Design Patterns for Model Transformations

Proposal for Thesis Dissertation in Partial Fulfilment
of the Requirements for the Degree of Doctor of Philosophy

Huseyin Ergin
Computer Science Department
The University of Alabama

June 23, 2014

Abstract

In model-driven engineering, most problems are solved using modefdraretion. However, the
development of a model transformation for a specific problem is still a hakd Tde main reason for
that is the lack of a development process where transformations mussigeei® before implemented.
As in object-oriented programming, design patterns can benefit “goddndesf model transforma-
tion tremendously. Hence, this proposal aims to help transformation develope design of model
transformations through the use of design patterns defined specificaliyoidel transformations. The
contributions consist of finding the appropriate language to define maaisftirmation design patterns,

identifying design patterns from existing transformation solutions, andrgtéing and detecting design
pattern instances for a specific MTL.

“Proposal Committee: Eugene Syriani (advisor), Jeffrew&@adeff Gray, Ralf Lammel, Randy Smith

1

Contents

1 Introduction 4
2 Background on Model-Driven Engineering 5
2.1 Model-Driven Engineering e 5
2.2 Model Transformation e 6
2.2.1 Structure of Graph-transformation-based Languages 6
2.2.2 Model Transformation Languages wa. 7
2.3 MOTif . . e e 7
3 Background on Design Patterns 9
3.1 Object-oriented Design Patterns 10
3.1.1 Structureo e e 10
3.2 Limitations of Design Patterns 11
4 Related Work 11
4.1 Model Transformation Design Patterns¢uu.. 11
4.2 Model Transformation Design Pattern Languages 12
4.3 ldentification and Detection of a Design Pattern 13
5 A Language for Model Transformation Design Patterns 13
5.1 AbstractSyntax e e e aa 14
52 Concrete Syntax e 15
5.3 Informal Semantics 17
6 Identification of a Model Transformation Design Pattern 18
6.1 Running Example 18
6.1.1 NaiveSolution 19
6.1.2 Improved Solution 19
6.2 SimilarProblems 21
6.2.1 EquivalentResistance 21
6.2.2 Dijkstra’s Algorithm for ShortestPath 21
6.3 Generalization of the Solution 22
6.4 Fixed Pointlteration 22
7 Additional Model Transformation Design Patterns 23
7.1 Entity Relation Mapping 4 2
7.2 Transitive Closure e 25
7.3 VISItOr . . . o e 72
7.4 Executionby Translation e 28
8 Further Work & Schedule 30
8.1 Identification of New Design Patterns and Intents Study 30
8.2 UsesofDelTa e 31
8.3 Empirical EvaluationofDelTa 31
8.4 Detection of DelTaDesign Patterns. uuu 32
8.5 Schedule. 32

9 Conclusion 33

Appendix A List of Papers 36
Al Published 36
A2 Accepted&ToBePresented 36
A3 Submitted

A4 InPreparation&Planning e 36

1 Introduction

Model-driven engineering (MDE) heavily relies on model transformatitowever, although expressed
at a level of abstraction closer to the problem domain than code, the devaopf a model transforma-
tion for a specific problem is still a hard, tedious and error-prone taskvifessed in [1], one reason
for these difficulties is the lack of a development process where thedramstion must first be designed
and then implemented, as practiced in software engineering. Softwarlepkngehave been using UML
for years to design the problem first. This lets them to see the upcoming m®bkfore the implementa-
tion and be able to use these designs to be implemented in different objededimuages. One of the
most essential contribution to software design was the GoF catalog of @biented design patterns [2],
which consists of proven solutions to common software engineering prob&ansmaet al. used UML
class and sequence diagrams to define object-oriented design patterns.

Although there are studies that mention the design patterns in model transéorrmagea [3, 4, 5],
they could not be evolved further more. The initial issue these studiesddbe lack of a common
language to define these model transformation design patterns. Thesapfteorchose a specific model
transformation language (MTL) to express the design patterns. This éstaddable given the nature
of MTLs, which makes the transformation implementation more readable comfmagegiece of code
written in a general-purpose programming language. However, the needdommon language like
UML still remains to make model transformation design patterns more readablkepaticable among
other MTLs.

The main goal of my thesis is to help model transformation developers in thanadsigpdel transfor-
mations through the use of design patterns. My contributions consist afditlte appropriate language
to define model transformation design patterns, identifying design pattemsekisting transformation
solutions, and generating and detecting design pattern instances faifecddéL.

There are several studies to define model transformations indepdnatenthe MTL itself [1, 6].
After through analysis of different MTLs and the languages propos#tese studies, | propose DelTa
as a candidate language to express model transformation design p&udfasis a neutral and concise
language, independent from existing MTLs and only focuses on tlemesof model transformations.
It is explicitly modeled as a DSL, which means it can be used as input andtantauransformation.
Later, this property will help identify design patterns defined in DelTa in exjstiodel transforma-
tion solutions. It also has a textual and graphical concrete syntax abtiverdence of transformation
developers.

Another contribution of my thesis is to provide a collection of model transformatésign patterns
available to transformation developers. Therefore, | have redefiisiihg model transformation design
patterns [3, 4] in DelTa along with the implementations in different MTLs. Thigdthe developers both
to see the design pattern structure in a suitable language and to see it ingpidtsice redefined three
design patterns from existing studies and identified two new design patgerction 6 shows the efforts
to come up with a design pattern candidate by applying similar solutions to threeedifforoblems and
documents each step of this process, which gives hints about how to ydestifmodel transformation
design patterns. Another method of identifying a design pattern is to analigting@ model transforma-
tion solutions in different languages. In Section 7, “execution by transtatiesign pattern is identified
by using this method.

The rest of this proposal is organized as follows. Section 2 and Sectifve3ome background
information on model-driven engineering and design patterns. Sectiagséns the related work about
model transformation design patterns, efforts for a language to experss and identification of design
patterns. Section 5 shows the language to define model transformation getigrns, DelTa, and gives
the syntax and semantics. Section 6 briefly mentions how to identify a desigmpaita running exam-

ple step-by-step. Section 7 provides additional model transformationndeatterns. Section 8 presents
the further work in my plan and the schedule of each work. Finally, Secteum@marizes what | have

done and concludes the proposal. Additionally, there is a list of my publesheg@ossible papers during
the PhD study in the Appendix A.

2 Background on Model-Driven Engineering

2.1 Model-Driven Engineering

MDE [7] is considered a well-established software development apiptbatusesbstractionto bridge

the gap between the problem and the software implementation. MDE uses mode$ctibe complex
systems at multiple levels of abstraction. Models are first-class citizens piresdeat an abstraction of a
real system, capturing some of its essential properties. Models are iestamodeling languages which
define their abstract syntax, concrete syntax, and semanticabBt@ct syntaxiefines the essence of
the language, often defined byngetamodelhe concrete syntaxefines the graphical or textual repre-
sentation of the elements of the metamo&sdmanticglefines the meaning of the language. The static
semantics is specified by the metamodel extended with constraints, while thaidyssmantics is often
defined by means of a model transformation (either denotational or opeitié model expressed in

a modeling languageonformsto its metamodel. Metamodels themselves are also modeled in a model-
ing language called metamodeling language, which has a conceptual fiomncklledmetametamodel
Transformation, models, metamodels and metametamodels form a four-leviéketare in MDE and
these levels are called MO, M1, M2, and M3 respectively [8].

In MDE, the core of the development process consists of a series sfdrarations over models.
Typically, a transformation or manipulation is modeled bgnadel transformatiorthat conforms to a
specific metamodel. Following Jouaelt al. [9], the model transformation schema in MDE in Figure 1
illustrates these termBlaandMbare models that conform to metamoddidaandMMbrespectivelyMTab

M3 Level

conforf

M2 Level

confor conformsTo

conformsTo

M1 Level

MO Level

Figure 1: Model transformation schema in MDE.

is a model transformation that conforms to metamatidintand takes a model as an input and produces
another model as an outpMTabis also based on metamodels of both input and output models. All three
metamodelsMMa MMb MMmtconform to a standard metametamodel.

2.2 Model Transformation

A model transformation is defined as “the automatic manipulation of input modelotiuge output
models, that conforms to a specification and has a specific intent” in [18€Tintents play an important
role while creating a model transformation. A model transformation intent iseriggion of the goal
behind the model transformation and the reason for using it [10]. A tamsition mainly consists of
source and target languages, transformation rules, and scheduthrgrofes.

There are roughly two approaches to produce a model transformati¢inl)lrelational 2) graph-
transformation-based. Relational approaches usually specify thespormdence between source and
target elements, meaning creating the target elements implicitly. Thereforefothesyon a subset of
model transformations and have more restrictions on how to createé.eneysually the input model
is read-only and the output model is write-only. Graph-transformaticedbapproaches work on graph
structures that represent the models and allow more flexibility like a genemabg®iprogramming lan-
guage. They also allow inplace editing of models, which makes the input apdtenodel the same in
the transformation. Graph-transformation-based approaches carxlicit scheduling structure to let
developers define when and how the rules will be applied. Relationabagipes are straight-forward,
therefore this proposal focuses on graph-transformation-bagedaaghes. In the following subsections,
the structure of graph-transformation-based model transformationdgeguare described.

2.2.1 Structure of Graph-transformation-based Languages

Transformation Rules are the smallest units of a model transformation. A transformation rule has
many different features according to [11]. Teh@main of a ruledefines how a rule can access elements of
models. A rule is a declarative construct that dictatbatshall be transformed and nbow. It consists

of pre-condition and post-condition patterns. The pre-condition pateerrdines the applicability of

a rule: it is usually described with a left-hand side (LHS) and optional thegapplication conditions
(NACs). The LHS defines the pattern that must be found in the input mocagdly the rule. The NAC
defines a pattern that shall not be present, inhibiting the application of neQonstraints can be also
be specified over the attributes of LHS and NAC pattern elements. The aglitdide (RHS) describes
the post-condition pattern that must be found in the output model after thésrafgplied. Imperative
actions can be also be specified over the attributes of RHS pattern elememdvantage of using the
rule-based transformation paradigm is that it allows to specify the tranaf@n as a set of operational
rewriting rules instead of using imperative programming languages. A ral@mgbe with LHS, RHS and
NAC parts is depicted in Figure 2. This rule is taken from a model transformttai translates an UML

NAC LHS RHS
COCION\NC)

o 1-o-1

3 2 3 4

Figure 2: A sample model transformation rule.

activity diagram model to a behaviorally equivalent Petri net model [I2¢ rule can be read as “if an
activity (labeled 1) that is not associated with a place (labeled 3) is fouad,dreate a place and two
transitions (labeled 2 and 4), and relate them with temporary trace links rdlrifas araphical syntax
using elements from the concrete syntax of the source and target dometingy diagrams and Petri
net).

