastly, since our definition of NIFS is in some ways more general than
others found in the literature, a careful analysis is given to show when certain

familiar relationships still hold, along with detailed examples showing when
other relationships do not hold.
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1. Introduction and statements of the main theorems

The aim of this paper is two-fold, the first is a thickness result while the second
relates to a corresponding notion of thinness. In particular, we present conditions
that imply the attractors in C of certain non-autonomous iterated function systems
are uniformly perfect, and then, looking to the other extreme, give conditions for
attractors to be pointwise thin (and thus hereditarily non uniformly perfect).

Uniformly perfect sets, which are defined in Section 4, were introduced by A. F. Bear-
don and Ch. Pommerenke in 1978 in [2]. Such sets cannot be separated by annuli
that are too large in modulus (equivalently, large ratio of outer to inner radius).
Thus, uniform perfectness, in a sense, measures how “thick” a set is near each of its
points and is related in spirit to many other notions of thickness such as Hausdorff
content and dimension, logarithmic capacity and density, Hölder regularity, and
positive injectivity radius for Riemann surfaces. For an excellent survey of uniform
perfectness and how it relates to these and other such notions see Pommerenke [11]
and Sugawa [17].

The concept of hereditarily non uniformly perfect was introduced in [16] and can
be thought of as a thinness criterion for sets which is a strong version of failing to
be uniformly perfect. In particular, a compact set E ⊂ C is called hereditarily non
uniformly perfect (HNUP) if no subset of E is uniformly perfect. Often a compact
set is shown to be HNUP by showing it satisfies the stronger property of pointwise
thinness (see Definitioin 4.3). This is done in several examples in [16, 5], and will
be done in this paper each time a set is shown to be HNUP.

When the maps are all complex analytic and the IFS is autonomous (see Sec-
tion 3), uniform perfectness results of the type we seek are found in [15]. We also
note that [7] includes related results for similar systems (which require an open
set condition). Certain constructions in [16] are non-autonomous iterated function
systems shown to have uniformly perfect attractors (though those examples were
not presented as attractors, but rather as Cantor-like constructions - see Exam-
ple 5.1 in this paper), while other examples there are not uniformly perfect. We
look to generalize those results here, and we begin by following [12] to introduce
the main framework and definitions (with some key differences) of non-autonomous
iterated function systems (NIFS’s). We also note that attractors of NIFS’s are often
Moran-set constructions (see [19] for a good exposition of such).

Definition 1.1 (NIFS). Let (U,X) be a pair where U is a non-empty open con-
nected subset of C and X ⊂ U is compact. A non-autonomous iterated function
system (NIFS) Φ on the pair (U,X) is given by a sequence Φ(1),Φ(2),Φ(3), . . . ,

where each Φ(j) is a collection of non-constant functions (ϕ
(j)
i : U → X)i∈I(j) such

that there exists 0 < s < 1 and a metric d on U where d(ϕ(z), ϕ(w)) ≤ sd(z, w) for
all z, w ∈ X and all ϕ ∈ ∪∞j=1Φ(j). We also stipulate that d induces the Euclidean
topology on X. Thus this system is uniformly contracting on the forward invariant
(see definition below) metric space (X, d).

Definition 1.2 (Forward Invariant). A set X̃ ⊆ U is called forward invariant under

Φ when ϕ(X̃) ⊆ X̃ for all ϕ ∈ ∪∞j=1Φ(j).
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We define a NIFS and its corresponding attractor set (see Definition 1.4) to be
analytic (respectively, conformal) if all the maps are complex analytic (respectively,
conformal) on U . Note that here and throughout conformal means analytic and
one-to-one (globally on U , not just locally).

Important differences from [12] in the above setup are: 1) We do not impose that
X have other geometric properties such as convexity or a smooth boundary. 2) The
maps do not need to be conformal. In fact, they do not even need to be locally
conformal. 3) In [12], the focus is on certain measures and dimension of the attractor
sets, and so it is required that each I(j) be a finite or countably infinite index set.
We, however, do not make any such assumption. 4) We do not in general impose an
open set condition, and, in fact, there can be substantial overlap in sets of the form

ϕ
(j)
a (X) and ϕ

(j)
b (X). However, for several of our HNUP results we shall require the

Strong Separation Condition: ϕ
(j)
a (X) ∩ ϕ(j)

b (X) = ∅, for each j ∈ N and distinct

a, b ∈ I(j). 5) The main object of interest to this paper is the analytic NIFS, and so
the condition imposed that each ϕ map U into X allows us, under this condition of
analyticity, to take the metric d to be the hyperbolic metric on U (see Section 4).

Given an NIFS, we wish to study the limit set (or attractor) which we can define
after the next definition.

Definition 1.3 (Words). For each k ∈ N, we define the symbolic spaces

Ik :=

k∏
j=1

I(j) and I∞ :=

∞∏
j=1

I(j).

Note that a k-tuple (ω1, . . . , ωk) ∈ Ik may be identified with the corresponding word
ω1 . . . ωk. When ω∗ ∈ I∞ has ω∗j = ωj for j = 1, . . . , k, we call ω∗ an extension of

ω = ω1 . . . ωk ∈ Ik.

Definition 1.4. For all k ∈ N and ω = ω1 · · ·ωk ∈ Ik, we define ϕω := ϕ
(1)
ω1 ◦· · ·◦ϕ

(k)
ωk

with

Xω := ϕω(X) and Xk :=
⋃
ω∈Ik

Xω.

The limit set (or attractor) of Φ is defined as

J = J(Φ) :=

∞⋂
k=1

Xk.

Remark 1.1. The attractor J does not have to be compact. For example, J is not
compact for the autonomous system (see Section 3) given in Example 4.3 of [15].
However, if each index set I(j) is finite, then each Xk is compact and hence so is J .

In order to state the main results, Theorems 1.1 and 1.2 (regarding uniform perfect-
ness) and Theorems 1.3 and 1.4 and Corollary 1.1 (regarding pointwise thinness),
we first present the following notation.

Given an NIFS Φ(1),Φ(2),Φ(3), . . . on some (U,X), we note that by excluding
Φ(1),Φ(2), . . . ,Φ(j−1), the sequence Φ(j),Φ(j+1),Φ(j+2), . . . also forms an NIFS (which

formally would be Φ̃(1), Φ̃(2), Φ̃(3), . . . where each Φ̃(k) = Φ(k+j−1)). The new NIFS
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would then induce sets as in Definition 1.4, which we denote as X
(j)
ω , X

(j)
k , and

J (j) with the superscript used to indicate the relationship to the original NIFS. In

particular, for the original NIFS the sets Xk may also be denoted X
(1)
k . See Ex-

ample 2.3, illustrated in Figure 1, noting that the superscript indicates the column
and the subscript indicates the row where a given set resides (noting that row 0
refers to the top row).

Theorem 1.1. Let Φ be a conformal NIFS on (U,X). Suppose

(i) (Möbius Condition) each map in ϕ ∈ ∪j∈NΦ(j) is Möbius, and

(ii) (Two Point Separation Condition) there exists δ > 0 such that each Φ(j), for

j ∈ N, contains (not necessarily distinct) maps ϕ
(j)
a and ϕ

(j)
b such that for

some (not necessarily distinct) za, zb ∈ J (j+1) we have |ϕ(j)
a (za)−ϕ(j)

b (zb)| ≥
δ, and

(iii) (Derivative Condition) there exists η > 0 such that for all ϕ ∈ ∪j∈NΦ(j) we
have |ϕ′| ≥ η on X.

Then each J (j) is uniformly perfect. Furthermore, for a given (U,X), the modulus

of any annulus separating any J (j) is bounded above by a constant depending only
on δ and η.

Remark 1.2. Instead of verifying the Two Point Separation Condition as stated, it
is often easier to check any of the increasingly stronger conditions:

(1) there exists δ > 0 such that each Φ(j), for j ∈ N, contains at least two maps

ϕ
(j)
a and ϕ

(j)
b such that for some z ∈ J (j+1) we have |ϕ(j)

a (z)−ϕ(j)
b (z)| ≥ δ,

(2) there exists δ > 0 such that each Φ(j), for j ∈ N, contains at least two maps

ϕ
(j)
a and ϕ

(j)
b such that for all z ∈ X we have |ϕ(j)

a (z)− ϕ(j)
b (z)| ≥ δ,

(3) there exists δ > 0 such that each Φ(j), for j ∈ N, contains at least two

maps ϕ
(j)
a and ϕ

(j)
b such that the images ϕ

(j)
a (X) and ϕ

(j)
b (X) are at least

a distance δ apart.

Note that (3) is much weaker than what in the literature is often called the Strong
Separation Condition for finite autonomous systems (stronger than the Strong Sep-
aration Condition stated earlier), which can be equivalently stated as such: there

exists δ > 0 such that for all distinct maps ϕ
(j)
a , ϕ

(j)
b ∈ Φ(j), for j ∈ N, the images

ϕ
(j)
a (X) and ϕ

(j)
b (X) are at least a distance δ apart.

We also note that this Two Point Separation Condition shows that, for each j ∈
N, diam(J (j)) ≥ δ since for any za, zb ∈ J (j+1) and ϕ

(j)
a , ϕ

(j)
b ∈ Φ(j), we have,

by the inclusion proved in Remark 2.3, ϕ
(j)
a (za), ϕ

(j)
b (zb) ∈ J (j). In the proof of

Theorem 1.1, the Two Point Separation Condition is only used to obtain a uniform
lower bound on diam(J (j)).

