Improved bounds for the crossing numbers of $K_{m, n}$ and K_{n}
John Maharry
The Ohio State University
It has long been conjectured that the crossing number $\operatorname{cr}\left(K_{m, n}\right)$ of the complete bipartite graph $K_{m, n}$ is equal to $Z(m, n):=\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor$. Another long-standing conjecture is that the crossing number $\operatorname{cr}\left(K_{n}\right)$ of the complete graph K_{n} is equal to $Z(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$.

In this talk, I will outline a new method that improves the asymptotic lower bounds to $0.83 Z(m, n)$ and $0.83 Z(n)$ respectively. This is follows from the improved lower bound $c r\left(K_{7, n}\right) \geq 2.1796 n^{2}-4.5 n$. The proof uses combinatorial ideas as well as quadratic optimization techniques.

This is joint work with E. de Klerk, D.V. Pasechnik, R.B. Richter and G. Salazar.