Rule Scheduling is an important phase in the development of a model transformation. Sctgedulin
mechanisms determine the order in which individual rules are applied [1&]c@n distinguish between
implicit and explicit scheduling. When the scheduling of a transformation kgeisimplicit, the mod-
eler has no direct control over the order in which the transformation urgtagplied. On one hand, a
transformation language can baordered i.e., it simply consists of a set of rules. In this case, the or-
der of application of the rules is entirely determined at run-time. It completgigrts on the patterns
specified in the rules. Applicable rules are selected non-deterministicallynoni apply anymore. The
scheduling of a language can beplicitly specified by the modeler. In explicit internal transformation
languages, a rule may explicitly invoke other rules. For example in ATL [@dasched rule (implicitly
scheduled) may invoke a called rule in its imperative part. Finally, in an expktateal transformation
language, there is a clear separation between the rules and the schéalyiingrdered transforma-
tions specify a control mechanism that explicitly orders rule application ef afsules. Examples are:
priority-based, layered/phased, or with an explicit workflow structitest transformation languages
are partially ordered, however. That is, applicable rules are chagedeterministically while following
the control specification.

2.2.2 Model Transformation Languages

There are many model transformation languages in the literature. Some egamgléenshin [13] from
Arendtet al, which is a language that operates on models in Eclipse Modeling Framekigik) (and
has visual syntax, editing functionalities, execution and analysis toolSAGRd] from Agrawalet al,,
which consists of three distinct parts; pattern specification languaga) gnsformation language and
control flow language; FUJABA [15] from Kleiat al., which is one of the first tools to do code generation
from UML models and UML model generation from code; Viatra2 [16] frearro and Balogh, which
provides a rule and pattern-based language for manipulating graph rbgdedsg graph transformation
and abstract state machines; and AGG [17] from Taentzer, which lgihgta be attributed by Java
objects and equips graph transformation with computations on these objects.

Each of these languages have a unique set of structure combinatiandi{fegent rule and schedul-
ing structure, different directionality). Jouault and Kurtev [18] comsplaa number of model transfor-
mation languages in terms of transformation scenarios, paradigm, directipoatdinality, traceability,
qguery language, rule scheduling, rule organization and reflection.

2.3 MoTif

MoTif is a graph-transformation-based model transformation languagj@ ahort name for “Modular
Timed Graph transformation”. MoTif and its semantics is based on the T-Q@8ie If introduces an
explicit notion of time and allows to model the interruption for every rule in theeten.

Figure 2 depicts an example rule in MoTif. The rule is part of another sta@y gnd basically
add some new petrinet elements to UML activity diagram action nodes whilegiey the rule to be
applied more than once by adding a NAC and maintaining traceability links to thealrigpdes. The
rule consists of three parts. The first partis NAC and separated witleddise from other parts. Multiple
number of NACs can be added to a rule. The second part is LHS on thof th big arrow. That is the
precondition pattern to be found in the input model. The third part is RHS orightof the big arrow
and the post-condition pattern to be applied to the model. As one can easilgrealizrete syntax can
be used in rule designing phase.

Rule scheduling in MoTif is explicitly defined by another structure, which is at®deled. The
structure allows to define what happens when the rule is matched or nan@esacheduling sequence

is depicted in Figure 3. The rules are single lined green boxes and theyrpait ports and output ports

:LinkToParent
H

*
:LinkToAncestors

:GetLCA

IO SN

Figure 3: Scheduling of MoTif Rules.

o m

for success and failure. Success case is finding the match in the inputitplitgorts can be connected
to any other rule’s input ports or the output ports of the block.

MoTif consists of rule blocks [20]. Each rule block can be either atomicoonmosite. Some of the
atomic rule block can be found in Figure 3 and are listed below. The conftémge rule blocks appears

In

ARule:means a regular atomic rule. It is a simple rule that is executed only once.

FRule:means ‘For all Rule’. The matches are found for the input model and tleissrapplied to
all found matches. For example in Figure 3, rlilekToParent is an FRule.

SRule:means ‘Star Rule’ and applies the transformation to all matches as long adethe ap-
plicable. Therefore it is applied to the resulting model cumulatively after eaglication. For
example in Figure 3, ruleinkToAncestors is an SRule.

QRule:means ‘Query Rule’ and mostly consists of only LHS and NACs For examplguré-3,
rule GetLCA is an QRule.

CRule:means ‘Composite Rule’ and can refer to another full MoTif transformation.

Composite rule blocks allow one to encapsulate the composition of rule blookse 8f them express
flow structures, such as branching and looping.

T-Core Under MoTif, there is T-Core [21], which stands for “Transformatiaor€. It is a collection
of primitive operators for model transformation. T-Core offers the folt@aeight primitives:

Matcherfinds all possible matches of the condition on the graph embedded. Afteringtah
stores all the matches in the packet.

Rewriterapplies the required transformation on the match specified in the packetiitedc

Iterator chooses a match among the set of matches of current condition of the.pEto&enatch
is chosen randomly and choosing the match continues until a maximum numbleieigeat

Resolveresolves a potential conflict between matches and rewritings by prohibitingreanges
to other matches in the packet.

Rollbackeris used as a recovery point that allows backward recovery of packets

Selectoris used when a choice needs to be made between multiple packets processeadently
by different constructs.

» Synchronizers used when multiple packets processed in parallel need to be synclakonize

» Composeis a modular encapsulation of the elements and any other primitives can liktadte
encapsulation.

The rules of MoTif can be expressed in terms of these primitives. AdditiqraallyMTL can be mapped
to T-Core and is executed in AToOMPM as described in the following papéigra

Implementation of MoTif and T-Core in ATOMPM AToMPM [22] is a web-based modeling
environment for designing domain-specific modeling language environymeerf®rm model transfor-
mations, manipulating and managing models. Figure 4 depicts what has besio doxecute MoTif and
T-Core transformations in ATOMPM. First, | created a DSL for MoTif. Antséormation in ATOMPM is

(MoTif DSL)
)

conformsTo| : :
debu MoTif Ex'ecutlon
(MoTif@i Engine
input
input CRUD
HOT anut ModeD
input
input CRUD
e Model————>1T-Core Execution
debug .
conformsTo Engine

(T-Core DSL)

Figure 4: Overall diagram of implementation.

a model conforming to this DSL. Then | implemented the MoTif execution engingtimoR. The engine
accepts a MoTif transformation and a model as inputs, and executes th®tnaation step-by-step. It
manipulates the input model with CRUD operations (creation, read, upddétioth of model elements)
according to the result of the transformation. The engine can also deblig Models by highlighting
the current rule. The engine has two modes: 1) executing the wholedrarafon and showing the re-
sulting model at the end 2) executing the transformation step-by-step faxting the changes at each
step. This gives developers the option to see the effect of each ruletnatiséormation. | also developed
similar engine for T-Core. This allows any MTL to be executed in AToMPM biirdng a higher-order
transformation (HOT) from the MTL metamodel to T-Core. Since T-Coreipies the primitives of a
graph-transformation-based language, each MTL will have an exaceiigine regardless of it is sup-
ported by ATOMPM, or not. | tried this approach by implementing a HOT fromTWito T-Core and
executing a MoTif transformation using the T-Core engine. | also implementé@Ta from another
domain specific MTL created from scratch to T-Core and sucessfullyutxe the transformation.

3 Background on Design Patterns
Design patterns are reusable structures that can help to overcomeoatgnpto be solved from scratch.

Each pattern “describes a problem which occurs over and over agaur ienvironment and then de-
scribes the core of the solution to that problem, is such a way that you edhisisolution a million times

9

over, without ever doing it the same way twice” [2]. Design patterns enfeogereusable idioms found
across different languages through encapsulation and abstradiiere dre many studies involving hun-
dreds of design patterns in the literature. Each of them describe a soluiom&kind of a problem. The
use of design patterns leads to the construction of well-structured, mabitagrad reusable software
systems [23].

There are several design pattern studies in the literature for differesis.aDesign patterns are listed
to be used in software architecture [24], building Corba applications [B8]-time systems [26], dis-
tributed computing [27], and embedded network systems [28]. Also, therdesign pattern studies for
different parts of model-driven engineering. In [29], Cho and Gamapposed a list of metamodel design
patterns for different problems faced during metamodel design. Ther@so design patterns in model
transformation [3, 4], which | investigate in details.

In this section, | focus on object-oriented design patterns given its pigyudad acceptance in the
community.

3.1 Object-oriented Design Patterns

Object-oriented pattern cataloging process began as a part of Erich GaPRImiathesis [2]. Then the
other authors joined the process and design patterns found the lagpagiar structure to be published as
a book. There are now 23 standard object oriented design patterndiodkeActually before Gammet

al. [2]'s work, there were still programming languages that use design patigthout mentioning the
strict name. For example model-view-controller structure in Smalltalk-80 is @diere@xample of a de-
sign pattern [30].

3.1.1 Structure

The essential elements of design patterns are explained in Gamahg2]. These are the four main
primitive elements under a design pattern and basically used to expresg g&$ern’s purpose and
results. They are listed as follows:

» Thepattern nameis actually a handle to summarize all other fields in the design patterns essential
elements. It lets developers to freely talk and understand the design astasacton. Finding a
good name is one of the hard parts of developing a pattern.

» Theproblem describes when to apply the pattern. Mostly the problem and its context@edred
in this field. These may include specific design problems, class or objectustss and a list of
conditions that must be met before application.

» Thesolution describes the elements that are parts of the design, their relationshjus)sislities
and collaborations. Since a pattern is like a template, it has to provide a solutienagoplied in
many different situations. The solution is generally given with UML classrdiag.

» The consequencesre the results and trade-offs of applying the pattern. These are cfiical
evaluating design alternatives and for understanding the costs anfitbéeéore applying the
pattern. Language and implementation issues, impacts on a system’s flexibiktysiexity and
portability may also help users to understand and evaluate design patterns.

Other than these elements, there are more fields in [2] to describe a deis@gyn.pehese are; pattern
name and classification, intent, also-know-as, motivation, applicabilitytatejgarticipants, collabora-
tions, consequences, implementation, sample code, known uses, reléedspatentis an important
field both in design patterns and model transformations that needs to be neentimme. This field is

10

the key to select the right design pattern for a problem and the right cotsfor a model transforma-
tions. Although the rest of the fields are not crucial for a design patiees,help to explain it better and
precise.

Hasheminejad and Jalili [31] also introduce two main sections to categorize fietss: problem
domain and solution domain. Tipeoblem domairdescribes the problem context where the pattern can
be applied and has these fields: intent, motivation and applicabilitys®h#ion domairdescribes the
structure and collaborations of the pattern solution being applied to the prabid has these fields:
structure, participants, collaborations, consequences, implementatioelared patterns.

3.2 Limitations of Design Patterns

Design patterns are accepted to be a useful structure in the aim ofbilitysand readability. They have
some advantages and disadvantages. A design pattern is based orbtempecontext and constraints.
Therefore it doesnot aim for all problems.

The goal of design patterns is to increase quality metrics to satisfy some quiétyac This often
comes with a trade-off. In design patterns, re-usability criteria mostly ctmflith efficiency criteria.
For example, visitor pattern lets people traverse class structure andgg@mtéhem in an efficient way,
while it requires nearly double number of new classes created. Also, dtisl@ar how many design
patterns are enough in a project. There is a probability that you mess updbdog applying too many
unnecessary design patterns [32].

Another point, applying design pattern is not automated yet and it still dspemthe manual deci-
sion of the designer. Hasheminejad and Jalili [31] proposed an automatightsg® method for design
pattern selection, but this does not reduce the impact of the designerdti@ejgrocess. Blomqvist [33]
proposed a pattern selection approach by ranking the design patténotogically and matching them
with terms.

