Cardinality of infinite sets

The cardinality |A| of a finite set A is simply the number of elements in it. When it
comes to infinite sets, we no longer can speak of the number of elements in such a
set. We can, however, try to match up the elements of two infinite sets A and B one
by one. If this is possible, i.e. if there is a bijective function h : A — B, we say that
A and B are of the same cardinality and denote this fact by |A| = |B].

If two (finite or infinite) sets A and B are not of the same cardinality, we can try
to compare which one of the two sets has at least as many elements as the other.
There are basically two ways of doing that: if we can pair up every element a of the
set A with one and only one element b of the set B so that no two elements of B are
paired with the same element of A (i.e. if there is an injective function f: A — B),
then B must have at least as many elements as A. Alternatively, one could detect this
by exhibiting a surjective function g : B — A, because that would mean that there
are enough elements in B to cover all elements in A.

It is a consequence of the following two theorems that these two notions of “has
at least as many elements as” agree. The first one we proved in class, the second we
will prove here.

Theorem 1

Let f: A — B be a function. The following four statements are equivalent:
(a) f: A — B is injective.
(b) f(SNT)=f(S)N f(T) for all S, T C A.
(c) f7Hf(S)) =S for all S C A.

(d) There is a function g : B — A such that go f = id4.

Recall that the identity function id, is defined by id4(a) = a for all a € A.

Theorem 2

Let f: A — B be a function. The following four statements are equivalent:
(a) f: A — B is surjective.
(b) f(f~YT))=T forall T C B.

(c) There is a function g : B — A such that fog =idp.



Proof

“(a) — (b)”: Suppose that f: A — B is surjective. Let T C B be any subset. We
wish to show that f(f~!(T)) = T. We start with proving that f(f~ (7)) C T: let
b e f(f~YT)), then b = f(a) for some a € f~YT). So, b = f(a) € T. (Notice
that this is always true.) Conversely, let ¢t € T'. Since f : A — B is surjective, then
t = f(a) for some a € A. Hence, a € f~1(T), and consequently t = f(a) € f(f~1(T)).
This proves that f(f~1(T)) D T.

“(b) — (¢)”: Let us now assume that statement (b) holds. We construct the desired
function g as follows: for every b € B we can form the set

Gy={(b,a) € Bx A|b= f(a)}

of all pairs whose second coordinate a maps to its first coordinate b under f. Since,
by assumption, f(f'({b})) = {b} for all b € B, the set f~'({b}) is not empty,
guaranteeing the existence of at least one element a € A with f(a) = b. Consequently,
none of the sets Gy, is empty. Moreover, if by # by then Gy, NGy, = (), as can be seen
by looking at the first coordinates. We are now in a position to apply the axiom of
choice: let g be a set which contains exactly one element from each of the sets G,
with b € B. Then ¢ C B x A. In fact, since by the very choice of g no two elements
of g have the same first coordinate, g : B — A is a function. Also, f(g(b)) = b for all
b € B by definition of the sets Gj.

“(¢) — (a)”: Suppose there is a function g : B — A such that fog = idg. That allows
us to show that f : A — B is surjective. For if b € B, we can define a = ¢(b) € A.
Then f(a) = f(g(b)) = b. Hence, b € f(A). This proves that B C f(A) so that, in
fact, f(A) = B.

Corollary
For any two sets A and B the following two statements are equivalent:

(i) There is an injective function f: A — B.

(ii) There is a surjective function g : B — A.
Proof

The above theorems imply that being injective is equivalent with having a “left in-
verse” and being surjective is equivalent with having a “right inverse”. To prove the
corollary one only has to observe that a function with a “right inverse” is the “left
inverse” of that function and vice versa.

This allows us finally to make the following

Definition

If either one of the two equivalent statements in the above corollary holds, then we
write |A| < |B].



It is a highly non-trivial fact that for any two sets A and B one of the three
relationships |A| = |B|, |A| < |B|, or |B| < |A| must hold. We will not attempt to
prove this fact here. What we can prove, however, is the following (also not obvious)

Theorem [Schroder — Bernstein]

If |A| < |B| and |B| < |A], then |A| = |B|.

Proof

Suppose there are two injective functions f : A — B and g : B — A. Then
their composition h : A — A given by h = g o f is also injective (Problem #19
of Section 1.6). Consider the set C' = A\ ¢g(B). We claim that none of the sets
h(C), h(h(C)), h(h(h(C))),- -+ (which are all subsets of A) shares any elements with
the set C. To see this, notice that each one of the sets h(C), h(h(C)), h(h(h(C))),- - -
is a subset of h(A) = g(f(A)) which, in turn, is a subset of g(B) = A\ C. We then
form the union D = CUA(C)Uh(h(C))U---. As in Problem #26 of Section 1.6 one
shows that h(D) = h(C)Uh(h(C))Uh(h(h(C)))U---. Therefore, h(D) = D\ C (due
to the above claim). Since h is injective, then the function k£ : D — h(D) defined
by k(xz) = h(z) is bijective. Hence, defining k(x) = z for z € A\ D, extends k to a
bijective function k : A — A\ C. (Verify that!) Consequently, |A| =|A\ C|. We also
have |B| = |A\ C|, because g : B — g(B) = A\ C' is a bijection. Thus, |A| = |B|.

Introducing the convenient notation |A| < |B| for (JA| < |B| A |A| # |B]|) we
summarize some results from class:

(i) |@[ = [N
(i) [R] > [IV]
(iii) [IR| = |I| for every non-trivial interval I of real numbers.

(iv) [R x IR = |IR|

(v) |P(A)| > |A| for every set A.

[Proof: Since {a} € P(A) for every a € A, clearly |P(A)| > |A|. So, we only
have to show that |P(A)| # |A]. We do this by way of contradiction. Suppose
that there were a surjective function g : A — P(A). Then g(a) is a subset of A
for every a € A. Consider the set B ={a € A|a & g(a)}. Since B C A, i.e.
B € P(A), and g is surjective, then B = g(b) for some b € A. Now, either b € B
or b ¢ B. We will show that neither is possible, thus establishing the desired
contradiction. If b € B, then (by the very definition of the set B) b & ¢(b) = B;
but this is impossible! On the other hand, if b ¢ B, then (again by the definition
of B) b € g(b) = B. This completes the proof.]



(vi) [P(IN)| = [IR]

[Sketch of proof: every subset A C IN of the natural numbers gives rise to
the binary expansion x = .agaias--- of a real number z € [0,1] by the rule
a; =01ifi € Aand a; = 1if i € A. Clearly, for every number in z € [0, 1]
there is a set A C IN whose assigned expansion equals . The only numbers
in [0,1] that have been represented more than once by this assignment are
those positive numbers that have a terminating binary expansion (because such
numbers have exactly two different expansions — one terminating, like .101, and
one non-terminating, like .1001111---). Since the set of all numbers in [0, 1]
with terminating binary expansion is countable (Problem #39 of Section 1.7),
we can “fix” this assignment and make it a bijection. (How?) That will prove
that [P(IN)[ = [[0,1]| = |R|.]