Theorem 1.2. Suppose Φ is an analytic NIFS such that J (n), for some integer
n > 1, is uniformly perfect (e.g., when the NIFS given by Φ(n),Φ(n+1),Φ(n+2), . . . ,

satisfies the hypotheses of Theorem 1.1). Suppose also that Φ̃(1) = Φ(1) ◦ · · ·◦Φ(n−1)

is finite. Then J(Φ) is uniformly perfect.
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We now present the main results regarding pointwise thinness, which is defined in
Section 4 along with other relevant terms. Theorem 1.3 and Corollary 1.1 concern
conformal NIFS’s having the Strong Separation Condition, and Theorem 1.4 con-
cerns analytic NIFS’s which do not require the Strong Separation Condition but
do require a certain type of separation condition. In order to present these results
precisely, we must first introduce the projection map.

Remark 1.3 (Projection Map). Consider ω∗ ∈ I∞ and note that the compact sets
ϕω∗1 ···ω∗n(X) decrease with diamd(ϕω∗1 ···ω∗n(X)) ≤ sndiamd(X) → 0 as n → ∞.
Hence ∩∞n=1ϕω∗1 ···ω∗n(X) contains just a single point that we call π(ω∗). Note that
π(ω∗) ∈ J since it clearly belongs to each ϕω∗1 ···ω∗n(X) ⊆ Xn. We call πΦ : I∞ → J
the projection map.

Further note that for any non-empty compact X̃ ⊆ X that is forward invariant under

Φ, we have that ∩∞n=1ϕω∗1 ···ω∗n(X̃) = ∩∞n=1ϕω∗1 ···ω∗n(X) since each is a singleton set
with the left set being a subset of the right set. We summarize this by saying that
the projection map πΦ is independent of the choice of non-empty compact forward
invariant set X.

Theorem 1.3. Let Φ be a conformal NIFS on (U,X), with X connected, satisfying
the Strong Separation Condition and the following

Separating Annuli Condition: there exists a sequence of conformal annuli
{Ajn}n∈N, where each Ajn and the bounded component of C\Ajn are in X,

such that for all n ∈ N the annulus Ajn separates X
(jn)
1 where mod Ajn →

∞ as n→∞.

For each n ∈ N, choose mn ∈ I(jn) such that the set ϕ
(jn)
mn (X) is surrounded by

Ajn (which can be done since X is connected and Ajn separates X
(jn)
1 ), and fix

ω = (ω1, ω2, . . . ) ∈ I∞ such that ωjn = mn for all n ∈ N. Then, J is pointwise thin
at πΦ(ω).

Remark 1.4. The Separating Annuli Condition can be visualized in Figure 1 in
Example 2.3 by considering annuli Aj of maximum modulus separating the two

components in each X
(j)
1 (in row 1), noting that mod Aj →∞ exactly when aj → 0.

Corollary 1.1. Let Φ be a conformal NIFS on (U,X), with X connected, satisfying
the Strong Separation Condition. Suppose along some subsequence jn, we have
2 ≤ #Φ(jn) <∞ for all n ∈ N. Define, for each n ∈ N,

bjn = min{dist(ϕ
(jn)
i (X), ∂X) : i ∈ I(jn)},

δjn = min{dist(ϕ(jn)
a (X), ϕ

(jn)
b (X)) : a, b ∈ I(jn) with a 6= b}

and

ηjn = max{diam(ϕ
(jn)
i (X)) : i ∈ I(jn)}.

Suppose for some c > 1, we have δjn ≤ cbjn for all n ∈ N. Further suppose
δjn
ηjn
→ ∞ as n → ∞. Then, J = πΦ(I∞) is pointwise thin (and thus HNUP when

J is compact).

Remark 1.5. Since each δjn ≤ diam(X), we see that we may choose c = diam(X)
infn{bjn}

when infn{bjn} > 0.
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Remark 1.6. Since each δjn ≤ diam(X), we see that for
δjn
ηjn
→ ∞ we must have

ηjn → 0. In such a situation then, Φ cannot satisfy the Derivative Condition, a
critical assumption in the proof of the uniform perfectness of J in Theorem 1.1 (see
Remark 5.1).

Remark 1.7. Corollary 1.1 applies much more generally when we recall that one can
combine stages in the manner described in Remark 2.4. Specifically, we may show

J(Φ) is pointwise thin by applying Corollary 1.1 to any Φ̃ created by combining
stages in Φ. This technique of combining stages is used later to analyze Example 5.2.

Theorem 1.4. Suppose

(i) Φ is an analytic NIFS such that J (n), for some integer n > 1, is pointwise
thin (e.g., when the NIFS given by Φ(n),Φ(n+1),Φ(n+2), . . . , satisfies the
hypotheses of Corollary 1.1 with each Φ(j) finite), and

(ii) Φ̃(1) = Φ(1)◦· · ·◦Φ(n−1) is finite with ϕa(J (n))∩ϕb(J (n)) = ∅ for all distinct

ϕa, ϕb ∈ Φ̃(1) (e.g., when Φ satisfies the Strong Separation Condition), and

(iii) for every ϕa ∈ Φ̃(1) and z ∈ J (n), we have that z is the only point of J (n)

which maps to ϕa(z) (e.g., when each map in Φ̃(1) is conformal).

Then J(Φ) is pointwise thin.

The remainder of the paper is organized as follows. Section 2 establishes the pre-
liminary results needed later as well as provides several examples, including Ex-
ample 2.3 which graphicly highlights key relationships. This section also identifies
some important aspects that show how the systems of study in this paper can
be more delicate than related systems found in the literature. Section 3 reviews
known results for autonomous attractors (where I(j) and Φ(j) are independent of
j) and relates them to the main results for non-autonomous attractors stated in
Theorems 1.1 and 1.2. Section 4 contains basic results and definitions. Section 5
presents some examples to demonstrate why the possible generalizations of results
for autonomous systems (presented as Theorems A-C in Section 3) do not hold for
general NIFS’s. In Section 5 we show that our main results generalize Theorem 4.1
of [16]. Section 6 contains applications of Corollary 1.1 to non-autonomous Julia
sets along polynomial sequences. Section 7 is then used to prove Theorems 1.1
and 1.2 on uniform perfectness, and Theorem 1.3, Corollary 1.1, and Theorem 1.4
on pointwise thinness.

2. Key preliminaries regarding the projection map, dependence on X,
invariance conditions, and stage combination

We begin this section by establishing some notation.

Notation to be used throughout: Let q be a metric. For a set F ⊆ C, we
define its diameter to be diamqF = sup{q(z, w) : z, w ∈ F} and ε-ball about F to
be Bq(F, ε) = {z : distq(z, F ) < ε} where distq(z, F ) = inf{q(z, w) : w ∈ F}. Also,
for w ∈ C and r > 0 we define the disk and circle, respectively, by ∆q(w, r) =
{z : q(z, w) < r} and Cq(w, r) = {z : q(z, w) = r}. If no metric is noted, then it is
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assumed that the metric is the Euclidean metric. Lastly, the open unit disk in C is
denoted D.

Remark 2.1 (Pieces of Xk). The limit set J = ∩∞k=1Xk is a decreasing intersection
of the Xk, but an important facet of each Xk is that it is the union of what we
call the pieces of Xk, each of which must contain both a limit point and a fixed
point. More precisely, note that for any k ∈ N and ω = ω1 · · ·ωk ∈ Ik, we have
that the piece ϕω(X) of Xk, for which diamd(ϕω(X)) ≤ skdiamd(X), contains both
the fixed point of the contraction ϕω and the point πΦ(ω∗) ∈ J for any extension
ω∗ ∈ I∞ of ω. Note also that the pieces of Xk are not necessarily components of
Xk since the pieces may overlap in general.

In the NIFS systems studied in [12] (see Definition and Lemma 2.4 of [12], which
makes key use of the open set condition - something we do not impose here), it
must be the case that πΦ(I∞) = J . We do not necessarily have this in all cases
(see Example 2.1), but we do note that the additional assumption of the Strong
Separation Condition would allow the proof in [12] to apply. In all cases, however,
we do have the following result.

Lemma 2.1. Let J ′(Φ) = {z : φω(z) = z for some ω in some Ik} where Φ is a

NIFS on (U,X). Then J(Φ) ⊆ J ′(Φ), and hence J(Φ) ⊆ J ′(Φ). Also,

J(Φ) = πΦ(I∞),

and so, if πΦ(I∞) is compact, then J(Φ) = πΦ(I∞).

We note that in the non-autonomous case, unlike in the autonomous case (see
Claim 3.1), J ′ does not necessarily have to be a subset of J , or even of J . See
Example 5.2.

Proof. Let z ∈ J and δ > 0. Choose k such that skdiamd(X) < δ. Since z ∈
J ⊆ Xk, there exists ω ∈ Ik such that z ∈ ϕω(X). Extend ω to any ω∗ ∈ I∞

and note that, as stated in Remark 2.1, ϕω(X) contains both the fixed point of the
contraction ϕω and the point πΦ(ω∗) ∈ J . Since ϕω(X) ⊆ ∆d(z, s

kdiamd(X)) ⊆
∆d(z, δ), we conclude J ⊆ J ′(Φ)∩πΦ(I∞). This and the definition of πΦ yield that

J ⊆ πΦ(I∞) ⊆ J .

