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Abstract—Model transformation is at the heart of model-
driven development techniques. The development of model trans-
formations typically consists of designing rewriting rules that
are applied on model instances. However, the lack of systematic
development methodology and re-use hamper the quality of model
transformations. This study presents existing work from the
literature on quality evaluation of model transformation as well
as the elaboration of model transformation design patterns. We
also introduce a design pattern example that demonstrates the
impact on some quality aspects of model transformation.
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I. INTRODUCTION

Models are the principal artifacts in model-driven engineer-
ing (MDE). They are subject to all kinds of manipulations [1]
such as: refactoring, simulation, transformation, comparison,
merging. Model transformation therefore plays a pivotal role
in MDE. However, current model transformation development
suffers from re-use and design guidelines. Moreover, quality
concerns are often neglected by transformation developers,
which hinder the overall quality of the deployed product.
For this reason, we propose to investigate existing quality
frameworks and design patterns of model transformation.

A. Background on Model-Driven Engineering

MDE [2] is considered a well-established software de-
velopment approach that uses abstraction to bridge the gap
between the problem and the software implementation. MDE
uses models to describe complex systems at multiple levels
of abstraction. Models are first class citizens and represent an
abstraction of a real system, capturing some of its essential
properties. Models are instances of modeling languages which
define their abstract syntax, concrete syntax and semantics.
The abstract syntax defines the essence of the language,
often defined by a metamodel The concrete syntax defines
the graphical or textual representation of the elements of the
metamodel. Semantics defines the meaning of the language.
The static semantics is specified by the metamodel extended
with constraints, while the dynamic semantics is often defined
by means of a model transformation (either denotational or
operational). A model expressed in a modeling language con-
forms to its metamodel. Metamodels themselves are also mod-
eled in a modeling language called metamodeling language,
which has a conceptual foundation called metametamodel.
Models, metamodels and metametamodels form a three-level

MMa MMmt MMb

Ma MTab Mb

MMM

conformsTo

conformsTo

conformsTo
basedOn

basedOn

M1

M2

M3

conformsTo
conformsToconformsTo

conformsTo

executed
input output

Tab

Fig. 1. Model transformation schema in MDE.

architecture in MDE and these levels are called M1, M2, M3
respectively [3].

In MDE, the core of the development process consists of
a series of transformations over models. Typically, a transfor-
mation or manipulation is modeled by a model transformation
that conforms to a specific metamodel. Following Jouault et
al. [4], the model transformation schema in MDE in Fig. 1
illustrates these terms. Ma and Mb are models that conform
to metamodels MMa and MMb respectively. MTab is a model
transformation that conforms to metamodel MMmt and takes
a model as an input and produces another model as an output.
MTab is also based on metamodels of both input and output
models. All three metamodels, MMa, MMb, MMmt conform
to a standard metametamodel.

Rule-based transformation is the most used paradigm to
define a model transformation. Finding a solution to a problem
as model transformation consists of designing rules and iden-
tifying scheduling between them. Therefore, there is a need
for re-usable, proven and qualified structures in this design
phase. A design pattern encapsulates a proven solution to a
recurring design problem [5]. Good practices in the design of
transformations as well as the assessment of high quality trans-
formations are still missing and hinder the design of large-scale
transformations. As similarly established in the object-oriented
paradigm [6], standardizing and codifying good practices in
the form of design patterns of model transformation can solve
these quality issues and increase overall quality.

The remaining of the study is organized as follows: sec-
tion II explores model transformation in more details. The



structure of model transformation languages, intents of model
transformation and most common model transformation lan-
guages are described. Section III presents information about
the quality criteria, metrics to evaluate, and guidelines for a
quality-driven model transformation. Section IV reviews the
structure of object-oriented design patterns. In Section V,
existing model transformation design patterns in the literature
are analyzed. We also introduce a new one in order to show the
relation between quality and design patterns. The challenges
found are listed in Section VI. Section VII summarizes and
concludes the study.

II. MODEL TRANSFORMATION

A model transformation is defined as “an automated ma-
nipulation of models according to a specific intent” in [7].
These intents play an important role while creating a model
transformation and are explained in Section II-B. The de-
tailed structure of a model transformation is explained in
Section II-A. A transformation mainly consists of source and
target languages, transformation rules, and scheduling of the
rules. In Section II-C we highlight some distinctions between
three model transformation languages.

A. Structure

In [8], model transformation approaches are investigated
using domain analysis methods. The following eight features
are reported:

• Specification mechanism may be pre/post conditions ex-
pressed in the Object Constraint Language (OCL) [9], a
function between source and target models and a model
transformation’s being executable or not.

• Transformation rules are the smallest units of transforma-
tion which are explained in details in Section II-A1.

• Rule application control has two aspects; location de-
termination on the models where the rules are applied
and scheduling of the rules. The scheduling of the rules
determines the order in which they are executed. This is
explained in Section II-A2.

• Rule organization comprises general structuring issues,
such as modularization and re-use mechanisms.

• Source-target relationship specifies whether the source
and target models are manipulated under different meta-
models.

• Incrementality means updating the existing target model
based on changes in the source models.

• Directionality defines whether the transformation is uni-
directional (from source to target), bi-directional (a single
transformation defines the round-trip computation), or
multi-directional (in case more than two models are
involved).

• Tracing is concerned with the (temporary or persistent)
trace links between source and target models, and between
rule applications.

From these features two are the most important in this study
while deducing/applying design patterns; transformation rules
and scheduling of them. In the next subsections, these two are
explained in details.
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Fig. 2. A sample model transformation rule.

1) Transformation Rules: Transformation rules are the
smallest units of a model transformation. A transformation
rule has many different features according to [8]. The domain
of a rule defines how a rule can access elements of models.
A rule is a declarative construct that dictates what shall be
transformed and not how. It consists of pre-condition and
post-condition patterns. The pre-condition pattern determines
the applicability of a rule: it is usually described with a left-
hand side (LHS) and optional negative application conditions
(NACs). The LHS defines the pattern that must be found in
the input model to apply the rule. The NAC defines a pattern
that shall not be present, inhibiting the application of the rule.
Constraints can be also be specified over the attributes of
LHS and NAC pattern elements. The right-hand side (RHS)
describes the post-condition pattern that must be found in
the output model after the rule is applied. Imperative actions
can be also be specified over the attributes of RHS pattern
elements. An advantage of using the rule-based transformation
paradigm is that it allows to specify the transformation as a
set of operational rewriting rules instead of using imperative
programming languages. A rule example with LHS, RHS and
NAC parts is depicted in Fig. 2. This rule is taken from a model
transformation that translates an UML activity diagram model
to a behaviorally equivalent Petri net model [10]. The rule can
be read as “if an activity (labeled 1) that is not associated
with a place (labeled 3) is found, then create a place and two
transitions (labeled 2 and 4), and relate them with temporary
trace links”. This rule has a graphical syntax using elements
from concrete syntax of the source and target domains (activity
diagrams and Petri net).

