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Program
Friday, April 9, 1999

Reception at Jerry Grossman’s home, 3125 Tamarron, Rochester Hills, 8–10 p.m.

Saturday, April 10, 1999
Talks are in Room 372, SEB. Speakers are shown in bold font.

Refreshments are in Room 376, SEB.

Talks are 15 minutes long, with 5 minutes for questions and transition.

8:45 a.m. coffee and registration

9:20 a.m. Welcome
Marc Lipman, Chair
Oakland University Department of Mathematics and Statistics

9:25 a.m. Welcome
Mary Papazian, Associate Dean
Oakland University College of Arts and Sciences

SESSION 1: Eddie Cheng, chair

9:30 a.m. Geodetic Number of Random Graphs of Diameter 2
Gab-Byung Chae, Edgar M. Palmer, and Wai-Cheong Siu
Michigan State University

9:50 a.m. How Large Can the Domination Numbers of a Graph Be?
Ping Zhang
Western Michigan University

10:10 a.m. Hypergraph Decomposition and Large Scale Optimization
H. Alan Park
Oakland University

10:30 a.m. coffee break

SESSION 2: Jerry Grossman, chair

11:00 a.m. Characterizations for the Middle of a Graph
Paul Brown and Garry Johns
Michigan State University and Saginaw Valley State University, respectively



       

11:20 a.m. Wiener Polynomials of Recursively Defined Trees
John Fink
University of Michigan–Dearborn

11:40 a.m. The Steiner Distance Dimension of Graphs
Michael Raines and Ping Zhang
Western Michigan University

12:00 noon Orienting Split-Stars and Alternating Group Graphs
Eddie Cheng and Marc J. Lipman
Oakland University

12:20 p.m. lunch on your own

SESSION 3: Alan Park, chair

2:20 p.m. Turn Out Those Lights Now!
Allen J. Schwenk
Western Michigan University

2:40 p.m. K3,k Minors
Thomas Bohme, John Maharry, and Bojan Mohar
Franklin College

3:00 p.m. Famous Trails to Paul Erdős: Distances in the Collaboration Graph are Small
Rodrigo De Castro and Jerrold W. Grossman
Universidad Nacional de Colombia and Oakland University, respectively

3:20 p.m. afternoon refreshments

SESSION 4: Curt Chipman, chair

3:50 p.m. Distance Regular Graphs and Unimodality
John Caughman and Bruce Sagan
Michigan State University

4:10 p.m. Parameters of Bipartite Q-polynomial Distance-Regular Graphs
John Caughman
Michigan State University

4:30 p.m. About the Degree Matrices of Trees
Eddie Cheng and Marc J. Lipman
Oakland University

≈ 5:30 p.m. survivors’ dinner at King Buffet, Troy



       

Abstracts
(9:30 a.m.) Geodetic Number of Random Graphs of Diameter 2 , Gab-Byung Chae, Edgar
M. Palmer, and Wai-Cheong Siu, Michigan State University

Let S be any subset of the vertex set V of a graph G. Then the geodetic cover of S,
denoted C(S), consists of all vertices w such that there exist vertices u and v in S such
that w lies on a geodesic between u and v. The geodetic number of a graph, denoted
gn(G), is the cardinality of a smallest set S such that C(S) = V . This parameter was
introduced by Harary and Buckley in their book [Distance in graphs , Addison-Wesley
Publishing Company, 1990; MR 90m:05002] and has been the subject of much study. The
determination of gn(G) was found to be NP-hard by Harary, Loukakis, and Tsouros [The
geodetic number of a graph, Graph-theoretic models in computer science, II (Las Cruces,
NM, 1988–1990), Math. Comput. Modelling 17 (1993), no. 11, 89–95; MR 94d:05130].
We have found a random greedy algorithm that is very effective for a random graph Gn,p
of order n with fixed edge probability p. Our proof involves showing that gn(Gn,p) is
asymptotic to logb(n), where b = 1/(1 − p). The methods also apply to other random
graphs of diameter 2 and to random digraphs. There remains the problem of extending
our results to graphs of higher diameter.