The final statement follows since if πΦ(I∞) is compact, we have J(Φ) ⊆ J(Φ) =

πΦ(I∞) = πΦ(I∞) ⊆ J(Φ). �

In certain examples, it is convenient to change the set X to a more convenient
forward invariant compact set. The following result shows that such a change to
X, though it may affect J (see Example 2.2), will not affect J , the central object
of study for this paper.

Lemma 2.2. Let X̃ 6= ∅ be a compact subset of X that is forward invariant under

NIFS Φ on (U,X). Then, calling X̃k :=
⋃
ω∈Ik ϕω(X̃), we have

J(Φ) =

∞⋂
k=1

Xk =

∞⋂
k=1

X̃k.
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Hence, if each X̃k is compact, then J(Φ) =
⋂∞
k=1Xk =

⋂∞
k=1 X̃k.

Proof. Since, as was noted in Remark 1.3, the projection map πΦ is independent
of the choice of non-empty compact forward invariant set X, the first result follows
immediately from Lemma 2.1.

When each X̃k is compact, the second result follows since J(Φ) ⊆ J(Φ) =
⋂∞
k=1Xk =⋂∞

k=1 X̃k =
⋂∞
k=1 X̃k ⊆

⋂∞
k=1Xk = J(Φ). �

Example 2.1 (Projection map πΦ : I∞ → J not onto). Let X = [0, 1] be the unit
interval. Let Φ(1) = {f1, f2, f3, . . . } where fn(z) = z

3 + en with en = 1
3 −

1
3n . Note

that e1 = 0 and 0 < en <
1
3 for all n ≥ 2. Let Φ(k) = {f1} for all k ≥ 2.

Technically speaking, one should first establish an open set U ⊆ C (e.g., ∆(0, 10))

and corresponding compact subset X (e.g., ∆(0, 9)) to satisfy the NIFS condition
that each function map U into X. And then afterwards use Lemma 2.2 to replace
X by the forward invariant interval [0, 1] without altering the limit set J . However,
in later examples we forgo such details leaving it for the reader to quickly check
that such a procedure can be validly executed.

We now show 1
3 ∈ J \πΦ(I∞). Since, for each n ∈ N, we have 1

3 ∈ [en,
1
3 ] = [en,

1
3n +

en] = fn ◦ fn−1
1 (X) ⊆ Xn, we see 1

3 ∈ J . However, for each ω ∈ I∞ there must be

some fn ∈ Φ(1) such that {πΦ(ω)} = ∩∞k=1fn◦f
k−1
1 (X) = ∩∞k=1[en,

1
3k +en] = {en} 6=

{ 1
3}. Hence πΦ(I∞) = {en : n ∈ N}, and so πΦ(I∞) 6= J = {en : n ∈ N} ∪ {1/3},

where the equality follows from Lemma 2.1.

Example 2.2 (J depends on X). Let X = [−1, 1] and X̃ = [0, 1]. For each n ∈
N, set zn = 1

2n−1 > 0 and fn(z) = 1
2 (z − zn) + zn. Clearly, each of X and X̃

is forward invariant under each contraction fn. We consider the (autonomous)

system generated where each Φ(k) = {fn : n ∈ N}. Considering X̃k given as in

Lemma 2.2, it is clear that 0 6∈ X̃1 since, for all n, we see 0 /∈ [ zn2 ,
1+zn

2 ] = fn(X̃).

However, for all n ∈ N, since the n-th iterate fnn (z) = 1
2n (z − zn) + zn, we see

0 ∈ [0, fnn (1)] = [fnn (−1), fnn (1)] = fnn (X) ⊆ Xn. Hence 0 ∈ ∩∞n=1Xn \ ∩∞n=1X̃n,
showing that J does depend on the choice of forward invariant non-empty compact
set X (something which cannot happen in the NIFS systems studied in [12] where,
as noted, J = πΦ(I∞) must hold).

Remark 2.2 (Invariance Condition). Note that for any j ≥ 1 and k ≥ 0, we unpack

the relevant definitions (defining each X
(j)
0 = X) to see the following invariance

condition

(2.1)
⋃
i∈I(j)

ϕ
(j)
i (X

(j+1)
k ) = X

(j)
k+1,

which is illustrated in Figure 1 as a way of relating the diagonally adjacent sets

X
(j)
k+1 and X

(j+1)
k .

Remark 2.3. Letting k →∞ in the invariance condition (2.1) leads one to wonder if

we must always have
⋃
i∈I(j) ϕ

(j)
i (J (j+1)) = J (j). While this is not true in general,



UNIFORMLY PERFECT AND HNUP NON-AUTONOMOUS ATTRACTORS 9

we do always get the inclusion⋃
i∈I(j)

ϕ
(j)
i (J (j+1)) =

⋃
i∈I(j)

ϕ
(j)
i (

∞⋂
k=1

X
(j+1)
k ) ⊆

⋃
i∈I(j)

∞⋂
k=1

ϕ
(j)
i (X

(j+1)
k )

⊆
∞⋂
k=1

⋃
i∈I(j)

ϕ
(j)
i (X

(j+1)
k ) =

∞⋂
k=1

X
(j)
k+1 = J (j).

Now consider Example 2.1 to see that equality above does not follow. Since J (2) =

{0},
⋃
i∈I(1) ϕ

(1)
i (J (2)) = {en : n ∈ N} 6= {en : n ∈ N} ∪ { 1

3} = J (1). Additionally,⋃
i∈I(1) ϕ

(1)
i

(
J (2)

)
6= J (1).

Additional hypotheses, however, lead to the following result.

Lemma 2.3. Let Φ be a NIFS on (U,X) and let j ∈ N. When Φ(j) is finite, we
have ⋃

i∈I(j)
ϕ

(j)
i

(
J (j+1)

)
= J (j).

Hence, when Φ(j) is finite and J (j+1) is compact (e.g., when all Φ(k), for k ≥ j, are

finite), we see that
⋃
i∈I(j) ϕ

(j)
i

(
J (j+1)

)
= J (j).

Proof. To prove the first statement it suffices to consider j = 1. Letting I∞1 =∏∞
k=1 I

(k) and I∞2 =
∏∞
k=2 I

(k), we define the respective projection maps π1 : I∞1 →
J (1) and π2 : I∞2 → J (2). We first note that⋃

i∈I(1)
ϕ

(1)
i (π2(I∞2 )) = π1(I∞1 ),

since⋃
i∈I(1)

ϕ
(1)
i (π2(I∞2 )) =

⋃
i∈I(1)

ϕ
(1)
i (

⋃
ω∈I∞2

{π2(ω)}) =
⋃
i∈I(1)

ϕ
(1)
i (

⋃
ω∈I∞2

∞⋂
n=2

ϕω2···ωn
(X))

=
⋃
i∈I(1)

⋃
ω∈I∞2

ϕ
(1)
i (

∞⋂
n=2

ϕω2···ωn
(X))

=
⋃
i∈I(1)

⋃
ω∈I∞2

∞⋂
n=2

ϕ
(1)
i (ϕω2···ωn(X))

=
⋃
i∈I(1)

⋃
ω∈I∞2

∞⋂
n=1

ϕi·ω2···ωn(X) =
⋃

ω∗∈I∞1

{π1(ω∗)} = π1(I∞1 ),

where Lemma 4.5 was used with regard to ϕ
(1)
i and the decreasing compact sets

ϕω2···ωn(X).

Then, using Lemma 2.1, we see

J (1) = π1(I∞1 ) =
⋃
i∈I(1)

ϕ
(1)
i (π2(I∞2 )) =

⋃
i∈I(1)

ϕ
(1)
i (π2(I∞2 ))

=
⋃
i∈I(1)

ϕ
(1)
i

(
π2(I∞2 )

)
=
⋃
i∈I(1)

ϕ
(1)
i

(
J (2)

)
,
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Figure 1. Table illustrating Example 2.3 with a1 = 1
3 , a2 = 1

4 ,

and a3 = 1
5 . Note that sets in each column decrease down to the

corresponding limit set, i.e., for each j ∈ N we have ∩∞k=1X
(j)
k =

J (j). Also, note that diagonally adjacent sets X
(j)
k+1 and X

(j+1)
k are

related by the invariance condition (2.1) in Remark 2.2.

where we used the facts that the union is finite, each ϕ
(1)
i is continuous, and the set

π2(I∞2 ) is compact.

The final statement of the lemma follows since, if Φ(j) is finite and J (j+1) is compact,

then J (j) ⊆ J (j) =
⋃
i∈I(j) ϕ

(j)
i

(
J (j+1)

)
=
⋃
i∈I(j) ϕ

(j)
i

(
J (j+1)

)
⊆ J (j), where the

last inclusion is justified by Remark 2.3. �

Example 2.3. Let X = [0, 1] denote the closed unit interval. Consider a sequence

(aj) such that each 0 < aj ≤ 1/3, and define maps ϕ
(j)
1 (z) = ajz and ϕ

(j)
2 (z) =

aj(z − 1) + 1. Then the families of maps Φ(j) = {ϕ(j)
1 , ϕ

(j)
2 } define an NIFS. See

Figure 1.