The body structure of a rule may consist of strings,
terms, or graphs. It holds variables from source and/or tar-
get languages. Each body may have a logic that expresses
computations or constraints on model elements. Logic may be
object-oriented or functional, and executable or not. Typing
of the domain is also important. It can be untyped, which is
the case of textual templates, syntactically typed, in which a
variable in the rule is associated with a metamodel element,
or semantically typed, which allows behavioral properties. The
rules may have a syntactic separation, which clearly seperates
the parts operating on one model from the parts operating on
other models. Multidirectionality of the rules means executing
the rule in different directions. A rule may be applied from the
source to target languages direction, vice-versa, or both. There
may be some application conditions on rules to determine the
rule to be executed. The condition must be true in order to
execute the rule. Execution of a rule may require creation of
some additional intermediate structures. These structures is
usually temporary and require their own metamodel. The most
common example of intermediate structures are traceability
links. A rule can be parametrized by using control parameters,
generics and higher-order rules. Control parameters allow



passing values as control flags. Generics allow passing data
types, including model element types. Higher-order rules take
other rules as parameters and may provide even higher level of
reuse and abstraction. Reflection and aspects from imperative
programming languages may be used as well in transformation
languages.

Each transformation language modifies the structure ac-
cording to its needs. Some examples are explained in Sec-
tion II-C.

2) Scheduling: Rule scheduling is an important phase
in the development of a model transformation. Scheduling
mechanisms determine the order in which individual rules are
applied [8]. One can distinguish between implicit and explicit
scheduling. When the scheduling of a transformation language
is implicit, the modeler has no direct control over the order
in which the transformation units are applied. On one hand,
a transformation language can be unordered, i.e., it simply
consists of a set of rules. In this case, the order of application
of the rules is entirely determined at run-time. It completely
depends on the patterns specified in the rules. Applicable rules
are selected non-deterministically until none apply anymore.
The scheduling of a language can be explicitly specified by the
modeler. In explicit internal transformation languages, a rule
may explicitly invoke other rules. For example in ATL [4], a
matched rule (implicitly scheduled) may invoke a called rule
in its imperative part. Also, a rule tagged as lazy is applied
only after all other rules have been applied. Another example
of an explicit internal transformation language is QVT-R [11].
There, the when/where clauses of a rule may have a reference
to other rules: for when, the former is applied after the latter
and for where, the latter is applied after the former. Finally,
in an explicit external transformation language, there is a
clear separation between the rules and the scheduling logic.
Ordered transformations specify a control mechanism that
explicitly orders rule application of a set of rules. Examples
are: priority-based, layered/phased, or with an explicit work
flow structure. Most transformation languages are partially
ordered, however. That is, applicable rules are chosen non-
deterministically while following the control specification. An-
other sub-category of explicit external transformations is event-
driven transformations, which have recently gained popularity.
In these transformation systems, rule execution is triggered by
external events.

Rule iteration is the control structure that allows recursion,
looping and fix point iteration in the scheduling phase. Trans-
formation languages may also be organized into several phases.
Each phase may have a specific purpose and only some certain
rules can be invoked in a given phase.

Rule scheduling may also exhibit the following properties
according to [12]: atomicity which means all rules succeed
or they all fail, branching which is the execution of a sub-
structure based on a condition, non-determinism which is about
the ordering of the rules, parallelism which means the rules
can be applied in parallel or not, back-tracking which is the
explicit roll-back mechanism after execution, hierarchy which
is the rule nesting.

As in rule structure, each model transformation language
modifies the rule scheduling properties according to its needs.

B. Intents

A model transformation intent is a description of the goal
behind the model transformation and the reason for using it [7].
Classifying model transformation by intents is of paramount
importance when working on design patterns. It helps target
specific patterns for specific use cases and ensures they are
useful in practice. Below is a list and basic description of
these intents from [7]:

1) Manipulation: Simple atomic or bulk operations on a
model is considered model transformation when the sys-
tem is modeled.

2) Restrictive Query: A query requests for some information
about a model and outputs a proper sub-model a.k.a. a
view.

3) Refinement: Refinement produces a lower level specifica-
tion (e.g., a platform-specific model) from a higher level
specification (e.g., a platform-independent model).

4) Abstraction: Abstraction is the inverse of refinement.
5) Synthesis: A model is synthesized into a well-defined

language format that can be stored, such as serialization.
6) Reverse engineering: Reverse engineering is the inverse

of synthesis: it extracts higher level specifications from
lower level ones.

7) Approximation: Approximation is a refinement with re-
spect to negated properties.

8) Translational Semantics: The semantics of a language can
be defined in terms of another formalism. In this case,
the semantic mapping function of the original language
is defined by a model transformation to a reference
formalism with well-defined semantics.

9) Analysis: A model transformation can be used to analyze
a modeling language in terms of another well-known and
well-analyzed formalism.

10) Simulation: A simulation is a model transformation that
updates the state of the system modeled. Simulation
defines operational semantics.

11) Normalization: Normalization aims to decrease the syn-
tactic complexity of models by translating complex lan-
guage constructs into more primitive constructs.

12) Rendering: This is the assignment of a concrete repre-
sentation to each abstract syntax elements or group of
elements.

13) Model Generation: The metamodel of a language can be
defined by a graph grammar. Then execution of this graph
grammar leads to model transformations able to generate
all possible instances of the language.

14) Migration: Migration is a transformation from a software
model written in one language or framework into another
language, keeping the models at the same level of ab-
straction.

15) Optimization: This model transformation aims at improv-
ing operational qualities of models such as scalability and
efficiency.

16) Refactoring: Model refactoring is a restructuring that
changes the internal structure of the model to improve
certain quality characteristics without changing its observ-
able behavior.

17) Composition: Model composition integrates models that
have been produced in isolation into a compound model.
Model merging creates a new model such that every
element from each model is present exactly once in the



merged model and model weaving creates correspondence
links between overlapping entities.

18) Synchronization: Model synchronization integrates mod-
els that have evolved in isolation but that are subject to
global consistency constraints.

Further classifications of model transformations are de-
scribed in [13]. Source and target languages define another
distinction between model transformations. A transformation
is endogenous when it operates on models conforming to
the same metamodel. Optimization and refactoring can be
examples of endogenous transformations. A transformation is
exogenous when it operates on models conforming to different
metamodels. Synthesis, reverse engineering and migration are
examples of exogenous transformations. A horizontal trans-
formation is a transformation where the source and the target
models are in the same abstraction level. Refactoring and
migration are horizontal transformations. A vertical transfor-
mation is a transformation where the source and the target
models are in different abstraction level. Refinement is a
vertical transformation. A syntactic transformation is merely
based on transforming the syntax. Reverse engineering for
example, takes a language in one syntax to another language in
another syntax. There are also semantic transformations such
as simulation and optimization. In-place transformations are
executed within same model such as simulation and out-place
transformations produce a different model after execution.

