
Design Patterns for Model Transformations∗

Proposal for Thesis Dissertation in Partial Fulfilment
of the Requirements for the Degree of Doctor of Philosophy

Hüseyin Ergin
Computer Science Department

The University of Alabama

June 23, 2014

Abstract

In model-driven engineering, most problems are solved using model transformation. However, the
development of a model transformation for a specific problem is still a hard task. The main reason for
that is the lack of a development process where transformations must be designed before implemented.
As in object-oriented programming, design patterns can benefit “good design” of model transforma-
tion tremendously. Hence, this proposal aims to help transformation developers in the design of model
transformations through the use of design patterns defined specifically for model transformations. The
contributions consist of finding the appropriate language to define model transformation design patterns,
identifying design patterns from existing transformation solutions, and generating and detecting design
pattern instances for a specific MTL.

∗Proposal Committee: Eugene Syriani (advisor), Jeffrey Carver, Jeff Gray, Ralf Lämmel, Randy Smith

1

Contents

1 Introduction 4

2 Background on Model-Driven Engineering 5
2.1 Model-Driven Engineering 5
2.2 Model Transformation .. . 6

2.2.1 Structure of Graph-transformation-based Languages 6
2.2.2 Model Transformation Languages .. . 7

2.3 MoTif . 7

3 Background on Design Patterns 9
3.1 Object-oriented Design Patterns 10

3.1.1 Structure . 10
3.2 Limitations of Design Patterns .11

4 Related Work 11
4.1 Model Transformation Design Patterns 11
4.2 Model Transformation Design Pattern Languages 12
4.3 Identification and Detection of a Design Pattern 13

5 A Language for Model Transformation Design Patterns 13
5.1 Abstract Syntax .. . 14
5.2 Concrete Syntax .. . 15
5.3 Informal Semantics .. 17

6 Identification of a Model Transformation Design Pattern 18
6.1 Running Example .18

6.1.1 Naïve Solution . 19
6.1.2 Improved Solution . 19

6.2 Similar Problems . 21
6.2.1 Equivalent Resistance .21
6.2.2 Dijkstra’s Algorithm for Shortest Path .. 21

6.3 Generalization of the Solution .. 22
6.4 Fixed Point Iteration .. 22

7 Additional Model Transformation Design Patterns 23
7.1 Entity Relation Mapping . 24
7.2 Transitive Closure 25
7.3 Visitor . 27
7.4 Execution by Translation .. . 28

8 Further Work & Schedule 30
8.1 Identification of New Design Patterns and Intents Study 30
8.2 Uses of DelTa .. 31
8.3 Empirical Evaluation of DelTa .. 31
8.4 Detection of DelTa Design Patterns 32
8.5 Schedule .. 32

2

9 Conclusion 33

Appendix A List of Papers 36
A.1 Published .36
A.2 Accepted & To Be Presented 36
A.3 Submitted . 36
A.4 In Preparation & Planning .. . 36

3

1 Introduction

Model-driven engineering (MDE) heavily relies on model transformation.However, although expressed
at a level of abstraction closer to the problem domain than code, the development of a model transforma-
tion for a specific problem is still a hard, tedious and error-prone task. As witnessed in [1], one reason
for these difficulties is the lack of a development process where the transformation must first be designed
and then implemented, as practiced in software engineering. Software developers have been using UML
for years to design the problem first. This lets them to see the upcoming problems before the implementa-
tion and be able to use these designs to be implemented in different object-oriented languages. One of the
most essential contribution to software design was the GoF catalog of object-oriented design patterns [2],
which consists of proven solutions to common software engineering problems. Gammaet al.used UML
class and sequence diagrams to define object-oriented design patterns.

Although there are studies that mention the design patterns in model transformation area [3, 4, 5],
they could not be evolved further more. The initial issue these studies faceis the lack of a common
language to define these model transformation design patterns. The authors often chose a specific model
transformation language (MTL) to express the design patterns. This is understandable given the nature
of MTLs, which makes the transformation implementation more readable comparedto a piece of code
written in a general-purpose programming language. However, the need for a common language like
UML still remains to make model transformation design patterns more readable and applicable among
other MTLs.

The main goal of my thesis is to help model transformation developers in the design of model transfor-
mations through the use of design patterns. My contributions consist of finding the appropriate language
to define model transformation design patterns, identifying design patterns from existing transformation
solutions, and generating and detecting design pattern instances for a specific MTL.

There are several studies to define model transformations independentfrom the MTL itself [1, 6].
After through analysis of different MTLs and the languages proposedin these studies, I propose DelTa
as a candidate language to express model transformation design patterns.DelTa is a neutral and concise
language, independent from existing MTLs and only focuses on the essence of model transformations.
It is explicitly modeled as a DSL, which means it can be used as input and output in a transformation.
Later, this property will help identify design patterns defined in DelTa in existing model transforma-
tion solutions. It also has a textual and graphical concrete syntax at the convenience of transformation
developers.

Another contribution of my thesis is to provide a collection of model transformation design patterns
available to transformation developers. Therefore, I have redefined existing model transformation design
patterns [3, 4] in DelTa along with the implementations in different MTLs. This helps the developers both
to see the design pattern structure in a suitable language and to see it in practice. I have redefined three
design patterns from existing studies and identified two new design patterns.Section 6 shows the efforts
to come up with a design pattern candidate by applying similar solutions to three different problems and
documents each step of this process, which gives hints about how to identify new model transformation
design patterns. Another method of identifying a design pattern is to analyze existing model transforma-
tion solutions in different languages. In Section 7, “execution by translation” design pattern is identified
by using this method.

The rest of this proposal is organized as follows. Section 2 and Section 3give some background
information on model-driven engineering and design patterns. Section 4 presents the related work about
model transformation design patterns, efforts for a language to expressthem, and identification of design
patterns. Section 5 shows the language to define model transformation design patterns, DelTa, and gives
the syntax and semantics. Section 6 briefly mentions how to identify a design pattern on a running exam-

4

ple step-by-step. Section 7 provides additional model transformation design patterns. Section 8 presents
the further work in my plan and the schedule of each work. Finally, Section 9summarizes what I have
done and concludes the proposal. Additionally, there is a list of my publishedand possible papers during
the PhD study in the Appendix A.