Remark 2.4 (Combining Stages). It will be useful later to analyze a limit set of
some NIFS Φ by first combining stages. Here we present what this means, in
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particular, showing that this does not alter the limit set. First, for families of maps
Γ1,Γ2, . . . ,Γn, we define Γ1 ◦ Γ2 ◦ · · · ◦ Γn to be {f1 ◦ f2 ◦ · · · ◦ fn : fi ∈ Γi}.

Given an NIFS Φ(1),Φ(2),Φ(3), . . . on some (U,X), we can create a new NIFS
by combining finite strings of stages as follows. Consider any strictly increasing

sequence (kn)∞n=1 of positive integers and define a new NIFS Φ̃ by Φ̃(1) = Φ(1) ◦ · · · ◦
Φ(k1), Φ̃(2) = Φ(k1+1) ◦ · · · ◦Φ(k2), and, in general for n > 1, Φ̃(n) = Φ(kn−1+1) ◦ · · · ◦
Φ(kn).

Notice that Φ̃ inherits all the defining properties of an NIFS from Φ. Furthermore,

J(Φ̃) =
⋂∞
n=1Xkn =

⋂∞
k=1Xk = J(Φ), since the sets Xk are decreasing.

3. Review of Autonomous Attractors

In this section we review known results for autonomous attractors and relate them
to the main results for non-autonomous attractors stated in Theorems 1.1 and 1.2.

The system Φ in Definition 1.1 is called autonomous (and thus just called an IFS)
if I(j) and Φ(j) are independent of j, i.e., each Φ(j) = {gi : i ∈ I} for some index
set I. In such an instance we use the notation A for the attractor instead of J in
order to give a notational reminder that we are in a very special (and previously
well-studied) case. For such an autonomous system, we let G = 〈gi : i ∈ I〉 denote
the set of all finite compositions of generating maps {gi : i ∈ I}, and, following [15],
simply say G = 〈gi : i ∈ I〉 is an IFS on (U,X).

Claim 3.1. When Φ is autonomous, the attractor set A = J given in Defini-
tion 1.4 satisfies A ⊇ A′ and A = A′, the closure of A′ in the Euclidean topology
(equivalently given by the metric d), where A′ = A′(G) := {z : there exists g ∈
G such that g(z) = z} is the set of (attracting) fixed points of G.

Note that in [15] the attractor set was defined to be A′ and not defined in terms
of Xk as in Definition 1.4. This claim, however, shows that the closures of the sets
given by the two definitions yield the same set.

Proof. Let z ∈ A′. Since the system is autonomous, there exist some k ∈ N and
ω ∈ Ik such that φω(z) = z. Clearly then for each n we see that z ∈ φnω(X) ∈ Xkn,
where φnω denotes the nth iterate of φω (note that the autonomous condition is used
here). Hence z ∈ ∩∞n=1Xkn = ∩∞k=1Xk = J = A. Thus A′ ⊆ A, and so A′ ⊆ A.

The reverse inclusion follows from Lemma 2.1. �

If each Φ(j) = {g1, . . . , gN}, a situation we call the finite autonomous case, then the
attractor A is the unique non-empty compact subset of U that has the self-similarity
property given by

(3.1) A =

N⋃
i=1

gi(A)

(see [6], p. 724). We note that in this finite autonomous case, the sets X
(j)
k , and J (j)

are all independent of j (in Example 2.3 illustrated in Figure 1 this would amount
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to sets across rows being identical because a1 = a2 = a3 = . . . ). Furthermore, the
invariance shown in Remark 2.2 then becomes ∪Ni=1gi(Xk) = Xk+1, which by taking
the limit as k →∞ in a suitable space produces (3.1) (see [6] or apply Lemma 2.3).

Remark 3.1. We also point out that in [8, 9] the limit set J of a conformal IFS is
defined a bit differently, but with a clear connection to our definition. See [8, 9] for
a discussion on the Hausdorff dimension, packing dimension, and other properties
of limit sets of their conformal IFS’s.

In [14] certain autonomous conformal attractor sets are shown to be uniformly
perfect, when the generating maps are Möbius. Then in [15] a collection of results
regarding uniform perfectness are given for autonomous analytic attractor sets. The
motivation for the current paper is to explore to what degree, if any, these results
generalize to the non-autonomous case. Hence we first state the major results
from [15].

Theorem A (Corollary 1.1 in [15]). Let G = 〈gi : i ∈ I〉 be an analytic IFS on
(U,X) such that there exists η > 0 where |g′i| ≥ η on A for all i ∈ I. If A has
infinitely many points, then A is uniformly perfect.

Theorem B (Corollary 1.2 in [15]). Let G = 〈gi : i ∈ I〉 be a conformal IFS on
(U,X) such that there exist η > 0 where |g′i| ≥ η on A for all i ∈ I. If A contains
more than one point, then A is uniformly perfect.

Theorem C (Corollary 1.3 in [15]). Let G = 〈g1, . . . , gN 〉 be a conformal IFS on
(U,X). If A contains more than one point, then A is uniformly perfect.

The proofs of Theorems A-C in [15], which consider only autonomous systems,
heavily rely on the facts (i) A′ ⊆ A, and (ii) A is forward invariant under G, i.e.,
for every a ∈ A and g ∈ G we have g(a) ∈ A (Lemma 2.2 in [15]). The main
complicating features of the non-autonomous systems we wish to consider in this
paper are that these properties do not hold or generalize in a way that allows
for the techniques in [15] to be easily adapted to such more general systems (see
Example 5.2 and Remark 5.2). Here, however, we do prove Theorem 1.1 regarding
conformal NIFS’s and Theorem 1.2 regarding analytic NIFS’s.

Section 5 presents some examples to demonstrate why the possible generalizations
of Theorems A-C do not hold for general NIFS’s, in particular, showing that both
(i) and (ii) can fail.

4. Definitions and basic facts

The main object of interest to this paper is the analytic NIFS. This allows us, via the
next result used similarly in [15], to employ the hyperbolic metric in the definition
of NIFS. In particular, any sequence Φ(1),Φ(2),Φ(3), . . . , such that each Φ(j) is a

collection of non-constant complex analytic functions (ϕ
(j)
i : U → X)i∈I(j) , where

each function maps the non-empty open connected set U ⊂ C into a compact set
X ⊂ U , will automatically be uniformly contracting with respect to the hyperbolic
metric on U . Note that U ⊆ C must support a hyperbolic metric since U cannot
be the plane or punctured plane else the image of U under a non-constant analytic
map would have to be dense in C.
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Lemma 4.1 (Lemma 2.1 of [15]). If the analytic function ϕ maps an open connected
set U ⊂ C into a compact set X ⊂ U , then there exists 0 < s < 1, which depends
on U and X only, such that d(ϕ(z), ϕ(w)) ≤ sd(z, w) for all z, w ∈ X where d is
the hyperbolic metric defined on U .

Remark 4.1. Let Φ be an analytic NIFS on (U,X). Note that, for each x ∈ X,
the hyperbolic disk ∆d(x, 2 · diam(X)) ⊂ U contains X and is connected (being

the continuous image of a connected hyperbolic disk in ∆(0, 1)). Hence, X̃ =⋃
x∈X ∆d(x, 2 · diam(X)) is connected (and compact). Further, since X is forward

invariant under Φ, then so is X̃ since analytic maps cannot increase hyperbolic

distances. We note then that Lemma 2.2 (with the roles of X and X̃ reversed)

allows us to replace X by the connected X̃ without altering J .

We call a doubly connected domain A in C that can be conformally mapped onto a
true (round) annulus Ann(w; r,R) = {z : r < |z − w| < R}, for some 0 < r < R, a
conformal annulus with the modulus of A given by mod A = log(R/r), noting that
R/r is uniquely determined by A (see, e.g., the version of the Riemann mapping
theorem for multiply connected domains in [1]).

Definition 4.1. A conformal annulus A is said to separate a set F ⊂ C if F ∩A = ∅
and F intersects both components of C \A.

Definition 4.2. A compact subset F ⊂ C with two or more points is uniformly
perfect if there exists a uniform upper bound on the modulus of each conformal
annulus which separates F .

Remark 4.2. Because of the following well-known lemma (see, e.g., Theorem 2.1
of [10]), we can equivalently characterize uniformly perfect sets in terms of only
true annuli: A compact subset F ⊂ C with two or more points is uniformly perfect
if there exists a uniform upper bound on the modulus of each true annulus (centered
at a point in F , if we choose) which separates F .

Lemma 4.2. Any conformal annulus A ⊂ C of sufficiently large modulus contains
an essential true annulus B (i.e., B separates the boundary of A) with mod A =

mod B + O(1). Since, for any R > 3r and any w′ ∈ ∆(w, r), the true annulus
Ann(w′; 2r,R − r) is an essential annulus of Ann(w; r,R), we may choose B to be
centered at any given point in the bounded component of C \A.

Remark 4.3. For the case when the conformal annulus A ⊂ C contains infinity the
above lemma can be modified to read as: Any conformal annulus A ⊂ C of suf-
ficiently large modulus contains an essential true annulus B (i.e., B separates the
boundary of A) with mod A = 2mod B + O(1). To see this note that A contains
two disjoint essential conformal annuli A′ and A′′ each with half the modulus of A,
at most one of which, say, A′′ can contain infinity. This can be observed by con-
sidering mapping A conformally onto Ann(0; 1, R), and then taking the preimages

of Ann(0; 1,
√
R) and Ann(0;

√
R,R) inside of A. By applying Lemma 4.2 to A′ we

can obtain our desired result.