However, re-usability, readability and maintainability are so important criteaietiis makes design
patterns always popular.

4 Related Work

4.1 Model Transformation Design Patterns

The first work that proposed design patterns for model transformatésnby Agrawakt al. [3]. They
defined thdransitive closurgattern to create traceability links between the parents and ancestors of the
elements. Théeaf collectorpattern traverses a hierarchical tree to find and process all leavisarh
be considered as an application of the visitor pattern in Section 7.3 wherisitBetity rule is only
applied on leaves. Thgroxy generatolidiom is not a general design pattern, since that it is specific to
languages modeling distributed systems where remote interactions to the sgsténo e abstracted
and optimized.

lacobet al. [4] defined five other design patterns for outplace transformationsnmigppingpattern
dictates to first map entities and then relations. Since it is described usingRQWe&-consider it as an
implementation of our ER mapping pattern. Tieinemenpattern proposes to transform an edge into a
node with two edges in the context of a refinement so that the target madairtomore detail. Theode
abstractionpattern abstracts a specific type of node from the target model whilerpireséhe original
relations. Thdlatteningpattern removes the composition hierarchy of a model along by replacing the
containment relations. We plan to generalize these three patterns andtbefman DelTa. Theluality

11

pattern is not a general design pattern, since it is specific to languagdstéocontrol flow modeling by
changing by converting edges to nodes and vice versa.

Bézivin et al. [5] mined ATL transformations and ended up with two design patterns tréinsfor-
mation parameterpattern suggests to model explicitly auxiliary variables needed by the traretion
in an additional input metamodel, instead of hard-coding them in ATL help&esmultiple matching
pattern shows how to match multiple elements inftom part of an ATL rule. Newer versions of ATL
already support this feature and therefore this pattern is obsolete now.

Levendovszkyet al.[34] proposed domain-specific design patterns for model transformatioela
as other DSLs. In their approach, they defined design patterns wittcdisp&TL, VMTS, where rules
support metamodel-based pattern matching. They proposed two designgadttehelper constructs in
rewriting rulespattern explicitly produces traceability links, and tyimized transitive closungattern.

The first issue with these previous works is that all the design patterrdefired using GReAT,
QVT-R, ATL, and VMTS respectively. Therefore, they should notcbesidered as design patterns for
model transformation, but as implementations of design patterns in a specificTW& second issue is
that they are all defined as model transformations, rather than pattednssa specific input and output
metamodels. Therefore, it is not clear how to reuse these patterns EredifiM TLs.

4.2 Model Transformation Design Pattern Languages

Lano et al.[6] proposed other useful patterns using UML class diagrams and O@dtraints (first-order
logic) to specify model transformations. Each transformation is descriliachvget ofassumptionshat
represent the precondition of a rutmnstraintsthat represent the postcondition of a ruasuresor
additional constraints, anidvariants The design patterns are for exogenous transformations only. The
conjunctive-implicative fornpattern dictates to separate the creation target entities that are at different
hierarchical levels into different phases. For examplenihp objects before linksattern, essentially our
ER mapping pattern, is an instance of this generic pattern. Another instathéeattern is theecurrent
constraintgpattern where the creation of a target entity may require a fixed point cotiggut@wvo other
instances of the conjunctive-implicative form pattern areghtty splittingandentity mergingpatterns
that essentially correspond to the one-to-many and many-to-one varfatits BER mapping pattern
respectively. Thauxiliary metamodebattern suggests to use an auxiliary metamodel when the mapping
from elements of one language to another is too complex.
In Lano et al's approach, the choice of the design pattern language hinders thestamability
of the patterns. This also makes them hard to implement in MTLs other than UMLSRAdditionally,
they defined implementation patterns. In contrast with design patterns, thguidelines to implement
the assumptions and constraints of transformation specifications in a MELdddcription is done on an
abstract implementation language that supports sequencing, brancbipiggland operation calls.
Guerraet al.[1] proposed a collection of languages to engineer model transformaiimhsn partic-
ular, for the design phase. Rule diagrams (RD) are used to describieutieises of the rules and what
they do in the low level implementation phase. RD is defined at a level of atistraleat is supposed to
be independent from existing model transformation languages. But pegeiis to generate a transfor-
mation rather than to define design patterns. However to generate atnaatsém, RD relies on different
rule and mapping diagram instances for different model transformatigudayes. In RD, rules focus on
mappings rather than constraints and actions. Hence, they specify slésidroth unidirectional and
bidirectional rules. The execution flow of RD supports sequencing,rbfasching in alternative paths
based on a constraint, or non-deterministically choosing to apply one tudg. dlso allow rules to ex-
plicitly invoke the application of other rules. RD is inspired from QVT-R and.E&Rd is therefore more
easily implementable in these language.

12

4.3 Identification and Detection of a Design Pattern

Design pattern detection is also another field that can help to identify modsfdraration design pat-
terns. Since detection technigues are mostly to find software design pdttatrasse mentioned in [2]
and [26], they need to be modified to fit in the model transformation worldrelTaee many design
pattern detection techniques in the literature.

Donget al.[35] studied a comprehensive review on these techniques. Each gasigm is generally
described from different perspectives. These are the distinguishergcteristics of design patterns and
divided into three: structural, behavioral and semantic characteriSticg:turalaspect is relatively easy
and can be detected from source code or architectural system dedigroatly based on the relationships
between classes, such as generalization, association, aggreBatiamioralaspect is typically described
by method invocations. These invocations can be checked in a static wagyoramic way at system
run time.Semantiaspect is defined in different ways in literature but it basicly refers tsémeantic
meaning of some entities in the system. One can take advantage of namingtmms/gerogramming
guidelines, multiplicities.

Some detection approaches take the reverse engineering tools into catisid® get an intermedi-
ate representation of the system and design pattern discovery is donesemtrmediate representa-
tionsinstead of source code. These efforts are usually done to reducedtsh £omplexity. There are
several common intermediate representations such as Abstract SyneepAbstract Semantic Graph,
bit vector, matrix.

Design pattern detection techniques differ from each other in some ottegiecas well. Another cri-
teria isexact matchingr approximate matchingviost approaches search a piece of architectural design
that structurally confirms to the structural characteristic of the pattern. $atterns can’t be matched
perfectly. Therefore, approximate matching is used in some approadhedinal discovery results also
presented differently. Design patterns discovered by using a techaigugenerally visualized in the
UML diagrams or class tree hierarchy.

Apart from these criteria, most approaches provide tools to automate thetide process. Some
may require user interaction as well. The detection of each approachaigrseipports a subset of
design patterns.

5 A Language for Model Transformation Design Patterns

One possible idea that can be deduced from the related works is the lackooimon design pattern
language to express model transformation design patterns. The behéigrmy such a language are
to facilitate, understand, document, communicate, and reason about patterrstandard way [36].
Also, the language should be independent from regular model tramsfion languages (MTL). Object-
oriented design patterns are expressed in UML which is independemgaeral-purpose programming
languages. | could have used an existing MTL as a notation, howeverathikead developers to think
the language itself is a transformation language and executable. The ree@dtation that expresses
how elements within a rule are related and how rules are related with eachTdtbezfore, the language
should be | propose DelTa as a language for model transformation duestiginns.

DelTa is a neutral language, independent from any MTL. It is desigméeéfine design patterns for
model transformations, hence it is not a language to define model traragfons. In this respect, DelTa
offers some concepts borrowed from any MTL, abstracts away ptéspecific to a particular MTL, and
adds concepts to more easily describe depigterns This is analogous to how Gamreaal. [2] used
UML class, sequence and state diagrams together to define design pattetrjsct-oriented languages.
In the following, | describe the abstract syntax, concrete syntax, dodnal semantics of DelTa.

13

5.1 Abstract Syntax

ModelTransformationDesignPattern ; TrmsformationUnit -
. 1 i e
name : String ; applicationCount name : String declarations ni/ rl:e'String
| LS A *
1.* 1.7 1.% 1 1 * 1
' i Y Variable
Transformation Transformation Pattern I . —|T ‘]: — k| —
; : ; i ransformationBloc exists : boolean
Unit UnitRelation Metamodel i [TUAppCount name - ting

A

operatesOn

—,] [

* recursive
|DesignPatternE/ement |—> Annotation

: Action : -
note : String 2bstract- boolean Xpression
| Constraint DesignPattern
| TransformationUnitRelation| | Type <1—I PatternMetamodeI| _ E/err?ent
] - Loome:Stong NegativeConstraint
Decision | 1 v Flag |)
g e | |Trace |_>| Element |1_*, :ZE:EZ:Tegan 't Reference 7| ModelTransformation
S A : | [name: String DesignPattern
1D Variable 1_source 1.7y
i q i PseudoUnit Pattern
TransformationUnit exists : boolean — END Metamodel
name : String
ElementGroup result : boolean
Figure 5: DelTa Metamodel
As depicted in Figure 5, anodel transformation design pattern (MTDP) consists of three
kinds of componentdransformation units (TU), pattern metamodel (PM) andtransformation
unit relations (TUR). This is consistent with the structure of common MTLs [20]. TUseepnt the

concept of rule in graph-based model transformations [37]. With tlezere TU, a design pattern can
refer to another complete design pattern by passing the pattern metamodehaeger. A MTDP rule
consists of aonstraint , anaction , and optionahegative constraints . These correspond to the
usual left-hand side (LHS), right-hand side (RHS) and negative atigicconditions (NACSs) in graph
transformation. A constraint defines the pattern that must be presenjativeeconstraint defines the
pattern that shall not be present, and the action defines the changepéddrened on the constraint
(creation, deletion, or update). All these expressions operate omgltiypedvariables

There are three types for variablegattern metamodel , a metamodetlement , or atrace . The
pattern metamodel is a label to distinguish between elements from different nuktisrgince a MTDP
is independent from the source and target metamodels used by an act@ltrangformation. When
implementing a MTDP, the pattern metamodel shall not be confused with the dngetamodel of
the source and/or target models of a transformation, but ideally be implemantbeir ramified ver-
sion [38]. The metamodel labels also indicate the number of metamodels involtreltiansformation
to be implemented. Metamodel elements are typically either entity-like and relatioaldikeents, this
is why it is sufficient to only considemmtities orrelations in DelTa. An element may be assigned
boolearflags to refer to the same variables across rules. Undeclared flags ardéteidtadalse . This
is similar to pivot passing in MoTif and GReAT, and parameter passing in \atkdnen implementing
a MTDP, flags may require to extend the original or ramified metamodels with atllitittributes. An
element group is an entity that represents a collection of entities and relations implicitly, when fix-
ing the number of elements is too restrictive. Traceability links are crucial ihgvidut, depending on

14

O©CoO~NOUWNPRE

the language, they are either created implicitly or explicitly by a rule. In DelTgtéd for the latter,
which is more general, in order to require the developer to take into act@oeability links in the
implementation.

As surveyed in [19], different MTLs have different flavors of TW®r example, in MoTif, alRule
applies a rule once, dRule applies a rule on all matches found, andS&ule applies a rule recursively
as long as there are matches. Another example is in Henshin where rules \itmaode elements
are applied on all matches found. Nevertheless, all MTLs offer at kg4 to apply a rule once or

recursively as long as possible which are two dpglication counts in DelTa. All other flavors of
TUs can be expressed in TURs as demonstrated in [19]. For reusesparpules in DelTa can be grouped
into transformation blocks , Similarly to aBlock in GReAT.