C. Model Transformation Languages

There are many model transformation languages in the
literature. Some examples are Henshin [14] from Arendt et
al., which is a language that operates on models in Eclipse
Modeling Framework (EMF) and has visual syntax, editing
functionalities, execution and analysis tools; GReAT [15] from
Agrawal et al., which consists of three distinct parts; pattern
specification language, graph transformation language and
control flow language; FUJABA [16] from Klein et al., which
is one of the first tools to do code generation from UML
models and UML model generation from code; VIATRA2 [17]
from Varro and Balogh, which provides a rule and pattern-
based language for manipulating graph models by using graph
transformation and abstract state machines; and AGG [18]
from Taentzer, which lets graphs to be attributed by Java
objects and equips graph transformation with computations on
these objects.

Each of these languages have a unique set of structure
combinations (e.g., different rule and scheduling structure,
different directionality). Jouault and Kurtev [19] compared
a number of model transformation languages in terms of
transformation scenarios, paradigm, directionality, cardinality,
traceability, query language, rule scheduling, rule organization
and reflection.

In this section, some common model transformation lan-
guages are described in details. These are QVT [11] from
Kurtev, ATL [4] from Jouault et al. and MoTiF [12] from Syri-
ani and Vangheluwe. All three languages work on metamodels
eventually created in MOF-like languages.

1) QVT: QVT is an acronym for “Query, View, Transfor-
mation”. QVT is the OMG standard language for specifying
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model transformations. The OMG defined the terms in QVT
as follows in [20]:

• “Query is an expression that is evaluated over a model.
The result of the query is one or more instances of types
defined in the source model, or defined by the query
language”.

• “View is a model which is completely derived from
another model which may be base model. There is a live
connection between the view and the base model.”

• “Model Transformation is a process of automatic genera-
tion of a target model from a source model, according to
a transformation definition.”

QVT abstract syntax is defined as a metamodel and QVT
transformations are models conforming to the metamodel.
QVT metamodel defines three sublanguages for model trans-
formation. These are QVT Relations (QVT-R), QVT Core
(QVT-C) and QVT Operational Mappings (QVT-OM). The
layered architecture of these three languages is depicted in
Fig. 3.

QVT-R provides capabilities for specifying transformations
as a set of relations among models. It is based on arbitrary
number of domains, but there must be at least two domains, as
well as pre- and post-conditions. QVT-R can be used in these
scenarios: check-only verifies that the given models satisfy the
relations with a boolean output; unidirectional transformation
creates a target model from a source model according to some
relations; model synchronization verifies and makes sure that
a set of models satisfy the relations of the transformation, in-
place update modifies a model as specified by the relations.

Every relation has a set of object patterns. These patterns
can be matched in the source model and can be produced
in the target model. QVT-R handles the traceability links
automatically and hides related details from developer. QVT-R
is designed to be multi-directional and support both inplace
and outplace transformations. The code sample from [11]
represents a portion of a model transformation transforming
UML class diagram into relational database schemas. The
relation transforms attributes of classes to columns of relational
database tables.

1 r e l a t i o n At t r i b u t e ToCo lum n {
2 checkonly domain uml c : C l a s s {} ;
3 e n f o r c e domain rdbms t : Tab le {} ;
4 p r i m i t i v e domain p r e f i x : S t r i n g ;
5
6 where {
7 P r i m i t i v e A t t r i b u t e T o C o l u m n ( c , t , p r e f i x ) ;
8 ComplexAt t r ibu teToColumn ( c , t , p r e f i x ) ;
9 S u p e r A t t r i b u t e T o C o l u m n ( c , t , p r e f i x ) ;

10 }
11}

The keywords are important for the semantics of the
transformation. Checkonly means domain elements cannot be



changed, so the source domain is read-only. Enforce indicates
that elements of the domain are subject to change in order
to ensure the relation holds, so the target domain is writable.
Primitive is used for passing parameters. Where clause pro-
vides the possibility of invoking other relations, which must
be evaluated to true for the invoking relation to hold. Different
combinations of these keywords change scenarios of QVT-R
mentioned above.

QVT-C is also a declarative language. It is however simpler
than QVT-R, being defined at the level of mappings. These two
languages can handle the same transformation scenarios. Un-
like QVT-R, the traceability links must be defined explicitly in
QVT-C. A QVT-R relation can be translated into a semantically
equivalent QVT-C mapping. This transformation is defined in
QVT-R [20] and is therefore an instance of a higher-order
transformation.

QVT-OM language extends QVT-R with imperative con-
structs and OCL constructs. The basic idea of the language is
that object patterns specified in the relations are instantiated
by using these constructs. Therefore, the structure of the lan-
guage provides imperative language constructs such as loops,
conditions, etc. QVT-OM transformations are unidirectional.

Black box mechanism in the architecture allows plugging
in and execution of external code during the transformation.
It allows complex algorithms in any language and enables use
of existing libraries.

2) ATL: ATL is an acronym for “Atlas Transformation
Language”. It also provides a set of languages as in QVT.
Atlas Model Weaving (AMW) is a higher abstraction level
specification. The ATL Virtual Machine executes the compiled
ATL programs.

ATL transformations are unidirectional. The transformation
operates on read-only source models and produces write-
only target models. Since the source model is read-only, the
transformation can only be out-place. Source model can be
navigated during transformation, but target model can’t be
navigated.

The declarative part of ATL uses matched rules consisting
of source and target patterns. Source pattern is matched in
the source model and target pattern is created in target model
for every match. ATL provides automatic traceability links
between target and source elements. The called rules are
declarative matched rules that must be invoked explicitly. ATL
also has an imperative part, action blocks, that consist of
sequences of imperative instruction that can be used in both
rules.

There are two modes that ATL programs can work. When
executed in standard mode, the ATL transformation creates
elements only if they are matched. Therefore, unmatched
elements are not created in target model. In refining mode,
unmatched elements are automatically created in target model
without need of a rule.

The following code snippet depicts a matched rule in ATL
language and from [4]. The rule is part of a transformation
from UML class diagram to relational database tables.

1 r u l e C l a s s 2 T a b l e {
2 from
3 c : C l a s s ! C l a s s
4 to
5 o u t : R e l a t i o n a l ! Tab le (
6 name <− c . name ,
7 c o l <− Sequence {key}−>un ion ( c . a t t r−>

s e l e c t ( e | not e . m u l t i V a l u e d ) ) ,
8 key <− S e t {key}
9 ) ,

10 key : R e l a t i o n a l ! Column (
11 name <− o b j e c t I d
12 )
13}

The from clause defines a read-only source pattern that is
used only for matching. The to clause defines a target pattern
that is created in the target domain. The rest of the target
pattern is the mapping of the attributes from classes to tables.

There are three types of matched rules in ATL according
to the way they are triggered.

• Standard rules are applied once in every match on source
models.

• Lazy rules are called by other rules. They can be applied
multiple times which produces a different set of target
elements at the end of each application.

• Unique lazy rules are like lazy rules. The difference is
they use existing target elements instead of creating new
ones.