2 Background on Model-Driven Engineering

2.1 Model-Driven Engineering

MDE [7] is considered a well-established software development approach that usesabstractionto bridge
the gap between the problem and the software implementation. MDE uses models todescribe complex
systems at multiple levels of abstraction. Models are first-class citizens and represent an abstraction of a
real system, capturing some of its essential properties. Models are instances of modeling languages which
define their abstract syntax, concrete syntax, and semantics. Theabstract syntaxdefines the essence of
the language, often defined by ametamodelTheconcrete syntaxdefines the graphical or textual repre-
sentation of the elements of the metamodel.Semanticsdefines the meaning of the language. The static
semantics is specified by the metamodel extended with constraints, while the dynamic semantics is often
defined by means of a model transformation (either denotational or operational). A model expressed in
a modeling languageconformsto its metamodel. Metamodels themselves are also modeled in a model-
ing language called metamodeling language, which has a conceptual foundation calledmetametamodel.
Transformation, models, metamodels and metametamodels form a four-level architecture in MDE and
these levels are called M0, M1, M2, and M3 respectively [8].

In MDE, the core of the development process consists of a series of transformations over models.
Typically, a transformation or manipulation is modeled by amodel transformationthat conforms to a
specific metamodel. Following Jouaultet al. [9], the model transformation schema in MDE in Figure 1
illustrates these terms.MaandMbare models that conform to metamodelsMMaandMMbrespectively.MTab

basedOn basedOn

M1 Level

M2 Level

M3 Level

conformsTo conformsTo
conformsTo

output

MMM
conformsTo

MMbMMmtMMa

MbMTabMa

conformsTo conformsToconformsTo

Tab

executedOninput

M0 Level

Figure 1: Model transformation schema in MDE.

is a model transformation that conforms to metamodelMMmtand takes a model as an input and produces
another model as an output.MTab is also based on metamodels of both input and output models. All three
metamodels,MMa, MMb, MMmtconform to a standard metametamodel.

5

2.2 Model Transformation

A model transformation is defined as “the automatic manipulation of input models to produce output
models, that conforms to a specification and has a specific intent” in [10]. These intents play an important
role while creating a model transformation. A model transformation intent is a description of the goal
behind the model transformation and the reason for using it [10]. A transformation mainly consists of
source and target languages, transformation rules, and scheduling ofthe rules.

There are roughly two approaches to produce a model transformation [11]: 1) relational 2) graph-
transformation-based. Relational approaches usually specify the correspondence between source and
target elements, meaning creating the target elements implicitly. Therefore, theyfocus on a subset of
model transformations and have more restrictions on how to create one,i.e., usually the input model
is read-only and the output model is write-only. Graph-transformation-based approaches work on graph
structures that represent the models and allow more flexibility like a general-purpose programming lan-
guage. They also allow inplace editing of models, which makes the input and output model the same in
the transformation. Graph-transformation-based approaches can have explicit scheduling structure to let
developers define when and how the rules will be applied. Relational approaches are straight-forward,
therefore this proposal focuses on graph-transformation-based approaches. In the following subsections,
the structure of graph-transformation-based model transformation languages are described.

2.2.1 Structure of Graph-transformation-based Languages

Transformation Rules are the smallest units of a model transformation. A transformation rule has
many different features according to [11]. Thedomain of a ruledefines how a rule can access elements of
models. A rule is a declarative construct that dictateswhatshall be transformed and nothow. It consists
of pre-condition and post-condition patterns. The pre-condition pattern determines the applicability of
a rule: it is usually described with a left-hand side (LHS) and optional negative application conditions
(NACs). The LHS defines the pattern that must be found in the input model toapply the rule. The NAC
defines a pattern that shall not be present, inhibiting the application of the rule. Constraints can be also
be specified over the attributes of LHS and NAC pattern elements. The right-hand side (RHS) describes
the post-condition pattern that must be found in the output model after the ruleis applied. Imperative
actions can be also be specified over the attributes of RHS pattern elements. An advantage of using the
rule-based transformation paradigm is that it allows to specify the transformation as a set of operational
rewriting rules instead of using imperative programming languages. A rule example with LHS, RHS and
NAC parts is depicted in Figure 2. This rule is taken from a model transformation that translates an UML

1 1

2 3 4

1

3

NAC LHS RHS

Figure 2: A sample model transformation rule.

activity diagram model to a behaviorally equivalent Petri net model [12].The rule can be read as “if an
activity (labeled 1) that is not associated with a place (labeled 3) is found, then create a place and two
transitions (labeled 2 and 4), and relate them with temporary trace links”. Thisrule has agraphical syntax
using elements from the concrete syntax of the source and target domains (activity diagrams and Petri
net).

6

Rule Scheduling is an important phase in the development of a model transformation. Scheduling
mechanisms determine the order in which individual rules are applied [11]. One can distinguish between
implicit and explicit scheduling. When the scheduling of a transformation language isimplicit, the mod-
eler has no direct control over the order in which the transformation units are applied. On one hand, a
transformation language can beunordered, i.e., it simply consists of a set of rules. In this case, the or-
der of application of the rules is entirely determined at run-time. It completely depends on the patterns
specified in the rules. Applicable rules are selected non-deterministically untilnone apply anymore. The
scheduling of a language can beexplicitly specified by the modeler. In explicit internal transformation
languages, a rule may explicitly invoke other rules. For example in ATL [9], amatched rule (implicitly
scheduled) may invoke a called rule in its imperative part. Finally, in an explicit external transformation
language, there is a clear separation between the rules and the schedulinglogic. Ordered transforma-
tions specify a control mechanism that explicitly orders rule application of a set of rules. Examples are:
priority-based, layered/phased, or with an explicit workflow structure.Most transformation languages
are partially ordered, however. That is, applicable rules are chosen non-deterministically while following
the control specification.

2.2.2 Model Transformation Languages

There are many model transformation languages in the literature. Some examples are Henshin [13] from
Arendtet al., which is a language that operates on models in Eclipse Modeling Framework (EMF) and
has visual syntax, editing functionalities, execution and analysis tools; GReAT [14] from Agrawalet al.,
which consists of three distinct parts; pattern specification language, graph transformation language and
control flow language; FUJABA [15] from Kleinet al., which is one of the first tools to do code generation
from UML models and UML model generation from code; Viatra2 [16] fromVarro and Balogh, which
provides a rule and pattern-based language for manipulating graph modelsby using graph transformation
and abstract state machines; and AGG [17] from Taentzer, which lets graphs to be attributed by Java
objects and equips graph transformation with computations on these objects.

Each of these languages have a unique set of structure combinations (e.g., different rule and schedul-
ing structure, different directionality). Jouault and Kurtev [18] compared a number of model transfor-
mation languages in terms of transformation scenarios, paradigm, directionality, cardinality, traceability,
query language, rule scheduling, rule organization and reflection.

2.3 MoTif

MoTif is a graph-transformation-based model transformation language and a short name for “Modular
Timed Graph transformation”. MoTif and its semantics is based on the T-Core [19]. It introduces an
explicit notion of time and allows to model the interruption for every rule in the execution.