As surveyed in [39, 11], in any MTL, rules are subject to a scheduloiigyy whether it is implicit
or explicit. For example, AGG uses layers, MoTif and VMTS [40] use atrobrilow language, and
GReAT defines causality relations between rules. As shown in [21], ifffieismt to have mechanisms
for sequencing, branching, and looping in order to support anydsding offered by a MTL. This is
covered by the three TURSs of DelTgequence , Random, andDecision that are explained in Section 5.3.
The former two act on at least two TUs and the latter has three parts; conditiocess and fail TUs.
PseudoUnits mark the beginning and the end of the scheduling part of a design pattern.

Finally, annotations can be placed on aresign pattern element in order to give more insight
on the particular design pattern element. This is especially used for eleroepsgand abstract actions.

5.2 Concrete Syntax

Listing 1 shows the EBNF grammar implemented in Xtext.

Listing 1: EBNF Grammar of DelTa in XText

MTDP:
"mtdp' NAME

" metamodels: ' NAME(',' NAME=* ANNOTATIOR

(("thlock ' NAME'='? ANNOTATIOR) ?
("ref ' NAME' (' NAME(',' NAME * ') :' NAMB ?

"rule ' NAME' =" ? ANNOTATIOR

El ement G oup?
Entity?
Rel ati on?
Trace?
Constrai nt
Negati veConstrai nt *
Action) +

TURel ati on+ ;

El ement Group: ' ElementGroup ' ELEMENTNAME',' ELEMENTNANE ;
Entity: 'Entty ' ELEMENTNAME',' ELEMENTNANE ;
Rel ation: 'Relation ' NAME' (' ELEMENTNAME,' ELEMENTNAME)'

("," NAME' (' ELEMENTNAME,' ELEMENTNAME)')=* ;
Trace: 'Trace' NAME' (' ELEMENTNAME',' ELEMENTNAME- ')’

("," NAME' (' ELEMENTNAME', k' ELEMENTNAME- ') ') =

Constraint: 'constraint. '' ~' ? (ELEMENTNAMENAME (','"' ~'? (ELEMENTNAMENAME)) = ANNOTATION ;
Negati veConstrai nt: ' negative constraint: ' (ELEMENTNAMENAME (',' (ELEMENTNAMENAME) * ANNOTATIONR ;
Action: (' abstract action: " | "action: ' ('~"? (ELEMENTNAMENAME)

(","" ~"? (ELEMENTNAMENAME) =)) ANNOTATIOR ;
TURel ation: (TURTYPE(' START | (NAME (' [' NAME'=" ('true " | "false ")"1") 2?2))

("," ("END | NAMB (' [' NAME'=" ('true ' | 'false ")"1") ?) +) | Decision
Deci si on: NAME ' ?' Deci si onBl ock ':' Deci si onBl ock;
Deci sionBlock: ("END | NAME (" [' ('END | NAMB "= ('true ' | ‘'false ")" 1") ?

("," ("END | NAMB (' ["' ("END | NAMB '=" ('true' | 'false ")"' 1") ?) =
ta.

[
terminal NAME: ("a' . "z'|"A . "'Z) (AL L 9),

15

32

34
35

term nal ELEMENTNAME: NAME.' NAME('[' NAME'=' ('true '|'false ")

("," NAME'='" ('true '|'false ")) = "]1"') ? ;
term nal ANNOTATION: " # (!"#')=+ '"# ;
term nal TURTYPE: (' Sequence' | 'Randomi) ':' ;

The structure of a DelTa design pattern is as follows. A new design pattdetiared using thentd p
keyword. This is followed by a list of metamodel names. The rules are defirezeafter. Rules can be
contained inside transformation blocks represented byittoek keyword. The %' next to the name of
the rule indicates that the rule is recursive; the application count is singteefaylt. Since reference
is also a TU, it is defined at this level. A rule always starts with the declarafiafl the variables it
will use in its constraints and actions. Then, ttanstraint pattern is constructed by enumerating the
variables that constitute its elements. Elements can be prefixed-witb indicate their non-existence.
Flags can be defined on elements using the square bracket notation.aDpégative constraints can be
constructed, followed by an action. An abstract action may not enumdeatets. The final component
of a MTDP is the mandatory TUR definitions. A TUR is defined by its type and@tbby a list of rule
or transformation block names. As an exception, decision TUR is a singledivditonal that creates a
branch according to the success or fail of the condition rule. Annotagieenclosed within ‘#’. In [41],
all design patterns are depicted with their textual syntax.

| opted for a textual concrete syntax for DelTa at first. However, aifermally surveying the model
transformation community, | discovered that some design patterns, sueis#sr” or “fixed point it-
eration”, that require more complex scheduling of the rules are difficulbtierstand in textual syntax.
Therefore, | opted for an alternative graphical syntax for DelTaithatjually expressive as its textual
counterpart. Figure 6 illustrates the graphical concrete syntax of all md&mi@ments.

annotation ﬂ

sampleDP tamodel n0 \metamodell ionBlockiT
P \metamode transformationBlock1]

(metamodel1) eng;y] entity? = fail
. flag1 4% —»@ —><
flag2 x>V nl m('etamoden SuCcess
flag3 > @ entity3

{abstract}

e

referencel(mm1,..)

rule6 |
e A W \metamodel \metamodel
<Re{f§f:;z:ém> | L] i elementGroup entity4
Bl e By
i /} metamodel 1

e

; metamodell
N - JE

Figure 6: A dummy design pattern illustrating the graphsyaitax of DelTa.

DelTa design patterns starts wittséart node that is characterized by the name of the design pattern
and the pattern metamodels involved. It is represented with a filled circleEftienode represents the
end of a design pattern with a result of success or fail depicted with & aroan inner black circle
respectively. DelTa design patterns focus on the relations between thée@th TU contains the pattern
metamodel elements and the rule description. “rulel” igla to be applied once, whereas “rule6” is

16

applied recursively. Optionally, rules can be marked abstract meanihghthaewriting part is left to
the implementation. “transformationBlock1” isbéock that represents a nested hierarchy of other TUs.
TUs are connected with with arrows which representsSthguenceof the order of their application. The
outcome of a TU is either success or falil. If this differentiation matters to therpati®ecisionnode

is used, represented with a triangle of one input port and an outpuliogp@ach outcome. The sequence
chooses which way to follow according to the result of the previous rulelamk. “referencel” is a
referenceto another DelTa design pattern named “ReferenceDP1”. When refegea design pattern,
passing the information of the metamodels to the referenced design pattequiiede They appear
between the parenthesis after the reference’s name. “rule4” and"rate inside aRandom TUR,
which means that at most one of them will be applied at random.

Each rule describes the CRUD operations on elements from pattern metafioglelame of the
pattern metamodel appears on top right of any eleneegt,{o distinguish which metamodel the element
belongs). “entityl” is arentity with threeflags. Flags can be true (“flagl”) or false (“flag2”), created
(“flag3”) or modified (“flag2”). White elements are to be matched, gray eigmare to be created and
black elements are to be deleted. To specify an element group of unknoalven, there is thElement-
Group. It is represented with a group of elements stacked such as the “elemepiGio the “rule6”.
Elements and element groups are connected to each otheRelatlons or Traces . A Relationis an
arrow, for example the “elementGroupl” is connected to “entity4” with a reda#oTrace is a dotted
line, for example the “elementGroupl” is connected to “entity6” with a traceulé consists oton-
straints, negative constraints andactions Negative constraints are marked with “n” and some number,
for example “entity2” has the negative constraint “n0” on top left of its icon

“rulel” is to be read as follows. An entity “entityl” from “metamodell” must beichad with flags
“flagl” true and “flag2” false. Furthermore, there should not be @tgtion between “entityl” and two
other entities. Then, two entities must be created (“entity2” and “entity3'§g2t must be set to false,
and a new “flag3” must be initialized to true. “rule6” is to be read as follofwan lentity group is related
with two entities (“entity4” and “entity5”) and shares a trace with another thirtitye then one of the
related entities shall be deleted. Finally, each element in DelTa canrioetated with a note, inspired
from UML.

5.3 Informal Semantics

The semantics of MTDP rules is borrowed from graph transformation {81@s but adapted for pat-
terns. Informally, a MTDP rule is applicable if its constraint can be matchddamegative constraints
can. If it is applicable, then the action must be performed. Conceptuallycanerepresent this by:
constraintA —nedL A —ne@2A ... — action The presence of a negated varialie. (with exists=false)

in a constraint means that its corresponding element shall not be foimed.@®nstraints are conjunctive,
negated variables are also combined in a conjunctive way. Disjunctionsecexpressed with multiple
negative constraints. Actions follow the exact same semantics as the “madiég’in GrGen.NET [42].
Elements present in the action must be created or have their flags updatededivariables in an action
indicate the deletion of the corresponding element. Only abstract actioesngtg, giving the freedom
to the actual implementation of the rule to perform a specific action. Flags awgtributes but label
some elements to be reused across rules.

MTDP rules are guidelines to the transformation developer and are not todamexecuted. On one
hand, the constraint (together with negative constraints) of a rule shetlderpreted asiaximal i.e.,a
MT rule shall find at most as many matches as the MTDP rule it implements. On #rédhaiid, the action
of a rule should be interpreted asnimat i.e.,a MT rule shall perform at least the modifications of the
MTDP rule it implements. This means that more elements in the LHS or additional M&gbe present

17

in the MT rule and that it may perform more CRUD operations. Furthermaidifianal rules may be
needed when implementing a MTDP for a specific application. Note that the@bséanaction in a
rule indicates that the rule is side-effect free, meaning that it cannfairpeany modifications.

The scheduling of the TUs of a MTDP (or contained insidieaasformation block) must al-
ways begin withSTARTand end withEND TUs can be scheduled in four ways. Teguence relation
defines a sequencing relation between two or more TUs regardless oapipdirability. For example
Sequence:A,B means tha# should be applied first and th&xcan be applied. ThRandomrelation de-
fines the non-deterministic choice to apply one TU out of a set of TUs.@mpleRandom:A,B means
thatA or B should be applied, but not both. TBecision relation defines a conditional branching and
applies the TUs in the success or fail branches according to the applicétioa rule in the condition.
For exampléd?B:C means that i\ is applicable theB should be applied after, otherwi€should be ap-
plied. Note that the latter TUR can be used to define loop structures. Fopéx&?A:A is equivalent to
definingA as recursive,e.,A*. The notion of applicability of a transformation block is determined by the
result of itsENDTU. For example, consider a transformation bldcknd a ruleR andP. The scheduling
T?R:P means that iEND[result=true] is reached irT, thenR will be applied. The graphical concrete
syntax explain all these scheduling tricks better.

6 ldentification of a Model Transformation Design Pattern

The identification of a model transformation design pattern is not an easyltasiuires solving and
analyzing some solutions to finally come up with a design pattern. In this secpoopdse to solve the
well-known lowest common ancestor (LCA) problem [43] using model frangation. For this purpose,
| solve the problem using a naive and an improved solution. | show that theifafimves the quality
metrics of the model transformation with respect to efficiency criteria. Tiheéentify two other problems
that can be solved using an approach similar to the improved LCA solutiontdftine generalize the
solution to a design pattern as it describes a solution for recurrent prstaled increases the quality of
the model transformation that implements it.

