COMPLEX DYNAMICS OF MOBIUS SEMIGROUPS
DAVID FRIED, SEBASTIAN M. MAROTTA, AND RICH STANKEWITZ

ABSTRACT. We study the dynamics of semigroups of Mdbius transformations on the Rie-
mann sphere, especially their Julia sets and attractors. This theory relates to the dynamics
of rational functions, rational semigroups, and Md&bius groups and we compare and contrast
these theories. We particularly examine Caruso’s family of Md&bius semigroups, based on a
random dynamics variant of the Fibonacci sequence.
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This paper examines a random dynamics variant of the Fibonacci ratios. Specifically, we
let z, be a recursively defined sequence such that z,,1 = 2,_1 £ 8%,, where the terms and
the nonzero constant § are complex numbers and the sign + is chosen at random. The ratio
of two consecutive terms r, = 2,,/z, 1 then satisfies the recursion relation r,,.; = +5+1/r,,.
When § = 1 and we always choose the sign + (as in the Fibonacci sequence) the limit as
n — 0o of r, is the golden ratio ¢ = (1++/5)/2, as long as ry # (1 —+/5)/2. By introducing
the randomness mentioned above, and allowing for other values of 3, we will see that the set
of possible long term states may be a complicated and beautiful fractal set. In particular,
the set of possible long term states is often the attractor set Ag of a Contracting Iterated
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FIGURE 1. The sets obtained by randomly iterating an arbitrary point in the
complex plane C using the semigroup generated by {5+ 1/z,—8 + 1/z}. We
plot a number of points in the randomly generated orbit, dropping the first
few iterates as transient. In some cases, the pictures that we get do not seem
to depend on the chosen seed or the chosen composition sequence. The unit
circle (dashed) is shown for reference. On the left, the parameter § = et/
and on the right 8 = 1.25¢/"/3. In both cases we computed one million points
and dropped the first hundred points as transient. See Remark 5.13.

Function System (CIFS) generated by {8+1/z,—3+1/z}.! See Figure 1. Some background
on these relationships can be found in [8, 14, 40].

This paper is motivated by Caruso’s problem: given a value of 3, in what sense does there
exist an attractor set Ag, how does such a set depend on /3, and what are the properties of
Ag? In [8], the set of long term states was described by means of numerical experiments.
The frequency distributions of the modulus and argument of these states were presented for
particular values of the parameter S. In this paper we deal instead with the topological
properties of the set of possible long term states.

It turns out that the attractor Ag (when it exists) of the CIFS generated by {8+1/z, —f+
1/z} is the Julia set of the semigroup S s generated under function composition by the inverse
transformations 1/(z — 8) and 1/(z+ ) of these CIFS generators. Thus, one of our goals in
this paper is to characterize the Julia set of S for different values of the complex parameter
B.

During the course of our investigation it became apparent that the study of Sj is intimately
related to the study of two other algebraic structures, namely, the semigroup Sz and the
group Gg generated by 8+ 1/z and —f + 1/z. Thus, we also focus on the topological
characteristics of the Julia set of Sz and the limit set of Gg for different values of 5. The
study of these structures, as they arise in Caruso’s problem, led us to find several interesting

INotice that the sequences generated with this system are also generalized continued fractions of the form
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general results about semigroups of Mdobius transformations. We have expanded our focus
to present these results.

The article is organized in the following manner. In Sections 2 and 3, we develop, in
a general setting, the background material relevant to our problem. We introduce non-
elementary semigroups and explain their basic properties and characteristics. For example,
Theorem 3.3 shows that when the Julia set J(S) of a non-elementary Mobius semigroup S
is connected, the limit set of the group generated by S is also connected. The concepts of
attractors and blocks are discussed in Sections 4 and 5. In particular, in Theorem 5.7 we
give necessary and sufficient conditions for a finitely generated Mobius semigroup to have
what we call a thick attractor, which attracts any random orbit whose initial value is near
the attractor. Further properties and comparisons between limit sets and various sorts of
Julia sets are discussed via examples presented in Section 6.

In Section 7 we study the Caruso semigroups Sg. In Section 7.1 we prove that each
Sp is non-elementary and we study the symmetries that arise in dynamical and parameter
planes. In Section 7.2 we study the connectedness of the Julia sets J(Sg). In particular,
Corollary 7.12 shows that J(Sg) must be bounded and disconnected when a thick attractor
exists. We present sufficient conditions for J(Ss) to equal the limit set of G in Section 7.3.
In Section 7.4 we calculate this limit set when Gpg is not discrete. We use reflection groups
in Section 8 to treat the cases when * is real.

In a subsequent paper we will use Riley groups to study the Caruso problem when £* is
not real.

We would like to thank Linda Keen for introducing us to reference [19] while visiting
Boston University in 2005. We also thank Dan Goodman for sharing his computer programs
and for giving detailed descriptions of how they work.

2. RATIONAL SEMIGROUPS

The dynamics of iteration of a complex analytic map has been studied deeply in various
contexts, such as rational, entire, and meromorphic maps. This theory generalizes to the
setting where the map may be changed at each point of the orbit, exactly as in a random
walk. More precisely, instead of repeatedly applying the same map over and over again, one
may start with a family of maps {h; : ¢ € I}, and consider the dynamics of any iteratively
defined composition sequence of maps, that is, any sequence h;, o---oh; where %1, ...,%, € I.
Randomly choosing the map at each stage is the setting for random dynamics (see [11, 4, 6,
7,5, 37, 34]). Restricting one’s attention to the case where all h; are rational, one is lead to
study the dynamics of rational semigroups.

A rational semigroup ii a nonempty semigroup of nonconstant rational functions defined
on the Riemann sphere? C = C U {oco} with the semigroup operation being functional com-
position.> When a semigroup S is generated by a family of functions h;, i € I, for some
nonempty index set I, we write S = < h; : © € I >=. Thus S is exactly the set of all
finite compositions of the maps h;. Note that many papers use the notation (-) for rational
semigroups but, since we discuss both groups and semigroups, we will reserve the notation

2As usual, the letter C denotes the complex plane and C* = C\{0}.
3Beware that some authors require that a rational semigroup contain at least one rational map of degree
two or more, but we do not impose such a restriction here.
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(- for groups, so (h; : i € I) denotes the group generated by h;, ¢ € I. We say S is cyclic
when S is generated by some one function, so S =< h >.

A rational mapping m(z) of C is invertible if and only if it is Mdbius, meaning that the
degree of m(z) is one. Clearly the Mébius transformations form a group M. A rational
semigroup S whose elements are invertible lies in M and is called a Mobius semigroup. A
Mobius group is a subgroup of M.

We recall the connection between C and hyperbolic 3-space H3. The upper halfspace
model of hyperbolic 3-space H® is the subset of R® consisting of triples (21, Z,z3) with
25 > 0. In this model, C is the boundary of H3. M acts by isometries on H? and this action
extends by continuity to the the Mdbius action on C. This Mébius action on H? is called
the Poincare extension of the Mébius action on C [2].

Each m € M has the form m(z) = (az + b)/(cz + d), where the vector of coefficients
(a,b,c,d) lies in the open subset V' C C* defined by ad — bc # 0. The mapping m(z) only
determines (a, b, ¢, d) up to a nonzero scalar factor. It follows that M is a Lie group of real
dimension 6 diffeomorphic to the quotient space V/C*. This quotient topology on M is also
the topology of uniform convergence on C ( [2], p. 78). See Theorem 3.1 for a classification
of Mobius maps and their dynamical behavior under iteration.

After its inception in the paper [16] of Hinkkanen and Martin, the study of rational
semigroups has grown in the past decade (see, for example, [13, 29, 30, 36, 39] as well as
the references therein). These works generally focus, however, on semigroups that contain
at least one non-Mobius map. Mobius groups, especially discrete ones, have been studied
since the pioneering work of Fricke and Klein (see, for example, [2, 20, 21, 23]. This paper
thus fills in a gap in the literature by focusing on Mobius semigroups. When convenient,
however, we will treat rational semigroups in general.

A rational semigroup divides the Riemann sphere into two complementary sets, an open
Fatou set and a closed Julia set with opposite dynamical properties. In order to define these
sets we first recall the notion of a normal family of holomorRhic maps. Let U be an open set
in C. A family of holomorphic maps JF on U with values in C is normal when every sequence
{hn} € F has a subsequence that converges uniformly on each compact set in U. We will
make particular use of three types of normal families of Mobius transformations.

Type 0) Suppose F consists of isometries of the spherical metric,* so each h € F is a spherical
rotation of the form h(z) = (az — b)/(bz + @) for some a,b € C with |a|?+ [b|> = 1. Then F

-~

is a normal family on C.

Type 1) Suppose F stabilizes oo, so each h € F has the form h(z) = az+b (while such maps
are sometimes called complez affine we prefer the term linear). If |a| = 1 then h(z) is an
isometry of C with its usual metric. If |a| =1 for all A~ € F then F is a normal family on C.

Type 2) Suppose that F stabilizes {0, 00}. Each h € F is monomial, that is h(z) = az or
h(z) = a/z for some a. Then each h(z) is an isometry of the metric |dz|/|z| on C* (i.e., for

p(z) = 1/|z| we have h*p(2) et p(h(2))|F(2)| = p(2)) and so F is a normal family on C*.

“For z,w € C, 2|z — w|(1 + [22)~/2(1 4 |w|?>)~'/? is the chordal distance from z to w (see [2], p.22).
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Let S be a rational semigroup. As in [16] we define the Fatou set® F(S) as the union of
all open sets U C C on which S forms a normal family. The Julia set J(S) is defined as the
complement of F'(S) in C. When S =< h > is cyclic we let F'(h) = F(S) and J(h) = J(5).

Remark 2.1. We note that semigroups which are conjugate by a Mébius map (or the complex
conjugate of a Mdébius map) transfer normality in the obvious way. Specifically, if h is such
a map and S and Sy are rational semigroups such that Sy = hS1h™' = {hsh™' : s € S},
then F(S3) = h(F(S1)) and J(Ss) = h(J(S1)) (see [3, 16]).

The dynamics near the Julia set exhibits sensitive dependence on initial conditions. On
the Fatou set, however, nearby points have similar dynamic behavior For instance, when a
Mobius semigroup S is conjugate in M to one of the 3 types of families discussed above,
Remark 2.1 shows that F'(S) contains the region where S acts isometrically. This easily
gives the following.

Proposition 2.2. Let S be a Mébius semigroup.
0) If S, or some semigroup conjugate to S in M, preserves spherical distance then F'(S) = C,

so |J(S)® =0.
1) If p is a neutral fized point of each s € S then p is the only possible Julia point, so
[J(S)| < 1.

2) If S stabilizes a two-point set {p,q} then p and q are the only possible Julia points, so
[J(S)] < 2.

The behavior of a M&bius semigroup near a Fatou point is quite restricted, as the following
lfmma shows. The proof uses the well-known fact thatAM is simply triply transitive on
C, that is any two distinct ordered triples of points of C are related by a unique Mobius
transformation ( [2], Theorem 4.1.1).

Lemma 2.3. If D is an open set in C and S1, 82, ... € M converge uniformly to h on compact
subsets of D then either h is locally constant, with |h(D)| < 2, or s, — s in M and h = s|D.

Proof. If |h(D)| > 3 then we can choose p; € D, i = 0,1,2, with h(p;) distinct. Let
$,MM1,Ma, ... be the unique elements of M with s(p;) = h(p;) and my,(s,(p;)) = h(p;) for all
i. Thus m, — Id, since s,(p;) — s(p;) for all i, and s = my,s, in M for all n, since they
agree at 3 distinct points. Thus s, — s in M so s,|D converges uniformly to s|D. d

We will see that the Julia set of a rational semigroup can be described in terms of fixed
points. Recall that at a fixed point p = h(p) € C of a rational mapping h(z) we call A = h'(p)
the multiplier of h at p (with the usual convention when p = oo). The fixed point p is a
sink (or attracting) if |A\| < 1 and a source (or repelling) if |A| > 1. When || = 1 we say p
is neutral (or indifferent).

Suppose a rational semigroup S is normal on open set U and some s € S has a fixed
point p € U. If p were repelling, then |(s")'(p)| = |s'(p)|" — +oo and so no subsequence of
the iterates s could converge uniformly on any compact neighborhood of p. Hence p must
either be attracting or neutral. Thus any source of any s € S must be a Julia point.

5Some authors use N(S) for the Fatou set since it is the set of normality.
6|X| denotes the cardinality of a set X.
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We let Source S (respectively Sink S) be the smallest closed set containing all the sources
(respectively sinks) of elements of S. Then we see that Source S C J(S). Except for one
special circumstance, mentioned in Proposition 2.2, equality must hold.

Theorem 2.4. Let S be a rational semigroup. FEither Source S = J(S) or S is a Mébius
semigroup such that some p € C is a neutral fized point of each s € S and J(S) = {p}.
Proof. [16] proves that sources are dense in J(S) whenever |J(S)| > 3 and S is not a
Moébius semigroup. Their proof remains valid, however, when S is a Mobius semigroup and
|J(S)| > 3. [31], p. b, treats both cases.

Clearly if J(S) is empty then Source S is empty as well. The remaining cases, when J(S)
consists of 1 or 2 points, are easily dealt with using Theorem 2.11 below. U

This powerful theorem reexpresses the Julia set, which was defined via complex analysis,
in purely topological terms. For whether a fixed point p of s € S is attracting, repelling, or
neutral depends only on the local topological dynamics of s near p.

Remark 2.5. Theorem 2.11 for a Mobius semigroup S follows from the fact that any Julia
point p that is not fired by S must lie in Source S. We sketch an elementary proof of this
fact (c.f. [32]).