Figure 2 depicts an example rule in MoTif. The rule is part of another study [12] and basically
add some new petrinet elements to UML activity diagram action nodes while preventing the rule to be
applied more than once by adding a NAC and maintaining traceability links to the original nodes. The
rule consists of three parts. The first part is NAC and separated with dashed line from other parts. Multiple
number of NACs can be added to a rule. The second part is LHS on the leftof the big arrow. That is the
precondition pattern to be found in the input model. The third part is RHS on theright of the big arrow
and the post-condition pattern to be applied to the model. As one can easily realize, concrete syntax can
be used in rule designing phase.

Rule scheduling in MoTif is explicitly defined by another structure, which is also modeled. The
structure allows to define what happens when the rule is matched or not. A sample scheduling sequence

7

is depicted in Figure 3. The rules are single lined green boxes and they have input ports and output ports

?

*

LinkToParent:
F

Figure 3: Scheduling of MoTif Rules.

for success and failure. Success case is finding the match in the input. All output ports can be connected
to any other rule’s input ports or the output ports of the block.

MoTif consists of rule blocks [20]. Each rule block can be either atomic or composite. Some of the
atomic rule block can be found in Figure 3 and are listed below. The content of these rule blocks appears
in

• ARule:means a regular atomic rule. It is a simple rule that is executed only once.

• FRule:means ‘For all Rule’. The matches are found for the input model and this rule is applied to
all found matches. For example in Figure 3, ruleLinkToParent is an FRule.

• SRule:means ‘Star Rule’ and applies the transformation to all matches as long as the rule is ap-
plicable. Therefore it is applied to the resulting model cumulatively after eachapplication. For
example in Figure 3, ruleLinkToAncestors is an SRule.

• QRule:means ‘Query Rule’ and mostly consists of only LHS and NACs For example in Figure 3,
rule GetLCA is an QRule.

• CRule:means ‘Composite Rule’ and can refer to another full MoTif transformation.

Composite rule blocks allow one to encapsulate the composition of rule blocks. Some of them express
flow structures, such as branching and looping.

T-Core Under MoTif, there is T-Core [21], which stands for “Transformation Core”. It is a collection
of primitive operators for model transformation. T-Core offers the following eight primitives:

• Matcher finds all possible matches of the condition on the graph embedded. After matching, it
stores all the matches in the packet.

• Rewriterapplies the required transformation on the match specified in the packet it received.

• Iterator chooses a match among the set of matches of current condition of the packet. The match
is chosen randomly and choosing the match continues until a maximum number is achieved.

• Resolverresolves a potential conflict between matches and rewritings by prohibiting any changes
to other matches in the packet.

• Rollbackeris used as a recovery point that allows backward recovery of packets.

• Selectoris used when a choice needs to be made between multiple packets processed concurrently
by different constructs.

8

• Synchronizeris used when multiple packets processed in parallel need to be synchronized.

• Composeris a modular encapsulation of the elements and any other primitives can be added to the
encapsulation.

The rules of MoTif can be expressed in terms of these primitives. Additionally, any MTL can be mapped
to T-Core and is executed in AToMPM as described in the following paragraph.

Implementation of MoTif and T-Core in AToMPM AToMPM [22] is a web-based modeling
environment for designing domain-specific modeling language environments, perform model transfor-
mations, manipulating and managing models. Figure 4 depicts what has been done to execute MoTif and
T-Core transformations in AToMPM. First, I created a DSL for MoTif. A transformation in AToMPM is

conformsTo

MoTif DSL

MoTif Model

conformsTo

T-Core Model

T-Core DSL

MoTif Execution

Engine

T-Core Execution

Engine

HOT

Other MTLs

HOT

input

input

Input Model

input

input

CRUD

CRUD

debug

debug

Figure 4: Overall diagram of implementation.

a model conforming to this DSL. Then I implemented the MoTif execution engine in Python. The engine
accepts a MoTif transformation and a model as inputs, and executes the transformation step-by-step. It
manipulates the input model with CRUD operations (creation, read, update, deletion of model elements)
according to the result of the transformation. The engine can also debug MoTif models by highlighting
the current rule. The engine has two modes: 1) executing the whole transformation and showing the re-
sulting model at the end 2) executing the transformation step-by-step and reflecting the changes at each
step. This gives developers the option to see the effect of each rule in thetransformation. I also developed
similar engine for T-Core. This allows any MTL to be executed in AToMPM by defining a higher-order
transformation (HOT) from the MTL metamodel to T-Core. Since T-Core provides the primitives of a
graph-transformation-based language, each MTL will have an execution engine regardless of it is sup-
ported by AToMPM, or not. I tried this approach by implementing a HOT from MoTif to T-Core and
executing a MoTif transformation using the T-Core engine. I also implemented aHOT from another
domain specific MTL created from scratch to T-Core and sucessfully executed the transformation.

3 Background on Design Patterns

Design patterns are reusable structures that can help to overcome any problem to be solved from scratch.
Each pattern “describes a problem which occurs over and over again inour environment and then de-
scribes the core of the solution to that problem, is such a way that you can use this solution a million times

9

over, without ever doing it the same way twice” [2]. Design patterns emergefrom reusable idioms found
across different languages through encapsulation and abstraction. There are many studies involving hun-
dreds of design patterns in the literature. Each of them describe a solution tosome kind of a problem. The
use of design patterns leads to the construction of well-structured, maintainable and reusable software
systems [23].

There are several design pattern studies in the literature for different areas. Design patterns are listed
to be used in software architecture [24], building Corba applications [25], real-time systems [26], dis-
tributed computing [27], and embedded network systems [28]. Also, there are design pattern studies for
different parts of model-driven engineering. In [29], Cho and Grayproposed a list of metamodel design
patterns for different problems faced during metamodel design. There are also design patterns in model
transformation [3, 4], which I investigate in details.

In this section, I focus on object-oriented design patterns given its popularity and acceptance in the
community.

3.1 Object-oriented Design Patterns

Object-oriented pattern cataloging process began as a part of Erich Gamma’s PhD thesis [2]. Then the
other authors joined the process and design patterns found the last appropriate structure to be published as
a book. There are now 23 standard object oriented design patterns in thebook. Actually before Gammaet
al. [2]’s work, there were still programming languages that use design patterns without mentioning the
strict name. For example model-view-controller structure in Smalltalk-80 is an earlier example of a de-
sign pattern [30].

3.1.1 Structure

The essential elements of design patterns are explained in Gammaet al. [2]. These are the four main
primitive elements under a design pattern and basically used to express a design pattern’s purpose and
results. They are listed as follows:

• Thepattern name is actually a handle to summarize all other fields in the design patterns essential
elements. It lets developers to freely talk and understand the design as an abstraction. Finding a
good name is one of the hard parts of developing a pattern.