6.1 Running Example

LCA is a general problem in graph theory and is typically defined overecttid tree structure. Es-
sentially, it attempts to find the lowest shared ancestor between two givenniages of the tree. For
example in Figure 7, the LCA of nodes D and J is node A. In this instancezameompute the LCA of

Figure 7: Tree instance for LCA problem

node D and node J to be node A.

18

6.1.1 Naive Solution

Typically, solutions using model transformation approaches tend to taketd)e of the declarativeness
and non-determinism of rule-based systems. In the first solution propid@st create all ancestor links
of every node as depicted by the first three rules in Figure 8. TetuCA rule checks if, given the two
initial nodes (A and B), there is an ancestor node common to both nodesotimat thave a successor
that is also a common ancestor of the two nodes. The rules and scheduthrgsefrules are depicted
in Figure 8. For this study, | have focused on three mettlesnumber of rule applicationsounts how

Rules: Scheduling:
LinkToSelf LinkToParent

Figure 8: Rules for naive solution

many times the rule is appliethe size of the ruleounts the number of elements present in the patterns
of each rule, andhe number of auxiliary elements createdunts the number of ancestor links created
to compute the LCA.

To compute the metrics, | consider a tree withodes and henae— 1 edges. ThéinkToSelf rule
creates self-ancestor links for all nodes, to cover the trivial cagkisasppliedn times, once for every
node in the tree. ThignkToParent rule creates ancestor links to the parents of each node and is applied
n—1 times, once per edge. Tha&kToAncestors rule creates ancestor links to all ancestors of each
node, recursively. Therefore, the number of ancestor links is ptiopal to the depth of each node. The
following equation gives the total number of ancestor links that need todagect, wherg; is the depth
level of nodei.

ilq —2=0(n?)

After all ancestor links are created, tBetLCA rule is applied only once and returns the LCA of the given
input nodes if it exists. The NAC part of thgetLCA rule guarantees that the solution is the lowest one
among other common ancestors. The metrics for the naive solution are dépiTadudie 1.

6.1.2 Improved Solution

In the improved solution, | use locality, focusing on only the given inputesod adopt an iterative
approach. | start to create ancestor links one step at a time and, at eachdiraek for a solution. The
rules and scheduling of these rules are depicted in Figure 9.

TheLinkToSelf rule creates self-ancestor links for the given input nodes only andftveris ap-
plied twice. To acheieve that, | use the pivot feature in MoTif which fothesule to be applied on bound
or elements. That is, A and B are parametrized nodes bound to nodethigEanput model at run-time.
Then, thelinkToParent rule creates ancestor links to the parents of input nodes, which is appi@d tw

19

Table 1: Metrics for naive and improved LCA solutions

Rules Size of rules # Rule Applications # Auxiliary Elements
Naive Improved Naive Improved Naive Improved

LinkToSelf 3 3 n 2 n—1 2
LinkToParent 7 7 n—1 2 o(r?) 2n—2
LinkToAncestors| 14 14 O(n?) 2n—2 o(n?) 2n—2
GetLCA 14 14 1 n 0 0

Total 38 38 Qn?+2n) 3n+2 O(M?+2n) 2n+2

Rules: Scheduling:
LinkToSelf LinkToParent :

:LinkToSelf

N

:LinkToParent
\ =
. 2
:GetLCA

:LinkToAncestor

b i

LinkToAncestor

GetLCA QX
” ”
[b:\;Y>E

Figure 9: Rules for improved solution

This results in an intermediate form of the tree instance, which may possibky tha\ CA task. There-
fore, | apply theGetLCA rule and try to find the solution if it exists. If | cannot find a solution, | execu
theLinkToAncestor rule and create one more level of ancestor links. Again, | use only tkea giput
nodes. With only one more step, this rule takes the intermediate form closeolidtiars. Then, | use the
GetLCA rule to check again. These iterative steps continue untiGBHECA rule finds a solution or the
LinkToAncestor rule fails by not making a contribution to the solutioa., if the root is reached and
GetLCA fails. For the tree instance in Figure 7, the solution is found in three stepsefbine, theSetLCA
rule is applied four times and thékToAncestor rule is applied three times. In general, the given input
nodes might be in different depth levelg @ndk, respectively). The ancestor link creation continues up
to the root node, so the maximum of depth levels is the number of iterationschieefied the solution.

In the worst case, this depth canmand | createn — 1 ancestor links. Therefore, thekToAncestor

rule is applied a total of @ — 1) times for input nodes and tt&etLCA rule is appliech times.

Metrics for the improved solution are also depicted in Table 1. One can ckzglthe improvement
by comparing the metric counts between naive solution and improved solutiothrédl metrics are
related to the efficiency quality criteria. Therefore, | can say the impregadion is more efficient than
the naive solution. | did not take the execution time of the model transformagaoasibe they are already
proportional to the enumerated metrics.

20

6.2 Similar Problems

In this section, | identify and solve two more problems from very differemhdins using model trans-
formation.

6.2.1 Equivalent Resistance

In electrical circuits, the computation of the equivalent resistance of tlodevdircuit is a common task.
Finding the equivalent resistance in a series of connected resistormte@sting problem to apply our
design pattern. In this case, the transformation takes as input an eleciroced model with resistors
connected both in serial and parallel. The rules are depicted in Figuld&®Finished rule looks for
resistors set in serial or parallel in the circuit. If the rule cannot findraose serial or parallel resistors, it
will return the single resistor as the equivalent resistance ChlvalateUnitEquivalentResistance

rule calculates equivalent resistance for only a set of serial andi@igdaesistors and directs the control
flow to thelsFinished rule again depicting a loop.

Rules: Scheduling:

IsFinished !

CalculateUnitEquivRes
ParallelRule :CalculateUpitEquivRes
A"

~)
R1+R2 :ParallelRule
R1 Fz RT'R2
’ /<

\
:SerialRule

SerialRule

(L
R1 IR1 X
p” Rzi % R1+R2 T

" S

Figure 10: Rules for Equivalent Resistance Problem

I\
I

6.2.2 Dijkstra’s Algorithm for Shortest Path

Dijkstra’s algorithm is a well-known graph search algorithm that returnshioetest path and length of
this path between two nodes, source and target. The solution is provideguie E1. The input model
is a directed and weighted tree. TYisitimmediateNeighbors rule initiates the algorithm by visiting
the immediate neighbors of the source node. After a visit, each node isedsigih the weight of the
path and is colored in red to represent that it is visited. The terminating ciitfettia algorithm is visiting

all nodes, which is ensured by thsAlINodesVisited rule. If there are still unvisited nodes, then the
VisitOneMoreHop rule is executed. ThéisitOneMoreHop rule selects the smallest number of weighted
nodes among visited ones and calculates the new weights for the unvisitebarsigf this node. After
each node is visited, the target node will have the length of the shortesapatiiue and the path with
purple marked arrows will be the shortest path.

21

Rules: Scheduling:

VisitimmediateNeighbors g
X ia X A X *
[. i 00 > O—w'.] :VisitimmNeighbors
X
IsAlINodesVisited
P> Aﬁ

:IsAlINodesVisited

VisitOneMoreHop é /
SelectLowest

v " X A x :VisitOn%MoreHop
® 0—®)0—®
z<w i :SelectLowest

VisitltsNeighbors
- ‘H
XMT XM :VisitltsNeigbors
. X
®

Figure 11: Rules for Dijkstra’s Algorithm

6.3 Generalization of the Solution

The improved LCA, equivalent resistance, and Dijkstra’s shortest mpattel transformation solutions
look very alike. The structure is like a fixed-point iteration. In generalalare three blocks. The first
block initializes the input model with creation of some temporary elements anitsrgsan intermediate
form of the model (Initiate step). The initialization is optionald., Equivalent resistance problem in
Section 6.2.1) but | have to include it in generalization. Then, a querye®iifa solution if found (Check
step). Finally, if the query fails, the last block encodes one more stepdewlae solution (Advance step).
The structure can also be seen aghéde not loop in programming languages. | created the following
pattern by using this generalization.

6.4 Fixed Point Iteration

» Motivation: Fixed point iteration is a pattern for representing a "do-until" loop structuselves
the problem by modifying the input model iteratively until a condition is satisfiéel previously
identified this pattern in [44]. Asztalost al.[45] also identified a similar structure named traverser
model transformation analysis pattern.

» Applicability: This pattern is applicable when the problem can be solved iteratively untiéd fix
point is reached. Each iteration must perform the same modification on thd, rpodsibly at
different locations: either adding new elements, removing elements, or rivgdéttributes.

» Structure: The structure is depicted in Figure 12. The fixed point iteration consistded that
have abstract actions because processing at each iteration entirehddem the application. Nev-
ertheless, it enforces the following scheduling. The pattern starts bgtisglea predetermined
group of elements in thieitiate rule and checks if the model has reached a fixed point (the con-
dition is encoded in the constraint of tbieeckFixedPoint rule). If it has, thecheckFixedPoint
rule may perform some actior,g.,marking the elements that satisfied the condition. Otherwise,
theiterate rule modifies the current model and the fixed point is checked again.

22

W initiate the checkFixedPoint process the
element group element group

mm mm

Fixed Point Iteration(mm)

.—’ €9 eg
selected @

{abstract}

advance the
success initiated group
mm
)._ eg

selected [v]

fail

® {abstract}

Figure 12: Structure of Fixed Point Iteration in Graphicghtax

» Examples: In [44], we showed how to solve three problems with this pattern: computing the
lowest common ancestor (LCA) of two nodes in a directed tree, which adds etements to
the input model; finding the equivalent resistance in an electrical circuithwkemoves elements
from the input model; and finding the shortest path using Dijkstra’s algoritfhrich only modifies
attributes.

» Implementation: Figure 9 shows the implementation of the LCA in MoTif using the fixed point
iteration pattern. Thénitiate rule is extended to create traceability links on the input nodes
themselves with théinkToSelf rules and with their parents with thénkToParent rules. The
GetLCA rule implements theheckFixedPoint rule and tries to find the LCA of the two nodes in
the resulting model following traceability links. This rule does not have a Rkt Isets a pivot
to the result for further processing. ThkToAncestor rules implement théerate rule by
connecting the input nodes to their ancestors. The MoTif control streicgflects exactly the same
scheduling with the design pattern.

« Variations: In some cases, thaitiate rule can be omitted when, for instance, tleeate rule
deletes selected elements such as in the computation of the equivalent cesgdtan electrical
circuit [44].

7 Additional Model Transformation Design Patterns

In this section, | show the additional model transformation design patteri® I by redefining the
ones in existing studies or trying to identify new ones as in Section 6. A comnaatige while solving
a problem is considered as a “design pattern” if we can apply it to diff@reblems. This also implies the
model transformation languages we use in the implementation can be diffenenéfdre, some useful
practices within a single model transformation language should not be eoedid design pattern, but
on the contrary it can be a reusable idiom that can be supported with buittiotiges. This list can be
extended by other transformation developers, following the same stylesamgl DelTa to represent the
structure.