Recall that a compact set E ⊂ C is called hereditarily non uniformly perfect (HNUP)
if no subset of E is uniformly perfect. Often a set is shown to be HNUP by showing it
satisfies the following stronger property of pointwise thinness. This is done in several
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examples in [16], and will be done in Example 5.2. Also, certain non-autonomous
Julia sets in [5] and in Theorem 6.1 are shown to be HNUP this way (where it is
worth noting that the Julia sets constructed are limit sets of conformal NIFS’s).

Definition 4.3. A set E ⊂ C is pointwise thin at z ∈ E if there exists a sequence
of conformal annuli An each of which separates E, has z in the bounded component
of its complement, and such that mod An → +∞ while the Euclidean diameter of
An tends to zero. A set E ⊂ C is called pointwise thin when it is pointwise thin at
each of its points.

Note that any pointwise thin compact set is HNUP since none of its points can
lie in a uniformly perfect subset. Also note that if E is pointwise thin, then E is
pointwise thin at each point of E (but not necessarily pointwise thin at each point
of E as the next example illustrates).

Example 4.1 (Closure of pointwise thin is not pointwise thin). The set E = {2−n :
n ∈ N} is trivially pointwise thin, but its closure E is not pointwise thin at 0 since
the reader can check that the modulus of any round annulus separating E and
containing 0 must be bounded by log 2.

Lemma 4.3. Suppose A = Ann(z; r,R), for some z ∈ C and 0 < r < R, is a
true annulus separating J , where J = ∩∞k=1Xk is the attractor of some NIFS Φ.

Fix 0 < δ < R−r
2 . Then the annulus B = Ann(z; r + δ,R − δ) ⊂ A separates

some Xk. Hence, given any 0 < ε < mod A, we can choose δ > 0 such that
mod B = log(R−δr+δ ) = log(Rr )− ε = mod A− ε, where B separates some Xk.

Proof. Since A separates J and B is an essential subannulus of A, both components
of C\B must meet J , and therefore must meet each Xk ⊇ J . We complete the proof
by showing that B ∩Xk = ∅ for some k. Suppose not. Now fix k and choose zk ∈
Xk ∩ B. Hence there exists ω ∈ Ik such that zk ∈ ϕω(X). Since diamd(ϕω(X)) ≤
skdiamd(X) (see Remark 2.1), we have that ϕω(X) ⊆ ∆d(zk, s

kdiamd(X)) ⊂ A for
k sufficiently large (since zk ∈ B ⊂ A and d generates the Euclidean topology on
X). Since ϕω(X) must contain a point of J (see Remark 2.1), we see that A∩J 6= ∅
and thus A does not separate J , which is a contradiction. �

Lemma 4.4. Suppose A = Ann(z; r,R), for some z ∈ C and 0 < r < R, separates
E ⊆ X ⊂ C where diam(X) <∞ and R ≥ 2 · diam(X). Then R

r ≤ 2.

Proof. Since A separates E, there exist x1, x2 ∈ E with |x1−z| ≥ R and |x2−z| ≤ r.
Hence 2 ·diam(X)− r ≤ R− r ≤ |x1−x2| ≤ diam(E) ≤ diam(X), which gives that

diam(X) ≤ r. Again using that R− r ≤ diam(X), we see that R−r
r ≤ diam(X)

r ≤ 1,

which gives R
r ≤ 2 as desired. �

The following is a result that seems to be well understood by many but, since a
reference could not be found, we provide a proof here.

Proposition 4.1. Let f : U → C be non-constant and analytic on open connected
U ⊂ C. Suppose that E ⊂ U is uniformly perfect. Then f(E) is uniformly perfect.
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This result follows from the fact that locally non-constant analytic maps are either
conformal or behave like z 7→ zk for some k ∈ N, which can distort the modulus of
an annulus by at most a factor of k.

Proof. The local behavior of non-constant analytic maps clearly implies that, since
E is perfect, so is f(E). We now suppose towards a contradiction that f(E) is
not uniformly perfect. Hence there exists true annuli An = Ann(wn; rn, Rn) which
separate f(E) with Rn/rn →∞.

By Lemma 4.2, we may assume each wn ∈ f(E). Since f(E) is perfect, it follows
that Rn → 0 (see, e.g., Lemma 2.7 of [15]).

By compactness of both f(E) and E, and passing to a subsequence if necessary, we
may assume there exists w0 ∈ f(E) such that wn → w0 and z0, zn ∈ E such that
zn → z0 with each f(zn) = wn.

Suppose f ′(z0) 6= 0. Thus there exists a local branch h of f−1 defined on some
neighborhood of w0. Hence, the conformal annuli h(An), for large n, must then
separate E, which is a contradiction since E is uniformly perfect and mod h(An) =
mod An →∞.

Now suppose f ′(z0) = 0, and choose k such that f maps z0 to w0 with multiplicity
k > 1. By pre- and post- composing with translations, we may assume z0 = w0 = 0,
and so there exists a conformal map g defined on a neighborhood of 0 such that
gfg−1(z) = zk (see, e.g., Theorem 6.10.1 of [3]). It suffices to consider two cases:
Case(i) Each An surrounds w0 = 0, and Case (ii) No An surrounds w0 = 0.

Case (i): From each conformal annulus g(An) of large modulus (and so for all large
n), we apply Lemma 4.2 to extract an essential true annulus Bn = Ann(0; sn, Sn) ⊆
g(An) of modulus mod Bn = mod An − K, for some fixed K > 0. Since A′n =

Ann(0; s
1/k
n , S

1/k
n ) maps by z 7→ zk onto Bn ⊆ g(An), we must have that each

conformal annulus g−1(A′n) surrounds z0 = 0 and mod g−1(A′n) = mod (A′n) =
1
kmod Bn →∞, which is a contradiction since each g−1(A′n) separates the uniformly
perfect set E.

Case (ii): Again for each conformal annulus g(An) of large modulus (and so
for all large n), we apply Lemma 4.2 to extract an essential true annulus Bn =
Ann(g(wn); sn, Sn) ⊆ g(An) of modulus mod Bn = mod An − K, for some fixed
K > 0. Note that no ∆(g(wn), Sn) contains 0. Hence, the map z 7→ zk has k well-
defined inverse branches on Bn, one of which must map Bn to a conformal annulus
B′n surrounding g(zn). And so, g−1(B′n) is a conformal annulus surrounding zn and
separating E, with modulus mod g−1(B′n) = mod B′n = mod Bn = mod An −K.
This is a contradiction since E is uniformly perfect and mod An →∞. �

The following result can be proven using the style of argument used to prove Propo-
sition 4.1, and so we omit the details.

Proposition 4.2. Let f : U → C be non-constant and analytic on open connected
U ⊂ C. Suppose that compact E ⊂ U is pointwise thin at z ∈ E and z is the only
point of E which maps to f(z). Then f(E) is pointwise thin at f(z) ∈ f(E).
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The following example shows that in the above hypothesis it is critical that z is the
only point of E which maps to f(z).

Example 4.2 (Analytic image of pointwise thin is not pointwise thin). Letting each

xn = 2−n
2

, we set E1 = ∪n≥0[x2n+1, x2n]∪{0} and E2 = ∪n≥0[x2n+2, x2n+1]∪{0}.
By considering the annuli Ann(0;x2n+2, x2n+1), one can show that E1 is pointwise
thin at 0. Similarly, E2 can be shown to be pointwise thin at 0. Note also that
E1∪E2 = [0, 1]. Hence both F1 = E1∩ ({2−n : n ∈ N}∪{0}) and F2 = E2∩ ({2−n :
n ∈ N}∪{0}) are pointwise thin (at each point). Using the principal branch to define
g(z) =

√
z + 1, we see by Proposition 4.2 that g(F1) is pointwise thin. Similarly,

we consider −g(z) = −
√
z + 1 to show that −g(F2) is pointwise thin. Note that g

and −g are branches of the inverse of f(z) = z2 − 1. Letting E = g(F1) ∪ −g(F2),
we then see that E is compact and pointwise thin (and thus pointwise thin at both
1 and −1), but f(E) = F1 ∪ F2 = {2−n : n ∈ N} ∪ {0} is not pointwise thin at
f(1) = f(−1) = 0 (as noted in Example 4.1).

The following result can easily be shown.

Lemma 4.5. Suppose f : X → Y is continuous and compact sets An ⊆ X form a
decreasing sequence. Then f(∩∞n=1An) = ∩∞n=1f(An).

We close this section with a remark that relates to Proposition 4.2.

Remark 4.4. In [13], Shiga discusses the quasiconformal equivalence of Cantor sets
which appear as limits sets of non-autonomous IFSs and Julia sets of rational maps.
Many complex analysts are interested in the complements of various kind of Cantor
sets, since the complements of Cantor sets are good examples of Riemann surfaces
of infinite type.

We note the following:

(a) If a compact set K in the plane is uniformly perfect and a compact set L in the
plane is not uniformly perfect, then there is no quasiconformal map g : C→ C such
that g(K) = L.

(b) It is an open problem whether there are multiple quasiconformal equivalence
classes of pointwise thin limit sets of non-autonomous IFSs.

5. Examples

In this section we provide examples to show that possible generalizations of The-
orems A-C of Section 3 to the non-autonomous case do not hold. Specifically, we
show that none of the following Statements 1-3 hold. Examples to illustrate Theo-
rem 1.1 and Corollary 1.1 are also given, along with an analysis of how these results
generalize Theorem 4.1 of [16].