• Theproblem describes when to apply the pattern. Mostly the problem and its context are explained
in this field. These may include specific design problems, class or object structures and a list of
conditions that must be met before application.

• Thesolution describes the elements that are parts of the design, their relationships, responsibilities
and collaborations. Since a pattern is like a template, it has to provide a solution tobe applied in
many different situations. The solution is generally given with UML class diagrams.

• The consequencesare the results and trade-offs of applying the pattern. These are criticalfor
evaluating design alternatives and for understanding the costs and benefits before applying the
pattern. Language and implementation issues, impacts on a system’s flexibility, extensibility and
portability may also help users to understand and evaluate design patterns.

Other than these elements, there are more fields in [2] to describe a design pattern. These are; pattern
name and classification, intent, also-know-as, motivation, applicability, structure, participants, collabora-
tions, consequences, implementation, sample code, known uses, related patterns.Intent is an important
field both in design patterns and model transformations that needs to be mentioned more. This field is

10

the key to select the right design pattern for a problem and the right constructs for a model transforma-
tions. Although the rest of the fields are not crucial for a design pattern,they help to explain it better and
precise.

Hasheminejad and Jalili [31] also introduce two main sections to categorize these fields: problem
domain and solution domain. Theproblem domaindescribes the problem context where the pattern can
be applied and has these fields: intent, motivation and applicability. Thesolution domaindescribes the
structure and collaborations of the pattern solution being applied to the problem and has these fields:
structure, participants, collaborations, consequences, implementation andrelated patterns.

3.2 Limitations of Design Patterns

Design patterns are accepted to be a useful structure in the aim of re-usability and readability. They have
some advantages and disadvantages. A design pattern is based on the problem, context and constraints.
Therefore it doesnot aim for all problems.

The goal of design patterns is to increase quality metrics to satisfy some quality criteria. This often
comes with a trade-off. In design patterns, re-usability criteria mostly conflicts with efficiency criteria.
For example, visitor pattern lets people traverse class structure and process on them in an efficient way,
while it requires nearly double number of new classes created. Also, it is not clear how many design
patterns are enough in a project. There is a probability that you mess up the code by applying too many
unnecessary design patterns [32].

Another point, applying design pattern is not automated yet and it still depends on the manual deci-
sion of the designer. Hasheminejad and Jalili [31] proposed an automatic two-phase method for design
pattern selection, but this does not reduce the impact of the designer in selection process. Blomqvist [33]
proposed a pattern selection approach by ranking the design patterns onthologically and matching them
with terms.

However, re-usability, readability and maintainability are so important criteria that this makes design
patterns always popular.

4 Related Work

4.1 Model Transformation Design Patterns

The first work that proposed design patterns for model transformation was by Agrawalet al. [3]. They
defined thetransitive closurepattern to create traceability links between the parents and ancestors of the
elements. Theleaf collectorpattern traverses a hierarchical tree to find and process all leaves. This can
be considered as an application of the visitor pattern in Section 7.3 where thevisitEntity rule is only
applied on leaves. Theproxy generatoridiom is not a general design pattern, since that it is specific to
languages modeling distributed systems where remote interactions to the system need to be abstracted
and optimized.

Iacobet al. [4] defined five other design patterns for outplace transformations. Themappingpattern
dictates to first map entities and then relations. Since it is described using QVT-R, we consider it as an
implementation of our ER mapping pattern. Therefinementpattern proposes to transform an edge into a
node with two edges in the context of a refinement so that the target model contains more detail. Thenode
abstractionpattern abstracts a specific type of node from the target model while preserving the original
relations. Theflatteningpattern removes the composition hierarchy of a model along by replacing the
containment relations. We plan to generalize these three patterns and definethem in DelTa. Theduality

11

pattern is not a general design pattern, since it is specific to languages for data control flow modeling by
changing by converting edges to nodes and vice versa.

Bézivin et al. [5] mined ATL transformations and ended up with two design patterns. Thetransfor-
mation parameterspattern suggests to model explicitly auxiliary variables needed by the transformation
in an additional input metamodel, instead of hard-coding them in ATL helpers.The multiple matching
pattern shows how to match multiple elements in thefrom part of an ATL rule. Newer versions of ATL
already support this feature and therefore this pattern is obsolete now.

Levendovszkyet al. [34] proposed domain-specific design patterns for model transformation as well
as other DSLs. In their approach, they defined design patterns with a specific MTL, VMTS, where rules
support metamodel-based pattern matching. They proposed two design patterns: thehelper constructs in
rewriting rulespattern explicitly produces traceability links, and theoptimized transitive closurepattern.

The first issue with these previous works is that all the design patterns aredefined using GReAT,
QVT-R, ATL, and VMTS respectively. Therefore, they should not beconsidered as design patterns for
model transformation, but as implementations of design patterns in a specific MTL. The second issue is
that they are all defined as model transformations, rather than patterns, and use specific input and output
metamodels. Therefore, it is not clear how to reuse these patterns for different MTLs.

4.2 Model Transformation Design Pattern Languages

Lano et al.[6] proposed other useful patterns using UML class diagrams and OCL constraints (first-order
logic) to specify model transformations. Each transformation is described with a set ofassumptionsthat
represent the precondition of a rule,constraintsthat represent the postcondition of a rule,ensuresfor
additional constraints, andinvariants. The design patterns are for exogenous transformations only. The
conjunctive-implicative formpattern dictates to separate the creation target entities that are at different
hierarchical levels into different phases. For example, themap objects before linkspattern, essentially our
ER mapping pattern, is an instance of this generic pattern. Another instance of this pattern is therecurrent
constraintspattern where the creation of a target entity may require a fixed point computation. Two other
instances of the conjunctive-implicative form pattern are theentity splittingandentity mergingpatterns
that essentially correspond to the one-to-many and many-to-one variants of the ER mapping pattern
respectively. Theauxiliary metamodelpattern suggests to use an auxiliary metamodel when the mapping
from elements of one language to another is too complex.

In Lano et al.’s approach, the choice of the design pattern language hinders the understandability
of the patterns. This also makes them hard to implement in MTLs other than UML-RSDS. Additionally,
they defined implementation patterns. In contrast with design patterns, they are guidelines to implement
the assumptions and constraints of transformation specifications in a MTL. The description is done on an
abstract implementation language that supports sequencing, branching, looping and operation calls.