Rule scheduling is implicit and not an issue in ATL. Since
the source domain is read-only, it is not modified during
execution and transformation always results in same target
model. ATL executions result in a deterministic target model
unless lazy rules are used.

3) MoTif: MoTif is a short name for “Modular Timed
Graph transformation”. MoTif and its semantics is based on the
Discrete Event System Specification (DEVS) formlism [21]. It
also introduces an explicit notion of time because of DEVS
and it allows to model the interruption for every rule in the
execution. Under MoTif, there is T-Core [22], which stands for
“Transformation Core”. It is a collection of primitive operators
for model transformation. T-Core offers the following eight
primitives:

• Matcher finds all possible matches of the condition on the
graph embedded. After matching, it stores all the matches
in the packet.

• Rewriter applies the required transformation on the match
specified in the packet it received.

• Iterator chooses a match among the set of matches of
current condition of the packet. The match is chosen ran-
domly and choosing the match continues until a maximum
number is achieved.

• Resolver resolves a potential conflict between matches
and rewritings by prohibiting any changes to other
matches in the packet.

• Rollbacker is used as a recovery point that allows back-
ward recovery of packets.

• Selector is used when a choice needs to be made between
multiple packets processed concurrently by different con-
structs.

• Synchronizer is used when multiple packets processed in
parallel need to be synchronized.
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• Composer is a modular encapsulation of the elements and
any other primitives can be added to the encapsulation.

Fig. 2 depicts an example rule in MoTif. The rule is part
of another study [23] and basically add some new petrinet
elements to UML activity diagram action nodes while prevent-
ing the rule to be applied more than once by adding a NAC
and maintaining traceability links to the original nodes. The
rule consists of three parts. First part is NAC and separated
with dashed line from other parts. Many number of NACs
can be added to a rule. Second part is LHS on the left of big
arrow. That is the precondition pattern to be found in the input
model. Third part is RHS on the right of big arrow and the
post-condition pattern to be applied to the model. As one can
easily realize, concrete syntax can be used in rule designing
phase.

Rule scheduling in MoTif is explicitly defined by another
structure, which is also modeled. The structure allows to define
what happens when the rule is matched or not. A sample
scheduling sequence is depicted in Fig. 4.

The rules are single lined green boxes and they have input
ports and output ports for success and failure. Success case
is finding the match in the input. All output ports can be
connected to any other rule’s input ports or the output ports
of the block.

MoTif consists of rule blocks [24]. Each rule block can be
either atomic or composite. Some of the atomic rule block can
be found in Fig. 4 and are listed below. The content of these
rule blocks appears in Fig. 11.

• ARule: means a regular atomic rule. It is a simple rule
that is executed only once.

• FRule: is ‘For all Rule’. The matches are found for the
input model and this rule is applied to all found matches.
For example in Fig. 4, rule LinkToParent is an FRule.

• SRule: means ‘Star Rule’ and applies the transformation
to all matches as long as the rule is applicable. Therefore
it is applied to the resulting model cumulatively after each
application. For example in Fig. 4, rule LinkToAncestors
is an SRule.

• QRule: means ‘Query Rule’ and mostly consists of only
LHS and NACs For example in Fig. 4, rule GetLCA is
an QRule.

Composite rule blocks allow one to encapsulate the compo-
sition of rule blocks. Some of them express flow structures,
such as branching and looping.

III. QUALITY IN MODEL TRANSFORMATIONS

Some studies in the literature attempt to identify quality
criteria with respect to model transformation ([25], [26], [27])
and metrics ([28], [29], [30], [31]) to measure these criteria.

This section, focuses on Mohaghehi and Dehlen’s quality
framework for MDE [25] and Insfran et al.design guide-
lines for the development of quality-driven model transforma-
tions [32]. The analysis of these two papers is extended with
quality criteria and metrics.

A. Mohagheghi and Dehlen’s Quality Framework for MDE

Mohagheghi and Dehlen [25] propose a framework for
evaluating MDE projects in general. Inspired by the ISO-9126
recommendation, they adapt the activities carried to MDE.
They identify following steps:

1) Identify quality criteria, such as maintainability and re-
usability, which are discussed in Section III-A1.

2) Identify target objects that have an impact on quality cri-
teria. These objects are metamodels, models, languages,
transformations; i.e., all concepts related to model trans-
formation.

3) Identify the properties of target objects that have an
impact on quality criteria. Identifying these properties are
based on: purpose of the target objects, life cycle, relation
with other objects, scale of the project, specificity of the
project, and lifetime. Following the example objects in the
previous step, these properties can be elements, relations,
and constraints for metamodels, size, and modularity
for models, scheduling structure, and rule structure of
languages.

4) Specify how to evaluate the quality properties. This
includes the metrics to be measured quantitatively or
subjective evaluation of the transformation. These metrics
are discussed in Section III-A2. Other approaches may
be empirical evaluation by interviewing the users or
inspections using checklists.

5) Specify traceability links between quality properties and
quality criteria.

6) Execution is the implementation of quality properties and
evaluation of metrics identified in step 4.

Fig. 5 illustrates these steps.

1) Quality Criteria in Model Transformation: Several
works have focused on defining quality attributes to mod-
els [26]. Mohagheghi and Dehlen [25] propose quality criteria
with respect to model transformation. A more detailed quality
criteria listing is done in [27] as follows:

• Correctness: Correctness is defined as including the right
elements and correct relations between them [26]. It also
means not violating rules and conventions. This includes
sticking to the transformation metamodel for the model
transformation.

• Re-usability: Re-usability is the most important criteria
in design pattern. Actually it is the main purpose of
creating/trying to find a design pattern. Re-usability can
also be satisfied by having smaller generic pieces in the
transformation language, such as unit rules.

• Efficiency: In general, efficiency means fulfilling the
purpose without wasting so much resource [33]. Model
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transformation tools mostly suffer from NP-Complete
pattern matching problem [27]. Therefore, efficiency is an
important criteria in model transformation when it comes
to huge inputs.

• Reliability: Reliability is the characteristic of the code
that it is expected to perform its intended functions
satisfactorily [33]. In terms of model transformation, any
rule must satisfy the condition of the domain as intended.

• Maintainability: The model transformation must be main-
tainable to fit to the new requirements or modifications.
That means the transformation must be understandable,
testable and modifiable.

• Interoperability: Interoperability means a model trans-
formation must be able to work with outer systems,
which may be another transformation model, software or
technology.

This is not a complete list of quality criteria with respect to
model transformation, but the most relevant ones are listed.

2) Metrics for Transformation Languages: Metrics are
essential for assessing the quality of model transformations.
In [34], the authors distinguished three different categories of
transformation quality metrics: language independent, transfor-
mation independent and transformation dependent.

Language independent metrics are about the general struc-
ture of the model transformation languages which are men-
tioned in Section II. Size of rules, number of matches, number
of rule applications can be in this category. General software
metrics can also be counted such as execution time and
memory constraint.