As mentioned in Section 6.3, each design pattern has some fields to desmjitred by the Gammet
al. [2] catalog templates, | use the following characteristics to describe a modsfdraation design
pattern-motivationdescribes the need for and usefulness of the patipplicability outlines typical sit-
uations when the pattern can be appligycturedefines the pattern in DelTa and explains the pattern,

23

examplesllustrates practical cases where the patterns can be usplmentatiorprovides a concrete
implementation of the pattern in a MTL, andriationsdiscusses some common variants of the pattern.
In the structure characteristic, | use the graphical syntax of DelTd,ddab show the textual syntax in
the first design pattern to give an idea how it looks like in action. For the ebeathiaracteristic, | use a
subset the UML class diagram metamodel with the concepts of class, attrénutesuperclasses in most
cases. For the implementation characteristic, | have implemented all desigmgattenore than one
languages such as MoTif, AGG, Henshin, Viatra2, GrGen.NET. Althdugtly show one implementa-
tion for each in this paper, the complete implementations can be found in [4i§]isThow | validated
the expressiveness, usability, and implementability of patterns defined ia.DelT

7.1 Entity Relation Mapping

* Motivation: Entity relation mapping (ER mapping) is one of the most commonly used transfor-
mation pattern in exogenous transformations encoding a mapping betweemtmadgs. It cre-
ates the elements in a language corresponding to elements from anotheiglauagual establishes
traceability links between the elements of source and target languagepatteis1 was originally
proposed in [4] and later refined in [6].

» Applicability: The ER mapping is applicable when we want to translate elements from one meta-
model into elements from another metamodel.

 Structure: The structure is depicted in Listing 2 in textual syntax and in Figure 13 in thghgral
syntax. The pattern refers to two metamodels labetedandtrgt , corresponding to the source
and target languages. It consists of a MTDP rule for mapping entitiesffidcsanother for mapping
relations. TheentityMapping rule states that if an entity from src is found, then an entity
must be created ifrgt as well as a tracél between them, ifl andf do not exist yet. The
relationMapping rule states that if there is a relatioh betweere andf in src and there is a
tracetl betweere andg, and a tracé2 betweerf andh, then create a relatio@ betweerg and
h if it does not exist yet. Both rules should be applied recursively.

Listing 2: One-to-one Entity Relationship Mapping MTDP

nt dp OneToOneERMapping

nmet anodel s: src, trgt

rul e entityMapping*
Entity src.e, trgt.f
Trace tl(src.e, trgt.f)
constraint: src.e, ~trgt.f, ~tl
action: trgt.f, t1

rul e relationMapping*
Entity src.e, src.f, trgt.g, trgt.h
Rel ation rl(src.e, src.f), r2(trgt.g, trgt.h)
Trace tl(src.e, trgt.g), t2(src.f, trgt.h)
constraint: src.e, src.f, trgt.g, trgt.h, rl, t1, t2, ~r2
action: r2

Sequence: START, entityMapping, relationMapping, END

» Examples: A typical example of ER mapping is in the transformation from class diagram to
relational database diagrams, where, for example, a class is transfaarméable, an attribute to a
column, and the relation between class and attribute to a relation between ticleann.

* Implementation: | show the implementation of ER mapping in Henshin in Figure 14. The pattern
states to apply the rules for entities before those for relations. Henshiidesa sequence structure
with SequentialUnit . Henshin uses a compact notation for rules together with stereotypes on

24

relationMapping
One-to-one Entity entityMapping \orq o]
Relationship Mapping (sr,trgt) e [~ X
e '@ X , —®
SIc trgt
fofee y
Figure 13: Structure of ER Mapping in Graphical Syntax
Rules:
= Rule ClassMapping = Rule attrsMapping
[«create™s] %:da’s‘s’ source :Crlaisrsi %At:nl;ut; S e
Trace) T
T —~ —— " J«prese oreserve”s [<target
ta_ge_t lTable : it:aigeft :Table ol [Column preserve

= Rule AttributeMapping

:Attribute Scheduling:

:Tvra.cve. —acreate*s |£ SequentialUnit erMappingSeq |

arger—>{rcreate™))) :
. :Column ClassMapping AttributeMapping attrsMapping

Figure 14: Rules of ER Mapping in Henshin

pattern elementspreserve» is used for the elements found in the constraint of the MTDP rule
and«create» is used to create elements found in the action of the MTDP rule. Here thergaare
rules corresponding tentityMapping : one for mapping classes to tables and one for mapping
attributes to columns. In Henshin, traceability links must be modeled explicitly egaate class
connecting the source and target elements. | did not need to use NA&isskeddenshin provides a
multi-node option that already prevents applying a rule more than once oartfersatch.

 Variations: Sometimes the entities in specific metamodels cannot be mapped one-to-onesdtis p
sible to define one-to-many or many-to-many ER mappings pattern using elgroeps instead
of entities (see [46]). Also, some implementations may require the creationadatietween the
two relations in theelationMapping rule.

7.2 Transitive Closure

» Motivation: Transitive closure is a pattern typically used for analyzing reachabilityediarob-
lems with an inplace transformation. It was proposed as a pattern in [3] §Bdl]irt generates the
intermediate paths between nodes that are not necessarily directly tmmhaictraceability links.

» Applicability: The transitive closure pattern is applicable when the metamodels in the domain
have a structure that can be considered as a directed tree.

 Structure: The structure is depicted in Figure 15. The pattern operates on single mefaficst,

25

recursiveRelation
immediateRelation \mm| ... [\mm]
Transitive Closure(mm) e f
¢ e [@ @
g

Figure 15: Structure of Transitive Closure in Graphical &ynt

theimmediateRelation rule creates a trace element between entities connected with a relation.
It is applied recursively to cover all relations. Then, theursiveRelation rule creates trace
elements between the node indirectly connected. That is if ergifieandf-g are connected with
atrace, themr andg will also connected with a trace. Itis also applied recursively to coveoalkén
exhaustively.

» Examples: The transitive closure pattern can be used to find the lowest common aruetsteen
two nodes in a directed tree, such as finding all superclasses of a cldlH.inlass diagram.

» Implementation: | have implemented the transitive closure in AGG. Figure 16 depicts the corre-

‘Nac \:Eii&imiediateSuperclass of TransitiveClosureCD =]
"l H |
= [2class| |3 : C
3 ;§ ‘superclass 3:superclass
B |
B |
g
Nac : recursive Superclass of TransitiveClosureCD ‘éﬂ
lé 14 |
| "
ol ; g:superclass |- 7 asQperclass
: [1:C|ass| l‘-'lE:CIassl |1 :Class] i |2:Class|
|

Figure 16: Transitive Closure rules in AGG

sponding rules. AGG rules consist of the traditional LHS, RHS, and NAGe LHS and NACs
represent the constraint of the MTDP rule and the RHS encodes the.adtmimmediateSuperclass
rule creates a traceability link between a class and its superclass. Therie€hts this traceability
link from being created again. ThecursiveSuperclass rule creates the remaining traceability
links between a class and higher level superclasses. AGG lets the sigerlager numbers to each
rule and starts to execute from layer zero until all layers are complete. IEbompcriteria for a
layer is executing all possible rules in that layer until none are applicalglm@e. Therefore, |
set the layer oimmediateSuperclass to 0 andrecursiveSuperclass to 1 as the design pattern
structure stated these rules to be applied in a sequence.

» Variations: In some cases, a recursisafRelation rule may be applied first, for example when
computing the least common ancestor class of two classes, as in [44].

26

7.3 \Visitor

» Motivation: The visitor pattern traverses all the nodes in a graph and process$esrddyg indi-
vidually in a breadth-first fashion. This pattern is similar to the “leaf collecattgon” in [3] that
is restricted to collecting the leaf nodes in a tree.

» Applicability: The visitor pattern can be applied to problems that consist of or can be thappe
any kind of graph structure where all nodes need to be processeiiumally.

 Structure: As depicted in Figure 17, the visitor pattern makes use of flagsniBHenitEntity

markInitEntit i isitEntit
) | markdnitEntiy | eisa j visitEntity| process j markNextEntity |
Visitor(mm) i prefixed entity o] current entities
Qo— e e \um \om|
marked > V] marked v/ € f
processed [X]> VI processed M marked (X]> V]

SUCCess fail

Figure 17: Structure of Visitor in Graphical Syntax

rule flags a predetermined initial entity as “marked”. Note that in actual implert@mtahis
rule maybe more complex. This rule is applied first and once. The next rdde &pplied is the
visitEntity rule. It visits the marked but unprocessed nodes by changing theiegmed flags
to true . The actual processing of the node is left at the discretion of the implementatien,
themarkNextEntity ~ rule marks the nodes that are adjacent to the processed nodes. Mamking
processing are split into two steps to reflect the breadth-first trava@tsamarkNextEntity rule
then initiates the loop to visit the remaining nodes. Visiting ends whakNextEntity is not
applicablej.e.,when all nodes are marked and have been processed.

» Examples: The visitor pattern helps to compute the depth level of each class in a clagsinte
hierarchy, meaning its distance from the base class.

* Implementation: | have implemented visitor in GrGen.Net as depicted in Figure 18. This MTL
provides a textual syntax for both rules and scheduling mechanisms.ule,ahe constraint is
defined by declaring the elements of the pattern and conditions on attribetehecked with
anif statement. Actions are written inraodify or replace statement for new node creation
andeval statements are used for attribute manipulation. MheBaseClass rule selects a class
with no superclass as the initial element to visit. Since this class already hashalees| of 0, |
flag it as processed to prevent WisitSubclass rule from increasing its depth. This is a clear
example of the minimality of a MTDP rule, where the implementation extends the rubedacc
ing to the application. TheisitSubclass rule processes the marked elements. Here, processing
consists of increasing the depth of the subclass by one more than the depthsuperclass.
ThemarkSubclass rule marks subclasses of already marked classes. The schedulingef3he
Gen.Net rules is depicted in the bottom of Figure 18. As stated in the desigmnpstitecture,
markBaseClass is executed only onceisitSubclass andmarkSubclass are sequenced with
the;> symbol. Thex indicates to execute this sequence as longakSubclass rule succeeds.

At the end, all classes should have their correct depth level set anthefed as processed. Note
that in this implementatioryjsitSubclass will not be applied in the first iteration of the loop.

27

rule markBaseClass { rule visitSubclass { rule markSubclass {

e:Class; d:Class; e:Class;
negative { e:Class; f:Class;
d:Class; d-:subclass->e; e-:subclass->f;
d-:subclass->e; if { if {
} e.marked== ; e.processed==tCxr
modify { e.processed== » > f.marked==f
eval {))
e.marked= > modify { modify {
e.processed= 2 ; eval { eval {
e.processed=true; f.marked=

e.depth=d.depth+l;

exec markBaseClass
exec ([visitSubclass] ;> [markSubclass])*

Figure 18: Visitor rules and scheduling in GrGen.Net

 Variations: It is possible to vary the traversal order, for example a depth-firsieglyanay be
implemented. It is also possible to visit relations instead of entities. Anothetivaria to only
have one recursive rule that processes all entities if the order in whégtptiocessed is irrelevant.