Statement 1: (Generalization of Theorem A) Let Φ(1),Φ(2), . . . be an analytic
NIFS on (U,X) such that there exists η > 0 with |ϕ′| ≥ η on X for all ϕ ∈ ∪∞j=1Φ(j).
If J has infinitely many points, then J is uniformly perfect.
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Statement 2: (Generalization of Theorem B) Let Φ(1),Φ(2), . . . be a conformal
NIFS on (U,X) such that there exists η > 0 with |ϕ′| ≥ η on X for all ϕ ∈ ∪∞j=1Φ(j).
If J contains more than one point, then J is uniformly perfect.

Statement 3: (Generalization of Theorem C) Let Φ(1),Φ(2), . . . be a conformal
NIFS on (U,X) such that there is a uniform bound on the cardinality of Φ(j). If J
contains more than one point, then J is uniformly perfect.

Example 5.1. Each set Iā in Theorem 4.1 of [16] is a limit set of a NIFS suitably
chosen as follows. Set X = [0, 1], fix m ∈ {2, 3, . . . }, and choose 0 < a ≤ 1

m+1 . Fix

a sequence ā = (a1, a2, . . . ) such that 0 < ak ≤ a for k = 1, 2, . . . . For each k ∈ N,

set Φ(k) to be the collection {ϕ(k)
1 , . . . , ϕ

(k)
m } of linear maps, each with derivative

ak, such that the images ϕ
(k)
1 (X), . . . , ϕ

(k)
m (X) are m equally spaced subintervals

of X with ϕ
(k)
1 (X) = [0, ak] and ϕ

(k)
m (X) = [1 − ak, 1]. Example 2.3, illustrated in

Figure 1, is such an NIFS (with m = 2). Each set Xk then coincides with what [16]
calls Ik, and consists of mk basic intervals. And the limit set J then coincides with
what [16] calls Iā.

Theorem 4.1(1) of [16] shows that J is perfect, but pointwise thin (and thus HNUP)
when lim inf ak = 0. We now show that this also follows from Corollary 1.1. In
order to use this corollary we set U = ∆(1

2 , 0.7) and X = ∆( 1
2 , 0.6), recalling that

Lemma 2.2 shows that J is unchanged by this change of X from [0, 1]. Selecting a
subsequence akn → 0, the reader can quickly check that infn{bkn} > 0, infn{δkn} >
0, and ηkn = akn · diam(X) → 0, and thus Corollary 1.1 applies (since Φ clearly
satisfies the Strong Separation Condition). We also note that when lim inf ak =
0, Corollary 1.1 shows J is pointwise thin even when the strict setup above is

considerably relaxed (e.g., the sets ϕ
(k)
1 ([0, 1]), . . . , ϕ

(k)
m ([0, 1]) do not need to be

equally spaced subintervals of [0, 1]).

Theorem 4.1(2) of [16] shows that J is uniformly perfect when lim inf ak > 0. This
also follows from Theorem 1.1, noting that we may choose η = inf ak > 0 to
satisfy the Derivative Condition and choose δ = 1 − 2a to satisfy the Two Point

Separation Condition (even when lim inf ak = 0) since the images ϕ
(k)
1 (X) and

ϕ
(k)
m (X) are always a distance 1−2ak apart. We also note that when lim inf ak > 0,

Theorem 1.1 shows J is uniformly perfect even when the strict setup above is

considerably relaxed. For example, the sets ϕ
(k)
1 (X), . . . , ϕ

(k)
m (X) do not need to be

equally spaced subintervals of X. In fact, these sets could even overlap, as long as
the Two Point Separation Condition is met (and lim inf ak > 0), and J would still
be uniformly perfect.

Remark 5.1. Note that Example 2.3, with each aj = 1
j+2 , shows that Statement 3

does not hold since J would then be perfect but also be HNUP. It also illustrates
that the Derivative Condition in Theorem 1.1 is critical, even when all the other
conditions are met.

Example 5.2. Again, let X = [0, 1]. Set f1(z) = z
3 , f2(z) = z+2

3 and f3(z) =
1
3 (z − 1

2 ) + 1
2 . We fix a sequence of postive integers (lj), and then create Φ

by choosing Φ(1) = {f1, f2},Φ(2) = Φ(3) = · · · = Φ(1+l1) = {f3},Φ(1+l1+1) =
{f1, f2},Φ(1+l1+2) = Φ(1+l1+3) = · · · = Φ(1+l1+1+l2) = {f3}, etc. Hence, defining
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Figure 2. Table illustrating Φ̃ in Example 5.2, where l1 = 1 and
l2 = 2.

L0 = 0 and Ln =
∑n
j=1(1+ lj), we have, for each n = 0, 1, 2, . . . , Φ(Ln+1) = {f1, f2}

and Φ(Ln+i) = {f3} for 2 ≤ i ≤ 1 + ln+1.

We prove the following dichotomy.

Claim: We have that sup lj = +∞ implies J is perfect but pointwise thin (and
thus HNUP), whereas sup lj < +∞ implies J is uniformly perfect.

We now consider a related NIFS Φ̃ such that J(Φ̃) = J(Φ) by combining stages of

consecutive Φ(j) which equal {f3} (see Remark 2.4). Specifically, we have Φ̃(1) =

Φ(1) = {f1, f2}, Φ̃(2) = Φ(2) ◦ Φ(3) ◦ · · · ◦ Φ(l1+1) = {f l13 }, Φ̃(3) = Φ(1+l1+1) =

{f1, f2}, Φ̃(4) = {f l23 }, . . . , noting each iterate f ln3 (z) = 1
3ln

(z − 1
2 ) + 1

2 . More

succinctly we have for each n ∈ N, Φ̃(2n−1) = {f1, f2} and Φ̃(2n) = {f ln3 }. We now

replace Φ by Φ̃, hence the X
(j)
n and Ij below formally are constructed in reference

to Φ̃ (see Figure 2).

We now suppose sup lj < +∞ and prove J is uniformly perfect. Again we combine
stages, this time doing so in order to utilize Theorem 1.1. Create NIFS Ψ with

J(Ψ) = J(Φ̃) = J(Φ) by stipulating that, for each k ∈ N, Ψ(k) = Φ̃(2k−1) ◦ Φ̃(2k) =

{f1◦f lk3 , f2◦f lk3 }. Since the images f1◦f lk3 (X) ⊆ f1(X) = [0, 1/3] and f2◦f lk3 (X) ⊆
f2(X) = [2/3, 1] are always separated by δ = 1/3, we see that the Two Point
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Separation Condition (with respect to Ψ) is met. Further the Derivative Condition
(with respect to Ψ) is also met (when sup lj < +∞, but not when sup lj = +∞)

since each map in Ψ(k) is linear with derivative 1
3lk+1 . From Theorem 1.1 it then

follows that J(Ψ) is uniformly perfect.

We now suppose that sup lj = +∞ in order to show J(Φ) = J(Ψ) is perfect but
pointwise thin. Perfectness follows from the fact that the diameter of each compo-

nent of X
(1)
2n shrinks to zero as n → ∞ and each component of X

(1)
2n contains two

components of X
(1)
2n+2. Now note that we may take Ψ to be an NIFS on (U, X̃)

with U = ∆( 1
2 , 0.7) and X̃ = ∆( 1

2 , 0.6) Select a subsequence lkn → ∞. Since the

images f1 ◦ f lk3 (X̃) ⊆ f1(X̃) ⊂ Int(X̃) and f2 ◦ f lk3 (X̃) ⊆ f2(X̃) ⊂ Int(X̃), the
reader can quickly check that Ψ clearly satisfies the Strong Separation Condition

and infn{bkn} > 0, infn{δkn} > 0, and ηkn = diam(X̃)

3
lkn

+1 → 0 (since each map in Ψ(kn)

is linear with derivative 1

3
lkn

+1 ). Hence, Corollary 1.1 applies to show J(Φ) = J(Ψ)

is pointwise thin.

Remark 5.2. Example 5.2 shows that (when sup lj = +∞) J(Φ) can be perfect yet

fail to be uniformly perfect even when Φ (but not the modified NIFS Φ̃) satisfies
both the Derivative Condition and Möbius Condition of Theorem 1.1. This example
shows that the Two Point Separation Condition in Theorem 1.1 is critical, and also
shows that none of the above Statements 1-3 hold. We also note that J ′ = {z :
φω(z) = z for some ω in some Ik} is not a subset of J (e.g., 0 is a fixed point of
f1 but is not in J). Hence, also J is not forward invariant under the maps φω
for ω ∈ Ik. Compared with statements (i) and (ii) as given for autonomous IFSs
near the end of Section 3, we note that the non-autonomous situation is far more
delicate.

6. Applications to Non-Autonomous Julia Sets

Given a sequence of complex polynomials (Pj), define its Fatou set F = F((Pj)) by

F = {z ∈ C : {Pn ◦· · ·◦P2 ◦P1}∞n=1 is a normal family on some neighborhood of z}

where we take our neighborhoods with respect to the spherical topology on C. We
then define the Julia set J = J ((Pj)) to be the complement C \ F .