We may suppose p = 0 # s(0), for some s € S. As 0 € J(S), the Arzela-Ascoli Theorem
imzz{ies that there is no neighborhood of 0 on which S is equicontinuous as a family of maps
to C. So we may choose f, € S and z, € C, z, — 0, such that f, expands the spherical
metric at z, by at least n. Passing to a subsequence, and replacing f, by sf, if need be, we
may suppose that | f(00)| > ¢ for all n, where ¢ > 0. We now show that f, has a source near
0 for n large, so 0 € Source S.

Let D be the closed disc centered at 0 of radius c/2. Let g, be a spherical rotation with
qn(00) = fn(00). As |g,(0)| > ¢, the disc D, = g, '(D) lies in a bounded region in C.

We factor f, = q,r, in M, so r, fires oo and r, expands the spherical metric at z, by at
least n. As z, — 0, ;' (2) = anz + b, where (a,,b,) — (0,0). So for n large, r;*(D,) is a
small disc near 0. Thus f;*(D) =r;Y(D,) C Int D, so f;* has a sink near 0.

A Mobius semigroup S determines an inverse semigroup S™' = {h™! : h € S}. We denote
its Julia and Fatou sets by

J'(S) = J(S™") and F'(S) = F(S7),

respectively.
We can easily describe the Julia set of a Mobius semigroup S in terms of the action of
S~1 on hyperbolic space.

Proposition 2.6. Let S be a Mdbius semigroup. Then for each x € H?, J(S) =Sz N C.

Proof. Let K = S~z N C. We first show that K contains J(S).

Consider first the special case when S has a unique Julia point p € C that is a neutral
fixed point of each s € S. We may assume p = co. S~z lies on the horosphere ¥ through
x with center p and the only accumulation point of ¥ in C is p. Also S is unbounded in M
(see Proposition 2.12) and so S~'z is unbounded in 3. Thus p € K so J(5) C K.

For any S one easily sees that Source S C K. Combining Theorem 2.4 with the preceding
paragraph shows that K contains J(S) for all S.
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If K does not equal J(S) then some k € K is a Fatou point. Suppose D is an open disc
containing k such that D lies in F(S) and that sy, so,... € S with s71(z) — k. Passing to
a subsequence, we may assume s,|D converges uniformly to h: D — C. As sy (x) =k, sy
does not converge in M. By Lemma 2.3, h is constant. Say h(D) = {q}.

Let H be the open halfspace of H®> bounded by D. Then s,(H) is bounded by s,(D) and
so it is located very near to ¢ for large n. But for n large enough, H contains s,'(z) and
sox € s,(H). Asz € H?® and ¢q € @, we have z # ¢ so this is a contradiction. Thus
K = J(S). O

We now turn to the invariance properties of Julia and Fatou sets. We distinguish, as usual,
three kinds of invariance. If h is a map of a set X into itself, a subset Y of X is:

i) forward invariant under h if h(Y) C Y;
i1) backward invariant under h if A 1Y) C Y;
iii) completely invariant under h if H(Y) C Y and A~ (Y) C Y.

Let F be a family of maps from X to X. Y is forward, backward, or completely invariant
under F if it is forward, backward, or completely invariant undeg\ each h € F, respectively.
We will mainly be concerned with a closed nonempty set X C C and a rational semigroup
S. When X is forward invariant under S and X is compact and nonempty we say that X is
S-tnvariant.
The natural invariance properties of Julia and Fatou sets are as follows.

Proposition 2.7 ([16], p. 360). Let S be a rational semigroup. F(S) is forward invariant
under S and consequently J(S) is backward invariant under S.

Proposition 2.7 and Theorem 2.4 give the following.
Corollary 2.8. Source S is backward invariant under S for any rational semigroup S.

This is surprising since the set of sources of elements of S is not backward invariant, in
general, but its closure Source S must be so.

Example 2.9. Let s1(2) = 2z, s2(2) = 2z — 1, and S =< sy, 52 > . Note that the interval
(0,1) is backward invariant under S. Although q = 1 is a source for sy, 1/2 = s7'(1) is
not fized by any s €< s1,89 > . For if s(1/2) = 1/2, we would have the contradiction
1/2 € s71((0,1)) C s7'((0,1)) Usy ' ((0,1)) = (0,1/2) U (1/2,1).

For most rational semigroups S, neither F'(S) nor J(S) is completely invariant. But there
are exceptions, such as cyclic semigroups ([22], Invariance Lemma 4.1) and certain Mdbius
s emigroups (Section 7.3).

The following straightforward proposition regarding finitely generated semigroups has been
noted by many people (c.f. [35], p.719).

Proposition 2.10. For a rational semigroup S == hy, ..., hy =, we have J(S) = U h; *(J(S))
and F(S) = M, b7 (F(S)).

We refer to the above condition on the set J(S) as backward self-similarity. We also note
that it implies a partial forward invariance in the sense that for any z € J(S), there exists

some generator h; such that h;(z) € J(S).
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A rational semigroup S is elementary when |J(S)| < 2 and otherwise non-elementary. In
fact, as we now show, S is elementary whenever J(S) is finite, in which case it must be a
Mobius semigroup conjugate to one of three special types, as follows.

Theorem 2.11. Let S be a rational semigroup such that J(S) is finite. Then S C M and
S is elementary. Further, S is conjugate in M to a semigroup S* whose elements s* are as
follows, depending on |J(S)|,

|J(S)| = 2 : monomials s*(z) = az", with n = +1,

|J(S)| = 1: linear maps s*(z) = az + b, with |a| <1, or

|J(S)| = 0 : spherical rotations s*(z) = (az — b)/(bz + @), with a,b € C and |a|? + |b|?> = 1.

Proof. For each s € S, J(s) C J(S) is finite. So s must be Mobius ( [22], Lemma 4.5 and
Corollary 4.11). Thus S C M. As s is bijective and J(S) is finite and backward invariant
by s, s permutes J(S).

First suppose |J(S)| = n > 3. Since s7'(J(S)) C J(S) and a Mobius transformation is
determined by its values at any 3 points, |S| < n(n—1)(n—2). As S is finite, S is a normal
family on C and so J (S) is empty. This contradiction proves S is elementary.

Next suppose |J(S)| = 2. Let S* be the semigroup obtained by conjugating S by a M&bius
map which takes J(S) to {0,00}. Then each s € S* stabilizes {0,000} so s is of the form
z = az".

Now suppose |J(S)| = 1. Let S* be the semigroup obtained by conjugating S by a M&bius
map which takes J(S) to {occ}. Each s € S* fixes 0o and so s is of the form z — az + b.
Further, |a| < 1 else s would have a repelling fixed point in C, thus contradicting the fact
that J(S*) = {o0}.

The cases when J(S) have 1 or 2 elements conclude our proof of Theorem 2.4.

Our final assertion, when J(S) is empty, is just (1) = (3) in the following proposition. [

Proposition 2.12. Let S be a Mobius semigroup and let G be the group generated by S.
The following are equivalent:

) J(5) =0

S is bounded, i.e., its closure S C M is compact

S fixes a pomt in H 3 and thus S is conjugate to a semigroup of spherical rotations
J(G) =

G s bounded i.e., its closure G C M is compact

G fizes a point in H 3 and thus G is conjugate to a group of spherical rotations

Every nonidentity element of G is elliptic.

(1
(2)
(3)
(4)
(5)
(6)
(7)

Proof. (1) = (2). Suppose J(S) is empty, so S is a normal family on C. Then every sequence
in S has a subsequence that converges in M so S is bounded in M.

(2) = (3). Consider a bounded M&bius semigroup S. Choose a point p € H® and consider
S(p) = {s(p)|s € S}, the S-orbit of p. S(p) is bounded in H? since S is compact. Let C(p)
be the closed convex hull of S(p) in H? that is C(p) is the intersection of all hyperbolic
halfspaces containing S(p).

Since S(p) is bounded in H3, C(p) is compact as well as convex. Moreover C(p) has
same diameter as S(p). For each s € S we have s(S(p)) C S(p) and so s(C(p)) C C(p). A
s € S acts on the compact metric space C'(p) by an isometry, we have s(C(p)) = C(p) ([24]
Exer. 7 p. 182).

the
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Clearly C(p') C C(p) for all p’ € C(p). Moreover, if p’ € C(p) is not an extreme point of
C(p) then no point of S(p') is an extreme point of C(p). It follows that the diameter of C(p’)
is strictly less than the diameter of C(p).

We may choose b € C(p) so that the diameter of C(b) is minimal. Then every point of
C(b) is an extreme point, so C'(b) consists of just one point. Thus S fixes b. By moving b to
(0,0,1) by a Mobius transformation we may conjugate S to a semigroup S* of the required
form (see [2], p. 63).

(3) = (1). Clearly J(S*) is empty, since S* consists only of isometries of the spherical
metric. It follows that J(S) is empty.

Thus (1)-(3) are equivalent. Since G is also a semigroup in its own right, the equivalence
of (4)-(6) then follows. Clearly (3) is equivalent to (6) and (6) = (7), so it suffices to show
the following. R

(7) = (4). Suppose G fixes a point p in C that is a neutral fixed point of each g € G. We
may conjugate G so that p = co and G is a group of transformations az + b with |a| = 1.
As G contains no translations, the commutator of any two elements of G is trivial. Thus
G is abelian and any two nonidentity elements of G must fix the same point in C. Thus
G is bounded and so A(G) is empty. Now (4) follows by Theorem 2.4, which was proven
above. g

Remark 2.13. (a) The equivalence of (6) and (7) in Proposition 2.12 is Theorem 4.3.7 of
[2]. We have given a self-contained proof for the sake of completeness.

(b) When S is bounded and p € H? we set d(p) = dim C(p) and give C(p) the measure
defined by the hyperbolic d(p)-volume. The mean squared distance to points of C(p) is a
strictly convex function on H® whose unique minimum b(p) is the barycenter, or center of
mass, of C(p) ([26], Theorem 1). As S preserves this measure on C(p) and S preserves
hyperbolic distance, S fizes b(p). This gives another proof that (2) = (3).

Example 2.14. There is no condition for semigroups in Proposition 2.12 analogous to (7)
because an unbounded Mdbius semigroup S may consist entirely of elliptic elements. For
example, let S =< az,az + 1 > where |a| =1 and a is not a root of unity. Each s € S has
the form s(z) = a"z+0b for somen >0, b € C, so s is elliptic. But the azes of az and az+1
do not meet in H3. Thus S fizes no point in H* and so, since (2) = (3) in Proposition 2.12,
S s unbounded.

Remarkably, all non-elementary rational semigroups have many features in common. This
follows from Montel’s Theorem, which is the major tool in the study of normal families.
Theorem 2.15 ([3], p. 57). (Montel) Let F be a family of meromorphic functions on an
open set U C C with values in C\ {a,b,c} where a,b,c € C are three distinct points. Then
F is normal.

We first use Montel’s Theorem to quantify the sensitive dependence on initial conditions
near J(S5).

Proposition 2.16 (Transitivity for semigroups). Let S be a rational semigroup. Suppose
z € J(S) and let N be a neighborhood of z. Then the union U of the images s(N) for s € S

can omit at most two points of C. If S is Mobius then U can omit at most one point of C.

It is easy to see that these results are optimal. For the cyclic semigroup S generated by 22
and for any small neighborhood N of the Julia point z = 1 we have U = C*. For a semigroup
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of linear maps containing h(z) = 2z and any small neighborhood of the Julia point z = 0 we
have U = C.

Proof. Replacing N by its interior, we may suppose that N is open. Note that s(N) C U
for all s € S but S is not normal on N since z ¢ F(S). By Montel’s theorem, U omits at
most two points of C.

Suppose S is M6bius and U omits exactly two points p and ¢. Then the set {p, ¢} must be
stabilized by S, and so by Proposition 2.2, we have either z = p or z = ¢q. But then clearly
for any s € S we would have z = s%(z) € s?(N) C U which contradicts the fact that U omits
p and q. Il

When S is cyclic, the set U in Proposition 2.16 contains J(S), as in [22], Transitivity
Theorem 4.7. This is not so, however, for S =< 2z,(z +1)/2 > with z = 0 € J(S). For as
already noted, U = C for a small neighborhood N of 0 and so U omits the Julia point co.

The classification of elementary semigroups in Theorem 2.11 suggests that any backward
invariant set X C C for a rational semigroup S should be quite special. We give three results
concerning such an X, two of which use Montel’s Theorem.

Proposition 2.17. Let X C C be backward invariant for a rational semigroup S. If X is
finite then X is completely invariant under S.

Proof. Let s € S. Since s maps C onto itself we must have s(s (X)) = X and so |s (X))
| X|. Since s71(X) C X, by hypothesis, we see that s }(X) = X. Thus s(X) = s(s (X))
X.

Proposition 2.18. Let X C C be backward invariant for a rational semigroup S. Then
J(S)C X or|X|<2.
Proof. Suppose n = |X| > 3. As X is backward invariant, so is its closure X. Montel’s

Theorem applies to the open forward invariant set U = C\X and gives U C F(S), so
J(S) C X. O

oV

Proposition 2.19. Let X C C be backward invariant for a rational semigroup S. If X is
finite and contains 3 or more points then S is Mobius and finite.

Proof. Suppose n = |X| > 3. By Proposition 2.18, J(S) C X so J(S) is finite. By Propo-
sition 2.11, each s € S is Mobius. The values of s~! at three points of X determine s, so
IS| < n(n—1)(n—2). O

In addition to the methods used in the given references, the following remark may be
justified by the previous propositions. In particular, one can take X to be the derived set of
J(S) in Proposition 2.18 in order to show that J(S) is perfect.

Remark 2.20. (see [16] p.363, [31] p.765). Let S be a non-elementary rational semigroup.
Then J(S) is the smallest closed backward invariant set containing at least three points.
Moreover J(S) is perfect and thus uncountable.

