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DENSITY OF REPELLING FIXED POINTS IN THE JULIA SET

OF A RATIONAL OR ENTIRE SEMIGROUP, II

RICH STANKEWITZ

Abstract. In [13] there is a survey of several methods of proof that the Julia

set of a rational or entire function is the closure of the repelling cycles, along
with a discussion of which of those methods can and cannot be extended to
the case of semigroups. In particular that paper presents an elementary proof
based on the ideas of [11] that the Julia set of either a non-elementary rational

or entire semigroup is the closure of the set of repelling fixed points. This
paper serves as a brief follow up to [13] by showing that the ideas of [3] can
also be used to provide an elementary proof for the semigroup case. It also

touches upon some key differences between the dynamics of iteration and the
dynamics of semigroups.

1. Introduction

As stated in the abstract, this paper can be regarded as a follow up to [13],
which was the focus of a lecture given at the Dynamical Systems II conference held
at Denton, TX in 2009. It also relates to the discussions that followed, and so the
author would like to thank the participants for their questions and comments, and
especially thank the organizers for their efforts in hosting the event.

This paper is concerned with the dynamics of semigroups, a natural general-
ization of the study of the dynamics of iteration of a complex analytic map. We
define a rational (respectively, entire) semigroup to be a semigroup generated by
non-constant rational (respectively, entire) maps on the Riemann sphere C (respec-
tively, complex plane C) with the semigroup operation being the composition of
maps. We denote by ⟨hλ : λ ∈ Λ⟩ the semigroup generated by the family of maps
{hλ : λ ∈ Λ}. Thus ⟨hλ : λ ∈ Λ⟩ denotes the family of all maps which can be
created through composition of any finite number of maps hλ.

Research on the dynamics of rational semigroups was initiated by Hinkkanen
and Martin in [7], where each rational semigroup was always taken to have at least
one element of degree at least two – a restriction we do not impose here. Two
main motivations for their study are given in [7]. The first motivation is to see to
what extent, and in what sense, the classical iteration theory of Fatou and Julia
extends to this more general setting of semigroups. The second motivation is to
use this theory to study the parameter space of certain one-complex parameter
Kleinian groups, where portions of such parameter spaces can be characterized as
stable basins of infinity for certain polynomial semigroups (see also [4, 5]). Also,
Ren, Gong, and Zhou studied such rational semigroups from the perspective of
random dynamical systems (see [27, 6]), that is, dynamics along iteratively defined
composition sequence of maps hλn ◦ · · · ◦ hλ1 where each λk ∈ Λ is selected at
random. Later, Kriete and Sumi in [8] studied semigroups of entire maps.

2000 Mathematics Subject Classification: Primary 37F10, 37F50, 30D05. Key words and
phrases. Complex dynamics, Julia sets, Random Dynamics, Dynamics of Semigroups.

1



2 RICH STANKEWITZ

Study of semigroup dynamics, random dynamics, and their intimate connections,
have produced recent results exhibiting new phenomena not possible in the classi-
cal iteration theory. Many results can be found in the works of Sumi [14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25]; we highlight just a few here which pertain to
polynomial semigroups. A polynomial semigroup may have a bounded postcritical
set, yet have a disconnected Julia set. However, in such a setting there is a natural
“surrounding” order on the connected components of the Julia set [14, 15, 24], and
such components are often (but not always) Julia sets of corresponding composi-
tions sequences. It often happens that such Julia sets are Jordan curves but not
quasicircles, and the basin of infinity is not a John domain [16] - something which
cannot happen at all in iteration theory. Considering the space of all composition
sequences (corresponding to a given semigroup G) gives rise to a “probability of
escape” function T (z), a function which gives the probability that z will tend to
∞ under a randomly selected composition sequence. The function T (z) is often a
complex analogue of the devil’s staircase or Lebesgue singular function in that it is
continuous on C and varies only on the Julia set (typically a thin fractal set) of the
associated semigroup [20, 21, 24]. In [17, 22, 23], it was shown that the unique zero
of the pressure function for the skew product associated with an expanding finitely
generated rational semigroup can be easily greater than two. These few examples
illustrate the richness of results that can occur in this new setting, but which can-
not occur in the usual iteration theory dynamics. See the above references for an
extended exposition, details, and precise formulations of these results.

