
Algebraic closure

Definition. A field K is called algebraically closed if every nonconstant polynomial f(x) ∈ K[x] has
a root in K. Put differently, K is algebraically closed if and only if every polynomial in K[x] factors
completely into linear polynomials, that is, if and only if K has no proper algebraic extensions.

Definition. A field extension F of F is called an algebraic closure if F is an algebraic extension of
F and F is algebraically closed.

Theorem. Every field F has an algebraic closure F .

PROOF. The idea of the proof is simple: consider all fields (E,+, · ) which are algebraic extensions
of F , find a maximal one among them by Zorn’s Lemma, and show that it is algebraically closed
by virtue of having no further algebraic extensions.

There are two technical complications. First of all, we have to make sure that all our field
extensions E stay within one fixed set Ω. This set Ω will have to be chosen large enough to
accommodate at least one copy of every conceivable algebraic extension of F . Secondly, because
the same set E of elements can form very different fields (E,+, · ) for different binary structures
“+” and “ · ”, we have to make sure that we include all possibilities when considering all algebraic
extensions of F .

As far as picking the right size for the set Ω, we start with the set

S = {(k, a0, a1, a2, · · · , an, 0, 0, · · ·) ∈ N× F × F × · · · | ai ∈ F, 1 6 k 6 n}.

Any algebraic field extension E of F can have at most as many elements as the set S. (Every
α ∈ E is a root of some polynomial f(x) = a0 + a1x + a2x

2 + · · · + anx
n ∈ F [x], which has at

most n different roots in E.) In order to get even more elements, we take the powerset P(S) of
S and recall that its cardinality satisfies |P(S)| > |S|. Since the function f : F → P(S) given
by f(a) = {(1, a,−1, 0, 0, · · ·)} is injective, we may remove its image f [F ] from the set P(S) and
replace it by F itself, so as to form a new set Ω such that F ⊆ Ω and |Ω| > |S|.

Now, for a given field (E,+, · ) with E ⊆ Ω, addition is a function + : E × E → E, which is a
subset of (E × E)× E ⊆ (Ω× Ω)× Ω = Ω3. The same can be said for multiplication. So, we can
form the set E of all algebraic field extensions E of F with E ⊆ Ω by defining

E = {(E,+, · ) ∈P(Ω)×P(Ω3)×P(Ω3) | (E,+, · ) is an algebraic field extension of F}.

Observe that E is not empty, because it contains the field F .
We partially order the set E by declaring E1 4 E2 if and only if E2 is a field extension of E1.

Then every chain C in E has an upper bound K in E . Indeed, if C is a nonempty chain in E , we
can take K =

⋃
E∈C E along with binary operations defined as follows. If α, β ∈ K, then α ∈ E1

and β ∈ E2 for some E1 and E2 in C . Since C is a chain, either E1 is a subfield of E2 or E2 is a
subfield of E1. Either way, there is an E in C with α, β ∈ E ⊆ K and we can define α + β and
α · β as the result of the corresponding operation in the field E. These definitions are independent
of the choice of E, for if E ′ is another element of the chain C with α, β ∈ E ′, then either E is a
subfield of E ′ or vice versa. Therefore, α + β is the same element in E as it is in E ′ and hence a
well-defined element of K. The same holds for α · β. Since every calculation in K actually occurs
in some field E of C , it follows that these operations turn K itself into a field. In fact, K is an



algebraic extension of F , because every element α ∈ K lies in some algebraic extension E ∈ C of F
and is therefore algebraic over F . We conclude that (K,+, · ) ∈ E and that E 4 K for all E in C .

Zorn’s Lemma now guarantees the existence of a maximal element F of E . By definition of E ,
F is an algebraic field extension of F and F ⊆ Ω. It remains to be shown that F is algebraically
closed. To this end, let f(x) ∈ F [x] be any nonconstant polynomial and suppose, to the contrary,
that f(x) has no root in F . By Kronecker’s Theorem, there is a finite field extension E of F and
an element α ∈ E such that f(α) = 0. Since E is a finite field extension of F , E is an algebraic
extension of F . Since F , in turn, is an algebraic extension of F , E is an algebraic extension of F .