(9:50 a.m.) How Large Can the Domination Numbers of a Graph Be? , Ping Zhang,
Western Michigan University

A vertex v in a graph G dominates itself as well as its neighbors. A set S of vertices
in G is (1) a dominating set if every vertex of G is dominated by some vertex of S, (2) an
open dominating set if every vertex of G is dominated by a vertex of S distinct from
itself, and (3) a double dominating set if every vertex of G is dominated by at least two
distinct vertices of S. The minimum cardinality of a set S satisfying (1), (2), and (3)
is, respectively, the domination number , open domination number , and double domination
number of G. The problem of determining the maximum value of each of these domination
numbers among all graphs of a given order and size is discussed.

(10:10 a.m.) Hypergraph Decomposition and Large Scale Optimization, H. Alan Park,
Oakland University

A QP (quadratic programming) problem aims to minimize a quadratic objective func-
tion under various linear constraints (consisting of equalities and inequalities). It becomes
a large scale QP problem when there are a lot of variables and constraints involved in the
problem. The computational demand in solving a large scale QP with traditional algo-
rithms could be very high, and sometimes may make it virtually unsolvable. Occasionally,
such a large scale problem demonstrates a certain modular structure so that we may be
able to decompose the QP problem into a collection of loosely linked smaller subproblems.
And then, the small subproblems can be solved independently, and the results can be



           

coordinated to produce a global solution for the original QP. We show how the original de-
pendency structure of the QP can be modeled by a hypergraph, and how a decomposition
of the hypergraph into a collection of loosely linked subgraphs could produce a desired
decomposition of the original QP. By using a hypergraph decomposition algorithm, we
obtain a computationally efficient algorithm for large scale QP problems.

(11:00 a.m.) Characterizations for the Middle of a Graph, Paul Brown, Michigan State
University, and Garry Johns, Saginaw Valley State University

Various notions of distance in graphs have been defined as a tool for studying graph
structure and modeling applications. Historically, vertices of minimum distance were in-
vestigated (e.g., centers and medians). Later, vertices of maximum distance were studied
(e.g., peripheries and margins). Recently, subgraphs consisting of vertices with intermedi-
ate distance have been considered (e.g., interior and annulus). In this paper, we define the
distance of a vertex v in a connected graph G as the sum of the distances from v to every
other vertex of G and focus on three distance-related subgraphs: the perfect middle, the
lower middle and the upper middle. In particular, a characterization is given for each of
these subgraphs.

(11:20 a.m.) Wiener Polynomials of Recursively Defined Trees, John Fink, University of
Michigan–Dearborn

The Wiener polynomial of a connected graphG is the polynomialW (G; q) =
∑
qd(u,v),

where the sum is taken over all unordered pairs {u, v} of distinct vertices in G, and d(u, v)
is the distance between u and v. Thus W (G; q) is the generating function for the distance
distribution dd(G) = D1, D2, . . . , Dt, where Di is the number of unordered pairs of distinct
vertices at distance i from one another and t is the diameter of G. The derivative W ′(G; 1)
is the much-studied Wiener index , W (G). If r is a specified vertex of a connected graph
G, then the Wiener polynomial of G relative to r is the polynomial Wr(G; q) =

∑
qd(r,v),

where the sum is taken over all vertices v in G, including v = r. We discuss methods for
determining the Wiener polynomial of recursively defined trees, and, as an illustration,
will derive the Wiener polynomial for full k-ary trees of a given depth.

(11:40 a.m.) The Steiner Distance Dimension of Graphs , Michael Raines and Ping
Zhang, Western Michigan University

For a nonempty set S of vertices of a connected graph G, the Steiner distance d(S) of
S is the minimum size among all connected subgraphs whose vertex set contains S. For
an ordered set W = {w1, w2, . . . , wk} of vertices in a connected graph G and a vertex v
of G, the Steiner representation s(v |W ) of v with respect to W is the (2k − 1)-vector

s(v |W ) = (d1(v), d2(v), . . . , dk(v), d1,2(v), d1,3(v), . . . , d1,2,...,k(v)) ,

where di1,i2,...,ij (v) is the Steiner distance d({v, wi1 , wi2 , . . . , wij}). The set W is a Steiner
resolving set for G if, for every pair u, v of distinct vertices of G, u and v have distinct



      

representations. A Steiner resolving set containing a minimum number of vertices is called
a Steiner basis for G, and the cardinality of a Steiner basis is the Steiner distance dimension
of G, dimS(G). In this talk, we present some results on the Steiner dimensions of several
classes of graphs.