We follow [7] in saying that for a rational (respectively, entire) semigroup G the
Fatou set F (G) is the set of points in C (respectively, C) which have a neighborhood
on which G is normal, and its complement in C (respectively, C) is called the Julia
set J(G). The more classical Fatou set and Julia set of the cyclic semigroup ⟨g⟩
generated by a single map (i.e., the collection of iterates {gn : n ≥ 1}) is denoted
by F (g) and J(g), respectively.

Immediately from the definitions, one can show (as done in [7]) that the Fatou
set F (G) is forward invariant under each element of G, i.e., g(F (G)) ⊂ F (G) for
all g ∈ G, and thus J(G) is backward invariant under each element of G, i.e.,
g−1(J(G)) ⊂ J(G) for all g ∈ G.

This paper addresses the relationship between repelling fixed points and the Julia
set of a rational or entire semigroup G. Since a point w ∈ C is called a repelling
fixed point for the map f when f(w) = w and |f ′(w)| > 1, it is elementary to show
that such a point is in J(f), and hence in J(G) for any semigroup G containing f .
The goal of this paper is to present an elementary argument that such fixed points
are dense in J(G) when G is a non-elementary rational or non-elementary entire
semigroup (i.e., when J(G) contains three or more points). More specifically, we
prove the following.

Theorem 1.1. Let G be a non-elementary rational or non-elementary entire semi-
group. Then J(G) is the closure of the set of repelling fixed points.

See [13] and its references for a discussion of various methods of proof based on
the proofs of the corresponding result in the classical iteration case. In particu-
lar, Theorem 1.1 is proven there using elementary methods based on [11], which
uses a key result from Nevanlinna theory. This paper simplifies that approach by
following [3] and thus manages to avoid the use of Nevanlinna theory.
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Lastly, we note that Theorem 1.1 is a fundamental result in both the study of
iteration and semigroup dynamics. In particular, in semigroup theory it provides
the key step in proving the following. Given a non-elementary rational or non-
elementary entire semigroup G, we have (i) J(G) = ∪g∈GJ(g), (ii) F (G) is precisely
the set of z which has a neighborhood on which every composition sequence is
normal, and (iii) when G is a rational semigroup, J(G) is uniformly perfect when
there is a uniform bound on the Lipschitz constants (with respect to the spherical
metric) of the generators (see [12, 27, 13]). Regarding further results on the uniform
perfectness of J(G) the interested reader will want to consult [19]. There are
various other applications to Theorem 1.1, including the structure of Julia sets and
surrounding order for polynomial semigroups with bounded postcritical set as well
as some results related to random complex dynamics (see [14, 15, 24]).

Acknowledgment: The author would like to sincerely thank both the referee
and Hiroki Sumi for valuable comments and suggestions.

2. Background and preliminary results

A preimage z of w under a meromorphic function f maps to w with valency (local
degree) denoted by vf (z). Such a point z is called a critical point if vf (z) > 1, which
in the case that both z and f(z) are finite, means exactly that f ′(z) = 0. A point
w in the image of f is called completely ramified if vf (z) > 1 for every preimage z
of w.

Definition 2.1. Let H be a family of meromorphic functions from domain D
mapping into C. We define the following:

(1) the forward orbit of z ∈ D under H is H(z) = {h(z) : h ∈ H},
(2) the backward orbit of z ∈ C under H is

H−1(z) = {w ∈ C : there exists h ∈ H such that h(w) = z},
(3) the simple backward orbit of z ∈ C under H is S−

H(z) =

{w ∈ C : there exists h ∈ H such that h(w) = z and vh(w) = 1}.

For a rational or entire semigroup G we define the exceptional set to be E(G) =
{z ∈ C : #G−1(z) < 3} where #A denotes the cardinality of the set A.

It is well known that if a semigroup G contains either a transcendental entire
map or a rational map of degree two or more, then it is non-elementary (see [9],
p. 69). The number three in the definition of non-elementary is special because of
the role it plays in Montel’s theorem, which can be used to give the following well
known facts (see, for example, [13]).

Proposition 2.2. Let G be a non-elementary rational (respectively, entire) semi-
group G. Then

(i) J(G) is the smallest closed subset of C (respectively, C) which contains three
or more points and is backward invariant.

(ii) J(G) ⊂ G−1(z) for any z ∈ C \ E(G) (respectively, z ∈ C \ E(G)).

(iii) J(G) = G−1(z) for any z ∈ J(G) \ E(G).
(iv) J(G) is perfect, and hence uncountable.