Suppose the S in this remark is Mobius. Propositions 2.2 and 2.17 show that any closed
nonempty backward invariant set that does not contain J(S) must contain exactly one point.
In the following example oo is such a poiIfE, which happens to be a Fatou point. We also
observe the existence of a closed set X # C strictly containing J(S) that is backward self-
similar.
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Remark 2.21. Let hi(z) = 3z, ho(z) = 32—2, and S =< hy, hy > . Example 4.4 shows that
J(S) is the standard middle third Cantor set, yet X = R satisfies X = U?_ h;'(X). Also
{o0} is backward invariant but does not contain J(S).

With the aid of Theorem 2.11 we now see that each elementary S has a finite orbit in the
3-ball H3 U C.

Corollary 2.22. An elementary rational semigroup S either fizes a point in H® or has an
orbit in C with one or two points.

Proof. Any such S must be a Mo6bius semigroup. Since J(S) is backward invariant with
|J(S)| < 2, it is completely invariant by Proposition 2.17. Thus when J(S) is nonempty,
any Julia point must have an orbit contained in J(S). When J(S) is empty, Theorem 2.11
shows that S fixes a point in H3. O

3. MOBIUS GROUPS

We recall the following definitions and results which can be found in [2], our main reference
for Mobius groups. For every complex matrix

a b
= ()
with ad — bc # 0 there is a corresponding m(z) = (az + b)/(cz + d) in M. We write
tr(M) = a + d and det(M) = ad — be for the trace and determinant of M and note that
trace is homogeneous of degree 1 while determinant is homogeneous of degree 2. Since m(z)

determines M up to a scalar factor, we may unambiguously define tr?[m] = tr*(M)/det(M).
This invariant of m(z) determines its dynamical properties, as follows.

Theorem 3.1 ([2], p. 67). Let Id denote the identity map on C and let m € M, m # Id.
Then
(1) tr®*[m] = 4 if and only if m is parabolic, i.e., m has only one neutral fized point and
m is conjugate to the translation z — z + 1.
(2) tr?[m] € [0,4) if and only if m is elliptic, i.e., m has two neutral fized points and m
is conjugate to a rotation z — kz with |k| = 1.
(3) tr*[m] € (4,+0cc) if and only if m is hyperbolic, i.e., m has an attracting and a
repelling fized point and m is conjugate to z — kz with k € R and |k| > 1.
(4) tr?[m] ¢ [0, +00) if and only if m is strictly lozodromic, i.e., m has an attracting and
a repelling fized point and m is conjugate to z — kz with |k| > 1 and k ¢ R.

Finally, a lozodromic map is any m € M which is either hyperbolic or strictly loxodromic.
Beware that this terminology is not universal! Some authors use loxodromic to mean strictly
loxodromic and use hyperbolic to encompass all loxodromic maps. Others use hyperbolic to
encompass both loxodromic maps and elliptic maps.

Let G be a Mébius group. We say G is an elementary Mobius group if it has a finite orbit
in either C or H® and otherwise we say that G is a non-elementary Mdobius group ([2], p.83).

Remark 3.2. Corollary 2.22 (as well as Theorem 5.1.3 in [2]) shows that if the Mdbius
semigroup G is elementary then G is also an elementary Mdbius group. Alas G may have a
finite orbit in C and an infinite Julia set, as in Fxample 3.10, in which case the elementary
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Mobius group G is not elementary! As our main interest is in semigroups, we will avoid
ambiguity by treating the phrases “elementary Mobius group” and “non-elementary Mobius
group” as indivisible, just as if they were single words. With this convention “the Mobius
group G is non-elementary must mean that |J(G)| > 2 (although we will avoid such confusing
statements altogether).

The class of elementary Mobius groups contains EH abelian subgroups of M, all finite
subgroups of M and the stabilizer” of each point in R?. For example, the groups generated
by the non-elementary semigroups studied in Examples 3.10, 6.1, 6.3 and 6.4 are subgroups
of the stabilizer of oo in M. For a more complete discussion of elementary Mobius groups
see (2, 27].

When G is a non-elementary Mdbius group, the limit set (or unstable set) A(G) is defined
in [2], p. 97, as the closure of the set of all sinks and sources of elements of G. It follows
from Theorem 2.4 that A(G) = J(G). However [12] defines the limit set for any Md&bius
group G to be Cn Gz, where z is any point in H®. By Proposition 2.6, CNGz = J(G), so
this coincides with the previous definition when G is a non-elementary Mobius group. We
will adopt the latter definition of the limit set, so that A(G) = J(G) for any Mo6bius group
G. The ordinary set (or stable set) Q(G) is defined as the open set in C complementary to
A(G) ([2], p- 97). Thus Q(G) = F(G).

Recall that a Mobius group G is discrete if it is discrete as a subspace of the topological
space M or, equivalently, if Id is an isolated point of G.

Two Mobius groups I' and I are commensurable if they share a finite index subgroup,
that is if the intersection I' N I has finite index both in I' and in I ([20], p. 170, or [12]).
Commensurability is an equivalence relation on Mobius groups. If IV is commensurable
with a non-elementary Mo6bius group I' then I is also a non-elementary Mdbius group and
A(I") = A(T'). If T" and I'" are commensurable then so are the closed groups I and I'. Any
group I commensurable with a discrete group I' is also discrete.

Each Mobius semigroup S generates a Mobius group G. If h;, @ € I, are semigroup
generators of S then h;, ¢ € I, are also group generators of G. We are interested quite
generally in the relation between the dynamics of S and the dynamics of G.

For example, we can compare and contrast the connectivity of Julia sets and limit sets.

Theorem 3.3. Let G be a Mdébius group generated by a non-elementary semigroup S. If
J(S) is connected then A(QG) is also connected.

This theorem is based on the following lemma.

Lemma 3.4. Assume that the Mébius semigroup S =< h; : i € I > is non-elementary and
that some set K C J(S) meets h; ' (K) for all i. If K is connected and |K| > 1 then J(S) is
connected.

See Theorem 1 of [39] and Theorem 2.1 of [38] for similar results regarding semigroups
which allow non-Mobius rational maps in the semigroup.

Proof of Lemma 3.4. As K is connected, K is contained in some connected component C' of
J(S). C is closed in J(S) and hence compact. As K is connected and |K| > 1, both K and
C are infinite.

"Let G be a subgroup of M and let z be a point in R3. The stabilizer of z in G is the subgroup G, =
{9€G:g(x) =z}
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Fix i € I and let C; = h;'(C). Clearly C; is connected. As J(S) is backward invariant
under S, C; C J(S). By our assumption that K meets h; ' (K), C; must meet C so C U C;
is connected. As C' is a component of J(S), it follows that C; C C.

As the h; generate S, we see that C' is backward invariant under S. As C' C J(S) is infinite
and compact, Remark 2.20 shows that C' = J(S). Thus J(S) is connected. O

Proof of Theorem 3.3. We take generators h;, ¢ € I, for S and regard GG as a semigroup with
generators h;, hi', i € I. We will show that we may apply Lemma 3.4 to the semigroup
G with K = J(S). Note that J(S) C J(G), since S C G. Also |J(S)| > 3, since S is
non-elementary, and J(S) is connected, by hypothesis.

Now fix i € I. h; '(J(S)) C J(S), since J(S) is backward invariant under S, so applying
h; to both sides we also get J(S) C h;(J(S)). Hence both generators h; and h; ' meet the
conditions of Lemma 3.4. We deduce that A(G) = J(G) is connected. O

Consider S =< 2z >, so G = (2z). Then J(G) = {0,00} is disconnected even though
J(S) = {oo} is connected. This shows that one must rule out elementary Mobius groups in
Theorem 3.3.

Note that the converse of Theorem 3.3 is false. For in Example 3.10 J(S) is a Cantor set
but A(G) is connected.

Theorem 3.3 shows that when A(G) is disconnected then J(S) and J'(S) are also discon-
nected. Since J(S;) C J(S3) whenever S; C Sy, we obtain a similar, but simpler, result.

Proposition 3.5. Let S be a Mébius semigroup and G the group generated by S. If A(G) is
totally disconnected, then J(S) and J'(S) are also totally disconnected.

We now consider sensitive dependence on initial conditions near a limit point. Since a
limit set is a Julia set, Proposition 2.16 implies

Corollary 3.6 (Transitivity for groups). Let G be a Mébius group. Suppose N is a neigh-
borhood of z € A(G). Then the union U of the images of g(N) for g € G contains all but at

~

most one point of C.

If the Julia set J(h) of a rational function A has an interior point then J(h) = C, as in
[22], Corollary 4.8. We will now show that limit sets behave similarly.

Corollary 3.7. If the limit set A(G) of a Mébius group G contains an interior point then
A(G) =C.

Proof. Let N C A(G) be nonempty and open. The union U of the forward images g(NV) is
a subset of A(G), by forward invariance. U is dense in C (by Corollary 3.6). Since A(G) is
a closed set, it follows that A(G) = C. O

On the other hand, Example 6.1 below shows that J(S) # C may have nonempty interior.
This shows that the forward invariance of the limit set is essential in the last corollary.
Non-elementary Mobius groups are necessarily complicated.

Theorem 3.8 ([2], p. 90). Every non-elementary Mdbius group contains infinitely many
loxodromic elements, no two of which have a common fized point in C.

The limit set of a non-elementary Mobius group must also be complicated, as shown by
the following consequence of Remark 2.20.
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Theorem 3.9. Let G be a Mdbius group such that |A(G)| > 3. Then A(G) is a perfect

set and hence uncountable. Moreover each G-invariant set in C with three or more points
contains A(G). ®

In particular, A(G) is the unique minimal G-invariant set, as shown in [2], p. 97, in the
case that GG is a non-elementary Mobius group.

Theorem 2.4 implies that every non-elementary Mobius semigroup S contains infinitely
many loxodromic elements. When these all share a fixed point p, however, S must fix p.
This implies that S generates an elementary Mobius group, as in the following example.

Example 3.10. Let S =< 32,32 — 2 > s0o S™' =< 2/3, (2 + 2)/3 = and the group
generated by S is G = (3z,3z — 2). J(S) is the Cantor middle-thirds set (see Example 4.4)
which implies that S and G are non-elementary semigroups. But S~ is a normal family
in C so J'(S) = {oo}. Thus S™' is an elementary semigroup. Since G fizes oo, G is an
elementary Mobius group. R R

We show A(G) = R as follows. First, we see that A(G) C R by Theorem 3.9 since R

is completely invariant under G. If A(G) # I@, then there exist a,b € R such that a < b,
the interval (a,b) C R\ A(G) and a € A(G). Letting p(z) = 3z and q(z) = 3z — 2, we see
an =p (g (p"*(a))) = a +2/3""'. By complete invariance each a, € A(G) and a, \, a.
However, this contradicts the fact that (a,b) does not meet A(G), and so the result follows.

It is also possible to characterize the stable set of a discrete Mobius group using the concept
of discontinuous group action.

Definition 3.11. A subgroup G of M acts discontinuously on a completely invariant open

set X c C if for every compact subset K of X there are only finitely many g € G such that
9(K) meets K.

When G acts discontinuously on X, this action does not have any sensitive dependence
on initial condition. When G is a discrete non-elementary Mobius group, G acts discontin-
uously on Q(G) and Q(G) contains any completely invariant open set X on which G acts
discontinuously (see [2] p. 99 and 104). This clearly contrasts with the sensitive dependence
on initial conditions that holds near a limit set.

The limit set of a Mdbius group G with |A(G)| > 3 is constrained by a dichotomy.

Corollary 3.12. Let G be a Mébius group with |A(G)| > 3. Then A(G) is either connected
or else has uncountably many connected components.

Note that the example G = (2z) with A(G) = {0, 0o} shows that the condition |A(G)| > 3
above is critical.

Proof. We imitate the proof of the corresponding result for the Julia set of a rational function
of degree two or more ([22], p.47). Suppose A(G) can be expressed as the union Ay U A; of
two disjoint, non-empty compact subsets. Since A(G) is perfect by Theorem 3.9, we have
|Ag| = 400 and |A4;| = +o0.

We show that neither Ay nor A; can be connected. Choose an open set U which meets Ag
but not A;. Let £ € G be a map with a repelling fixed point in U N Ay (see Theorem 2.4).

8Recall, that an S-invariant set is by definition a non-empty, compact set which is forward invariant under

S.
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Since £ is loxodromic and |A;| > 1, we may choose n to be large enough so that k" (U) meets

both Ay and A;. Set h = k™. Since A(G) is backward invariant, we must have that h(A)

meets both Ay and A;. We can therefore use the forward invariance of A(G) to express A, as

the disjoint union of non-empty compact subsets Agg = AgNh1(Ag) and Ay = AgNh1(A,).
We have just shown the following.

Lemma 3.13. Let G be a Mébius group with |[A(G)| > 3. When A(G) is disconnected, each
nonempty closed and open subspace of A(G) is also disconnected.

Using this lemma, we can similarly express A; as a disjoint union of non-empty com-
pact subsets Ay and A;;. Again applying this technique we can express any of the sets
Ago, Ao, A1p and Aq; as the disjoint union of non-empty compact subsets. In particular, for
any sequence «; . ..oy where each a; is 0 or 1 we can construct a non-empty compact sub-
set Aq, . .q, such that for any of the uncountable infinite sequences o ...y ... the infinite
decreasing intersection

ﬂkAal...ak
is non-empty and contains at least one connected component of A(G). Since each such
intersection is disjoint from any other such intersection the result follows. O

The preceding proof shows that the Cantor set {0,1} is a quotient space of A(G) when
this limit set is disconnected and |A(G)| > 3. More is true, however.