Transformation independent metrics focus on specific
model transformation languages. The studies mainly focus
on ATL and QVT languages, which are briefly explained
in Section II-C. In this category, Vignaga [28] proposed 81
metrics for ATL such as number of clones of a piece of code,
number of received calls, and number of keywords. Kapova
et al. [31] proposed a set of metrics for QVT Relations like
declarative languages such as number of relations, number
of enforced domains, average number of local variables per
relation, and number of ‘when’ predicates.

Transformation dependent metrics are specific to particular
model transformation problems. These rely on some specific
properties of the model transformation. For example a model
transformation that flattens a state chart model must make sure
that there is a bisimulation between the original and the flat
version.

Relating the metrics with the appropriate criteria is also im-
portant. Vignaga [28] related the metrics he proposed for ATL
with the quality criteria like understandability, modifiability,
re-usability etc.

B. Insfran et al.’s Design Guidelines for the Development of
Quality-driven Model Transformations

Insfran et al. propose a guideline for the development
of quality-driven model transformation in the case where
alternative solutions exist. The proposed guidelines lead the
designer to select appropriate alternative transformation that
satisfies certain quality criteria. They offer three artifacts to be
used while building the guidelines:

• The Quality Model: this model lets the transformation
designer build a set of quality criteria and related metrics
with them.

• The Transformation Model: this model is basically the
transformation language that has rules, characteristics,
and structural elements that are transformed into some
other structural elements.

• The Active Rules Model: the active rules are transforma-
tion rules that are selected among alternatives.

The steps of guidelines are:

• Identifying and Selecting Alternative Transformation
Rules: the aim of this step is to find alternative transfor-
mation rules that can transform a structure in the source
model into a different structure in the target model. This
helps to have different quality transformation rules in
model transformation.

• Refactoring the Transformation Rules: refactoring is
needed to make the rules more concise so that cohesion is
maximized and coupling is minimized. The authors claim
that large and complex rules have less flexibility and re-
usability. Large and complex rules also mean a complex
relation with quality criteria.

• Defining Transformation Rules: the authors mention two
kinds of rules in this step. Top-level rules represent the
alternative transformations of a structure and each regular
creation/modification rule becomes a non top-level rule.
Top-level rules set the selected alternatives as active rules.

• Avoiding Conflicts among Rules: a conflict occurs if a
pre-condition or LHS of multiple rules overlap. The gran-
ularity of a transformation rule is the size of LHS. The
larger the rule LHS covers in the input model, the larger
its granularity is. The goal is to minimize granularity.

• Building the Transformation Model: the transformation
model consists of associations among structures with
alternative transformations. It also covers impacts on dif-
ferent quality attributes. Trade-off analysis among quality
attributes are used to build the transformation model.

Guidelines introduced in the study look appropriate and
reasonable for creating a model transformation. However, the



study does not provide any concrete materials about quality in
model transformation. Also how to identify quality differences
between alternative transformations is left to domain experts.

IV. DESIGN PATTERNS

Design patterns are reusable structures that can help to
overcome any problem to be solved again and again. Each
pattern describes a problem which occurs over and over again
in our environment and then describes the core of the solution
to that problem, is such a way that you can use this solution
a million times over, without ever doing it the same way
twice [6]. There are many studies involving hundreds of design
patterns in the literature. Each of them describe a solution to
some kind of a problem. The use of design patterns leads to
the construction of well-structured, maintainable and reusable
software systems [35].

Pattern cataloging process began as a part of Erich
Gamma’s PhD thesis [6]. Then the other authors joined the
process and design patterns found the last appropriate structure
to be published as a book. There are now 23 standard object
oriented design patterns in the book. Actually before Gamma et
al. [6]’s work, there were still programming languages that
use design patterns without mentioning the strict name. For
example model-view-controller structure in Smalltalk-80 is an
earlier example of a design pattern [36].

A. Structure

The essential elements of design patterns are explained in
Gamma et al. [6]. These are the four main primitive elements
under a design pattern and basically used to express a design
pattern’s purpose and results. They are listed as follows:

• The pattern name is actually a handle to summarize all
other fields in the design patterns essential elements. It
lets developers to freely talk and understand the design
as an abstraction. Finding a good name is one of the hard
parts of developing a pattern.

• The problem describes when to apply the pattern. Mostly
the problem and its context are explained in this field.
These may include specific design problems, class or
object structures and a list of conditions that must be met
before application.

• The solution describes the elements that are parts of the
design, their relationships, responsibilities and collabora-
tions. Since a pattern is like a template, it has to provide
a solution to be applied in many different situations. The
solution is generally given with UML class diagrams.

• The consequences are the results and trade-offs of apply-
ing the pattern. These are critical for evaluating design
alternatives and for understanding the costs and benefits
before applying the pattern. Language and implementa-
tion issues, impacts on a system’s flexibility, extensibility
and portability may also help users to understand and
evaluate design patterns.

Other than these elements, there are more fields in [6]
to describe a design pattern. These are; pattern name and
classification, intent, also-know-as, motivation, applicability,
structure, participants, collaborations, consequences, imple-
mentation, sample code, known uses, related patterns. Intent
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is an important field both in design patterns and model
transformations that needs to be mentioned more. This field
is the key to select the right design pattern for a problem and
the right constructs for a model transformations. Although the
rest of the fields are not crucial for a design pattern, they help
to explain it better and precise.

Hasheminejad and Jalili [5] also introduce two main sec-
tions to categorize these fields: problem domain and solution
domain. The problem domain describes the problem context
where the pattern can be applied and has these fields: intent,
motivation and applicability. The solution domain describes
the structure and collaborations of the pattern solution be-
ing applied to the problem and has these fields: structure,
participants, collaborations, consequences, implementation and
related patterns.

B. Example

In this subsection, one of the design patterns from [6] are
shown to make how a design pattern looks like more concrete.
For this purpose, the visitor pattern is arbitrarily chosen.

1) Visitor Pattern: Visitor pattern is an object behavioral
pattern. Object behavioral patterns deal with the interac-
tion and responsibility of objects.
• Intent: It allows one to add a new operation to a class

structure without altering the structure.
• Applicability: It helps keeping similar operations to-

gether. Therefore, a new operation can be added easily
without adding so many lines or changing the structure
of target classes.

• Structure: The structure of Visitor pattern is depicted
in Fig. 6.

• Participants
◦ Visitor defines the interface that has a seperate

method to access and process each ConcreteEle-
ment.

◦ ConcreteVisitor implements the Visitor interface
and provides another set of features about what will
happen when the element is visited.

◦ Element defines the interface which has an Accept
method for a visitor.

◦ ConcreteElement implements the Element interface
and also provides necessary methods to be used
when a Visitor visits.



◦ ObjectStructure represents the context and data
structure of the elements in the program.

• Collaborations: A client must create a ConcreteVisitor
to traverse ConcreteElements in the program. An ele-
ment calls related visit method in the ConcreteVisitor
when it is traversed.

• Consequences: It is easy to add new ConcreteVisitors,
since each visitor will already be visited by the Con-
creteElement. However adding new ConcreteElements
is hard and needs to add a visit operation in each
ConcreteVisitor.