Guerraet al. [1] proposed a collection of languages to engineer model transformationsand, in partic-
ular, for the design phase. Rule diagrams (RD) are used to describe the structures of the rules and what
they do in the low level implementation phase. RD is defined at a level of abstraction that is supposed to
be independent from existing model transformation languages. But its purpose is to generate a transfor-
mation rather than to define design patterns. However to generate a transformation, RD relies on different
rule and mapping diagram instances for different model transformation languages. In RD, rules focus on
mappings rather than constraints and actions. Hence, they specify designs for both unidirectional and
bidirectional rules. The execution flow of RD supports sequencing rules, branching in alternative paths
based on a constraint, or non-deterministically choosing to apply one rule. They also allow rules to ex-
plicitly invoke the application of other rules. RD is inspired from QVT-R and ETL and is therefore more
easily implementable in these language.

12

4.3 Identification and Detection of a Design Pattern

Design pattern detection is also another field that can help to identify model transformation design pat-
terns. Since detection techniques are mostly to find software design patternsthat are mentioned in [2]
and [26], they need to be modified to fit in the model transformation world. There are many design
pattern detection techniques in the literature.

Donget al.[35] studied a comprehensive review on these techniques. Each designpattern is generally
described from different perspectives. These are the distinguishingcharacteristics of design patterns and
divided into three: structural, behavioral and semantic characteristics.Structuralaspect is relatively easy
and can be detected from source code or architectural system design and mostly based on the relationships
between classes, such as generalization, association, aggregation.Behavioralaspect is typically described
by method invocations. These invocations can be checked in a static way or adynamic way at system
run time.Semanticaspect is defined in different ways in literature but it basicly refers to thesemantic
meaning of some entities in the system. One can take advantage of naming conventions, programming
guidelines, multiplicities.

Some detection approaches take the reverse engineering tools into consideration to get an intermedi-
ate representation of the system and design pattern discovery is done on theseintermediate representa-
tions instead of source code. These efforts are usually done to reduce the search complexity. There are
several common intermediate representations such as Abstract Syntax Tree, Abstract Semantic Graph,
bit vector, matrix.

Design pattern detection techniques differ from each other in some other criteria as well. Another cri-
teria isexact matchingor approximate matching. Most approaches search a piece of architectural design
that structurally confirms to the structural characteristic of the pattern. Somepatterns can’t be matched
perfectly. Therefore, approximate matching is used in some approaches.Also final discovery results also
presented differently. Design patterns discovered by using a techniqueare generally visualized in the
UML diagrams or class tree hierarchy.

Apart from these criteria, most approaches provide tools to automate the detection process. Some
may require user interaction as well. The detection of each approach generally supports a subset of
design patterns.

5 A Language for Model Transformation Design Patterns

One possible idea that can be deduced from the related works is the lack ofa common design pattern
language to express model transformation design patterns. The benefits of having such a language are
to facilitate, understand, document, communicate, and reason about patterns in a standard way [36].
Also, the language should be independent from regular model transformation languages (MTL). Object-
oriented design patterns are expressed in UML which is independent from general-purpose programming
languages. I could have used an existing MTL as a notation, however this can lead developers to think
the language itself is a transformation language and executable. The need isa notation that expresses
how elements within a rule are related and how rules are related with each other. Therefore, the language
should be I propose DelTa as a language for model transformation designpatterns.

DelTa is a neutral language, independent from any MTL. It is designedto define design patterns for
model transformations, hence it is not a language to define model transformations. In this respect, DelTa
offers some concepts borrowed from any MTL, abstracts away concepts specific to a particular MTL, and
adds concepts to more easily describe designpatterns. This is analogous to how Gammaet al. [2] used
UML class, sequence and state diagrams together to define design patternsfor object-oriented languages.
In the following, I describe the abstract syntax, concrete syntax, and informal semantics of DelTa.

13

5.1 Abstract Syntax

ModelTransformationDesignPattern

name : String

Transformation

UnitRelation

Pattern

Metamodel

Transformation

Unit

DesignPatternElement Annotation

note : String

1..* 1..* 1..*

*

1

condition

TransformationUnitRelation

Decision Sequence

Random

TransformationUnit

Rule

Action

abstract : boolean

Constraint

NegativeConstraint

PseudoUnit

name : String

START

END

result : boolean

Expression

Variable

exists : boolean

name : String

Type

name : String

TransformationBlock

*

*

1

0..1

operatesOn
*

declarations

*
1

DesignPattern

Element

applicationCount

1

PatternMetamodel

Variable

exists : boolean

name : String

Type

name : String

Trace Element

Flag

name : String

value : boolean

RelationEntity

ElementGroup

*
1

source1

target1

*
*

<<enum>>

TUAppCount

single

recursive

TransformationUnit 2..*

<<ordered
>>

1..*

success

1..*

fail

1* Reference ModelTransformation

DesignPattern
1

name : String

Pattern

Metamodel

1..*

Figure 5: DelTa Metamodel

As depicted in Figure 5, amodel transformation design pattern (MTDP) consists of three
kinds of components:transformation units (TU), pattern metamodel (PM) andtransformation
unit relations (TUR). This is consistent with the structure of common MTLs [20]. TUs represent the
concept of rule in graph-based model transformations [37]. With the reference TU, a design pattern can
refer to another complete design pattern by passing the pattern metamodel as parameter. A MTDP rule
consists of aconstraint , anaction , and optionalnegative constraints . These correspond to the
usual left-hand side (LHS), right-hand side (RHS) and negative application conditions (NACs) in graph
transformation. A constraint defines the pattern that must be present, a negative constraint defines the
pattern that shall not be present, and the action defines the changes to beperformed on the constraint
(creation, deletion, or update). All these expressions operate on strongly typedvariables .

There are three types for variables: apattern metamodel , a metamodelelement , or a trace . The
pattern metamodel is a label to distinguish between elements from different metamodels, since a MTDP
is independent from the source and target metamodels used by an actual model transformation. When
implementing a MTDP, the pattern metamodel shall not be confused with the original metamodel of
the source and/or target models of a transformation, but ideally be implementedby their ramified ver-
sion [38]. The metamodel labels also indicate the number of metamodels involved inthe transformation
to be implemented. Metamodel elements are typically either entity-like and relation-likeelements, this
is why it is sufficient to only considerentities or relations in DelTa. An element may be assigned
booleanflags to refer to the same variables across rules. Undeclared flags are defaulted to false . This
is similar to pivot passing in MoTif and GReAT, and parameter passing in Viatra2. When implementing
a MTDP, flags may require to extend the original or ramified metamodels with additional attributes. An
element group is an entity that represents a collection of entities and relations implicitly, when fix-
ing the number of elements is too restrictive. Traceability links are crucial in MTLs but, depending on

14

the language, they are either created implicitly or explicitly by a rule. In DelTa, Iopted for the latter,
which is more general, in order to require the developer to take into accounttraceability links in the
implementation.