Theorem 6.1. Let f be a polynomial on C of degree at least 2. Suppose f has no
critical values in the closed unit disk D and that f−1(D) ⊂ D. Fixing a sequence
aj ∈ C with each |aj | > 1, we define polynomials Pj(z) = ajf(z). Then

(1) J ((Pj)) is uniformly perfect if and only if lim sup |aj | <∞, and
(2) J ((Pj)) is pointwise thin (and HNUP) if and only if lim sup |aj | =∞.

Remark 6.1. For a, c ∈ C with |c| > 1 and |a|−|c| > 1, one may choose f(z) = az2+c
in the above theorem. Note then that |z| ≥ 1 implies |f(z)| = |az2+c| ≥ |a|−|c| > 1,
i.e., f(C \ D) ⊆ C \ D, which gives that f−1(D) ⊂ D. Also, clearly the sole critical
value of f is c /∈ D. Hence applying the above theorem with such an f and a suitable
sequence (aj) with lim sup |aj | =∞, we can create a simple sequence of polynomials
with pointwise thin (and thus HNUP) Julia set without the complicated arguments
presented in [5].
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Proof. (1) The Julia set of a bounded sequence of polynomials is known to be
uniformly perfect (see Theorem 1.21 of [18]).

(2) Suppose lim sup |aj | = ∞, and choose a subsequence ajn such that |ajn | → ∞.
We complete the proof by showing J ((Pj)) is pointwise thin and compact. Calling
d the degree of f , we note that f has d well defined inverse branches f1, . . . , fd,
on some open connected set U = ∆(0, 1 + ε) ⊃ D since all critical values of f lie
outside of D. Furthermore, we note that we may choose U such that f−1(U) ⊂ D.

Hence, each Pj has d well defined inverse branches on U given by ϕ
(j)
i (z) = fi(

z
aj

)

for i = 1, . . . , d.

For each j ∈ N, let Φ(j) = {ϕ(j)
1 , . . . , ϕ

(j)
d } and note that these families form an

NIFS Φ on (U,X) where X = D. For each j, note that ϕ
(j)
i (X) = fi(∆(0, 1

|aj | )) ⊂
fi(X) ⊂ Int(X) for i = 1, . . . , d. Hence, Φ satisfies the Strong Separation Condition
and, using the notation of Corollary 1.1, we also see that for each n ∈ N,

bjn ≥ b0 := min{dist(fi(X), ∂X) : i ∈ {1, . . . , d}} > 0,

δjn ≥ δ0 := min{dist(fa(X), fb(X)) : a, b ∈ {1, . . . , d} with a 6= b} > 0

and

ηjn = max{diam(ϕ
(jn)
i (X)) : i ∈ {1, . . . , d}}

= max{diam(fi(∆(0,
1

|ajn |
))) : i ∈ {1, . . . , d}} → 0.

Since inf{bjn} > 0, Corollary 1.1 yields that J(Φ) is pointwise thin since
δjn
ηjn
≥

δ0
ηjn
→∞. Further, we note that J(Φ) is compact since each I(j) is finite.

The result then follows by showing that J ((Pj)) = J(Φ). Note that J(Φ) = {z ∈
C : Pj ◦ · · · ◦P1(z) ∈ D for each j}. Also note that C \D is forward invariant under
each Pj , and so it follows from Montel’s Theorem that C \ J(Φ) ⊆ F((Pj)), i.e.,
J ((Pj)) ⊆ J(Φ). Since J(Φ) is pointwise thin, it is clear that J(Φ) has no interior.
This implies that any z ∈ J(Φ), which necessarily has as its orbit contained in the
compact subset f1(X)∪ · · · ∪ fd(X) of D, must be arbitrarily close to points whose
orbits escape D. Hence, J(Φ) ⊆ J ((Pj)). �

Corollary 6.1. Let f be a polynomial on C of degree at least 2. Suppose f has no
critical values in D and that f−1(D) ⊂ D. Let τ be a probability measure on C \ D
with unbounded support. Then for almost all sequences (aj) ∈

∏∞
j=1(C \ D) with

respect to τ̃ =
⊗∞

j=1 τ , the maps Pj = aj · f define a sequence of polynomials whose

Julia set J ((Pj)) is pointwise thin.

Proof. For N ∈ N, set BN = {(aj) : |aj | ≤ N for all j} and note that since τ has
unbounded support, τ̃(BN ) = 0 by the law of large numbers. Hence, τ̃(∪N∈NBN ) =
0, i.e., the set of bounded sequences has τ̃ -measure zero. The result then follows
from Theorem 6.1. �
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7. Proof of the Main Theorems

In this section we first prove Theorems 1.1 and 1.2 regarding uniform perfectness,
and then prove Theorem 1.3, Corollary 1.1, and Theorem 1.4 regarding pointwise
thinness.

We begin by proving a crucial lemma that will be key in providing a uniform Lips-
chitz constant for certain locally defined inverse maps.

Lemma 7.1. Let F be a collection of analytic functions mapping non-empty open
set U ⊂ C into compact set X ⊂ U such that there exists η > 0 where for all f ∈ F
we have |f ′| ≥ η on X. Then there exists r0 > 0 such that for every f ∈ F and
x ∈ X, we have |g′| ≤ 2

η on ∆(f(x), r0) where g is the local branch of the inverse

of f such that g(f(x)) = x.

Note that this lemma does not require the maps f ∈ F to be Möbius, or even
globally conformal on U .

Proof. First note that by compactness, there exists r > 0 such that for all x ∈ X
we have ∆(x, r) ⊆ U . Applying Lemma 2.3 of [15], where M > 0 is taken large
enough so that X ⊂ ∆(0,M), we see that for some ρ > 0 each f ∈ F is one-to-one
on ∆(x, ρ) for every x ∈ X. (Note that ρ is independent of f ∈ F and x ∈ X.) By
the Koebe distortion theorem (see, e.g., Theorem 1.6 of [4]), there exists 0 < r1 < ρ
such that for every f ∈ F and x ∈ X, we have |f ′| ≥ η

2 on ∆(x, r1). By the Koebe
1/4 Theorem, for each x ∈ X we then see that f(∆(x, r1)) ⊇ ∆(f(x), r1η4 ). Hence,

calling r0 = r1η
4 we have that a branch g of f−1 is defined on ∆(f(x), r0) such that

g(f(x)) = x and has |g′| ≤ 2
η there. �

Remark 7.1. Under the hypotheses of Theorem 1.1, the Derivative Condition along
with the distortion theorems used in the proof of the above lemma yield that
inf{diam(ϕ(X)) : ϕ ∈ ∪j∈NΦ(j)} > 0. To see this, choose x0 ∈ X and r > 0
such that ∆(x0, r) ⊂ X (note that X must have interior since it contains the open
sets ϕ(U) for all ϕ ∈ ∪j∈NΦ(j)). Fixing r < ρ from the above proof, we see that by

the Koebe 1/4 Theorem, ϕ(X) ⊇ ϕ(∆(x0, r)) ⊇ ∆(ϕ(x0), rη4 ) for all ϕ ∈ ∪j∈NΦ(j),
which justifies the claim.

Proof of Theorem 1.1. We begin by replacing X, if it is not connected, by the con-

nected X̃ ⊂ U as in Remark 4.1, noting that the hypotheses are still met. Indeed,
the Möbius and Two Point Separation Conditions are clearly still satisfied with

respect to X̃ ⊃ X. The Derivative Condition also still holds with respect to X̃ ⊃ X
though not as trivially. We show this by contradiction. Assume ϕ′n(zn) → 0 as

n → ∞ where each zn ∈ X̃ and each ϕn ∈ ∪j∈NΦ(j). By compactness we may

suppose zn → z0 ∈ X̃. Since by Montel’s Theorem, the family ∪j∈NΦ(j) is normal
on U , we may suppose ϕn converges normally on U to some map ϕ. Hence, we
must have ϕ′(z0) = 0. Since each map in ∪j∈NΦ(j) is Möbius, and thus one-to-one
on U , we see by Hurwitz’s Theorem that ϕ must be constant. This implies that for
any x ∈ X, we must have ϕ′n(x) → ϕ′(x) = 0, but this contradicts the Derivative
Condition on X which gives that each |ϕ′n(x)| ≥ η.
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It suffices to prove J (1) is uniformly perfect since clearly each sub-NIFS of Φ which
generates J (j) must also satisfy conditions (i)-(iii). First note that by Remark 1.2
we see that diam(J (1)) ≥ δ and so J = J (1) has more than one point. Recalling
Remark 4.2 and Remark 4.3, we consider a true annulus A1 which separates J
and which has modulus large enough so that any conformal annulus B ⊂ C with
mod B ≥ mod A1−1 contains an essential true annulus B′ ⊂ B such that mod B′ =
1
3mod B. Since the true annulus A1 must also separate J = ∩∞k=1Xk, we apply
Lemma 4.3 to obtain a true annulus A ⊂ A1 which separates some Xk0 and has
mod A = mod A1−1. We complete the proof by showing that there exists an upper
bound on mod A.