Since |F | 6 |E| 6 |S| < |Ω|, we have |Ω| = |Ω \ F | by the lemma bellow (when applied to the
sets A = Ω, B = F and C = Ω \ F ). Thus, we have |E \ F | 6 |E| < |Ω| = |Ω \ F |, so that there
is an injective function g : E → Ω, which extends the inclusion function i : F → Ω. Transcribing
the addition and multiplication tables for the field E to its image g[E] in Ω, while keeping the
operations on F as they are, we may assume that E ⊆ Ω and E ∈ E , in the first place. Since f(x)
has no root in F , we have that α 6∈ F so that F $ E, contradicting the maximality of F .

Lemma. Let A be an infinite set expressed as A = B ∪ C with B ∩ C = ∅. Then

(1) either |B| 6 |C| or |C| 6 |B|;

(2) if |B| 6 |C|, then |B ∪ C| = |C|;

(3) if |C| 6 |B|, then |B ∪ C| = |B|.

PROOF. (1) Clearly, we may assume that neither B nor C is empty. Consider the set D of all
pairs (D, f) such that D ⊆ B and f : D → C is an injective function. Then D 6= ∅, since we can
always take D to be a one-point subset of B and f : D → C any function. Partially order D by
declaring (D1, f1) 4 (D2, f2) if and only D1 ⊆ D2 and f2|D1 = f1, that is, if f2 and f1 agree on D1.
Then every chain C in D , has an upper bound (D̃, f̃) for C in D . We leave it as a straightforward
exercise to verify that for a nonempty chain C in D , one can take D̃ to be the union of all sets
D with (D, f) ∈ C , while defining f̃ : D̃ → C by f̃(x) = f(x) when x ∈ D and (D, f) ∈ C . By
Zorn’s Lemma, D has a maximal element (D, f). Then either D = B or f [D] = C, for otherwise
we could pick elements b ∈ B \D and c ∈ C \ f [D] and extend f : D → C to an injective function
g : D ∪ {b} → C by defining g(b) = c, contradicting the maximality of (D, f). If D = B, then
f : B → C is injective so that |B| 6 |C|. If f [D] = C, then the inverse h : C → D ⊆ B of the
bijection f : D → C is injective so that |C| 6 |B|.

(2) Suppose |B| 6 |C|. It will suffice to show that |C × {0, 1}| = |C|, because then we have
|C| 6 |B ∪ C| 6 |C × {0, 1}| = |C|. To this end, form the set D of all pairs (D, f) such that
D ⊆ C and f : D × {0, 1} → D is a bijective function. Since C must be infinite, we can select a
countably infinite subset D′ = {c0, c1, c2, · · ·} ⊆ C. Defining f ′ : D′ × {0, 1} → D′ by the formula
f ′(cn, i) = c2n+i, we see that (D′, f ′) ∈ D so that D 6= ∅. As is the proof of (1), we partially order
D by set-containment and function extension, so as to obtain a maximal element (D, f) by Zorn’s
Lemma. Then f : D × {0, 1} → D is a bijection and therefore |D × {0, 1}| = |D|. We claim that
|D| = |C|, which will complete the proof. Since C is infinite and since D ⊆ C, it suffices to argue
that C \D is finite. Suppose, to the contrary, that C \D is infinite and select a countably infinite
set D̃ = {c0, c1, c3, · · ·} ⊆ C \ D. As above, there is a bijection f̃ : D̃ × {0, 1} → D̃ which we

combine with the bijection f : D × {0, 1} → D to a bijection g :
(
D ∪ D̃

)
× {0, 1} →

(
D ∪ D̃

)
.

But this contradicts the maximality of (D, f) in D .