As surveyed in [19], different MTLs have different flavors of TUs. For example, in MoTif, anARule
applies a rule once, anFRule applies a rule on all matches found, and anSRule applies a rule recursively
as long as there are matches. Another example is in Henshin where rules with multi-node elements
are applied on all matches found. Nevertheless, all MTLs offer at leasta TU to apply a rule once or
recursively as long as possible which are two TUapplication counts in DelTa. All other flavors of
TUs can be expressed in TURs as demonstrated in [19]. For reuse purposes, rules in DelTa can be grouped
into transformation blocks , similarly to aBlock in GReAT.

As surveyed in [39, 11], in any MTL, rules are subject to a scheduling policy, whether it is implicit
or explicit. For example, AGG uses layers, MoTif and VMTS [40] use a control flow language, and
GReAT defines causality relations between rules. As shown in [21], it is sufficient to have mechanisms
for sequencing, branching, and looping in order to support any scheduling offered by a MTL. This is
covered by the three TURs of DelTa:Sequence , Random, andDecision that are explained in Section 5.3.
The former two act on at least two TUs and the latter has three parts; condition, success and fail TUs.
PseudoUnits mark the beginning and the end of the scheduling part of a design pattern.

Finally, annotations can be placed on anydesign pattern element in order to give more insight
on the particular design pattern element. This is especially used for element groups and abstract actions.

5.2 Concrete Syntax

Listing 1 shows the EBNF grammar implemented in Xtext.

Listing 1: EBNF Grammar of DelTa in XText

1 MTDP:
2 ' mtdp ' NAME
3 ' metamodels: ' NAME(' , ' NAME)* ANNOTATION?
4 ((' tblock ' NAME' *' ? ANNOTATION?) ?
5 (' ref ' NAME' (' NAME(' , ' NAME) * ') : ' NAME) ?
6 ' rule ' NAME' *' ? ANNOTATION?
7 ElementGroup?
8 Entity?
9 Relation?

10 Trace?
11 Constraint
12 NegativeConstraint*
13 Action)+
14 TURelation+ ;
15
16 ElementGroup: ' ElementGroup ' ELEMENTNAME(' , ' ELEMENTNAME)* ;
17 Entity: ' Entity ' ELEMENTNAME(' , ' ELEMENTNAME)* ;
18 Relation: ' Relation ' NAME' (' ELEMENTNAME' , ' ELEMENTNAME')'
19 (' , ' NAME' (' ELEMENTNAME' , ' ELEMENTNAME')')* ;
20 Trace: ' Trace ' NAME' (' ELEMENTNAME(' , ' ELEMENTNAME)+ ')'
21 (' , ' NAME' (' ELEMENTNAME(' , ' ELEMENTNAME)+ ') ') * ;
22 Constraint: ' constraint: ' ' ~' ? (ELEMENTNAME|NAME) (' , ' ' ~' ? (ELEMENTNAME|NAME)) * ANNOTATION? ;
23 NegativeConstraint: ' negative constraint: ' (ELEMENTNAME|NAME) (' , ' (ELEMENTNAME|NAME))* ANNOTATION? ;
24 Action: (' abstract action: ' | ' action: ' (' ~' ? (ELEMENTNAME|NAME)
25 (' , ' ' ~' ? (ELEMENTNAME|NAME)) *)) ANNOTATION? ;
26 TURelation: (TURTYPE(' START' | (NAME (' [' NAME' =' (' true ' | ' false ')'] ') ?))
27 (' , ' (' END' | NAME) (' [' NAME' =' (' true ' | ' false ')'] ') ?) +) | Decision;
28 Decision: NAME ' ?' DecisionBlock ' : ' DecisionBlock;
29 DecisionBlock: (' END' | NAME) (' [' (' END' | NAME) ' =' (' true ' | ' false ')'] ') ?
30 (' , ' (' END' | NAME) (' [' (' END' | NAME) ' =' (' true ' | ' false ')'] ') ?) * ;
31 terminal NAME: (' a' .. ' z ' |' A' .. ' Z') (' a' .. ' z ' |' A' .. ' Z' |' 0' .. ' 9')* ;

15

32 terminal ELEMENTNAME: NAME' . ' NAME(' [' NAME' =' (' true ' |' false ')
33 (' , ' NAME' =' (' true ' |' false ')) * '] ') ? ;
34 terminal ANNOTATION: ' #' (!' #')* ' #' ;
35 terminal TURTYPE: (' Sequence ' | ' Random') ' : ' ;

The structure of a DelTa design pattern is as follows. A new design pattern isdeclared using themtdp
keyword. This is followed by a list of metamodel names. The rules are defined thereafter. Rules can be
contained inside transformation blocks represented by thetblock keyword. The ‘∗’ next to the name of
the rule indicates that the rule is recursive; the application count is single bydefault. Since reference
is also a TU, it is defined at this level. A rule always starts with the declaration of all the variables it
will use in its constraints and actions. Then, theconstraintpattern is constructed by enumerating the
variables that constitute its elements. Elements can be prefixed with ‘∼’ to indicate their non-existence.
Flags can be defined on elements using the square bracket notation. Optional negative constraints can be
constructed, followed by an action. An abstract action may not enumerate elements. The final component
of a MTDP is the mandatory TUR definitions. A TUR is defined by its type and followed by a list of rule
or transformation block names. As an exception, decision TUR is a single line conditional that creates a
branch according to the success or fail of the condition rule. Annotationsare enclosed within ‘#’. In [41],
all design patterns are depicted with their textual syntax.

I opted for a textual concrete syntax for DelTa at first. However, afterinformally surveying the model
transformation community, I discovered that some design patterns, such as “visitor” or “fixed point it-
eration”, that require more complex scheduling of the rules are difficult to understand in textual syntax.
Therefore, I opted for an alternative graphical syntax for DelTa thatis equally expressive as its textual
counterpart. Figure 6 illustrates the graphical concrete syntax of all metamodel elements.

{reference}

reference1(mm1,..)
<ReferencedDP1>

annotation1

success

fail

rule1

{abstract}

metamodel1

entity1
flag1

flag2

flag3

metamodel1

entity2
n0

metamodel1

entity3
n1

n0

n1

elementGroup1
metamodel1

rule6

metamodel1

entity4

metamodel1

entity5

transformationBlock1

rule2 rule3

rule4

rule5

metamodel1

entity6

sampleDP

(metamodel1)

Figure 6: A dummy design pattern illustrating the graphicalsyntax of DelTa.