Proposition 3.14. When A(G) is disconnected and |A(G)| > 3 there is a natural map
m : AMG) — Q, where Q is a Cantor set, ™ is onto, and each fiber 7 (q), q¢ € Q, is
connected.

Proof. Let X be any topological space and let I be the set of all open and closed subspaces
A C X. For each such A let x4 be the characteristic function of A. In combination, these
characteristic functions define a mapping x from X to the product space {0,1}!. The image
of this map is Q(X), the space of quasicomponents of X, and we have a natural projection
7m: X — Q(X) that maps each x € X to its quasicomponent.

When X is a compact metric space, I is countable and so Q(X) is compact, metric, and
totally disconnected. For such X, every quasicomponent is a component ([24] Section 5-1,
Exer. 4) so the fibers of 7 are just the components of X.

When X = A(G) is disconnected, |Q(X)| > 1. By Lemma 3.13, Q(X) has no isolated
point. Thus Q(X) is a Cantor set. O

Corollary 3.12 does not necessarily hold in the more general setting of rational semigroups.
We record this and other such differences in the following table which compares the dynamics
of different classes of rational semigroups S. The first column shows three potential properties
of the Julia and Fatou sets. The second column refers to both the dynamics of a rational
function of degree two or more (i.e., S =< h > with deg(h) > 2) and the dynamics of a
Mébius group S with |J(S)| > 3 (i.e., S =< hy,h7' 14 € I = with each h; Mébius). The
third column refers to the dynamics of a rational semigroup S with no restrictions on the
degree of its generators.

The results in the table for rational functions can be found in [22], and the results for
Mébius groups and rational semigroups can be found in this paper as indicated (see also [16]).
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rational function; rational semigroup
Mobius group

J(S) and F(S) are F(S) is forward invariant;

completely invariant J(S) is backward invariant*

J(S) is connected or

has uncountably many yes't

connected components not?
J(S) has empty interior

or J(S) = C

We now study when the inclusion J(S) C A(G) is an equality.

Proposition 3.15. Let S be a non-elementary Mdébius semigroup such that J(S) is com-
pletely invariant. Then J(S) = A(G) where G is the group generated by S.

For Theorem 3.9 gives the opposite inclusion A(G) C J(5).
Beware that J(S) may be completely invariant with J(S) # J'(S), as illustrated in the
following example.

Example 3.16. Let g, be a dense sequence of real numbers and for each n € N let s,, be a
linear map with real coefficients with source q,,. Let S =< s, : n € N >. Theorem 8.9 gives
A(G) C R. Since g, € J(S) for all n, R C J(S). Thus J(S) = A(G) = R and so J(S) is
completely invariant. But S~ is normal on C and so J'(S) = {oc} # J(9).

4. CONTRACTING ITERATED FUNCTION SYSTEMS

Let S be a rational semigroup and K C C an S-invariant set equipped with a metric d,
consistent with the topology on K. We say that S is an IFS (iterated function system) on
(K,d). S uniformly contracts (K, d) if there exists a constant ¢, 0 < ¢ < 1, such that for
each s € S we have s*d < cd (that is, d(s(z), s(w)) < cd(z,w) for all z,w € K). When S
uniformly contracts (K,d) we say that S is a CIFS (contracting iterated function system)
on (K,d) or, less precisely, a CIFS on K.

We define the attractor A = A(K,S) as the closure of the set of all fixed points in K
of the maps s € S. We suppress the dependence on S and K when there is no chance for
confusion.

For example consider the quadratic family S, =< 2? + ¢ = . The set {oco} is an attractor
for all ¢ € C. For small ¢, S, uniformly contracts the disc K = A(0,1/2) in the Euclidean
metric, so S. has multiple attractors.

The situation simplifies for Mobius semigroups, however.

Proposition 4.1. Suppose S is a Maobius semigroup and K is an S-invariant set that is
uniformly contracted by S. Either K is a fized point of S or A(K,S) = J'(S).

Proof. We assume |K| > 1 and show A(K,S) = J'(9).

Suppose s € S is loxodromic with sink p and source q. Then for z € K, z # ¢, the sequence
s"(z),n > 0, lies in K and converges to p. Thus p € K, as K is compact. But ¢ ¢ K as s
contracts K and both p and ¢ are fixed by s,

10gee Proposition 2.7 and Example 3.10.
Hgee Proposition 2.7 and Corollaries 3.12 and 3.7.
12Gee Examples 6.1, 6.3, and 6.4.
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Suppose s € S is parabolic with fixed point p. Then s"(z) — p, for any z € K, so p € K.
Suppose s € S is elliptic. For some sequence n, — 0o, s™ converges uniformly to /d on C.
For distinct points z,w € K this implies that the distance from s"*z to s"*w does not tend
to 0, contradicting the assumption that S uniformly contracts K. Thus no s € S is elliptic.
All told, we see that each fixed point in K is either a sink or a parabolic fixed point,
hence a point in J'(S). Thus A(K,S) C J'(S). Since each sink lies in K we see that Sink
S c A(K,S). By applying Theorem 2.4 to S~!, we see that either A(K,S) = Sink S =
Source S~1 = J(S~1) = J'(S) or some p € C is a neutral fixed point of each s € S.
Suppose such a p exists. Then as S contains no elliptic elements, each s € S is parabolic
with fixed point p. In this case J'(S) = {p}, by Proposition 2.2. But the parabolic fixed
point p lies in K and hence lies in A(K, S). So one still has A(K,S) = J'(S) in this case. O

As mentioned in the introduction of this paper, we are interested in the properties of A
in relation to the random dynamics (or random walk) when S =< hy,..., hyx > is a finitely
generated CIFS. Specifically, it is known that A is the w-limit set'? of the random walk
given by the following description: starting at a point zy in K, randomly select (we may for
simplicity assume a uniform probability) a number ¢; from {1,...,n} and define z; = h,, (zo).
Then randomly pick ¢y from {1,...,n} and define x9 = h,,z1 = h,,h,, (2o). Continue in this
way to generate an orbit x; for j = 0,1,.... With probability one, the w-limit set of the orbit
x; is exactly A. We should mention that there exists a unique stationary Borel measure p
for this process whose support is exactly A and that an ergodic theorem holds for u-almost
all orbits. See [17, 1, 9] or [28] for details and precise statements of all the above results.

We define the compact image S(N) of a compact set N C C as the smallest compact set
that contains each image s(N), s € S. Compact image commutes with finite unions in the
sense that if Ny, ..., Ny are compact with union N then S(XN) is the union of S(Ny), ..., S(Ng).
When S is finitely generated and N is S-invariant then S(N) is the union of the images h(V)
where h runs over a finite set of generators of S.

Let S =< hy,...,h, = be a CIFS on K, as above. One can construct the attractor A
iteratively and characterize it as a fixed point, as follows.

Theorem 4.2 ([17], p. 724). Consider the space of all non-empty compact subsets D C K,
endowed with the Hausdorff metric. Then each sequence D,S(D),S*(D) = S(S(D)), ...
converges to A. In particular, for any open set U C C containing A there exists N > 0 such
that S¥(D) C U for all k > N. Moreover A is the unique nonempty compact set in K such
that

(4.1) A= 5(A) = UL hi(A).

We refer to (4.1) as the self-similarity property of A since it expresses A is the union of
small (contracted) copies of itself h;(A). Beware that the assumption of uniform contraction
on K is critical here, as illustrated by Remark 2.21 (using the contracting inverse semigroup
S~! instead of the semigroup S given there).

Example 4.3 (Linear contractions). Consider S =< hy, ..., h, = where each h; is a linear
contraction, i.e., for each i = 1,...,n we have h;(z) = a;z + b; where |a;| < 1. In this case,

12The w-limit set of a sequence z; is the set of all y such that there exists a subsequence z;, — y.
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it is not hard to see that for R sufficiently large, the set K = A(0, R) is forward invariant
under each h;, and therefore under S. Since these maps are uniformly contracting with
respect to the Fuclidean metric (with contraction coefficient ¢ = max;—1__n|a;|), we have
that S is a CIFS with an attractor A C K. We also note that for any compact set D C C,
we have S*(D) — A (since one can choose R large enough that D C K ). It follows that A
s independent of R, for R sufficiently large.

Under the conditions of Proposition 4.1, with S finitely generated, Theorem 4.1 implies
that any self-similar S-invariant set B C K must equal J'(S). This allows us to calculate
many Julia sets.

Example 4.4. Consider S == hy, hy > for hi(z) = 3z and he(z) = 32 — 2. The inverse
semigroup S—' is a CIFS on, say, K = A(0,10). Since the middle third Cantor set C
satisfies C = U?_ b7 (C), we conclude J(S) = A(S7?) = C.

5. THICK ATTRACTORS

Let S be a finitely generated Mdbius semigroup that is a CIFS on some compact set K*.
When the interior of K* contains A = A(K*,S) we say this attractor A is thick.'* As a
thick attractor for S attracts the orbits of all points in the large set K*, we see that there
are many seed points whose random orbit will generate a good picture of A.

Thick attractors arise whenever certain simple dynamical conditions are met.

Theorem 5.1. Let K and K' be nonempty disjoint compact sets in @, not both singleton
sets, and let hy,...,h,, n > 1, be loxodromic Mobius transformations such that for each
g, hi(K) C K and K' C hj(K'). Let S be the semigroup generated by the hj, so the S-
invariant set K is disjoint from the S™'-invariant set K'. Then S uniformly contracts K
and A(K,S) = J'(S) = Sink S is a thick attractor.

The following example illustrates the importance of the conditions put on |K| and |K'|
above.

Example 5.2. Let S =< 2z =, K = {0}, and K' = {o0}. Here J'(S) = {o0} = Sink S, but
since it is not a subset of K, it cannot be A(K,S).

Although Example 5.2 shows how the conclusion of Theorem 5.1 can fail when |K| =
|K'| = 1, this exceptional case can be fully analyzed. Indeed, suppose without loss of
generality that K = {0} and K’ = {oo}. Then both 0 and oo are fixed by S. Thus
each generator h; € S is of the form z — a;z. Since, as noted above, each h; is then an
isometry on C* endowed with the metric |dz|/|z| we have that C* C F(S). If max|a,| < 1,
then J(S) = {oo} and K = {0} = J'(S) is a thick attractor (using K* = A(0,r) for any
r > 0). If min |a;| > 1, then J(S) = {0} and K’ = {oo} = J'(S) is a thick attractor (using
K* = C\ A(0,r) for any r > 0). If min laj| < 1 and max|a;| > 1, then S does not have a
thick attractor and {0,000} = J'(S) = J(95).

Proof of Theorem 5.1. Since h; has no neutral fixed point, Theorem 2.4 shows that Sink S =
Source S™! = J(S71) = J'(9).

We first prove the theorem in the cases where K or K’ has at most two points.

13Beware that S may also be a CIFS on another set K with the same attractor A for which Int K does
not contain A.
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Consider the case |K'| = 2. We may suppose, by conjugating S in M, that K’ = {0, co}.
As K' is backward invariant by h; and as h; is loxodromic, h;(z) = az for some a with
la| # 1. Now K is nonempty so we may choose z € K C C*. The sequence z, h(z), h%(2), ...
lies in K and converges to either the origin (if |a| < 1) or to oo (if |a| > 1), contradicting the
fact that K is closed and disjoint from K'. Thus |K’| # 2. Likewise one can show |K| # 2.

Now suppose that |[K'| =1 and |K| > 1. We may suppose, by conjugating S in M, that
K' = {00} so hj(z) = ajz + b; for some a;,b;. As h; is loxodromic, h;(K) C K, K C C is
compact, and |K| > 1 we must have |a;| < 1 (else there would exist a point in K which is
not the repelling fixed point of h; and such a point would iterate under h; to co). Thus S
uniformly contracts C, with its usual distance function and with contraction constant equal
to the maximum of |y, ..., |a,|, and so S uniformly contracts K. When s € S, s has a source
at 0o so the only fixed point of s in K is its sink. Thus Sink S = A(K,S). Consider the
compact set K* of all complex numbers whose distance from K is at most 1. Then S is also
a CIFS on K* with A(K*,S) = A(K,S) C K C K*, so this attractor is thick. Thus the
theorem holds when |K'| =1 and |K| > 1.

When |K| = 1 and |K’| > 1 we may, in a similar fashion, suppose K = {oo} so that
h;(z) = ajz +b; for some a;, b; with |a;| > 1. Then each s € S is loxodromic with sink at co.
It is trivial that S uniformly contracts K and the rest of the theorem is clear in this case.

For the rest of the proof we shall assume K and K’ have at least 3 points each. We need
three lemmas in order to show that S uniformly contracts K.

Lemma 5.3. Each s € S is lozodromic with sink in K and source in K'. Moreover s(K) is
strictly contained in K and s(K') strictly contains K'.

Proof. Say s € S is loxodromic with sink p and source ¢. As |K| > 1 we can choose z €
K,z # q. As s(K) C K, the sequence z,s(z),s*(z),... approaches p. As K is compact,
p € K. Likewise ¢ € K'. As K and K’ are disjoint, we see that ¢ ¢ K. Iterating s, we see
that s71(K) is not a subset of K, so s(K) is strictly contained in K. Likewise s(K') strictly
contains K.

In particular h;(K) is strictly contained in K for all j. This implies s(K) is strictly con-
tained in K for all s € S. Likewise s™'(K') is strictly contained in K', so K' is strictly
contained in s(K’).

Suppose sAis elliptic. After conjugating s, we may suppose that s preserves spherical
distance on C. Then s is an isometry of the compact metric space K, so s(K) = K ([24],
Exer. 7 p. 182). This contradicts the strict inclusion we just established, so s is not elliptic.