7.4 Execution by Translation

» Motivation: To execute a domain-specific language (DSL), we often refer to somelatigeiages
that have well-defined semantics and easy to execute. This saves the tieffoeraf the developer
to write an executor from scratch for the DSL and standardizes the texedn a way. With this
pattern, the DSL is mapped to another intermediate language. Then, thisdargsanulated and
the corresponding DSL elements are modified accordingly to show the animation

» Applicability: The pattern is applicable when we want to execute a DSL and have anoitjeatse
to rely the simulation on.

 Structure: The structure of the pattern is depicted in Figure 19. The pattern referotmata-
models; thedsl , which is the DSL we want to execute, and #waLang , which is the interme-
diate language we simulate insteaddsff . First, thedsl is mapped to theimLang by using the

OneToOneERMapping design pattern described in [41]. This results in having each element in the

dsl mapped to its corresponding equivalent in #ireLang . Then, in theinit rule, we setup
the initial state of the model ready for the simulation. The simulation runs in a ldogt, we

check aterminatingCondition to know when to stop the execution. If it is not satisfied, the
simulateAndAnimate transformation block is activated. In this block, the state of specific ele-

ments needs to be modified according to a criterion irstinelate rule. Then thenimate rule
finds the corresponding elements of the elements whose state has beendnodtiredsl and
does the necessary changes, which means either changing an attritheeconcrete syntax of
those elements. After this block, ttegminatingCondition is checked again and the simulation
goes on.

» Examples:In [38], Klihne et al.executes FSA by translating to PN. As they simulate the PN, they

28

Execution by Translation (dsl,simLang)

Is target state
— R
init terminatingCondition post-processing

{reference} A — —
<OneToOneERMapping> eq eg
mapping(dsl,simLang)

{abstract} {abstract}

success
fail > @
simulateAndAnimate |
modify the 7 _
simulate current state of e i 0 processing
[:7 _ IM changes in (S of eg2

.—» NEED simLan
€g eg [eg

stateChanged > [v/] stateChanged [v/]

Figure 19: Execution by Translation Design Pattern Stmectu

animate the FSA accordingly. In [12], we have defined a translation frbno®N, and simulated
the PN to animate the AD. De Lara and Vangheluwe mapped production systéntoPN and
used PN for the dynamic behavior of production system in [47].

Implementation: | implement PN to SC in MoTif [39]. In this example, the source language is
executed and then the second language is animated, as described inidhts \@frthe design
pattern. The rules and scheduling are depicted in Figure 20. | only mapathe siates and hy-
peredges in SC for simplicity, but the advanced transformation can bd foy48]. Themapping

part maps the places to basic states and transitions to hyperedges witiic¢fieBasicState

and thetransitionToHyperedge rules. Then, the arcs of PN are mapped to links in SC with the
arcsToLinks and thearcsToLinksT2P rules. After mapping, thamit part is doing the same job
as in the previous examples. TeetOneTokenTolnitial rule puts one token to the place of the
initial node, which is the place without an incoming transition in this case. Thehighight

rule highlights the current state. MoTif supports pivots to pass the mattdree ets between rules.
Therefore, this makes it easier to get a transition and check if it is firingpbby just passing it

to the other rule, without the need for another attribute. A special compleryqule in Mo-

Tif makes it possible to get the firing transition with the help of tindTransition and the
nonFiringTransition rules. ThefindTransition gets one transition, assigns a pivot to it and
the nonFiringTransition checks if this transition is blocked or not. If the pattern is matched,
that means it is not a firing transition and the rule tries another transitionsifibate and the
animate part rules are same as the previous examples, as they are regular PNisimulas. In

the fullControlFlow structure, one can realize that it looks similar to the structure of the “exe-
cution by translation” design pattern. This is because | inspire myself frastirlg model trans-
formation languages while creating DelTa and the control flow of DelTa,mikithe TURelation,
consists of the primitives of MoTif scheduling structures.

Variations: Usually, the simulation languag@mLang , has fewer elements than ttid language.
In this case, the mapping part can be one-to-many, many-to-one or mangrip entity relation
mapping. One-to-many ER mapping is described in DelTa in [46]. Anothéati@r is when the
transformation simulates the first language and animates the second largeagdingly. This

29

mapping init
placeToBasicState transitionToHyperedge 1 setOneTokenTolnitial I

s A (T
o\ o-O = o o\o
1 12 ! ! > F 5T)T
_ Node(2).name=Node(1).name Node(2 Node(1 placeToBasicState | _ ! Node(1).token=1 setOneTokenTolnitial
arcsTolinks e highlightBasicState
1 H
! O; I i transitionToHyperedge highlightBasicState
0——a |0] 0——a “\v/x _Node(1).token>0 \@/
\3 4 13 4 3 4) - * . .
arcsToLinksT2P arcsToLinks terminatingCondition
4 : 1 2 1 2 N \\V/X findTransition nonFiringTransition (NEG) 3
: I O i [t 1 H 2 ?2?
o arcsToLinksT2P = 31 findTransiti o
: . |:| I1 T : |n. . ransi |o.n.
_ 3 4 .3 4 3 4) Y Node(3).weight>Node(1)token :nonFiringTransition
simulate fullControlFlow é é
consumeTokens
s ’
oi_l Oi_l
[Tt Node(1).token-=Node(3).weight consumeTokens mapping

produceTokens ‘ Q\/(
5 y 5 y KV/X)
5 5 roduceTokens ini
Node(4).token+=Node(5).weight Y(\/

animate 2
terminatingCondition

I

simulate

removeHighlight

X

2

Node(1).token==0

highlightBasicState \/(k\/(

F
O 1 5 highlightBasicState

removeHighlight

animate

Node(1).token>0 _r l

Figure 20: Petri Nets to statecharts in MoTif.

only inverts the two metamodels in the four rules of this design pattern.

8 Further Work & Schedule

In this section, | briefly explain what is the next phases of my research.

8.1 Identification of New Design Patterns and Intents Study

Identification of new design patterns is an important phase to complete tha gesigrn catalog. In the
previous work, | have used two methods to identify a design pattern: 1)ue different problems and
try to come up with a common solution 2) to analyze existing studies.

For the latter, we are in the process of preparing a systematic literature tbaiewill cover all model
transformation related papers between 2003-2013, that have camss sexdmples or demonstrations.
The purpose of the work is to identify the intents of model transformationssimguhe real data. The
study is a systematic literature review which will help to identify the intents of eadehtiansformation

30

and it will provide a systematic way of examining model transformations whichlezayus to common
practices and then design patterns. During that study, | will investigate & lobdel transformation
papers which will help me to analyze how different problems are solvedfireift languages.

With more design patterns identified, | will also classify them like Ganetrel. did. They classified
the object-oriented design patterns in three groups: creational, beddagiod structural.

8.2 Uses of DelTa

The main purpose of DelTa is to provide an abstract language to express masformation design
patterns and help the transformation developers as a guideline. Howalgr investigate how to auto-
matically generate transformation using DelTa code. Model transformatigundges are really diverse
in terms of structure, therefore | have kept DelTa as abtract as pasHitidebrings the issue that DelTa
cannot generate a transformation alone. For that purpose, | will dimgko come up a Rule Diagram
(RD) [1] like structure. In [1], authors create RDs for each languaggenerate the transformation.
Therefore, | will also make use of specialized structures for each dayggand along with DelTa, | will
use them to generate the transformation. The overall architecture is depitiggure 21. Each RD will

(Design Patternin DeITa)

RD for Henshin

Figure 21: Transformation Generation in Different Langesg

fill the necessary gap for each language to generate the transfornfationBelTa.

8.3 Empirical Evaluation of DelTa

The empirical evaluation of DelTa consists of preparing an experimerg&btransformation developers.
For that reason, | choose Transformation Tool Contest (TTC),eutead developers try to solve proposed
problems in their own languages. For TTC, | will prepare a case studwithatveal all details of DelTa
and let the developers implement them in their own choice of languages. illlig/&me a great insight
about the usefullness and expresiveness of DelTa.

I conduct the experiment with the help of surveys and observationaésttiche suryeys are to collect
the experience of the developers with DelTa. The observational studldsewdone in our university
with the selected model transformation developers. They will be asked édogea transformation from
scratch. Later, they will be provided a design pattern that may help with tidgun and some variables
will be measured. One possible threat to the validity of this study is to find a gootber of model
transformation developers. | need two groups of model transformatieglagers; one for the control
group and one for the experimental group. If | cannot find enouggkldpers, | will provide necessary
education on model transformation. | choose MoTif as the main transformatguage for the first
iterations of the user study. Then the case study in TTC will show how difféanguages are interacting
with DelTa.

31

8.4 Detection of DelTa Design Patterns

As an initial start to detect design patterns in actual model transformatiavits use MoTif language.
The effort consists of finding the design patterns instances in modefdraraions. Since DelTa is
a language that has its own metamodel, detection of design patterns will béylaising an explicit
model transformation. DelTa provides the rule and scheduling structorebiged in its metamodel,
whereas MoTif has the rule and scheduling structures in seperate metaphedause a rule can be used
regardless of the model transformation language. Therefore, thdidetemdel transformation takes the
DelTa design patterns and a model transformation designed in MoTif with g as inputs and tries to
find a match. If the process succeeds, it will be expanded to other madsfdrmation languages.

8.5 Schedule
Fall 2014
 Starting intents study to identify new design patterns
» Creating a modeling environment for DelTa in ATOMPM
» Preparing of the empirical evaluation experiment and case study of DelTa

Conducting the empirical evaluation on test subjects in our university

» Taking a numbered course

Spring 2015
* Investigating the uses of DelTa and how to generate transformations
» Conducting the empirical evaluation in TTC 2015

» Preparing the paper that consists of newly identified design patterns withitlal results from
empirical evaluation and possible revisions to DelTa

» Preparing the “Software and Systems Modeling” journal paper whichhaile the DelTa in its
final form, with all design patterns identified and the results of the full empieiMauation

» Taking a special topics course
» Detecting the DelTa design patterns in actual model transformations
» Continuing on intents study

Summer 2015
* Write dissertation

Fall 2015
» Dissertation Defense & Graduation

32

9 Conclusion

In this proposal, | have listed a summary of what | am planning to do in my dégaT and what | have
done. | have analyzed the model transformation development procgdeward out that in its current
situation it is hard to develop model transformations. This is mostly because diviirsified nature of
model transformation languages (MTL). Therefore, | have analyzedttiacture of MTLs. At the same
time, | have implemented the transformation engine (MoTif and T-Core) of AN Python. | have
also created DSLs for these two languages. | have proposed a cataloqmon practices that each
transformation developer can adopt while creating their model transforméatiave named them model
transformation design patterns. Currently, there are five model tramafion design patterns. For each
design pattern, | have created the necessary information to describmplednented in five different
model transformation languages. These languages are MoTif, He@i@en.NET, Viatra2, and AGG.
As a result of analyzing the MTLs’ structure, | have created the largDegiiTa to describe the structure
of each design pattern. | have assigned a textual syntax to DelTa ardagggha DelTa environment
to edit design patterns using XText. DelTa is a concise and expressiyediga that | believe will play
the role of UML as in object-oriented design patterns. The next steps inadedéfying more design
patterns to reach to a more complete list like Ganatal.[2] did for object-oriented community. | will
also support DelTa with empirical experiments.