(12:00 noon) Orienting Split-Stars and Alternating Group Graphs , Eddie Cheng and
Marc J. Lipman, Oakland University

We give simple routing algorithms for a proposed orientation of alternating group
graphs and split-stars. The resulting directed graphs not only are strongly connected, but
they have maximal arc-connectivity and small diameter as well.

(2:20 p.m.) Turn Out Those Lights Now! , Allen J. Schwenk, Western Michigan Univer-
sity

Tiger Electronics has sold two forms of the Lights Out Puzzle, a square board and
a cube. We show how to use linear algebra over GF (2) to solve both puzzles. We show
how to identify solvable and unsolvable patterns, how to find all possible solutions, and
therefore how to find the minimum length solution. We determine the number of solvable
patterns, both with and without symmetry. We determine the length of the longest pos-
sible minimum solution over all solvable patterns. We debunk the numerical data on the
commercial package.

(2:40 p.m.) K3,k Minors , Thomas Bohme, John Maharry, and Bojan Mohar, Franklin
College

For every k > 0, there is a number Nk such that every 7-connected graph on at least
Nk vertices contains a K3,k minor. The proof uses Robertson and Seymour’s structure
theory for excluding a non-planar graph. This is best possible as there is a family of
6-connected graphs none of which contain K3,7.

(3:00 p.m.) Famous Trails to Paul Erdős: Distances in the Collaboration Graph are Small ,
Rodrigo De Castro, Universidad Nacional de Colombia, and Jerrold W. Grossman,
Oakland University

The notion of Erdős number has floated around the mathematical research commu-
nity for more than thirty years, as a way to quantify the common knowledge that math-
ematical and scientific research has become a very collaborative process in the twentieth
century, not an activity engaged in solely by isolated individuals. We explore some (fairly
short) collaboration paths that one can follow from Paul Erdős to researchers inside and
outside of mathematics. In particular, we find that all the Fields medalists up through
1998 have Erdős numbers less than 6, and that over 60 Nobel prize winners in physics,
chemistry, economics, and medicine have Erdős numbers less than 9. In this talk we



         

will also have some fun updating the latest statistics from the Erdős Number Project
(http://www.oakland.edu/~grossman/erdoshp.html).

(3:50 p.m.) Distance Regular Graphs and Unimodality , John Caughman and Bruce
Sagan, Michigan State University

A graph Γ is a distance regular graph or drg if, given vertices x and y at distance h,
the number of vertices at distance i from x and distance j from y depends only on i, j,
and h but not on the actual vertices chosen as long as they are distance h apart. In such a
graph the number, ki, of vertices at distance i from a given vertex does not depend on the
vertex chosen. (So letting i = 1 we see that a drg is regular.) Furthermore, these numbers
form a unimodal sequence, meaning that for some index m we have

k0 ≤ k1 ≤ · · · ≤ km ≥ km+1 ≥ · · · ≥ kD ,

where D is the diameter of Γ. Drg’s are the special case of association schemes which
satisfy the P -polynomial property. We will show that similar inequalities hold in the dual
Q-polynomial case under appropriate conditions. All terms will be defined in full during
the talk.

(4:10 p.m.) Parameters of Bipartite Q-polynomial Distance-Regular Graphs , John Caugh-
man, Michigan State University

Let Γ denote a bipartite distance-regular graph with diameter D ≥ 3 and valency
k ≥ 3. Suppose that θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of Γ.
Leonard showed that this sequence satisfies the recurrence θi−1−βθi+θi+1 = 0 (0 < i < D),
for some real scalar β. Bannai and Ito conjectured that the scalar q is also real, where
β = q + q−1. In this talk, we show that q is real if D ≥ 4. Moreover, if D = 3, then q is
real unless Γ is one of the following: (i) the Heawood graph; (ii) the distance-three graph
of the Heawood graph; (iii) the incidence graph of the (unique) 2-(11, 5, 2) design; or (iv) a
generalized hexagon of order (1, k − 1) for some integer k (4 ≤ k ≤ 7).

(4:30 p.m.) About the Degree Matrices of Trees, Eddie Cheng and Marc J. Lipman,
Oakland University

The degree matrix D = (di,j) of a graph is a generalization of the degree sequence.
Here di,j is defined to be the number of i-sets S with |N (S)| = j where

N (S) = {v ∈ V | (u, v) ∈ E for some u ∈ S} .

This is a computationally unfriendly object. But it is interesting (maybe) to ask what
information about the graph its degree matrix contains. We conjecture that the degree
matrix determines trees.