Lemma 2.3. When G is a non-elementary rational or non-elementary entire semi-
group, we have #E(G) < 3.
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Proof. Suppose a, b, c are distinct points in E(G) and consider the finite set A =
{a, b, c} ∪ G−1(a) ∪ G−1(b) ∪ G−1(c). Since A is backward invariant under G, we
must have J(G) ⊂ A by Proposition 2.2(i), which is a contradiction since J(G) is
perfect by Proposition 2.2(iv). �

In classical iteration theory the Julia set and exceptional set are disjoint, i.e.,
E(⟨g⟩)∩J(⟨g⟩) = ∅, but this need not be the case for semigroups (see Example 2.6).

For a rational or entire semigroup G we let A(G) be the set of z ∈ J(G) such
that S−

G(z) has three or more accumulation points in C. The importance of the
defining property of A(G) is given by the following lemma.

Lemma 2.4. Given a non-constant meromorphic function f : C → C and a set S
in C which has three or more accumulation points in C, the set S must contain at
least one point with a simple preimage under f .

Remark 1. Using Nevanlinna theory, one can see that any set S containing five
or more points would be enough to satisfy the conclusion of the above lemma.
(See [1] and [2] for a very nice presentation of simple proofs of the key results and
a discussion of the uses of both Nevanlinna theory and Ahlfors covering theory in
dynamics.) However, we are trying to obtain our results with the simplest means
possible and so we continue with the lemma stated above whose proof is elementary,
but which we provide anyway for the sake of completeness.

Proof. Let V be the set of points in f(C) which are not completely ramified by f ,
and note that V is open. The set f(C) \ V of completely ramified image points
has no accumulation points in f(C) (since if w = f(z) were such an accumulation
point, then any neighborhood of z mapping onto a neighborhood of w would have
to contain a sequence of critical points tending to z thus contradicting the fact that
f is non-constant). Since Picard’s Theorem implies that C \ f(C) has at most two
points, we see that C \ V = (C \ f(C)) ∪ (f(C) \ V ) is a set which has at most two
accumulation points in C. Since S has three or more accumulation points in C, it
follows that S must meet V , which is the desired conclusion. �

As we shall see, the key to making use of the definition of A(G) is that often one
can easily show that A(G) is dense in J(G).

Lemma 2.5. Let G be a non-elementary rational or non-elementary entire semi-
group. Then A(G) is dense in J(G).

Proof. Case 1. Suppose there exists a non-Möbius g ∈ G. Observe that the
postcritical set P (⟨g⟩) = {gn(z) : vgn(z) > 1} (note that we do not take the
closure here as is sometimes done in the literature) is countable since each map
gn has only a countable number of critical points. Also, since it is well known
that ⟨g⟩ is non-elementary, Lemma 2.3 implies that the set E(⟨g⟩) contains at most
two points. Setting B = P (⟨g⟩) ∪ E(⟨g⟩) we see that for any z0 ∈ J(G) \ B we
have S−

G(z0) ⊃ S−
⟨g⟩(z0) = ⟨g⟩−1(z0), which by Proposition 2.2 has a closure which

contains the uncountable set J(g). Hence J(G) \B ⊂ A(G).
We also note that the Baire Category Theorem implies J(G) \ B is dense in

J(G) since B is countable (labeling B = {bn : n ∈ N} we see that since J(G)
is perfect each On = J(G) \ {bn} is an open and dense set in J(G), and hence
J(G) \B = ∩n∈NOn is also dense in J(G)). Thus, A(G) is dense in J(G).
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Case 2. We suppose that G consists entirely of Möbius maps. Note that for
any z0 ∈ J(G) \ E(G), the set S−

G(z0) = G−1(z0) is dense in the uncountable set
J(G) by Proposition 2.2. Hence in this case A(G) ⊃ J(G)\E(G), which is dense in
J(G) since E(G) is finite by Lemma 2.3 and J(G) is perfect by Lemma 2.2(iv). �

Remark 2. We note that we could have defined instead A(G) to be the set of
z ∈ J(G) such that S−

G(z) has an uncountable number of accumulation points,
and then the corresponding version of Lemma 2.5 would still follow from the given
proof. This would allow one to get by with a correspondingly weaker version of
Lemma 2.4.

