
Submitted to:
TTC 2013

c© Hüseyin Ergin & Eugene Syriani
This work is licensed under the
Creative Commons Attribution License.

AToMPM Solution for the Petri Net to Statecharts Case Study

Hüseyin Ergin and Eugene Syriani
University of Alabama, Tuscaloosa AL, U.S.A.

{hergin@crimson,esyriani@cs}.ua.edu

In this paper, we present an AToMPM solution for the Petri Net to Statecharts transformation case
study. AToMPM provides a convenient graphical user interface for designing domain-specific models
and executing model transformations.

1 Introduction

AToMPM [2] allows one to model and execute model transformations. It provides a graphical user
interface to define the metamodels of the intended formalisms, describe rules graphically as well as a
control structure for model transformations, and execute step-by-step transformations on given models.

MoTif [3] rules consist of a pre-condition and a post-condition. The pre-condition pattern determines
the applicability of the rule and is usually defined with a left-hand side (LHS) and optional negative
application conditions (NAC). The post-condition determines the result of the rule and is defined by a
right-hand side (RHS) which must be satisfied after the rule is applied. The scheduling, or the control
flow, describes the order in which the rules are executed. The rule in Fig. 1 is a MoTif rule with a NAC,
LHS, and RHS (from left to right). The rule at left in Fig. 1 is the exact rule in AToMPM , the rule at
right is the redrawing of the same rule for this paper to save space and to make rules cleaner to see.

In the scheduling part, each rule is represented by a rule block having three ports. Conceptually, a
rule receives models via the input port at the top. If the rule is successfully applied, the resulting model is
output from the success port at the bottom left. Otherwise, the model does not satisfy the pre-condition
and the original model is output from the fail port at the bottom right. Fig. 9 depicts an example of
control flow structure to schedule MoTif rules.

This paper provides a solution to the Petri Net to Statecharts model transformation case study, whose
full description can be found at [1]. In Section 2, we provide the details about the solution. In Section 3,
we list the findings from the study and conclude.

2 Solution

The solution follows the steps in the description document [1]. We first define the metamodels of Petri
Nets (PN) and Statecharts (SC). Then we briefly explain the rules for initialization, reduction for AND,

1 2

3 4

1 2

3 43 4

0 1

2

3 4

5 6

3 4
7

Figure 1: Original MoTif rule and its representation in this paper

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 AToMPM Solution for the Petri Net to Statecharts Case Study

NamedElement

Transition

ename:string

Positionable

position:list

Resizable

width:int
height:int

Place

tokens:int

Net

TransitionToPlace

PlaceToTransition

transitions places

State

HyperEdge Basic

AND OR

sname:string

Positionable

position:list

Resizable

width:int
height:int

Statechart

contains

topState

next

Figure 2: Petri net & Statecharts metamodels

placeToBasicOR

1 1

transitionToHyperedge

1 12

Node(2).name=Node(1).name

2
Node(2).name=Node(1).name

arcsToLinks

1 2

3 4

1 2

3 43 4

arcsToLinksT2P

1 2

3 4

1 2

3 43 4

Figure 3: Initialization Phase Rules

and reduction for OR. Then we give the finishing rules which creates the main statechart and top AND
state. Finally, we display the control flow of the phases and rules.

2.1 The Metamodels

The metamodels for PN and SC are exactly like in the description document. We just added Position-

able and Resizable abstract classes as super class of the elements for the sake of nice visualization in
AToMPM . These abstract classes help us to relocate and resize the newly created statechart elements by
using the existing locations and sizes of Petrinet elements. The metamodels are depicted in Fig. 2.

2.2 Initialization

The rules for the initialization phase are depicted in Fig. 3. In this phase, the placeToBasicOR rule matches
all places to a basic state and an OR state. transitionToHyperedge rule matches all transitions to a hyperedge.
Then all the arcs from place to transition and vice-versa creates set of next links between basic states and
hyperedges with the help of arcsToLinks and arcsToLinksT2P rules.

The purple lines in the rules represent the traceability links of our language. With the help of these
links, we do not have to compute or keep track of the equiv function of places.

2.3 AND Reduction

After the initialization phase, the transformation starts the reduction phase. AND reduction is defined to
create an AND state for a set of places that are connected to the same incoming and outgoing transitions.
The rules are depicted in Fig. 4. The selectTransitionAnd1 rule selects a transition that has more than one
incoming places. Then, the allIncomingPlacesHaveSameIncomingTransitions rule eliminates the transition if
any two incoming places do not have same incoming transition. The allIncomingPlacesHaveSameOutgoing-

Transitions rule does the same job for the outgoing transitions of any two places. These three rules do not
have RHS which makes them query or QRule. QRules are used to query information from models or find
a suitable match in the model for further processing. Different types of rules are explained in Section 2.6.