C. Limits of Design Patterns

Design patterns are accepted to be a useful structure in the
aim of re-usability and readability. They have some advantages
and disadvantages of course. A design pattern means a set
of high-level documentation of the design. Design pattern
abstracts presentation from the implementation.

The goal of design patterns is to increase quality metrics
to satisfy some quality criteria. This often comes with a trade-
off. In design patterns, re-usability criteria mostly conflicts
with efficiency criteria. For example, visitor pattern lets people
traverse class structure and process on them in an efficient way,
while it requires nearly double number of new classes created.
Also, it is not clear how many design patterns are enough in
a project. There is a probability that you mess up your code
by applying too many unnecessary design patterns.

Another point, applying design pattern is not automated
yet and it still depends on the manual decision of the designer.
Hasheminejad and Jalili [5] proposed an automatic two-phase
method for design pattern selection, but this does not reduce
the impact of the designer in selection process.

However, re-usability, readability and maintainability are
so important criteria that this makes design patterns always
popular.

V. MODEL TRANSFORMATION DESIGN PATTERNS

Solving a model transformation problem is exactly anal-
ogous to solving other software problems. One can generate
a naive model transformation solution for a specific problem,
while another can generate a highly optimized and efficient
solution. Design patterns help to create optimized and effi-
cient solutions for problems by providing necessary steps or
structures as discussed in Section IV.

In this section, existing model transformation design pat-
tern studies in the literature are reviewed. Agrawal et al. [37]
name design patterns as “Reusable Idioms and Patterns” and
introduce three design patterns in graph transformation lan-
guages. Iacob et al. [38] prefer “Reusable Model Transfor-
mation Patterns” as name and introduce five design patterns.
These are the first studies in the literature that tries to create
a design pattern catalogue. The main problems with these
studies are: 1) The fields of a design pattern i.e., benefits,
applicability, motivation etc. are not handled correctly. They
can sometimes have same and redundant sentences. 2) They do
not provide a generic solution for the design patterns in terms
of a design pattern formalism. They provide only a specific
solution in a specific model transformation language. This

Fig. 7. Structure of Leaf Collector Pattern [37]

problem is discussed more as a challenge in Section VI-A.
3) Any of design patterns introduced in these studies are not
evaluated in terms of quality criteria. In the last subsection, a
design pattern is identified by focusing on the lowest common
ancestor (LCA) problem [39]. The relation between model
transformation quality and design patterns are also depicted
with this problem and identified design pattern. Design patterns
can be identified in different ways. One way is focusing on one
problem and trying to find different solutions to that problem.
Starting with naive solutions to the more efficient solutions
yield us to a reusable method for solving that problem. At the
end, a design pattern can be identified with a high probability.

Nonetheless, these are the first studies and need to be
inspired and improved in terms of productivity.

A. Reusable Idioms and Patterns in Agrawal et al.

Agrawal et al. [37] used GReAT model transformation
language [15] to provide three design patterns. In this study,
each design pattern has motivation, applicability, structure
and known uses fields as introduced in Section IV-A. They
also added limitation to extend consequences and benefits to
promote the advantages of the pattern. They worked on a
concrete problem which is flattening of a hierarchical dataflow
to a flat dataflow representation. The design patterns introduced
in this study are:

1) The Leaf Collector Pattern:
• Motivation: This pattern aims collecting all leaf nodes

in a hierarchy.
• Applicability: The leaf collector pattern starts from a

root node, traverses all nodes and tries to collect leaf
primitives. A leaf primitive is a node where one can’t
traverse further. It can be applied to the problems that
fit this purpose.

• Structure: The structure of the pattern is depicted in
Fig. 7. The structure is more like a recursive step in
the pattern. GetDirectNeighbors rule collects all direct
neighbors of the input node and call Leaf Collector
again. IsLeaf rule is deciding if the input node is a leaf
or not by checking direct neighbor count further that
node.

• Benefits: Getting the neighbors and leaf recognition are
independent. Therefore, it can be modified according to
other needs.

• Known Uses: The transformation from hierarchical
state machine to finite state machine can use this
pattern.

• Limitations: This pattern is suitable for only acyclic
graphs, since it is traversing the nodes recursively and
without marking any visit.



Fig. 8. Rules of Transitive Closure [37]

Fig. 9. Rules of Proxy Generator Idiom [37]

2) Transitive Closure:
• Motivation: Some problems need a data dependency

analysis. For these kinds of analyses, transitive closure
of the data needs to be found. This pattern can be used
for these cases.

• Applicability: This pattern can be applied to compute
the transitive closure of a graph.

• Structure: In Fig. 8, the necessary rules are depicted
to compute the transitive closure. First, next neighbor
is found in FindSource rule. Then, the found next
neighbors are used as an initial starting point for the
TransitiveClosureStep rule.

• Known Uses: The reachability analysis on ESML (Em-
bedded Systems Modeling Language) is known to use
this pattern.

• Limitations: This pattern is suitable for only acyclic
directed graphs.

3) The Proxy Generator Idiom: This is a reusable but domain
specific design pattern.
• Motivation: This pattern is used to generate proxies

in a distributed system. A proxy is a placeholder for
another object and provides access control to the main
object.

• Applicability: This pattern can be applied in any dis-
tributed system which has a structure like server/client,
service/request or source/sink.

• Structure: The structure of the pattern is depicted in
Fig. 9. First, the system is checked for an already
existing proxy with TestProxyExistence rule. If there
is a proxy, it is associated with the client by applying
AssociateWithProxy rule. If the proxy can’t be found
in the system, a new one is created with CreateProxy
rule and the AssociateWithProxy rule is called again.

• Benefits: The pattern has independent steps for check,
create and associate steps. Therefore, each step can be
modified according to needs.

• Known Uses: Embedded System Modeling Language
uses this pattern.

• Limitations: The pattern is applicable with a client and
a master pair and a request between these two.

B. Reusable Model Transformation Patterns in Iacob et al.

Iacob et al. [38] used QVT-R language [11] to introduce
five model transformation design patterns. They fixed the pat-
tern structure to have goal, motivation, specification, example
and applicability fields. Motivation field describes the problem
kinds that the pattern can solve. Specification field gives the
solution using QVT-R language. Applicability field hints the
places where this pattern can be applied. The introduced design
patterns are:

1) The Mapping Pattern:
• Goal: The mapping pattern creates one-to-one relations

between a source metamodel and a target metamodel.
• Motivation: Mapping is always an issue in transfor-

mation and is used in many places. It is most useful
when source and target models use different languages
or syntax, but have the same meaning.

• Specification:

top r e l a t i o n XYMapping {
nm : S t r i n g ;
e n f o r c e domain l e f t x : X {

c o n t e x t = c1 : XContext {} ,
name = nm } ;

e n f o r c e domain r i g h t y : Y {
c o n t e x t = c2 : YContext {} ,
name = nm } ;

when {
ContextMapping ( c1 , c2 ) ; }}

The relation above from [38] states that an element x
of type X must be related with an element y of type
Y. Also x and y have the same name and the same
context, which is ensured in ContextMapping function
in the when part of the relation.