References

[1] Guerra, E., de Lara, J., Kolovos, D., Paige, R., and dos Sant¢20@03) Engineering model trans-
formations with transML Software and Systems Modeljig, 555-577.

[2] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1B@5)gn Patterns: Elements of Reusable
Object-oriented Softwaréddison-Wesley, Boston, MA, USA.

[3] Agrawal, A. (2005) Reusable Idioms and Patterns in Graph Tramsftion Languageslinterna-
tional Workshop on Graph-Based TooEENTCS,127, pp. 181-192. Elsevier.

[4] lacob, M.-E., Steen, M. W. A., and Heerink, L. (2008) ReusablalMdransformation Patterns.
EDOC WorkshopsSeptember, pp. 1-10. IEEE Computer Society.

[5] Bézivin, J., Jouault, F., and Palies, J. (2005) Towards modelftranation design patterns?ro-
ceedings of the First European Workshop on Model TransformatievaT 2005)

[6] Kevin Lano and Shekoufeh Kolahdouz Rahimi (2013) Constraisetaspecification of model
transformationsJournal of Systems and Softwa@8, 412—-436.

[7] Stahl, T., Voelter, M., and Czarnecki, K. (200dpdel-Driven Software Development: Technology,
Engineering, Managemeniohn Wiley & Sons.

[8] Kleppe, A. G., Warmer, J., and Bast, W. (2008PA Explained. The Model Driven Architecture:
Practice And PromiseAddison-Wesley.

[9] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008) ATL: A meldransformation tool Sci-
ence of Computer Programming2, 31-39.
[10] Amrani, M., Dingel, J., Lambers, L., Lucio, L., Salay, R., Selim, G., Syri&njand Wimmer, M.
(2012) Towards a Model Transformation Intent CatalbipDELS workshop on Analysis of model
TransformationIEEE.

[11] Czarnecki, K. and Helsen, S. (2006) Feature-Based Sui@pdel Transformation Approaches.
IBM Systems Journadts, 621—645.

33

[12] Syriani, E. and Ergin, H. (2012) Operational Semantics of UML iitiDiagram: An Application
in Project ManagemenRE 2012 Workshops, IEEE, Chicago

[13] Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentz€2030) Henshin: Advanced Con-
cepts and Tools for In-Place EMF Model TransformationfdODELS 2010 LNCS, 6394 pp.
121-135. Springer.

[14] Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., and VizhaAy@2006) The Design of a
Language for Model Transformationdournal on Software and Systems ModeliBg261-288.

[15] Klein, T., Nickel, U., Niere, J., and Zundorf, A. (1999) From UMLJava And Back Again. Tech-
nical Report tr-ri-00-216. University of Paderborn, Paderborn.

[16] Varrd, D. and Balogh, A. (2007) The model transformation lagguaf the VIATRA2 framework.
Science of Computer Programmir@g, 214—-234.

[17] Taentzer, G. (2004) AGG: A graph transformation environmentniodeling and validation of
software. AGTIVE pp. 446—453. Springer.

[18] Jouault, F. and Kurtev, I. (2007) On the interoperability of modetrmdel transformation lan-
guagesScience of Computer Programming, Special Issue on Model Tranafmn 68, 114-137.

[19] Syriani, E., Vangheluwe, H., and LaShomb, B. (2013) T-Coreaméwork for custom-built model
transformation enginesSoftware & Systems Modeling3, 1-29.

[20] Syriani, E., Gray, J., and Vangheluwe, H. (2012) Modeling a Mdaeansformation Language.
Domain Engineering: Product Lines, Conceptual Models, and Laggs&pringer.

[21] Syriani, E. and Vangheluwe, H. (2010) De-/Re-constructing éodansformation Languages.
EASST?29.

[22] Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mielp and Ergin, H. (2013)
Atompm: A web-based modeling environmeMODELS’13: Invited Talks, Demos, Posters, and
ACM SRC. CEUR-WS.arg

[23] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and Halkidi2086) Design Pattern Detection
Using Similarity Scoring Software Engineering, IEEE Transactions 88, 896 —909.

[24] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stall986] Pattern-oriented
Software Architecture: A System of Patterdishn Wiley & Sons, Inc., New York, NY, USA.

[25] Mowbray, T. J. and Malveau, R. C. (199CZPDRBA Design Pattern¥Viley.

[26] Douglass, B. P. (2002Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
SystemsAddison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[27] Buschmann, F., Henney, K., and Schmidt, D. C. (2(@attern-Oriented Software Architecture: A
Pattern Language for Distributed Computingiley.

[28] Wahba, S. K., Hallstrom, J. O., and Soundarajan, N. (2010) Initiatidgsign pattern catalog for
embedded network systenf&oceedings of the Tenth ACM International Conference on Embedded
Software New York, NY, USA EMSOFT ’10, pp. 249-258. ACM.

[29] Cho, H. and Gray, J. (2011) Design patterns for metamodBimceedings of the Compilation
of the Co-located Workshops on DSM’11, TMC’'11, AGERE!'11, AGSR1, NEAT 11, &
VMIL'11, New York, NY, USA SPLASH '11 Workshops, pp. 25—-32. ACM.

[30] Krasner, G., Pope, S., et al. (1988) A description of the model-cemtroller user interface
paradigm in the smalltalk-80 systedournal of object oriented programming, 26—49.

34

[31] Hasheminejad, S. M. H. and Jalili, S. (2012) Design patterns sele&immutomatic two-phase
method.Journal of Systems and Softwa8s, 408—424.

[32] Correa, A., Werner, C., and Zaverucha, G. (2000) Objechtett design expertise reuse: An ap-
proach based on heuristics, design patterns and anti-patterns. bsFvak(ed.)Software Reuse:
Advances in Software Reusabilibecture Notes in Computer Sciend844 pp. 336—-352. Springer
Berlin Heidelberg.

[33] Blomqvist, E. (2008) Pattern ranking for semi-automatic ontology caaostm. Proceedings of
the 2008 ACM Symposium on Applied Computiew York, NY, USA SAC '08, pp. 2248—-2255.
ACM.

[34] Levendovszky, T., Lengyel, L., and Mészéros, T. (2009)d@uting domain-specific model patterns
with metamodelingSoftware & Systems Modeling 501-520.

[35] Dong, J., Zhao, Y., and Peng, T. (2009) A Review of Design Ratiining Techniquesinterna-
tional Journal of Software Engineering and Knowledge EngineetifSg823—-855.

[36] Syriani, E. and Gray, J. (2012) Challenges for Addressindi@ueactors in Model Transformation.
Software Testing, Verification and Validatiapr ICST'12, pp. 929-937. IEEE.

[37] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (200é)damentals of Algebraic Graph Trans-
formationEATCS. Springer-Verlag.

[38] Kihne, T., Mezei, G., Syriani, E., Vangheluwe, H., and Wimmer, M1®EXxplicit Transforma-
tion Modeling. Models in Software Engineeringtecture Notes in Computer Scien@&)02 pp.
240-255. Springer Berlin Heidelberg.

[39] Syriani, E. and Vangheluwe, H. (2011) A Modular Timed ModelnBfarmation Languagelour-
nal on Software and Systems Mode|ithig, 387-414.

[40] Lengyel, L., Levendovszky, T., Mezei, G., and Charaf, H. @0®Plodel Transformation with a
Visual Control Flow Languagdnternational Journal of Computer Sciende 45-53.

[41] Ergin, H. and Syriani, E. (2014) Towards a Language for G+Bpsed Model Transformation
Design PatternsTheory and Practice of Model Transformation, LNG®rk, U.K., July, pp. 91—
105. Springer.

[42] Geil3, R. and Kroll, M. (2008) GrGen. net: A fast, expressiva] general purpose graph rewrite
tool. Applications of Graph Transformations with Industrial Relevampye 568-569. Springer.

[43] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1973) On finding I@iveommon ancestors in trees.
Proceedings of the fifth annual ACM symposium on Theory of compiNieg York, NY, USA
STOC '73, pp. 253—-265. ACM.

[44] Ergin, H. and Syriani, E. (2013) Identification and Application of adél Transformation Design
Pattern. ACM Southeast Conferencgavannah GA, apr ACMSE’13. ACM.

[45] Asztalos, M., Madari, I., and Lengyel, L. (2010) Towards formiaalysis of multi-paradigm model
transformationsSIMULATION 86, 429-452.

[46] Ergin, H. and Syriani, E. (2014) Implementations of Model Transfation Design Patterns Ex-
pressed in DelTa. Technical Report SERG-2014-01. Universitylatb#@ma, Department of Com-
puter Science.

[47] de Lara, J. and Vangheluwe, H. (2010) Automating the transform#iised analysis of visual
languagesFormal Aspects of Computing2, 297-326.

[48] Ergin, H. and Syriani, E. (2013) ATOMPM Solution for the Petri NetStatecharts Case Study.
Seventh Transformation Tool Contgsi.

35

Appendix A List of Papers

A.1 Published

» Eugene Syriani and Huseyin Ergi@perational Semantics of UML Activity Diagram: An Ap-
plication in Project ManagemenRequirement Engineering Conference 2012 Workshops, IEEE,
Chicago, IL (September 2012)

» Huseyin Ergin and Eugene Syriafdentification and Application of a Model Transformation De-
sign Pattern ACM Southeast Conference 2013, Savannah, GA (April 2013)

* Huseyin ErginModel Transformation Design PatterifdODELS Conference 2013 Doctoral Sym-
posium, Miami, FL (October 2013)

» Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, ConnesddaSimon van Mierlo, and
Huseyin ErginAToMPM: A Web-based Modeling EnvironmeédODELS Conference 2013 Demon-
strations, Miami, FL (October 2013)

Technical Report

» Huseyin Ergin and Eugene Syriatinplementations of Model Transformation Design Patterns
Expressed in DelTaDepartment of Computer Science, University of Alabama, SERG-2214-0
(February 2014)

A.2 Accepted & To Be Presented

» Huseyin Ergin and Eugene Syriafibwards A Language To Express Design Patterns for Graph-
Based Model Transformatiomternational Conference on Model Transformation 2014, York, UK
(July 2014)

» Huseyin Ergin and Eugene SyriaéiToMPM Solution for the IMDB Case Studiyransformation
Tool Contest 2014, York, UK (July 2014)

A.3 Submitted

» Huseyin Ergin and Eugene Syriaieuse of Model Transformation Design Pattet®th System
Analysis and Modelling Conference 2014, Valencia, Spain (Septemlid) 20

A.4 In Preparation & Planning
» Huseyin Ergin and Eugene SyriabielTa: A Language for Model Transformation Design Patterns
Journal of Software and Systems Modeling (2015)

» Huseyin Ergin and Eugene SyriaModel Transformation Design Patterns in Action: Experiences
with DelTa Automated Software Engineering (2015)

» Huseyin Ergin and Eugene Syriailihe Experiences on How To Generate Transformations Using
DelTa International Conference on Model Transformation (2015)

» Eugene Syriani, Jeffrey Carver, Huseyin Ergin, and Ahmet AlZubidiydel Transformation In-
tents: A Systematic Literature Revieempirical Software Engineering Conference (2015)

» Huseyin Ergin and Eugene SyriabielTa Case Studylransformation Tool Contest (2015)

36