Suppose s is parabolic with fixed point p. Then s(K) C K and K is compact and nonempty.
If z € K then the orbit z, s(z), s?(z), ... approaches p and so p € K. Reasoning likewise with
s~ !, we see that p € K', contradicting our assumption that K and K’ are disjoint. Thus s
is not parabolic

The only remaining possibility is that s is loxodromic. U

Let U be the complement of K’ in C and let V be a component of U. Then V' is open and
connected and its complement has at least three points so V' has a unique hyperbolic metric.
This is a complete Riemannian metric of curvature -1 compatible with the complex structure
on V. We let dy denote the distance function on V' defined by this hyperbolic metric. We will
use the various dy to define via (5.2) a distance function d on K and prove that S uniformly
contracts (K, d).
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As K C U is compact and the components of U are disjoint and open, K meets only
finitely many components Uy, ..., U,, of U. We have m > 1 since K is nonempty. We let
dj = dy, be the hyperbolic distance function on Uj.

Since K' is backward invariant under S, U is forward invariant under S. Thus S acts
on the finite index set F' = {1,...,m} so that s(U;) C Uy for all j € F and s € S. For
s(U;) C U is connected so s(U;) C V for some component V of U. As K NUj; is nonempty
and s(K NU;) C KNV, we must have V = Uy, for some k € F. As the U;’s are disjoint, £ is
uniquely determined by j and s and we may define s(j) = k.

The following result is certainly consistent with S being uniformly contracting on K.

Lemma 5.4. There is a A > 0 such that for every s € S expressed as a word of length at
least X\ in the generators hy, ..., h, one has s(K) C Uy for some k = k(s).

Proof. We claim that each s € S fixes a unique point of F. Recall from Lemma 5.3 that s is
loxodromic with sink p, say, in K. As K is covered by the Uj, there is a j € F' with p € U;
which implies s(j) = j. If k € F and s(k) = k then s(Uy) C Ug. Thus p € Uy. As the U; are
disjoint and open, k = j. Thus 7 is the unique fixed point of s in F.

Consider now the product action of S on F? = F x F. By the uniqueness result just
proven, any fixed point in F? of any element of S must lie on the diagonal D C F2. Let
l=m?>—m=|F? —|D| and let s = hj,...hj, € S be a product of | generators h;.

We claim that s(£?) C D. To see this we define s; = hj,...h;, for 0 < i < [, with the
understanding that sy = Id. For (j, k) € F? the pairs s;(j,k) € F?, 0 <1 < [, are either
distinct or not. If these pairs are distinct then our choice of [ implies that s;(j, k) € D for
some i. If these pairs s;(j, k) are not distinct then there exist i < ' with s;(4, k) = sy (J, k)-
But s;(j, k) is fixed by hj,...h;,, € S and so s;(j, k) € D. Either way, since D is S -invariant
and [ > 7 we have s(j, k) = s;(j, k) € D. This proves our claim.

Now let &k = s(1) and pick j € F. We have shown that s(j,1) € D, so we have s(j) = k.
Thus s(U;) C Uy. As the U;, j € F, cover K, we find that s(K) C Uy as well. O

The preceding proof shows that we may take A = m? —m, but in a given example a much
smaller A may suffice.

Now define the open set Ui to be the union of all components of U that meet K, so
Uk = UyU...UU,,. We define a generalized distance function 0 on Uy by defining 6(z, w) = oo
when z, w lie in different components of U and §(z, w) = d;(2, w) when z,w € U;. For [ > A,
we define a distance function 6; on Uk by setting d;(z,w) equal to the maximum value of
d(s(z), s(w)) over all s € S expressible as a word of length [ in the generators hy, ..., h,. Note
that our choice of A assures that ¢;(z, w) is finite, and we leave it to the reader to verify that
d; is a distance function. We surely have &;(h;(z), hj(w)) < §11(z, w) for all z, w € Uk, since
sh; is expressible as a word of length [ + 1 whenever s is expressible as a word of length /.
In a more convenient notation, we have

(5.1) R, < 611

Lemma 5.5. There is a > 0 such that for every 57 € F and each s € S expressible as a
word of length at least v in the generators hy, ..., hy, s(U;) is strictly contained in Usy.

Proof. Fix s € S and let f € F be the unique fixed point of s and let p and ¢ be the sink
and source of s, respectively. We have seen that p € Uy N K. As Uy is an open neighborhood
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of p, if s 1(U;) C (Uy) we would find that U; contains @\{q}, contradicting the fact that
the complement of U contains at least three points. Thus s(Uy) is strictly contained in Uy.

Suppose s = h;,....h;, € Sisaproduct of m generators h;. Let s; = hj;...h; fori=1,...,m.
Given j € F we define jo, ..., jm, in F so that jo = j and s,(U;) C Uj,. Since |F'| = m we must
have j, = j, = f for some a < b and some £ € F. Then s* = s3s,' € S and s*(¢) = £. Hence
from above s*(Up,) is strictly contained in U,. It follows that s(U;) is strictly contained in
U, O

m*

The preceding proof shows that we may take g = m, but in a given example a much
smaller p may suffice.

Fix a generator h = h; of S. Suppose j,k € F and h(U;) C Uy. As h is holomorphic, a
theorem of Pick shows that A cannot increase hyperbolic distance. That is di(h(2), h(w)) <
di(z,w) for all z,w € Uj, or, more concisely, h*d; < d;. Moreover Pick shows that if h(U,)
is strictly contained in Uy, then h is uniformly contracting on each compact set X C Uj, so
there is a contraction constant ¢ = ¢(X, 4, j) < 1 such that h*dy < cd; as distance functions
on X ([22], Theorem 2.11).

Let ¢(K) < 1 be the maximum of ¢(K NUj, 4, j) over all ¢ and j such that h;(U;) is strictly
contained in some Uy, (note that this does not necessarily happen for all ¢, j). If j, k € F with
hi(U;) strictly contained in Uy then hjdy, < c¢(K)d; as distance functions on K N U;. By our
choice of p, we see that for every s = h;,...h;, € S expressed as a product of ;4 generators and
for every j € F' we have s*d; < ¢(K)d; as distance functions on K N Uj;, where k = k(s, j).
By our choice of A, we find 0,4, < ¢(K)J; as distance functions on K for all [ > A.

Let a = a(K) = ¢(K)'* < 1. Define the distance function d on Ux by

(5.2) d= a"_15}\ + a“_2(5>\+1 +...+ a(S)\J,_M_Q + 5)\4_“_1.
Using (5.1) together with 6,4, < ¢(K)d\ = a*d) on K, we see that on K we have
h;d = h;(a“_l&\ + a“_2(5,\+1 =+ ...+ a5>\+u_2 =+ 5>\+M—1)
< a* Oy + a2 000+ + a0xypu—1 + Oxtp
< a“_15>\+1 + a‘u_Q(SM_Q —+ ...+ 05)\4_”_1 + atdy = ad.

As a < 1, S uniformly contracts (K, d). Now Proposition 4.1 shows that A(K, S) = J'(S5).
It only remains to check that the attractor J'(S) is thick. Let K* C Uk be the compact unit

neighborhood of K in the hyperbolic metric, that is, z € K* when z € Uk and dg(z,w) <1

for some w € K. By the theorem of Pick K* is forward invariant under S, and so we may

repeat the above argument, but with K replaced by K*, to show that S uniformly contracts
(K*,d). But Sink S C K lies in the interior of K* so Sink S is thick. O

Note that the preceding proof simplifies greatly when m = 1, that is when K lies in
a single component V' C U or, equivalently, when K’ does not separate K in C. In this
case S uniformly contracts (K, dy) and so the last two lemmas are not needed at all. In
Example 6.2 we show that K’ = J(S) may separate K = J'(S), so J'(S) C F(S) is a thick
attractor that meets two or more components of F'(S). Hence the above generality is required
for our purposes.

Let S be a finitely generated Mobius semigroup. We define an S-block to be a nontrivial
compact set N C C whose interior contains S(/V) (by nontrivial we mean that neither N
nor its complement is empty).
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Example 5.6. Recall from the introduction that our motivation is to study Sg =< f3,g9s >~
where fg(z) = f+1/z and g3(2) = —B+1/z (see also Section 7.1). We now give a block for
Sg when |RB—SB| > 2. Let A be the segment from 1 to —i and let"* E = AU1/AU—AU—1/A,
so E is a convex curve in C. By construction, E = 1/E. Let N be the compact region in C
containing oo and bounded by E. Then 1/N + (3 is the bounded region with boundary E +
and so N is a block for Sg. The set {Z|z € N} is a block for Sg when |RG + S5 > 2.
Combining these two cases, we see that Sg has a block whenever |R5| + |S3] > 2.

The term “block” is suggested by the “isolating blocks” which Conley used to study
invariant sets of flows. Conley’s work was based on Smale’s pioneering study of hyperbolic
attractors for smooth flows, in which forward invariant compact regions played a prominent
role.

Blocks give a practical way to detect thick attractors.

Theorem 5.7. For a finitely generated Mdbius semigroup S the following are equivalent:
1) S has a thick attractor J'(S)

2) there is an S-block

3) S7! has a thick attractor J(S)

4) there is an S—'-block

5) J'(S) is disjoint from J(S) and the generators of S are lozodromic.

Proof. We show 1) implies 2). Let S be a CIFS on (K, d) whose attractor A lies in Int K.
Let U be the open e-neighborhood of A in (K, d), where € is chosen small enough that U lies
in Int K, and let N = U. Then since S uniformly contracts (K,d) and N lies in the closed
e-neighborhood of the S-invariant set A, S(/N) C U. Thus N is an S-block.

Now suppose 2) holds. Let N be an S-block and U its interior. Since N is compact and
@\N is nonempty, S is a normal family on U by Montel’s Theorem. Thus U C F(S). Since
N is forward invariant under S, it is backward invariant under S~', which implies J'(S) =
J(S™') C N by Lemma 2.18. Since S(N) is also an S-block, J'(S) C S(N) C U C F(S) and
so J(S) is disjoint from J'(S). Let s € S. Since s(IN) C U, we see that s is neither elliptic
nor the identity. The map s is also not parabolic since its fixed point would have to be in
both J(s) C J(S) and J(s!) C J'(S). Thus s is loxodromic and 5) holds.

Now suppose 5) holds. Letting K = J'(S) and K’ = J(S) in Theorem 5.1, we see that if
|J'(S)UJ(S)| > 3, then 1) must follow. When |J'(S)| =1 = |J(S)| we quickly see from the
discussion immediately following Example 5.2 that using K = J'(S) and K’ = J(S) we must
have J'(S) is a thick attractor for S. Thus 1), 2), and 5) are equivalent, which by replacing
S by S~! quickly shows that 5) is equivalent to 3) and 4). O

Remark 5.8. We can see directly that 2) implies 4). Let N be an S-block with interior
U and let N' = C\U. Then N' is an S~ '-block since for h € S we have N C h™*(U) so
h='(N'") c C\N C Int N'.

Remark 5.9. The eristence of a block for S restricts the dynamics of nearby semigroups.
For suppose N is an S-block and let V' be an open set such that S(N) CV and V' C Int N.

The Mébius transformations m(z) with m(N) C V define an open neighborhood ¥ of S in
M. Y is a Mobius semigroup and N is a ¥-block. For any semigroup S* C % it follows that

UFor a set X C C we use the notation —X = {—z:2€e X}, X1'=1/X={1/z:2€ X}, X +a=
{z+a:z€ X} and aX ={az:z € X}, for any a € C.
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N s also an S*-block. This implies that in a continuously parametrized family of Mobius
semigroups, the condition that N be a block defines an open set of parameters. Letting N
vary, we see that the existence of a block also defines an open set of parameters. In this
sense, blocks (and hence thick attractors) are a stable phenomenon.

For a fixed finitely generated Mobius semigroup S, an S-block N can be used to calculate
Julia sets and Fatou sets. We define N=" for n > 0 as the set of all points z € C such that
s(z) € N for all s € S that are expressible as a product of n generators. Clearly N~" is
compact. N~" is nontrivial as it contains the sink but not the source of any generator of S.
We also define N° = N and N" = S"(N) for n > 0. Then for all integers n, S(N™) Cc N"*!
and N™! lies in the interior of N™.

We now describe the limiting behavior of these nested compact sets N™.

Proposition 5.10. Let N be an S-block, where S is a finitely generated Mobius semigroup.
Then J'(S) =N N™ and F(S) =U N", n € Z.

Proof. Let K be the intersection of all the N™ and let O be the union of all the N™. Then
O is open, since it isAthe union of all the Int N". We let K’ = C — O. Since each N" is
strictly contained in C and the sequence Int N™ is decreasing, K' is compact and nonempty.
Clearly K’ and K are disjoint. Since each N" is S-invariant, K is S-invariant and K' is
S~Linvariant.

Moreover S(K) = K. For if x € K then for each m we have z € s;...5,,(N) with each s;
a generator of S. By the pigeonhole principle, some generator must occur infinitely often as
s1, which implies that x € s1(K).

By Theorem 4.2 we see that K = A(S, N). By Theorem 5.1, with K replaced by N, we
see that A(S, N) = J'(S) and so K = J'(S).

Likewise S'(K') = K' and K' = A(S',N') = J(S), where N’ is the block of Remark
5.8. O

Remark 5.11. For S as in Proposition 5.10, the dynamics of S on F(S) becomes trivial
when we ignore the dynamics of S on J'(S). More precisely, let X = F(S)/J'(S) with the
quotient topology and denote the singular point J'(S)/J'(S) € X by p. X is locally compact
and metrizable. S acts naturally on X since both F(S) and J'(S) are forward invariant. Fix
an integer n. The sets S¥(N™)/J'(S) C X,k = 1,2, 3, ... are nested neighborhoods of p. Since
SE(N™) C Skt the intersection of these neighborhoods is p. Thus the family of mappings
s: N"/J(S) — N"/J'(S), s € S, converges uniformly to the constant map p. But each
compact K C F(S) is contained in Int N™ for some n, since these open sets form a nested
family whose union is F(S). Thus the family of mappings s : X — X, s € S, converges to
the constant map p, uniformly on each compact subset of X.