Recall the superscript notation of Section 1, in particular, that X
(1)
k0

= Xk0 . By the

invariance condition (2.1) in Remark 2.2, we have
⋃
i∈I(1) ϕ

(1)
i (X

(2)
k0−1) = X

(1)
k0
, and

so there must be some ϕ
(1)
i1
∈ Φ(1) such that A surrounds some point of ϕ

(1)
i1

(X
(2)
k0−1)

(i.e., the bounded component of C \ A contains a point of ϕ
(1)
i1

(X
(2)
k0−1)). Since

A separates X
(1)
k0

, we must have one of two cases: Case (I) A surrounds all of

ϕ
(1)
i1

(X
(2)
k0−1), or Case (II) A separates ϕ

(1)
i1

(X
(2)
k0−1). See Figure 3.
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Figure 3. Illustration of the proof of Theorem 1.1 using the sys-

tem of Example 2.3. Note that A and A2 = (ϕ
(1)
2 )−1(A) are both

of Case (II) type, whereas A′ is of Case (II) type, but (ϕ
(1)
1 )−1(A′)

is of Case (I) type.
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Case (I): Write A = Ann(z; r,R) and suppose it surrounds all of ϕ
(1)
i1

(X
(2)
k0−1).

Hence (ϕ
(1)
i1

)−1(∆(z, r)) ⊇ X(2)
k0−1 ⊇ J (2), which by the Two Point Separation Con-

dition (see Remark 1.2) gives that diam
(

(ϕ
(1)
i1

)−1(∆(z, r))
)
≥ δ.

From Lemma 4.4 it follows that we only need to consider cases where R < 2 ·
diam(X). We now establish an upper bound for mod A = log(R/r) by finding a
positive lower bound for r.

Notice that due to the Derivative Condition and Lemma 7.1, there exists r0 > 0
such that for any x ∈ X and ϕ ∈ ∪j∈NΦ(j), we have |(ϕ−1)′| ≤ 2

η on ∆(ϕ(x), r0).

We now suppose r < min{ δη4 ,
r0
2 }, from which we derive a contradiction, thus

producing a lower bound for r and completing the proof for Case (I). Since ∆(z, r)

meets ϕ
(1)
i1

(X
(2)
k0−1), we may choose x0 ∈ X(2)

k0−1 ⊆ X such that ϕ
(1)
i1

(x0) ∈ ∆(z, r) ⊂

∆(ϕ
(1)
i1

(x0), 2r) ⊂ ∆(ϕ
(1)
i1

(x0), r0). Since

∣∣∣∣((ϕ
(1)
i1

)−1
)′∣∣∣∣ ≤ 2

η on ∆(ϕ
(1)
i1

(x0), r0) which

contains the convex set ∆(z, r), we see that diam
(

(ϕ
(1)
i1

)−1(∆(z, r))
)
≤ 4r

η < δ,

which is a contradiction.

Case (II): Suppose A separates ϕ
(1)
i1

(X
(2)
k0−1). Hence, the conformal annulus A2 =

(ϕ
(1)
i1

)−1(A) must separate X
(2)
k0−1 and must have mod A2 = mod A. In terms of

Figure 3, we have constructed an annulus A2 which separates X
(2)
k0−1 in the picture

diagonally up and right of the picture of X
(1)
k0

. Note, however, that A2 will contain

∞ when ϕ
(1)
i1

(∞) ∈ A, and so we must allow for this possibility.

Hence we may repeat our process as follows. Since A2 separates the set X
(2)
k0−1 =⋃

i∈I(2) ϕ
(2)
i (X

(3)
k0−2), we must have at least one of two cases: Case (I’) one component

of C\A2 contains some ϕ
(2)
i2

(X
(3)
k0−2) while the other component contains some other

ϕ
(2)
i′2

(X
(3)
k0−2), or Case (II’) A2 separates some ϕ

(2)
i2

(X
(3)
k0−2). If Case (I’) holds, extract

an essential true annulus A′2 ⊂ A2 with mod A′2 = 1
3mod A2 = 1

3mod A, which

must surround all of either ϕ
(2)
i2

(X
(3)
k0−2) or ϕ

(2)
i′2

(X
(3)
k0−2), and then bound mod A′2

as in Case (I) above. If Case (II’) holds, we repeat the process of Case (II) above,
noting that we do not need to first extract a true annulus from A2.

This process must then end by eventually applying the method of Case (I), or by
eventually producing (after k0 steps) an annulus Ak0 , with the same modulus as of

A, which separates X
(k0)
1 . The proof is thus concluded by showing that such a mod-

ulus is uniformly bounded independent of the choice of k0. First, extract an essential
true annulus A′k0 = Ann(z′; r′, R′) ⊂ Ak0 with mod A′k0 = 1

3mod Ak0 = 1
3mod A,

which necessarily separates X
(k0)
1 . Again by Lemma 4.4, it is then clear that we

only need to produce a lower bound for r′. This follows easily from Remark 7.1
by noting that ∆(z′, r′) would need to contain the connected set ϕ(X) for some
ϕ ∈ Φ(k0).
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Examination of the above proof shows that mod A1 is bounded above by a constant
which depends only on δ and η. �

Note that the step of extracting a true annulus of one-third the modulus is done
only at most once in the above proof.

Proof of Theorem 1.2. By Proposition 4.1, for each ϕ ∈ Φ̃(1) the set φ
(
J (n)

)
is

uniformly perfect. Lemma 2.3 gives that J (1) =
⋃
ϕ∈Φ̃(1) ϕ

(
J (n)

)
, and the result

follows since the finite union of uniformly perfect sets is uniformly perfect. �

We now prove the Theorem 1.3, Corollary 1.1, and Theorem 1.4 regarding pointwise
thinness.

Proof of Theorem 1.3. Note that since the NIFS Φ is conformal and both the annu-
lus Ajn and its bounded complementary component lie inside X ⊂ U , we see that

πΦ(ω) ∈ ϕω1···ωjn−1
(ϕ

(jn)
mn (X)) (see Remark 2.1) is surrounded by the conformal

annulus A′jn = ϕω1···ωjn−1
(Ajn), which separates ϕω1···ωjn−1

(X
(jn)
1 ) ⊆ X

(1)
jn

. See

Figure 4. We claim that A′jn ∩X
(1)
jn

= ∅, from which it follows that A′jn separates

X
(1)
jn

, and thus separates J . Since mod Aj′n = mod Ajn →∞ with diam(A′jn)→ 0,

we see that J is pointwise thin at πΦ(ω).

To prove the claim, suppose towards a contradiction that A′jn meets

X
(1)
jn

=
⋃

ω∗∈Ijn
ϕω∗(X) =

⋃
ω∗1 ···ω∗jn−1∈Ijn−1

⋃
ω∗jn∈I

(jn)

ϕω∗1 ···ω∗jn−1
(ϕω∗jn (X))

=
⋃

ω∗1 ···ω∗jn−1∈Ijn−1

ϕω∗1 ···ω∗jn−1
(X

(jn)
1 ).

Hence, A′jn meets ϕω∗1 ···ω∗jn−1
(X

(jn)
1 ) for some ω∗1 · · ·ω∗jn−1 ∈ Ijn−1. Note that

ω∗1 · · ·ω∗jn−1 6= ω1 · · ·ωjn−1 since A′jn separates ϕω1···ωjn−1
(X

(jn)
1 ). However, since

X
(jn)
1 ⊆ X, Ajn ⊆ X, and ϕω∗1 ···ω∗jn−1

(X) ∩ ϕω1···ωjn−1
(X) = ∅ by the strong

separation condition (see the discussion preceding Definition 1.3), we see that

ϕω∗1 ···ω∗jn−1
(X

(jn)
1 ) cannot meet A′jn = ϕω1···ωjn−1(Ajn), which is a contradiction. �

Proof of Corollary 1.1. Pick an arbitrary ω ∈ I∞. For each n, choose some zn ∈
ϕ

(jn)
ωjn

(X), and define Ajn = Ann(zn; ηjn ,
δjn
c ), which by definition of ηjn must sur-

round ϕ
(jn)
ωjn

(X). Hence by definition of δjn , the annulus Ajn must separate X
(jn)
1 .

Lastly, since
δjn
c ≤ bjn ≤ dist(ϕ

(jn)
ωjn

(X), ∂X), we see that ∆(zn,
δjn
c ) ⊆ X. Thus

by Theorem 1.1, noting that mod Ajn = log
δjn
cηjn

→ ∞, we see that J is pointwise

thin at πΦ(ω). The proof is then complete by noting J = πΦ(I∞) since Φ satis-
fies the Strong Separation Condition (as mentioned just before the statement of
Lemma 2.1). �
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Figure 4. Table illustrating the proof of Theorem 1.1 using the
system of Example 2.3.

Proof of Theorem 1.4. Consider the analytic NIFS Φ̃ given by Φ̃(1) = Φ(1) ◦ · · · ◦
Φ(n−1) and Φ̃(j) = Φ(j+n−2) for each j > 1. Hence, by Remark 2.4, we see that

J(Φ) = J(Φ̃). By Proposition 4.2, for each ϕ ∈ Φ̃(1) the set φ
(
J (n)

)
is pointwise

thin. Lemma 2.3 gives that J (1) =
⋃
ϕ∈Φ̃(1) ϕ

(
J (n)

)
, and the result follows since

the finite disjoint union of compact pointwise thin sets is pointwise thin. �

Acknowledgments

This work was partially supported by a grant from the Simons Foundation (#318239
to Rich Stankewitz). The last author was partially supported by JSPS Kakenhi
19H01790.



26 MARK COMERFORD, KURT FALK, RICH STANKEWITZ, AND HIROKI SUMI

References

[1] Lars V. Ahlfors. Conformal invariants: topics in geometric function theory. McGraw-Hill

Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathe-
matics.

[2] A. F. Beardon and Ch. Pommerenke. The Poincaré metric of plane domains. J. London Math.
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