Hüseyin Ergin & Eugene Syriani 3

selectTransitionAnd1

1

|Node(1).incomingLinks|>1

1
4

3

2

3

2

allIncomingPlacesHave

SameIncomingTransitions (NEG)

1

4
3

2

allIncomingPlacesHave

SameOutgoingTransitions (NEG)

3

2

createANDandORofTransitionT

1

putORofIncomingPlacesToANDofTransitionT

12 1

removeAllIncomingPlacesButOne

1
2

3

1
2

1
1

2

t

t t

t t tt

Figure 4: AND Reduction Rules

createANDandORofTransitionT

1

14

3

2

allOutgoingPlacesHave

SameIncomingTransitions (NEG)

1

4
3

2

allOutgoingPlacesHave

SameOutgoingTransitions (NEG)

3
2

3

2

removeAllOutgoingPlacesButOne

1
2

3

2

3
1

1

putORofOutgoingPlacesToANDofTransition

1 2
1 2

t

selectTransitionAnd2

1
|Node(1).outgoingLinks|>1

t

t
t

t tt

Figure 5: Second Version of AND Reduction Rules

After a suitable transition is found, it is passed to other rules. The createANDandORofTransitionT

rule creates an inner AND and an outer OR for the selected transition. Then, the putORofIncomingPlaces-

ToANDofTransitionT rule checks all incoming places of the selected transition and puts the equivalent
OR of them to AND of this transition. Finally, all places are removed except one with the help of re-

moveAllIncomingPlacesButOne rule.
Note the use of pivots in the different rules. A pivot identifies a model element to be bound by a rule

and passed as parameter to other rules using it. Pivots are represented by a forward or backward arrow
on top of the names of the element (e.g., transition t in selectTransitionForAnd1 rule). Forward arrow is
used to set a pivot and backward arrow is used to access a pivot.

A second set of rules for AND reduction is the one which checks the places after a transition. The
logic is the same. The rules are depicted in Fig. 5. These rules will find the AND reduction for the
transitions that has more than one outgoing places.

2.4 OR Reduction

OR reduction is defined over a transition that has single incoming and outgoing places. The rules are
depicted in Fig. 6. The selectTransitionOr rule selects the transition that satisfies this condition. Then
for further conditions of OR reduction, the noCommonTransitionOfInputAndOutputPlaces rule ensures
the incoming and outgoing places do not have a common incoming transition and the noCommonTransi-

tionOfInputAndOutputPlaces2 rule ensures they do not have a common outgoing transition.
We reuse the OR of the incoming place which is called ‘q’. So, the putEachElementInORofRtoORofQ

rule puts all basic states and hyperedges in the OR of the outgoing place to the OR of ‘q’. Then, the

4 AToMPM Solution for the Petri Net to Statecharts Case Study

selectTransitionOr

|Node(1).incomingLinks|==1 and

|Node(1).outgoingLinks|==1

1 4 3

2

noCommonTransitionOf

InputAndOutputPlaces (NEG)

1 4 3

2

noCommonTransitionOf

InputAndOutputPlaces2 (NEG)

mergeORstatesInORofQ

1 32

removeRandT

32

4

1 32

4

t t

t

t

2 1 3

tq r

q r rq

q r

r

removeIncomingTransitionsOfRandConnectThemToQ

1
3

1
32

4
4

tq r

removeOutgoingTransitionsOfRandConnectThemToQ

1

3

2 4 1

3

2 4

tq r

putEachElementInORofRtoORofQ

1 3

q r

S

1 3

q r

S

2

Figure 6: OR Reduction Rules

selectTransitionOr2

|Node(1).incomingLinks|==1 and

|Node(1).outgoingLinks|==1

2 1

tq

putHyperedgeOfTtoORofQ

1 2

4

1 2

4

t
q

removeT

2

t

Figure 7: OR Reduction Rules for a Loop Case

mergeORstatesInORofQ rule merges the OR of incoming and outgoing places in OR of ‘q’.
The next two rules, the removeIncomingTransitionsOfRandConnectThemToQ and the removeOutgoing-

TransitionsOfRandConnectThemToQ rules, helps not to loose the existing connections of the outgoing
place and connects them to ‘q’. The removeRandT rule removes the transition and outgoing place.