DelTa design patterns starts with aStart node that is characterized by the name of the design pattern
and the pattern metamodels involved. It is represented with a filled circle. TheEnd node represents the
end of a design pattern with a result of success or fail depicted with a cross or an inner black circle
respectively. DelTa design patterns focus on the relations between the TUs. Each TU contains the pattern
metamodel elements and the rule description. “rule1” is arule to be applied once, whereas “rule6” is

16

applied recursively. Optionally, rules can be marked abstract meaning that the rewriting part is left to
the implementation. “transformationBlock1” is ablock that represents a nested hierarchy of other TUs.
TUs are connected with with arrows which represents theSequenceof the order of their application. The
outcome of a TU is either success or fail. If this differentiation matters to the pattern, aDecisionnode
is used, represented with a triangle of one input port and an output portfor each outcome. The sequence
chooses which way to follow according to the result of the previous rule orblock. “reference1” is a
referenceto another DelTa design pattern named “ReferenceDP1”. When referencing a design pattern,
passing the information of the metamodels to the referenced design pattern is required. They appear
between the parenthesis after the reference’s name. “rule4” and “rule5” are inside aRandom TUR,
which means that at most one of them will be applied at random.

Each rule describes the CRUD operations on elements from pattern metamodel.The name of the
pattern metamodel appears on top right of any element (e.g.,to distinguish which metamodel the element
belongs). “entity1” is anentity with threeflags. Flags can be true (“flag1”) or false (“flag2”), created
(“flag3”) or modified (“flag2”). White elements are to be matched, gray elements are to be created and
black elements are to be deleted. To specify an element group of unknown number, there is theElement-
Group. It is represented with a group of elements stacked such as the “elementGroup1” in the “rule6”.
Elements and element groups are connected to each other withRelations or Traces . A Relation is an
arrow, for example the “elementGroup1” is connected to “entity4” with a relation. A Trace is a dotted
line, for example the “elementGroup1” is connected to “entity6” with a trace. A rule consists ofcon-
straints, negative constraints, andactions. Negative constraints are marked with “n” and some number,
for example “entity2” has the negative constraint “n0” on top left of its icon.

“rule1” is to be read as follows. An entity “entity1” from “metamodel1” must be matched with flags
“flag1” true and “flag2” false. Furthermore, there should not be any relation between “entity1” and two
other entities. Then, two entities must be created (“entity2” and “entity3”), “flag2” must be set to false,
and a new “flag3” must be initialized to true. “rule6” is to be read as follows. If an entity group is related
with two entities (“entity4” and “entity5”) and shares a trace with another third entity, then one of the
related entities shall be deleted. Finally, each element in DelTa can beannotatedwith a note, inspired
from UML.

5.3 Informal Semantics

The semantics of MTDP rules is borrowed from graph transformation rules[37], but adapted for pat-
terns. Informally, a MTDP rule is applicable if its constraint can be matched and no negative constraints
can. If it is applicable, then the action must be performed. Conceptually, wecan represent this by:
constraint∧¬neg1∧¬neg2∧ . . .→ action. The presence of a negated variable (i.e.,with exists=false)
in a constraint means that its corresponding element shall not be found. Since constraints are conjunctive,
negated variables are also combined in a conjunctive way. Disjunctions canbe expressed with multiple
negative constraints. Actions follow the exact same semantics as the “modify”rules in GrGen.NET [42].
Elements present in the action must be created or have their flags updated. Negated variables in an action
indicate the deletion of the corresponding element. Only abstract actions areempty, giving the freedom
to the actual implementation of the rule to perform a specific action. Flags are not attributes but label
some elements to be reused across rules.

MTDP rules are guidelines to the transformation developer and are not meant to be executed. On one
hand, the constraint (together with negative constraints) of a rule shouldbe interpreted asmaximal: i.e.,a
MT rule shall find at most as many matches as the MTDP rule it implements. On the other hand, the action
of a rule should be interpreted asminimal: i.e.,a MT rule shall perform at least the modifications of the
MTDP rule it implements. This means that more elements in the LHS or additional NACsmay be present

17

in the MT rule and that it may perform more CRUD operations. Furthermore, additional rules may be
needed when implementing a MTDP for a specific application. Note that the absence of anaction in a
rule indicates that the rule is side-effect free, meaning that it cannot perform any modifications.

The scheduling of the TUs of a MTDP (or contained inside atransformation block) must al-
ways begin withSTARTand end withEND. TUs can be scheduled in four ways. TheSequence relation
defines a sequencing relation between two or more TUs regardless of theirapplicability. For example
Sequence:A,B means thatA should be applied first and thenB can be applied. TheRandom relation de-
fines the non-deterministic choice to apply one TU out of a set of TUs. For exampleRandom:A,B means
thatA or B should be applied, but not both. TheDecision relation defines a conditional branching and
applies the TUs in the success or fail branches according to the applicationof the rule in the condition.
For exampleA?B:C means that ifA is applicable thenB should be applied after, otherwiseCshould be ap-
plied. Note that the latter TUR can be used to define loop structures. For example,A?A:A is equivalent to
definingA as recursive,i.e.,A* . The notion of applicability of a transformation block is determined by the
result of itsENDTU. For example, consider a transformation blockT and a ruleR andP. The scheduling
T?R:P means that ifEND[result=true] is reached inT, thenR will be applied. The graphical concrete
syntax explain all these scheduling tricks better.

6 Identification of a Model Transformation Design Pattern

The identification of a model transformation design pattern is not an easy task. It requires solving and
analyzing some solutions to finally come up with a design pattern. In this section, Ipropose to solve the
well-known lowest common ancestor (LCA) problem [43] using model transformation. For this purpose,
I solve the problem using a naïve and an improved solution. I show that the latter improves the quality
metrics of the model transformation with respect to efficiency criteria. Then,I identify two other problems
that can be solved using an approach similar to the improved LCA solution. I therefore generalize the
solution to a design pattern as it describes a solution for recurrent problems and increases the quality of
the model transformation that implements it.

6.1 Running Example

LCA is a general problem in graph theory and is typically defined over a directed tree structure. Es-
sentially, it attempts to find the lowest shared ancestor between two given input nodes of the tree. For
example in Figure 7, the LCA of nodes D and J is node A. In this instance, onecan compute the LCA of

A

B

E

F

G

H

I

J

K

C

D

Figure 7: Tree instance for LCA problem

node D and node J to be node A.