We also note that the proof of Lemma 2.5 would still carry over for countable
semigroups G if we instead replaced the set B in the proof with the set P (G)∪E(G),
where P (G) = {g(z) : vg(z) > 1 for some g ∈ G} is the postcritical set of G.
However, this altered proof would not necessarily apply for semigroups G which
are uncountable. In particular, as we see in the next example, it is possible for
J(G) \ P (G) to not be dense in J(G).

Example 2.6. For each a ∈ ∆(0, 1), let fa be a polynomial whose Julia set is the

circle {z : |z−a| = (1−|a|)/2} and such that C\∆(0, 1) is forward invariant under
fa. Also, letting gr(z) = z2/r for each 0 < r < 1, we see that J(gr) = {z : |z| = r}.
Letting G = ⟨fa, gr : a ∈ ∆(0, 1), 0 < r < 1⟩, we see that P (G) ⊃ ∆(0, 1), since each

a is a critical value for fa. Also, since C \∆(0, 1) is forward invariant under each

of the maps in G, Montel’s theorem shows that C \∆(0, 1) ⊂ F (G). Clearly then

J(G) = ∆(0, 1) since J(G) contains each J(gr). Hence for this rational semigroup
J(G) \ P (G) is not dense in J(G).

We also note that the semigroup G′ = ⟨gr : 0 < r < 1⟩ which has J(G′) = ∆(0, 1)
and E(G′) = {0,∞}, illustrates that the Julia set can meet the exceptional set even
if the semigroup is rational.

3. Proof of the main result

The following important result known as Zalcman’s Rescaling lemma provides,
through an elegantly simple argument, the key perspective on the non-normality
condition to be employed (see [26] for the original statement and also see [10] and [1]
for the slightly modified statements which we adopt here).

Theorem 3.1. Let F denote a family of meromorphic functions on domain U ⊂ C.
Then F is not normal on U if and only if there exists a sequence fj ∈ F , a point
z0 ∈ U , a sequence zj → z0, a sequence of positive real numbers ρj → 0 and a
nonconstant meromorphic function f on C such that

fj(zj + ρjz) → f(z)

locally uniformly on C. Moreover, f can be chosen to have f#(z) ≤ 1 = f#(0) for
all z ∈ C, where f# denotes the spherical derivative.

With regard to Theorem 3.1, we set rj(z) = zj + ρjz and note that rj(z) → z0
uniformly on compact subsets of C. Further, we say that f , the limit of fj ◦ rj ,
absorbs the point z0 if there exists a simple solution in C to the equation f(z) = z0,
i.e., z0 is a point in the image of f which is not completely ramified.
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Proof of Theorem 1.1. Let z0 ∈ J(G) and apply Theorem 3.1 to obtain maps fk ∈
G, linear maps rk → z0, and a nonconstant meromorphic function f on C. We
consider two cases.

Case 1. Suppose z0 is absorbed by f . By this assumption there exists an open
disk D contained in a strictly larger open disk on which f is univalent and such
that ∆ = f(D) is a neighborhood of z0. Since fk ◦ rk → f , it follows then that for
large k, the maps fk ◦ rk are univalent on D and the image ∆k = fk ◦ rk(D) is close

to ∆. Note that since the maps rk → z0, we have that rk(D) is contained in the
interior of ∆k when k is sufficiently large. Since fk maps rk(D) conformally onto

∆k ⊃ rk(D) we see that fk must have a repelling fixed point ak in rk(D) (since the
inverse of the map fk : rk(D) → ∆k is a strict contraction of the Poincarè metric
on ∆k which must then have an attracting fixed point). Since ak ∈ rk(D), we see
that ak → z0 and thus z0 is a limit of repelling fixed points.

Case 2. Suppose z0 ∈ A(G), i.e., S−
G(z0) has three or more accumulation

points in C. By Lemma 2.4 there exists a point w0 ∈ S−
G(z0) which has a simple

preimage under f . Since w0 ∈ S−
G(z0) there exists g ∈ G such that g(w0) = z0 and

vg(w0) = 1. We note then that the maps g ◦ fk ◦ rk converge to g ◦ f , where this
limit map absorbs z0. Thus we see from the proof in Case 1 that z0 is a limit of
repelling fixed points of g ◦ fk ∈ G.

Since each point in A(G) is a limit of repelling fixed points and, by Lemma 2.5,
A(G) is dense in J(G) the result of the theorem holds. �
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