On the other hand, Theorem 2.4 shows that any open set that meets J(S) contains a source
of some s € S, whose S-orbit is not attracted to J'(S). In this sense, F(S) is the basin of
the attractor J'(S).

In fact J'(S) can be calculated from the orbit of any Fatou point z, as follows by setting
Z = {z} in this result.

Corollary 5.12. Let S be a Mobius semigroup generated by a finite number of loxodromic
maps such that J'(S) C F(S). For each compact subset Z C F(S) the sequence S™(Z)

converges to J'(S) in the Hausdorff metric on compact subsets of C.
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Proof. By Theorem 5.7, there is an S-block N. By Proposition 5.10, Z C N", for some n,
and so S*(Z) C N™** for all k > 0. By Theorem 5.1, there is a compact neighborhood K of
J'(S) that is uniformly contracted by S. We can choose k so that Int K contains N"**. Now
apply Theorem 4.2 with D = S*¥(Z) c K. We see that S*(Z), n > k, converges to J'(5)
in the Hausdorff metric on compact subsets of (K, d). Let ds denote the spherical distance
function on C. Since ds and d define the same topology on K, we also have convergence in
the Hausdorff metric on compact subsets of (K, dg). Thus S"(Z), n > 0, converges to J'(.S)

in the Hausdorff metric on compact subsets of (C, ds). O

Remark 5.13. To conclude, we note that the existence of a block implies that the long term
states of a randomly generated orbit must accumulate on J'(S), provided the initial condition
is in F(S). Moreover the w-limit set of such a random orbit is all of J'(S) (with probability
one). Hence, plotting the points of such a random orbit (and discarding the first 50 or so as
transient) approzimates points in J'(S).

6. SOME JULIA SETS OF MOBIUS SEMIGROUPS

In this section we illustrate various possible properties of the Julia set of a finitely generated
non-elementary Mobius semigroup. We particulary present examples that contrast these
Julia sets with the Julia sets of rational maps of degree > 2 or with the limit sets of Mobius
groups. ~

We first show that a Julia set can have interior without being all of C, contrary to the
case for limit sets (Corollary 3.7) and for Julia sets of rational functions of degree greater
than or equal to two ([22], p. 58).

Example 6.1 (F' neither empty nor dense). Define S to be the semigroup generated by
hi(z) = (b —i2)/a, where 0 < a < 1 and b = 1 — a®. Then S™! =< iaz +ib = is a
CIFS on K for any large disc K with the Euclidean metric, as |ia| < 1. Let R be the closed
rectangular region with corners +a & 4. Then hi'(R) U hZ'(R) = R if a > 1/\/2. For such
a, Theorem 4.2 implies that A(S™') = R. By Proposition 4.1 we see that J(S) = R. Thus
J(S) # C and Int J(S) is nonempty, as desired.

Furthermore, J'(S) = {oo} since S™! is normal on C, and the group G generated by S
has A(G) = C, by Corollary 3.7, since R = J(S) C A(G).

Corollary 7.22 (with 5% ¢ R and Gj not discrete) gives many 2-generator Mobius semi-

groups whose Julia sets equal C.
We now show that J(S) may separate J'(S), meaning that J'(S) may lie in the Fatou set
F(S) but meet more than one such Fatou component.

Example 6.2 (J separates J'). Choose a closed triangular region T C C such that the
open triangle U whose vertices are the midpoints of T contains 0. Label the vertices of T
as ¢; and consider the doubling dilation h;(z) = 2z — ¢; centered at ¢; for i = 1,2,3. Let N
be a closed r-neighborhood of T\U for r positive and small, so that 0 ¢ N but Int(h;(N))
contains N for all i. Let St be the expanding linear semigroup generated by h;, i = 1,2, 3.
Then J'(St) = {00} and, since T is backward invariant under Sr, J(St) C T is bounded.
Indeed, as in Example 4.4 we see that J(St) C N is a Sierpinski triangle and U is a bounded
component of F(St). Thus J(St) separates 0 from oc.
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Let h(z) = b/(z — a), so h™'(z) = a+ b/z. Choose b very small so that h™'(N) is small
and then choose a so that h™'(N) is contained in Int N. Let S be the Mébius semigroup
generated by h and Sr. Then J'(Sy) C J'(S) so oo € J'(S) and 0 = h(oo) € J'(S).

By construction Int N contains S™'(N) and so N is an S~ '-block. By Theorem 5.7
J'(S) C F(S). Since J(S) contains J(St) it follows that J(S) separates the points 0 and oo

of J'(S).

By adding k appropriate loxodromic generators to Sp, with sources in distinct components
of F(St), we can likewise construct a semigroup S as in Theorem 5.1 in which J'(S) meets
more than £ Fatou components.

Recall from Corollary 3.12 that a disconnected limit set with three or more points has
uncountably many components and that the same holds for the Julia set of a rational map
of degree > 2. The next two examples show that the situation is not so simple for Mdbius
semigroups.

Example 6.3 (J with n > 1 components). Let J be the union of n > 1 disjoint closed
line segments Jy, Jo, ..., Jn in R. Choose m linear maps a; such thavt UJ a;(J) = [0,1]
(depending on the number and configuration of the Jy, this may require a fair number of maps
aj, but it can always be done). Now, for each k = 1,...,n, let by be a linear map whose
image of [0,1] is ezxactly Ji. Let S =<bgoa;:j=1,...,m;k=1,...,n > and note that the
generators are all linear contractions on C since each by o a; maps Jy, strictly inside itself.
Since J = Up_1bg([0,1]) = Up_1be(UFL a5(J)) = Ui UL, broa;(J), we have by Theorem 4.2
that J is the attractor set of the contracting iterated function system S. By Proposition 4.1,
J(S™') = J has ezactly n components.

In this example J(S) = {oo} since S is normal on C. We can also calculate A(G) for the
group G generated by S. J = J(S™') C A(G) and Theorem 2.4 implies that some h € S~
has a repelling fized point in J; tifz\at s not an endpoint of Ji. Forward invariance shows that
R = U;-";lhj(J) C A(G). Since R is completely invariant under G, however, Theorem 3.9

implies that A(G) = R.

We note that Example 6.3 can be adjusted to generate a Julia set with exactly two
components using 4 generators by using J; = [2,2.49], Jo = [2.51,3],a:(2) = z — 2, and
as(z) = 0.1 4+ (2 — 2)/2. This approach can also be adjusted to produce n components of
J(S) with 2n generators (just select intervals Ji to be subintervals of [2, 3] with small gaps
in between and use a; and a slight change to the constant term in as). However, also see
Example 6.4.

For any n € N, there are examples of polynomial semigroups whose Julia set has exactly
n components (such a semigroup may also be chosen so all its elements have degree > 2 and
so that its planar postcritical set is bounded). In the first such examples, the semigroup was
generated by 2n elements [38]. However, 4 generators are sufficient for any n [33].

The following example shows for any n € N, there is a 5 generator Mobius semigroup
whose Julia set has exactly n components. Likewise 5 generators can produce a countably
infinite number of Julia components.

Example 6.4 (J with Xy components). Let J; = [2,2.49] and J, = [2.51, 3] and label the gap
between them H = (2.49,2.51). Now consider the linear maps (as in Example 6.3) chosen
so that by([0,1]) = J1,b02([0,1]) = Jo,a1(2) = 2 — 2, and as(z) = 0.1+ (2 — 2)/2. Thus for
S =< by oa; > we have A(S) = J1 U Js.
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Set h(z) = 0.02(z — 2.49) + 2.49 and note that h(3) < 2.51. Thus Jo, h(J3), h*(Jo), ... are
all disjoint intervals. Let S* =< h,by o a; >. We claim that J* = J; U Jo U U h"(Jy),
which has exactly Ny components, is the attractor set of S*.

Since each map a; is linear and maps both J, and Jy into [0,1], each map a; must also
map the gap H into [0,1]. Hence each composite map by o a; not only maps J = J; U J,
into itself, it also maps H into J. Since U h"(Jy) C H and A(S) = J, U Jy is forward
invariant under S, we then have that J* is forward invariant under each by o a;. Clearly
from the definition of h we see that J* is also forward invariant under h. Thus A(S*) C J*.
Since S C S* implies J, U Jo = A(S) C A(S*) and A(S*) is forward invariant under h, we
then see that J* C A(S*). Hence A(S*) = J*. Thus, by Proposition 4.1, we see that the
inverse semigroup of S* has Julia set equal to J*. R

We again note that, as in Example 6.3, J(S*) = {o0} and A(G) = R, where G is the
group generated by S*.

If the above map h is chosen to instead have its sink in the open interval (2,2.49), then
some h¥(Jy) would meet J; and thus the attractor set J* would have a finite number of
components. One could then assure that we have exactly n components of J* by adjusting
h carefully. This constructs a Julia set with exactly n components out of only 5 Mobius
generators.

7. CARUSO SEMIGROUPS

The previous sections have set up a framework for the study of Mobius semigroups. In this
section, we explore the dynamics of a particular family of Mobius semigroups Sg, 8 € C*.
We study the topological properties of the Julia set of Sg and the limit set of the group Gpg
it generates. We will especially examine the extreme cases where the Julia sets of Sz and
Sg ! are equal or disjoint.

7.1. Preliminaries. For a fixed nonzero complex number § we let f(z) = f+ 1/z and
g(z) = —f + 1/z. We define the Mdbius group Gz = (f, g). the semigroup Sz =< f,g >,
and its inverse semigroup Sgl =< ftgt>.

Note that f~1(z) =1/(z — B) and g *(z) = 1/(z + B). It follows that fg !(z) = z + 20.
Thus the only point in H3 U C with a finite orbit under fg=! is co € C. As f(c0) # o0, Gps
has no finite orbit in H3 U C. By definition, this shows that G4 is a non-elementary Mébius
group.

As Sp (respectively Sg') generates G, it has no finite orbit in H*U C. Corollary 2.22 now
shows that Sg (respectively Ss') is non-elementary.

We denote the Julia set of Sg by Jz = J(Sp), the Julia set of S[;l by J5 = J(Sgl), and
the limit set of Gg by Ag = A(Gp). Similarly, we denote the Fatou set of Sz by Fjg = F(Ss),
the Fatou set of Sﬂ_1 by Fg = F(Sﬁ_l) and the stable set of G by Q5 = Q(Gp).

From Remark 2.20 and Theorem 2.4 we obtain the following.

Proposition 7.1. For each 8 € C*, Sz and Sﬁ_1 are non-elementary and Gpg s a non-

elementary Mobius group. The sources of Sﬂ,SEl and Gg are dense in Jg, Jg and Ag,
respectively. Each of these sets is perfect and uncountable.
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We now introduce various transformations. We define three involutions®® of @, m(z) = —z,
r(z) = 1/z, and k(z) = Z, where m,r, and k denote minus, reciprocal, and conjugate,
respectively. We let i(z) = iz, so i%(z) = m(z). We define the translation t(z) = tg(z) = 2+
and let v = ug = rtr, so ¢t and u are parabolic and u(z) = z/(8z + 1) fixes the origin. Note
that f =tr and g =t 'r.

We will need the following M6bius groups later on. Define Hg = (¢,7) so G is a subgroup
of Hg of index at most two. Let Pg = (¢, u) so Ps is a parabolically generated subgroup of
Hpy of index at most two. A superscript + will be used to denote the groups obtained by
adjoining m, so Gs* = (f,g,m), Hy = (t,r,m) and Py = (t,u,m). All these groups are
commensurable, so each has limit set Ag and ordinary set {13 and each is discrete when any
is discrete.

Define a Koebe group to be a 2-generator non-elementary Mobius group such that the
commutator of the generators is parabolic and one generator has order two (see [41] Fig. 8,
or the groups Ga[7] in [25]). G} is Koebe since it is generated by f and m, m has order 2,

and fmf~'m~! = fg~! is parabolic.

Remark 7.2. Conversely, every Koebe group is conjugate to GZ{ for some nonzero 3. For
one may assume that the order two generator is m and that the other generator is h(z) =
(az+b)/(cz+d) where be # 0 and where at least one of a,d is nonzero (since m, h generate a
non-elementary Mobius group). In order that hmh=*m™! be parabolic one must have ad = 0
and so h is conjugate to an fz by a Mébius transformation kz or k/z that commutes with
m.

We represent f and g by the matrices M (8) and M(—f) where
1
v =(17 )

and use them to calculate tr2[f] = tr?[g] = —(32. Thus by Theorem 3.1 f and g have the
same type and are classified as a function of the parameter 3. Specifically, f and g (as well
as f~' and g7!') are

e parabolic if and only if § = £24,

e clliptic if and only if 5 is purely imaginary with |5| < 2,

e hyperbolic if and only if § is purely imaginary with |3| > 2,

e strictly loxodromic for any other value of .

The study of Jg, Jé and Ag is simplified by noticing that the functions f,g and their
inverses are conjugate to each other. This holds as two Mobius transformations u, v, nei-
ther the identity, are conjugate if and only if ¢r?[u] = tr?[v] ([2],p.66). Through simple
computations one can make these conjugacies explicit.

Proposition 7.3. We have the following conjugacies:
(1) fom=mog,
(2) for=rog™, and
(3) fomr=mro f1.

We summarize these results (along with some direct consequences) in Figure 2 where we
write w <~ h — v if w and v are conjugate via an involution h.