• Applicability: This pattern can be applied to translate a
model from one syntax to another e.g., from UML to
Java.

2) The Refinement Pattern:
• Goal: The pattern provides a more detailed target

model by refining an edge/node in source model to
multiple edges/nodes.

• Motivation: Refinement pattern is useful when detail
steps of an existing model are requested.

• Specification:

top r e l a t i o n R e l a t i o n R e f i n e m e n t M a p p i n g {
n : S t r i n g ;
e n f o r c e domain l e f t e1 : Edge {

name = n ,
. . . } ;

e n f o r c e domain r i g h t im node {
c o n t e x t = c2 : C o n t e x t {} } ;

e n f o r c e domain r i g h t e2 : Edge {
. . . } ;

e n f o r c e domain r i g h t e3 : Edge {
t a r g e t = t r i g h t : Node {} ,
. . . } ;

when {
ContextMapping ( c1 , c2 ) ;
ElementMapping ( s l e f t , s r i g h t ) ;
ElementMapping ( t l e f t , t r i g h t ) ; }}

In the relation above from [38], the edge from the left
domain is refined into a node with two edges.

3) The Node Abstraction Pattern:
• Goal: The pattern provides an abstraction mechanism

for any node while keeping the relations of the node.



• Motivation: This pattern can be used to eliminate some
specific nodes from the model. It is also assumed that
source and target have same metamodels.

• Specification:

top r e l a t i o n Node X Abs t rac t ion {
e n f o r c e domain l e f t s1 : X {

inEdge = e i n : Edge {
name = n a i n : S t r i n g ,
s o u r c e = s s 1 : Node {}} ,

ou tEdge = a o u t : Edge {
name = na out ,
t a r g e t = t t 1 : Node{}} } ;

e n f o r c e domain r i g h t a : Node {
name = n a i n + na out ,
s o u r c e = s s 2 : Node {} ,
t a r g e t = t t 2 : Node {} } ;

when {
NodeMapping ( ss1 , s s 2 ) ;
NodeMapping ( t t 1 , t t 2 ) ; }}

In the relation above from [38], s1 of type X is
abstracted from the target model while preserving its
adjancent edges.

• Applicability: This pattern can be applied when certain
elements from models are to be removed.

4) The Duality Pattern:
• Goal: This pattern generates a semantic dual of the

given model.
• Motivation: There are two main categories to represent

dynamic behavior of a system. First type focuses on
the procedural flow of activities which lead to a larger
activity. Second type focuses on the flow of control
from state to state. One may want to translate between
these two class of semantic or want to assign our model
a semantic purpose according to these two.

• Specification:

top r e l a t i o n ArrowNodeMapping {
nm : S t r i n g ;
e n f o r c e domain l e f t a : Arrow {

c o n t e x t = c1 : AContext {} ,
name=nm } ;

e n f o r c e domain r i g h t v : Ve r t ex {
c o n t e x t = c2 : VContext {} ,
name=nm } ;

when {
ContextMapping ( c1 , c2 ) ; }}

top r e l a t i o n NodeArrowMapping {
nm : S t r i n g ;
e n f o r c e domain l e f t v : V e r t ex {

c o n t e x t = c1 : NContext {} ,
. . . } ;

e n f o r c e domain r i g h t a : Arrow {
c o n t e x t = c2 : AContext {} ,
. . . } ;

when {
ContextMapping ( c1 , c2 ) ;
v . ou tgo ing−>s i z e ( ) =1 ;
v . incoming−>s i z e ( ) =1 ;
ArrowNodeMapping ( e1 , v1 ) ;
ArrowNodeMapping ( e2 , v2 ) ; }}

The two relations above from [38] first create map-
pings between arrows in source model and nodes in
target model. Then, each node’s arrows are matched to
another set of nodes again.

• Applicability: This pattern can be used to relate models
expressed in different languages but have a duality

Fig. 10. The input model to an LCA problem.

relationship. An example may be transformation from
UML activity diagram to UML state chart diagrams.

5) The Flattening Pattern:
• Goal: This pattern aims to remove hierarchy from

source model and generates flattened version.
• Motivation: Hierarchical structure mostly aims to make

the models easier to understand. But a flattened version
may be needed to analyze them.

• Specification:

top r e l a t i o n C o m p o s i t e F l a t t e n i n g {
checkonly domain l e f t c : Composi te {

c o n t e x t = c1 : Compos i t eCon tex t {} } ;
e n f o r c e domain r i g h t r : RootElement {} ;
when {

RootMapping ( c1 , r ) o r
C o m p o s i t e F l a t t e n i n g ( c1 , r ) ; }}

r e l a t i o n ElementMapping {
nm : S t r i n g ;
e n f o r c e domain l e f t x : Element {

name = nm ,
c o n t e x t = c1 : C o n t e x t {} } ;

e n f o r c e domain r i g h t y : Element {
name = nm ,
c o n t e x t = c2 : C o n t e x t {} } ;

when {
RootMapping ( c1 , c2 ) o r
C o m p o s i t e F l a t t e n i n g ( c1 , c2 ) ; }}

In the two relations above from [38], the transformation
is endogenous. Note also that a unique RootElement is
assumed. All elements are belong to the RootElement
or a Composite element, which represents a hierarchy.
Then each element is either applied RootMapping or
CompositeFlattening recursively.

• Applicability: This pattern can be used to remove
hierarchy from the source model.

C. Case Study: Lowest Common Ancestor

In this section, a design pattern is identified from the well-
known problem of computing the LCA. Aim of this case study
is relating quality criteria and design patterns. First, LCA
problem is solved naively. Then, an alternative solution that
improves the quality of the model transformation is introduced.
Finally, the solution is generalized to a design pattern that can
be applied to similar problems.

LCA is defined between two input parameter nodes and
tries to find the lowest shared ancestor between them. In
Fig. 10, an input model to LCA problem is depicted. In this
input, the LCA of the nodes D and J can be computed and
found to be the node A.

In the naive approach for solving this model transformation
problem, new temporary links are created to all ancestors of all
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nodes. Then input parameter nodes are matched if they have a
common ancestor. The necessary three rules and the scheduling
of them are depicted in Fig. 11. The LinkToSelf rule creates
self-ancestor links. The LinkToParent rule creates the first
level of ancestor links between each node and their parents.
If this rule fails, that means the input model doesn’t have
any connected edges. Then, LinkToAncestors rule creates
the ancestor links for all ancestors of nodes. As a result of
these two rules, all nodes in the input model have ancestor
links to both parents and all ancestors until root node. Finally,
GetLCA rule matches the lowest common ancestor of the input
parameter nodes. This rule has a NAC which guarantees the
matched node is the lowest among the other matched ones.

The problem with the naive approach is to deal with too
many unnecessary ancestor links. The solution creates ancestor
links for all other nodes even though they are not the subject
of the problem. This results in an inefficient solution of the
LCA problem.