Our selectTransitionOr rule will not find the matches where the incoming and outgoing places are the
same, which produces a loop-like structure and is the situation in some of the test-cases. So, we add some
extra rules for this case. The rules for this special case are depicted in Fig. 7. The selectTransitionOr2

rule finds the matches for this situation. Since there is not a different outgoing place, all we need to do is
put the hyperedge of transition to the OR of ‘q’ and remove transition.

2.5 Finish

The transformation starts with a PetriNet element with some places and transitions inside. At the end, this
PetriNet is transformed into a Statechart element with another AND as topState. The rules are depicted
in Fig. 8. The createSCandAND rule removes the PetriNet and creates Statechart with AND. Then, the
putOuterMostORsToTopstateAND puts the OR states that are not contained in an AND, which means they
are the outer most OR states, into the topState AND.

2.6 Control Flow

The overall control flow of the phases is depicted in Fig. 9. It starts with the Initialization phase, then tries

createSCandAND

StateChart

putOuterMostORsToTopstateAND

StateChartPetrinet StateChart

Figure 8: Finishing Rules

Hüseyin Ergin & Eugene Syriani 5

Initialization

Find OR

?

OR Reduction

Find AND

?

ANDReduction Finish

Figure 9: Overall Control Flow

to find AND or OR reductions. The reductions are applied as much as possible. If it cannot find any
reduction, Finish rules work and finish the transformation.

The overall control flow in Fig. 9 is composed of references to expanded control flow to save space.
The expanded control flow of the transformation is depicted in Appendix C. Some rule blocks are anno-
tated, denoting a special behavior. The meaning of these rules are:

• ARule: is a regular atomic rule and is executed only once. It has no annotation.

• FRule: stands for “For all Rule”. All matches are found for the input model once and this rule is
applied to all matches found. It is annotated with an ‘F’.

• SRule: stands for ’Star Rule’. It is a rule that is recursively applied on each match as long as
matches are found. Therefore, the result of this rule is the cumulation of each application. It is
annotated with a ‘*’.

• QRule: stands for ’Query Rule’. It is an ARule with no side effect since it does not have a RHS, but
may still assign pivots. It is annotated with a ‘?’.

3 Conclusion

We applied the transformation to the eleven test-cases and successfully see the output Statecharts. Since
AToMPM provides a graphical user interface, we were not able to run the transformation on the bench-
mark models. Writing an adapter that reads the ecore models and automate their creation in AToMPM re-
quires also dealing with the geometrical dispositions of the Petri net elements, which we plan to in-
corporate soon. Furthermore, AToMPM does not yet provide a headless environment and runs com-
pletely online. Therefore the weak performance experienced is due to the GUI and network overheads.
Hence this solution focuses on the expressiveness and usability power of modeling and transforming in
AToMPM rather than its performance. The manual to reproduce the test-cases in an online AToMPM in-
stance is provided in Appendix A. We also add another appendix for the simulation of both systems in
Appendix B.

References
[1] Pieter Van Gorp & Louis M. Rose: The Petri-Nets to Statecharts Transformation Case. Available at http:

//planet-sl.org/community/_/ttc/ttc2013/cases/PetriNetsToStateCharts.
[2] Raphael Mannadiar (2012): A Multi-Paradigm Modelling Approach to the Foundations of Domain-Specific

Modelling. Ph.d. thesis, McGill University.
[3] Eugene Syriani & Hans Vangheluwe (2011): A Modular Timed Model Transformation Language. Journal on

Software and Systems Modeling 11, pp. 1–28.

http://planet-sl.org/community/_/ttc/ttc2013/cases/PetriNetsToStateCharts
http://planet-sl.org/community/_/ttc/ttc2013/cases/PetriNetsToStateCharts

6 AToMPM Solution for the Petri Net to Statecharts Case Study

1 2 3

Figure 10: Main Toolbar

1 2 3

Figure 11: Transformation Controller Toolbar

A Appendix: Manual to Reproduce Test Cases

In this section, we introduce how to use AToMPM and how to reproduce test-cases. AToMPM can be
reached via the SHARE virtual machine XP-TUe PN2SC AToMPM.vdi. AToMPM is a browser-based
application. You will find the shortcut on desktop named AToMPM Shortcut. It opens AToMPM envi-
ronment automatically. The user name and password is ttc if requested.

AToMPM has two main toolbars. First toolbar is used for basic file manipulation and depicted in
Fig. 10. We only give meanings of the necessary buttons for the sake of simplicity.