15A map h is an involution if h? = Id, i.e., h = h™!.
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f g
N /
1/z —1/z 1/z
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FIGURE 2. This diagram shows the conjugacies between the elements f, g, f~!
and ¢! under the involutions 1/z, —z and —1/z.

Proposition 7.3 describes some of the connections between the elements of Sg, Sﬁ_l, and
Gjs. Together with Remark 2.1, it explains a large amount of symmetry in the structure of
Jg, J5 and Ag, which we state as follows. See Figure 3.

Theorem 7.4. Jg, J;, and Ag satisfy the following properties'S:
( ) Jﬂ = —Jg and Jé = —J,é

(2) Js = 1/J'

(3) Js = (Jﬁ)Ug ' Jg) = (Jg=B)TU(Jg+B)!
(4) Jp = (J')UQ(J') = (Jg+B)U(Js—P)

(5) Ag=—Ag

(6) Ag=1/Ag

(7) Apg=Apg+ 8

Proof. Proposition 7.3(1) shows that S3 = mSgm ! and so by Remark 2.1, we conclude
Jg = m(Jg) = —Js. Similarly, the rest of (1) and (2), (5) and (6) can be shown. Parts (3)
and (4) are an application of backward self-similarity (Proposition 2.10) to the semigroups
Ss and Sgl (for the second equality in (4) we also made use of (2)). Part (7) uses (6) and
Proposition 2.7 to compute Ag = f(Ag) = 1/Ag+ 8 =As + . O

Corollary 7.5. For all values of B # 0, we have 0,00 € Ag. Also, if 0 or oo lie in Jg or J;
then both 0 and oo lie in both Jg and Jg.

Note that by Theorems 8.1(3) and 8.2(3), it is possible for JzN Jj # () without containing
0.

Proof. Parts 6 and 7 of Theorem 7.4 imply 0,00 € Ag. Part 4 of Theorem 7.4 shows that
oo € Jg if and only if oo € J;. Part 2 of Theorem 7.4 shows both 0 € Jg if and only if
o0 € Jp, and oo € Jg if and only if 0 € J;. The result then follows. O

The relations so far encountered do not exhaust the set of symmetries of Sg, Sgl and Gg.
We focus now on the symmetries that originate in the parameter S-plane with respect to
the maps m(z) = —z, k(z) = Z, and i(z) = iz. For convenience in describing the symmetry

16Recall footnote 14.
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FiGURE 3. Symmetries and relations in dynamical plane. From left to right
we have Jg, Jj and Ag for § = 1.3¢"7/6. Tt is very easy to spot the symmetries
described in Theorem 7.4. The unit circle (dashed) is shown for reference.
These pictures were generated by choosing a seed at random, computing one
million random iterates in its orbit and dropping the first hundred. See Re-
mark 5.13.

under i(z) we extend Sg to a semigroup Szt =< m, f5,95 === m, fg >, recalling that
mfgm = gg.

Using some simple equations in M we can understand how Sz and Gy (or Ss* and G7)
transform under m, k£, and ¢. In the following proposition we use subscripts to make explicit
the dependence of the maps f = f3, g = gg on the parameter 3.

Proposition 71.6. (1) f-3 :1%’ 9.5=fs solsfﬂ = S, Gﬁﬁlz Gp.
(2) fgz k'fﬂk_ » 95 = kgﬂk_ , SO SB = kSﬂk'_ , GB = kGﬂk‘_ .
(8)gip = i(ggm)i™", fig = i(fgm)i~',m = imi~", s0 S;y =iSgTi™", Gy =iGLi™"

This proposition explains the behavior of the sets Jz and Ag under the symmetries m, &, ¢
of the parameter S-plane.

Theorem 7.7. The Julia set Jg and the limit set Ag have the following relations:
(1) Jﬂ = J_g and Aﬂ = A_ﬁ,
(2) k(Jp) = J5 and k(Ag) = Az,
(3) iJg = Jzﬁ and iAg = Aiﬂ.

Proof. By Proposition 7.6(1), we have Sz = S_z and Gg = G_g and so (1) follows.

Proposition 7.6(2) shows that for k(z) = 2, we have Sz = kSgk™" and G5 = kGgk™" and
so (2) follows from Remark 2.1.

Likewise Proposition 7.6(3) implies J(S;5) = iJ(Ss") and A(Gj;) = iA(G}). Thus to
prove (3) it suffices to show J(Sz™) = Js and A(G) = Ag.

Since S5 = mSgm~"' by Proposition 7.3(1), we have m™'(Jz) = Jz by Remark 2.1. Thus
Jj is backward invariant by m and by Sz and so it is backward invariant by Sg*. As Sp is
non-elementary, its extension Sz* is likewise non-elementary. Thus Remark 2.20 applies to
Ss* and implies that J(S™) C Jg. But the other inclusion is clear since Sz C Sg*. Thus
J(Ss™) = Js.

In a similar way one shows that A(G}) = Ag. O

The symmetries of Jz and Ag under the substitution of 3 or B for /3 allow us to focus
on values of § in the sector 0 < arg 8 < /4. Consider the two rays that bound this sector.
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FIGURE 4. Top row: the Julia sets Js for different values of 8 with argument
7/4 as in Theorem 8.2. On the left (8 = 2¢"/*), we barely see the Cantor set J;
inside the unit circle. In the middle (3 = v/2¢"™/*), the Cantor set .J; intersects
the unit circle at the points £1, £i. On the right (8 = ¢/*), we have a gasket
Julia set that is both forward and backward invariant. Bottom row: the limit
sets Ag for the same values of 3. In the middle, we see the Apollonian gasket.
These pictures were generated by choosing a seed at random, computing one

million random iterates in its orbit and dropping the first hundred. See Re-
mark 5.13.

When arg 8 = 0, each set Jg, Jj, Ag is contained in the real line. When § = ret™/* with
r € R, however, the diagonal line argf = /4 is a line of symmetry of each of these sets.
For instance, since 8 = i3, Theorem 7.7 implies that ik(Js) = iJ5 = J;5 = Jg. See Figure 4.

7.2. Connected Js. In this section we investigate the consequences of a connected Julia
set Jz. We already know from Lemma 3.3 that Ag must be connected when J3 is connected.
We also have the following result.

Theorem 7.8. Suppose Jg is connected. Then Jz meets J,g.
The proof is based on 2 lemmas, the first of which relates Jg and Fjg.

Lemma 7.9. When oo € Fj, Jé meets the unbounded component V' of Fz. When 0 € Fp,
Jjy meets U where U is the component of 0 in Fj

Proof. Suppose oo € Fg. Then Jjs is bounded, nonempty, and closed and so there is a point
z € Jz of maximum modulus. By the triangle inequality, 2|z| < |z + S| + |z — |- Since
the three points z, z + 3, z — [ are distinct and collinear, they cannot all have the same
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modulus. Thus for some choice of sign we have |z| < |z £ 8] and so z = 5 € V. But since
z € Jg, Theorem 7.4(4) shows that z £ € Jé. This proves the first statement.

For the second statement, suppose 0 € F and let U be the component of 0 in Fj. Since
Jy = 1/Jg, we see 0o € F§. Let V' be the unbounded component of Fj, and note that
U =1/V'. We now show Jz meets V', thus giving J; = 1/J meets U = 1/V" as desired.
Under our assumption, Jé is bounded, closed, and nonempty. We choose a point w* € Jé
that maximizes (w/f) = dist(w, SR)/|B| over all w € J;. Hence Jj is contained in the
closed half plane H containing SR having boundary line SR + w*, and so the complement
of H lies in V'. Then w*,w* + B,w* — 8 € SR+ w* C V'. But by Theorem 7.4(4), we can
choose the sign so that w* + 3 lies in Jz as well. U

The second lemma is entirely topological.

Lemma 7.10. Let K be a compact nonempty connected subset of C*. If —K = K then K
separates 0 from oo in C.

Proof. Let W be the open e-neighborhood of K in C, where € is less than the distance from
K to the origin. We first show that W separates 0 from oo in C.

Clearly W is open, —W = W, and W is connected and nonempty. Thus we may choose
a smooth path v(t) € W, 0 < ¢ < 1, such that y(1) = —+(0). The variation in arg(+y(¢))
between ¢t = 0 and ¢ = 1 is nm, for some odd integer n. Concatenating ~y(¢) with the path'’
—7(t) gives a closed loop 6(t) € W, where 6(¢) = y(2t) for 0 < ¢ <1/2and 6(¢t) = —y(2t—1)
for 1/2 <t < 1. The variation in arg(d(¢)) between ¢ = 0 and ¢ = 1 is 2nx. Since n # 0 (as
n is odd) each path c(t) in C from 0 to co must pass through W.

As e — 0 we see, since K is compact, that ¢(t) must also pass through K. O

From these lemmas we can derive the following.

Proposition 7.11. For g € C*, J[Q s mot contained in any simply connected component of
Fp.

Proof. Suppose to the contrary that U is a simply connected component of Fg and J; C U.
Then J; and Jg are disjoint so, by Corollary 7.5, 0 and oo lie in Fg N Fj5. Using both parts
of Lemma 7.9, we see that 0 and oo lie in U.

Since Jg = —J5 C —U, U meets —U. Since —Fj = Fj, —U is a component of Fj. Thus
-U ="U.

Note that the compact set K = @\U is nonempty, since Jg C K. Since —U = U we have
—K = K. Moreover K is connected since U is simply connected. This contradicts Lemma,
7.10. O

Proof of Theorem 7.8. Suppose to the contrary that Jg is connected and disjoint from Jj.
Then J; C Fs. By Theorem 7.4(2), J;z = 1/J3. Thus Jj is connected so Jj lies in some
component U of Fg. Since Js is connected, however, U must be simply connected. This
contradicts Proposition 7.11. O

Theorems 5.1 and 7.8 and Corollary 7.5 give necessary conditions for the existence of a
thick attractor.

17"Note that in this context —y(t) doe not denote the reverse path of (t), but rather the reflection of v
through the origin.
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Corollary 7.12. If Sg has a thick attractor then Jg and Jy are disjoint and each is discon-
nected and bounded.

The disconnectedness in this corollary is special to the Caruso family of semigroups Sg.
For instance, Example 6.1 gives a non-elementary finitely generated Mdobius semigroup with
a connected thick attractor.

7.3. When does Jg equal Ag? By Proposition 2.7, the Julia set of any rational semigroup
S is backward invariant. Examples 3.10 and 6.1 show that the Julia set is not necessarily
S-invariant. This lack of invariance occurs for many Caruso semigroups as well, including
those considered in Example 5.6.

But when Jg is Sg-invariant, Propositions 3.15 and 7.1 show that Jz = Ag. In many
cases this enables us to calculate Jz. Accordingly we will study conditions under which Jg
is Sg-invariant. We begin with a special property of the family Sj.

Proposition 7.13. For all values of B, if any two of the three sets Jg, Jg, and Ag are equal,
then Jg = Ji = Ag.

Proof. It Jg = Jj; then Jg is S-invariant and so Js = Ag. If J3 = Ag then Ji =1/J =
1/Ag = Ag by Theorem 7.4. Likewise Jj; = Ag implies Jg = Ag. O

By Example 3.16 this proposition does not hold for Mobius semigroups in general. But
we can even weaken the hypotheses of Proposition 7.13 with the same conclusion.

Proposition 7.14. If Ji; C Jg or Js C Jj, then Jy = Jg = Ag.

Proof. Suppose J5 C Js and let 2 € Jg. Then since Js = 1/J; by Theorem 7.4, we have
1/z € Ji C Jg by hypothesis. But again using Jz = 1/J5, we conclude that z € J;. Thus
Jg = [’3, from which Proposition 7.13 gives the desired conclusion.

A similar argument applies when J5 C Jj. d

We now give a different condition under which Jg = Ag.
Proposition 7.15. If Id € Sz then Ss = G5 and Jz = Ag.
Proof. Recall that by Proposition 7.3(1), the involution m(z) = —z satisfies m fm~
mgm ' = f. Thus mSgm ™' = Sg.

By assumption there is a sequence s; € Sg such that s; — Id. We may assume that
s; # f and s; # g for all j, since f # Id # g. Each s; can be written as a word in f and ¢
of length at least two. Using the symmetry provided by conjugation by m, we may suppose
that each s; begins with the letter f. We factor s; = fs; with s’ € S. As s} — f~! we find
that f~! € S5. Conjugating by m we see that g~! € S5 as well.

Since S is a semigroup that contains the semigroup generators f,g, f™1, g7t of Gg, we
find G C Ss. Thus G5 C Sp. As the opposite inclusion is trivial, our first conclusion holds.

l'=gand

1

It is clear that any family 7 C M is normal on an open set U C C if and only if its closure
is normal on U. Thus for any Mébius semigroup S, both S and S have the same Fatou set
and hence the same Julia set.

This gives Jz = J(Sp) = J(S5) = J(Gp) = J(Gg) = Ap. O
Remark 7.16. By a similar proof, J(S) = A(G) whenever S is a non-elementary Mdobius
semigroup that generates G and S contains a generating set for S—'. The symmetries of Sg
enabled us to simplify this condition on S.
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Proposition 7.15 immediately gives the following.
Theorem 7.17. If Sz contains an elliptic element then Sg is dense in Gg and Jgz = Ag.

Example 7.18. The word f hastr?[f] = —%. For 8 =iz, z € (—2,2), we see 0 < tr?[f] < 4
and so the preceding theorem gives Jg = Ag. By the symmetry in Theorem 7.7(3), we also
have Jg = Ag when 8 € (—2,2).

Example 7.19. The word f2¢? has tr?[f?¢*] = 2+ BY)2. If B = (1 £4)z with -1 <z < 1,
then f%g? is elliptic, and again Jg = Ag.

For instance, 8 = /i fits into this last family of examples with 2 = 1/4/2. The corre-
sponding set Jg = Ag is the gasket presented in Figure 4.