For a more efficient solution, only the input parameter
nodes are focused. Ancestor links are created one by one to
each ancestor of the input parameter nodes and check the low-
est common ancestor after each new ancestor link creation. The
necessary rules and the scheduling of these rules are depicted
in Fig. 12. LinkToSelf rule creates the first set of ancestor links
of the input parameter nodes, which are self-links. Therefore
it is executed only once. Then, GetLCA rule tries to match a
common ancestor between input parameter nodes. If GetLCA

Advance
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Fig. 13. Initiate-Check-Advance design pattern.

TABLE I. METRICS FOR LCA PROBLEM

Metric Details Sol. 1 Sol. 2

Number of rule applications

LinkToSelf 11 2
LinkToParent 10 -

LinkToAncestors 14 3
GetLCA 1 4

Total 36 9

Size of rules

LinkToSelf 3 6
LinkToParent 7 -

LinkToAncestors 14 22
GetLCA 14 5

Total 38 33
Number of auxiliary elements created Total 35 7

rule fails, this means computing one more level of ancestor
links and executing GetLCA again. Execution of GetLCA rule
successfully means finding a lowest common ancestor between
input parameter nodes, so the model transformation should
stop and return this node. LinkToAncestor rule creates one
more level of ancestor links and is executed only once. If this
rule is successful, then GetLCA rule can be executed to try for
a common ancestor again. But the failure of this rule means
there is no need for another check and the input model doesn’t
have a lowest common ancestor for the input parameter nodes.

As of this example, a design pattern can be identified from
the second solution applied. First, a first step is initiated in
direction of a solution. This can be a starting point, a first
guess or even nothing if the problem is suitable. Then, the
requested solution is queried in the intermediate form of the
problem. Finally, if a solution can’t be found, rules must be
executed one step further and advance the intermediate form
closer to find a solution. In this step, only the necessary steps
that yield us a closer to the solution must be done, nothing
more. The general structure of the identified design pattern is
depicted in Fig. 13 as a summary.

Also, the two solutions (naive solution and more efficient
solution that design pattern is applied) are compared in terms
of efficiency quality criteria. For this reason, three metrics that
are related to the efficiency criteria are identified: 1) Number
of rule applications 2) Size of rules 3) Number of auxiliary
elements created. The metrics are measured for the input model
in Fig. 10 and input parameter nodes D and J. Results are
depicted in Table I.

Number of rule applications metric is basically the execu-
tion number of each rule. In the first solution, LinkToSelf rule
works for each node and LinkToParent rule works for each



node that has a parent. LinkToAncestors rule works again for
each node that has an ancestor older than parents and for each
of these ancestors. GetLCA rule works only once, since all
nodes have ancestor links between each other. In the second
solution, LinkToSelf rule only works for the input parameter
nodes. LinkToAncestors rule works for the input parameter
nodes’ ancestor at each step after GetLCA rule fails to find
the solution for the problem. Therefore, there are three steps
until a solution is found and it means GetLCA rule works for
four times and LinkToAncestors rule works for three times.
In the second solution, LinkToSelf and LinkToAncestors is
composite and have two rules inside which increases the
number of rule applications count.

The size of rules metric counts the number of elements
in the rule, such as nodes, parent links, ancestor links. The
number of auxiliary elements created metric counts the number
of ancestor links that are shown in purple and a diamond in the
middle. The first solution generates ancestor links for all nodes
even though they are not used in the solution. Therefore, it has
a higher number of this metric. The second solution generates
ancestor links only for the input parameter nodes through their
parents and ancestors to the root.

With respect to these metrics, solution 2 has a better space
and time efficiency of 55% than solution 1.

VI. IDENTIFIED CHALLENGES

In this section, the challenges in this research are listed.

A. Formalism for Model Transformation Design Patterns

One of the most important challenge is to define the
most appropriate formalism for representing model transfor-
mation design patterns. In object-oriented design patterns, the
community has agreed to provide design pattern solutions in
UML class diagrams. Due to the few works in the litera-
ture, there is no common language or standard for model
transformation area. Iacob et al. [38] used QVT-R to show
the structure of their design patterns, whereas Agrawal et
al. [37] introduced their own graph transformation language.
The benefits of having a formalism show improvements in
understanding, documenting, communicating and reasoning
about the patterns in a standard way [27]. Generic higher-
order transformations can be considered for describing model
transformation design patterns. Tisi et al. [40] defines HOT as a
model transformation such that its input and/or output models
are themselves transformation models. They can be studied
as a formalism candidate for design patterns. Syriani and
Gray [27] identified two other candidates. These are: a MOF-
like language, therefore defined at the metametamodel level,
or a generic metamodel for model transformation described in
UML.

In Section V-C, a concrete example of a model transfor-
mation design pattern is identified. In this example, graphical
rule and scheduling structure of MoTif [12] is used to express
the design pattern, which provides a more generic way.

B. Identifying Model Transformation Design Patterns

Identifying new model transformation design patterns is
another challenge. Since the purpose of design patterns is to

overcome any recurring problem to be solved, the problems
in the model transformation design process have to be found.
Model transformation is a rather new research field, so there
is a lack of good and efficient model transformations in the
literature. Therefore, more examples must be investigated.

Another way of identifying a model transformation design
pattern can be what is done in Section V-C. In this section, one
model transformation problem is focused and more efficient
solution is generated to the same problem in different ways.
Finally, a reusable design pattern is identified that is applicable
to some problems starting from that one.

C. Quality Criteria and Related Metrics in Model Transfor-
mation

The quality framework of Mohagheghi and Dehlen [25]
focuses on MDE, but special concern is missing for model
transformation. A first step towards the identification of quality
criteria for model transformation has been proposed by Syriani
and Gray [27]. However this study needs to be extended by
introducing metrics as done by Amstel for ATL ( [29], [30]).

D. Evaluation of Model Transformation Design Patterns

Model transformation design patterns are mostly evaluated
with (language independent) metrics which is not enough for
a complete evaluation. Syriani and Gray [27] propose model
checking techniques. This subject is need to be focused also,
since identification of the model transformation design patterns
must be supported by an evaluation and their advantages and
disadvantages in terms of quality criteria must be listed.

VII. CONCLUSION

This study aims to find a starting point for creating a model
transformation design pattern repository. Design patterns are
important to improve quality criteria of model transformation.
Therefore, model transformation languages, structure of them
and model transformation intents are reviewed. Understanding
the model transformation in detail helps us identify design
patterns. The structure of object-oriented design patterns are
also reviewed to inspire our design pattern effort from an exist-
ing and successful study. Some existing model transformation
design patterns are reviewed to build a literature study. Also,
a design pattern is identified by focusing on one problem and
measuring quality metrics of the problem before and after the
design pattern is applied.

As future work, the challenges identified in Section VI will
be focused. At the end, it is aimed to have a model trans-
formation design pattern catalog where each design pattern is
precisely described, evaluated in terms of model transformation
quality and ready to be applied with example problems.
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