1. New: opens a new AToMPM instance in a new window.

2. Load: opens a popup box and lets you select a model to load.

3. Toggle Visibility: toggles the visibility of any formalism. For example, one can easily hide Petri
Net elements or Statechart elements using this button.

Second toolbar is transformation controller and depicted in Fig. 11. Again we only give meanings of
the necessary buttons.

1. Load: opens a popup box and lets you select a transformation to be loaded.

2. Play: executes all the rules in the transformation automatically.

3. Step: executes the rules one by one.

The test-cases stay in this folder: /Formalisms/TTC2013/testcases/
The main transformation to load is: /Formalisms/TTC2013/pn2scTrafo New/T ALL.model
There will be a Chrome window open with all testcases and transformations loaded and ready to

execute, you can just press play button in the transformation toolbar.
If that is not the case, you can load any test-case using the main toolbar and select the main transfor-

mation using the transformation toolbar and see the execution of it by pressing play. If the test-case is
too big and you want to see all, just play with your browsers’ zoom level.

You can re-play any testcase by simply loading it again from main toolbar, and choosing the trans-
formation. You can open a new instance anytime by just pressing New button in main toolbar.

B Appendix: Simulation

We also created a rule-based Petri Net simulator and a highlighter for the statecharts as the Petri Net is
being simulated. The rules and the control flow of the rules are depicted in Fig. 12. The simulator first

Hüseyin Ergin & Eugene Syriani 7

findFiringTransition:
?

consumeTokens:
F

produceTokens:
F

highlightBasicState:
F

removeHighlight:
F

findTransition

1

t 1 2

nonFiringTransition (NEG)

t
3

Node(3).weight>Node(1).token

consumeTokens

1 2

t

3
1 2
3

Node(1).token-=Node(3).weight

produceTokens

4
2

t

5

Node(4).token+=Node(5).weight

4
2
5

highlightBasicState

1

2
Node(1).token>0

1

2

removeHighlight

1

2
Node(1).token==0

1

2

1

F

Figure 12: Rules and Control Flow for Simulation

Figure 13: A Screenshot from Simulation

highlights the basic states by using the highlightBasicState rule if the corresponding place has a token.
Then, the findTransition and nonFiringTransition rules check for a suitable transition which has tokens on
all incoming places. The consumeTokens rule reduces the token number from incoming places and the
removeHighlight rule removes the highlight from basic states if the corresponding place has no token.
Finally, the produceTokens increases the token number of all outgoing places and next rule highlights the
basic states again. This control flow loops until no more suitable transition found.

A screenshot from simulation is depicted in Fig. 13. The underlying Petri Net is being simulated and
the basic states in statechart is highlighted as in the figure. The statechart in the figure is from testcase1.

C Appendix: Expanded Control Flow

Fig. 14 depicts the expanded control flow of the transformation.

8 AToMPM Solution for the Petri Net to Statecharts Case Study

:ArcsToLinksT2P
*

Place2BasicOR:
F

TransToHyperedge:
F

:ArcsToLinks
*

findTransitionThatHasSingleOutgoingAndIncomingPlace:
?

:removeIncomingTransitionsOfRandConnectThemToQ
*

:removeOutgoingTransitionsOfRandConnectThemToQ
*

mergeORstatesInORofQ:

putEachElementInORofRtoORofQ:
F

:removeRandT
*

findTransitionsThatHasMoreThan1IncomingPlaces:
?

:createANDandORofTransitionT
*

:removeAllIncomingPlacesButOne
*

:putORofIncomingPlacesToANDofTransitionT
*

:createANDandORofTransitionT
*

:putORofOutgoingPlacesToANDofTransitionT
*

findTransitionsThatHasMoreThan1OutgoingPlaces:
?

:removeAllOutgoingPlacesButOne
*

createSCandAND:

:putOuterMostORsToTopstateAND
*

findTransitionThatHasSingleOutgoingAndIncomingPlace_Loop:
?

putHyperedgeOfTtoORofQ:

removeT:

OR Reduction OR Reduction - loop

Initialization

AND Reduction 1

AND Reduction 2

Finish

Figure 14: Full Control Flow with Expanded Phases

	Introduction
	Solution
	The Metamodels
	Initialization
	AND Reduction
	OR Reduction
	Finish
	Control Flow

	Conclusion
	Appendix: Manual to Reproduce Test Cases
	Appendix: Simulation
	Appendix: Expanded Control Flow