7.4. The closure of G. Whenever G is not discrete we will compute G5 C M and use
this to calculate the limit set Ag. We recall that M is a Lie group of real dimension 6. It is
also connected. Gy is a closed subgroup of M and hence a Lie subgroup of some dimension
dg.

We define Mg, the real Mobius group, to be the stabilizer in M of the real circle RcC.
This is the 3-dimensional subgroup of M consisting of transformations m(z) = (az+b)/(cz+
d) with real a, b, ¢, d. When [ is real, both G and its closure lie in M. My is a Lie subgroup
of M of dimension 3 with two connected components, distinguished by the sign of the nonzero
real number ad — be.

Likewise we define Mg, the imaginary Mobius group, to the the stabilizer of the imaginary
circle iR  C, so Mg = iMgi~! where i(z) = iz. This is also a Lie subgroup of M of
dimension 3 with two connected components. When 3 € iR, both G4 and its closure lie in
Mg.

Theorem 7.20. (Density) Either Gg is discrete or it is dense in
1) Mg, with B real,

2) Mg, with § imaginary, or

3) M, with B neither real nor imaginary.

Proof. In each case, it is enough to see that Gg meets each component of the indicated Lie
group and that dg is at least as large as the dimension of that group.

It is easiest to show Gg meets the required components. Since M is connected, there
is no difficulty when £ is neither real nor imaginary. Say ( is real. The matrices M (3)
and M (—/f) that represent the generators of G have determinant -1, and so Gz meets the
non-identity component of Mg. The argument is similar for imaginary /.

Assume G is not discrete. We only need to show that dg > 6 whenever B3? is not real and
that dg > 3 for all 3. For these estimates we need to study the Lie algebra L of M.

We can identify L as usual with the space of all 2 x 2 complex matrices of trace 0. The
exponential map exp : L - M sends | € L to the Mdbius transformation defined by the
invertible 2 x 2 matrix e!. For every parabolic Mdbius tranformation p there is a unique
vp € L such that 1/5 = 0 and p = expv,. We call v, the nilpotent logarithm of p. We call the
linear map n, : L — L given by n,(z) = [v,, ] the nilpotent derivation of p.

Lemma 7.21. Let G be a Mobius group normalized by a parabolic element p € M, i.e.,
pGp~' = G. Then n, stabilizes the Lie subalgebra L(G) C L and n} = 0.
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Proof. Let v = v, and n = n,. As v? = 0, n*(z) = —2vav and n?(z) = 0 for all 2. Thus
n® = 0.

By Lie theory, D = e" : L. — L is the derivative at Id € M of the group automorphism
of M that sends m to exp(v)mexp(—v) = pmp!. This automorphism maps G to G and
hence maps G to G. Thus D stabilizes L(G).

Since n® =0, D = €™ = I + n+ n?/2. Squaring both sides of n +n?/2 = D — I and using
n® = 0 yields n? = (D — I)2, which then is used to solve for n = (D —I) — (D — I)?/2. Since

D stabilizes L(G), n must also do so. O

By Proposition 7.3, we see r normalizes GG3. Hence, the parabolic elements ¢ = fr and
u = rf also normalize G3. By the lemma, n; and n, each stabilize the Lie algebra of Gg,
which we denote Lg C L.

Let e;; denote the 2 x 2 complex matrix whose (7, j) entry is 1 and whose other entries are
0, where 1 < 4,7 < 2. L has a basis over C consisting of the matrices e;5, es; and e;; — egs.
We find v, = Bejs and v, = [es;.

We now estimate dg. Since G is not discrete, Lg # 0. Since nj = 0, ny(Lg) C Lg, and
Lg # 0, there is a nonzero element in ker(n;) N Lg. This element commutes with 1, and
so it must have the form ae;s for some nonzero a. By considering n, we likewise find that
bey1 € Lg for some nonzero b. Since Lg is a Lie subalgebra of L, Lg is closed under bracket.
Thus ab(e;; — ex2) = [aea, bear| € Lg. This shows dg > 3.

Now n,n;(aea1) = d'ear, where @' = 28%a. When 32 is not real, this shows Lg contains the
complex line spanned by es;. Likewise, by considering n;n,(aei2), Lg contains the complex
line spanned by ei2. Then Lg contains the bracket of these two complex lines and so dg >
6. O

Theorem 7.20 has simple consequences for Ag, since Ag = A(Gjp).

Corollary 7.22. When Gg is not discrete, as when |B| < 1, then Ag = R when B is real,
Ag = iR when B is imaginary, and Ag = C when 2 is not real.

Proof. When 0 < |3] < 1, Shimizu’s Lemma ([21] I1.C.5) implies that the group Hg = (t,7)
is not discrete. Since G is a subgroup of Hg of index at most two, Gy is not discrete
either. 0

8. SOME Jg AND Ag

We will determine whether or not Gy is discrete and find Ag and Js whenever 52 is real
or imaginary. The discreteness criteria and the limit sets are found using results of Hecke
(when /32 is real) and of Klimenko and Kopteva (when (3?2 is imaginary).

We summarize our results in two related theorems and devote this section to their proofs.

Theorem 8.1. Suppose 3% is real.

1) Gg is discrete for |5| > 2 and for |5| = 2cosw/k, k > 3, but for no other ( [15]

2) For |8| > 2: Ag is a Cantor set in BR. Jg and J5' are disjoint Cantor sets in Ag. Jg' is
a thick attractor for Sg.

3) For B =42 or +2i: Ay = BR. Js and Jg' are Cantor sets in Ag with Jgs N J4 =
{8/2,—B/2}. Sg uniformly contracts Jg' but Sg has no thick attractor.

4) For |8 < 2: Jg = Js' = Ag = BR and Sy has no attractor.
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FIGURE 5. The picture shows the Julia set of S3 when —3 < 8 < —1.5. For
each real value of 3, the Julia set lies in the real axis. The Cantor sets are the
horizontal sections of the curtains. The computer has a hard time filling the

Julia sets of the semigroups when —2 < 8 < —1.5, where Jg = R. See
Remark 5.13.

e

i

FIGURE 6. Three gasket Julia sets that correspond to 8 = 1/2icos(n/k) for
k = 3,4 and 5, respectively. These Julia sets are completely invariant. See
Remark 5.13.

See Figure 5.

Theorem 8.2. Suppose 3% is imaginary.

1) Gy is discrete for |5%| > 2 and for |3?| = 2cos7/k, k > 3, but for no other (3 [18]

2) For |82 > 2: Ag is a Cantor set in C. Jg and J4' are disjoint Cantor sets in Ag. Jg' is
a thick attractor for Sg.

3) For B = +1 £14: Ag is a gasket. Jz and J5' are Cantor sets in Ag with JsNJg' = {£1, +i}.
Sg uniformly contracts Jg' but Sg has no thick attractor.

4) For |B?| < 2: Js = J3' = Ag and Ss has no attractor. Ag = C unless |8%| =2cosm/k, k >
3, in which case Ag is a gasket.

See Figures 6 and 4.
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We recall the reflection group case of Poincare’s Polyhedron Theorem ([21], [27], [10]). An
elliptic Mébius transformation is called primitive if it defines a rotation by an angle 27 /k
for some integer k£ > 2.

Theorem 8.3. Suppose P is a convex polyhedron in the compact ball H? U C bounded by
finitely many planes. Let T be the group of hyperbolic isometries generated by the reflections
pa in these planes. T is discrete if and only if all the dihedral angles of PNH? are submultiples
of ™ or, equivalently, when the product p,py of any two generating reflections that fix an edge
of P s either loxodromic, parabolic, or primitive elliptic of some order ng, > 2. Suppose I’
is discrete. T has a presentation with generators r, and relations 2 = 1 and (rory)™e = 1.

Also the interior of P N Cisa fundamental domain for the action of I' on Q(T).

Next we define a reflection group I's whenever 3% is real or imaginary. Let u = 3 /B so
pu = £1 when (2 is real and y = +4 when (2 is imaginary. Let p(z) = pz. We define o = pr
if 3 is real, o = prm if B is imaginary, and o = pu if 3? is imaginary. The following lemma
is straightforward and its proof is omitted.

Lemma 8.4. p is the reflection that fizes ﬁ]l/i, pm s the reflection that fixes iﬁ]ﬁ, and ptm
is the reflection that fizes iSR + 3/2. o is the reflection whose fized circle is |z| = 1 if 52 is
real and |8z + 1| =1 if B? is imaginary.

We define I's = (p, pm, ptm, o). The fixed circles of these generators bound fixed planes in
H? that bound a convex polygon P that contains oo (this specifies Pg when 2 is imaginary
but there are two congruent choices if 32 is real). All the dihedral angles of Py are right angles
except for the dihedral angle made by the fixed planes of ptm and o, if these two planes
intersect at all. By Theorem 8.3 I's is discrete if and only if ptmo is either loxodromic,
parabolic, or primitive elliptic of order k¥ > 3. Now I's N M = (m, tm, po) is either HJ, if
B is real, or Py, if 4% is imaginary. Thus I'; N M is commensurable with G.

Note that, by calculation, we have tr?[ptmo] equals 32, —3%, or —3* in the respective cases
that 8 € R B € iR, or #? € iR. By Theorem 4.3.11 in [2], an elliptic map m of order k
satisfies tr%[m| = 4cos?(n/k) if and only if m is a rotation of angle +27/k. Parts (1) of
Theorems 8.1 and 8.2 then follow (using Theorem 3.1).

Theorem 8.3 also determines the ordinary sets and hence the limit sets, as given in the
above theorems. When (% is imaginary, for instance, and ptmo is primitive elliptic of order
k > 3, Pg N C consists of a bounded triangle Tz and an unbounded triangle Ty that are
related by the involution rm, since conjugation by rm interchanges p with pm and ptm with
0. The sides of Ty are fixed by p, ptm, and o. Its vertex angles are 0 at the vertex 0, m/2
at the vertex /2, and 7/k at its 3rd vertex. The triangle reflection group (p, ptm, o) is
Fuchsian (there is a Mo6bius change of variables taking 75 to a hyperbolic triangle in the
upper halfplane with the same angles) and its ordinary set contributes a disc to €25. In this
way one sees that {25 is an infinite union of discs and so Ag is a gasket.

When ptmo is loxodromic, on the other hand, there is a gap between the fixed planes of
ptm and o and so Ag is a Cantor set.

It remains to determine Js and Jg' in each case. Recall from Example 5.6 that Sz has a
block when |RS| + |S6| > 2. Theorem 5.7 shows then that Jz and J3' are disjoint and that
Jg' is an attractor for Sg, which proves part 2) of each theorem.

Let W = (ptmo)%. Now ptmo is fm, f, or fmf as (3 is real, § is imaginary, or 3% is
imaginary. So W is respectively fg, f2, or fg?f, hence an element of Sg. Suppose ptmo is
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elliptic. Then W is elliptic so J3 = Ag, by Theorem 7.17, and Jz' = Ag, by Proposition
7.13. Sources are dense in Jz' by Theorem 2.4, so Sz does not uniformly contract Js'. By
Proposition 4.1, any S-invariant set uniformly contracted by Ss is a point. But Gpg is a
non-elementary Mobius group and so Sg has no fixed point. Thus Sz has no attractor. We
now calculate Ag, using Corollary 7.22 when Gp is not discrete and using Theorem 8.3 as
above when G is discrete. This proves part 4) of each theorem.

Assume 3 is as in part 3) of Theorem 8.2. Then W = fg?f is parabolic so S5 has no thick
attractor by Lemma 5.3.

The set {41, &4} consists of the fixed points of the parabolic elements f¢?f, g>f2, gf?g, f¢*
of Sg and so it is contained in Jz N Jg'. Let Ng = N if 4% = 2 and Ny = k(N) if 5% = —24,
where N is as in Example 5.6. Then Njg is Sg-invariant so Jz' C Np. It follows that Jz C 1/Np
and so Jg N Jg' is contained in ONg. But Jg' C S5*(Ng) and Ss°(Ns) N ONg = {+1, +i}.
This shows that Jg N J5' = {£1, +i}.

Let Kg = NSg"Ny. Each component of Kz is a point since Sz contracts the hyperbolic
metric on Int Ng by the Theorem of Pick and since N"W™(Np) is a point (recalling W = fg*f
is parabolic). Thus if we set hy = f and hy = g there is a homeomorphism h : Kz — {0, 1}
such that h(z) = (i1,12,...) if 2 € hy hyy...h;, (Ng), for each n > 1. Each periodic sequence in
{0,1}" is h(z) for z the sink of some loxodromic element of Sg or z € {£1, 4}. Thus sinks
are dense in Kz and so K C J3' by Theorem 2.4. But Kj is Sg-invariant and so J3' C Kpg
by Remark 2.20. Thus Jg' = Kj is a Cantor set, so Jg = 1/J4' is also a Cantor set.

We define the inverse 2-shift to be the semigroup < jo, j; = on {0, 1} where j, (41, i, ...) =
(a,iy1, 19, ...). Let d be the usual metric on {0, 1}, so d(z,y) = 27V if zy # yn but z, =y,
for all n < N. Then d(i,(x),1,(y)) = d(z,y)/2 so the inverse 2-shift is a CIFS.

Under the homeomorphism A, we can identify the action of Sz on Jz' with the inverse
2-shift. Thus if we give J4' the metric h*d, Sg uniformly contracts J4'.

This proves part 3) of Theorem 8.2. Part 3) of Theorem 8.1 can be proven in similar
fashion, so both theorems are proven.

Remark 8.5. As in the preceding proof, the action of Sg on Jg' can be identified with the
inverse 2-shift for all B8 with |RB| + |SB| > 2. Thus Sg uniformly contracts Jg' for all such

B.
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