18

6.1.1 Naïve Solution

Typically, solutions using model transformation approaches tend to take advantage of the declarativeness
and non-determinism of rule-based systems. In the first solution proposed, I first create all ancestor links
of every node as depicted by the first three rules in Figure 8. ThenGetLCA rule checks if, given the two
initial nodes (A and B), there is an ancestor node common to both nodes that do not have a successor
that is also a common ancestor of the two nodes. The rules and scheduling ofthese rules are depicted
in Figure 8. For this study, I have focused on three metrics:the number of rule applicationscounts how

X

Y

X

Y

LinkToParent

Y

X Z

Y

X ZX Z

LinkToAncestors

Rules: Scheduling:

?

*

LinkToParent:
F

:LinkToAncestors

GetLCA

C

A BA BD

C

X X

LinkToSelf

:LinkToSelf
F

Figure 8: Rules for naïve solution

many times the rule is applied,the size of the rulecounts the number of elements present in the patterns
of each rule, andthe number of auxiliary elements createdcounts the number of ancestor links created
to compute the LCA.

To compute the metrics, I consider a tree withn nodes and hencen−1 edges. TheLinkToSelf rule
creates self-ancestor links for all nodes, to cover the trivial case, and is appliedn times, once for every
node in the tree. TheLinkToParent rule creates ancestor links to the parents of each node and is applied
n−1 times, once per edge. TheLinkToAncestors rule creates ancestor links to all ancestors of each
node, recursively. Therefore, the number of ancestor links is proportional to the depth of each node. The
following equation gives the total number of ancestor links that need to be created, whereki is the depth
level of nodei.

n

∑
i=1

ki −2= O(n2)

After all ancestor links are created, theGetLCA rule is applied only once and returns the LCA of the given
input nodes if it exists. The NAC part of theGetLCA rule guarantees that the solution is the lowest one
among other common ancestors. The metrics for the naïve solution are depictedin Table 1.

6.1.2 Improved Solution

In the improved solution, I use locality, focusing on only the given input nodes. I adopt an iterative
approach. I start to create ancestor links one step at a time and, at each time, I check for a solution. The
rules and scheduling of these rules are depicted in Figure 9.

TheLinkToSelf rule creates self-ancestor links for the given input nodes only and therefore is ap-
plied twice. To acheieve that, I use the pivot feature in MoTif which forcesthe rule to be applied on bound
or elements. That is, A and B are parametrized nodes bound to nodes fromthe input model at run-time.
Then, theLinkToParent rule creates ancestor links to the parents of input nodes, which is applied twice.

19

Table 1: Metrics for naïve and improved LCA solutions

Rules Size of rules # Rule Applications # Auxiliary Elements
Naïve Improved Naïve Improved Naïve Improved

LinkToSelf 3 3 n 2 n−1 2
LinkToParent 7 7 n−1 2 O(n2) 2n−2
LinkToAncestors 14 14 O(n2) 2n−2 O(n2) 2n−2
GetLCA 14 14 1 n 0 0
Total 38 38 O(n2+2n) 3n+2 O(n2+2n) 2n+2

LinkToSelf

X

Y

X

Y

LinkToAncestor

:GetLCA
?

C

A B

GetLCA

,

,
X

Y

X

YBB

A A

Rules: Scheduling:

A A B B

X X

LinkToParent

A A

X X

B B,

Figure 9: Rules for improved solution

This results in an intermediate form of the tree instance, which may possibly solve the LCA task. There-
fore, I apply theGetLCA rule and try to find the solution if it exists. If I cannot find a solution, I execute
theLinkToAncestor rule and create one more level of ancestor links. Again, I use only the given input
nodes. With only one more step, this rule takes the intermediate form closer to a solution. Then, I use the
GetLCA rule to check again. These iterative steps continue until theGetLCA rule finds a solution or the
LinkToAncestor rule fails by not making a contribution to the solutioni.e., if the root is reached and
GetLCA fails. For the tree instance in Figure 7, the solution is found in three steps. Therefore, theGetLCA
rule is applied four times and theLinkToAncestor rule is applied three times. In general, the given input
nodes might be in different depth levels (k1 andk2 respectively). The ancestor link creation continues up
to the root node, so the maximum of depth levels is the number of iterations needed to find the solution.
In the worst case, this depth can ben and I createn−1 ancestor links. Therefore, theLinkToAncestor
rule is applied a total of 2(n−1) times for input nodes and theGetLCA rule is appliedn times.

Metrics for the improved solution are also depicted in Table 1. One can clearlysee the improvement
by comparing the metric counts between naïve solution and improved solution. Allthree metrics are
related to the efficiency quality criteria. Therefore, I can say the improvedsolution is more efficient than
the naïve solution. I did not take the execution time of the model transformations because they are already
proportional to the enumerated metrics.

20

6.2 Similar Problems

In this section, I identify and solve two more problems from very different domains using model trans-
formation.

6.2.1 Equivalent Resistance

In electrical circuits, the computation of the equivalent resistance of the whole circuit is a common task.
Finding the equivalent resistance in a series of connected resistors is aninteresting problem to apply our
design pattern. In this case, the transformation takes as input an electricalcircuit model with resistors
connected both in serial and parallel. The rules are depicted in Figure 10.TheIsFinished rule looks for
resistors set in serial or parallel in the circuit. If the rule cannot find anymore serial or parallel resistors, it
will return the single resistor as the equivalent resistance. TheCalculateUnitEquivalentResistance
rule calculates equivalent resistance for only a set of serial and/or parallel resistors and directs the control
flow to theIsFinished rule again depicting a loop.

A

A

Y
A

Z

R1

R2

R1+R2

R1*R2

R1

R2
R1+R2

IsFinished

CalculateUnitEquivRes

,

R1

R2

Rules: Scheduling:

:IsFinished
?

ParallelRule

SerialRule

Figure 10: Rules for Equivalent Resistance Problem

6.2.2 Dijkstra’s Algorithm for Shortest Path

Dijkstra’s algorithm is a well-known graph search algorithm that returns theshortest path and length of
this path between two nodes, source and target. The solution is provided in Figure 11. The input model
is a directed and weighted tree. TheVisitImmediateNeighbors rule initiates the algorithm by visiting
the immediate neighbors of the source node. After a visit, each node is assigned with the weight of the
path and is colored in red to represent that it is visited. The terminating criteriaof the algorithm is visiting
all nodes, which is ensured by theIsAllNodesVisited rule. If there are still unvisited nodes, then the
VisitOneMoreHop rule is executed. TheVisitOneMoreHop rule selects the smallest number of weighted
nodes among visited ones and calculates the new weights for the unvisited neighbors of this node. After
each node is visited, the target node will have the length of the shortest pathas value and the path with
purple marked arrows will be the shortest path.

21

A XX
w A Xw

w

X J
w

Y X

wz

z<w

X

w

Tw
X
y v

v>y+w

Tw
X
y y+w

VisitImmediateNeighbors

IsAllNodesVisited

VisitOneMoreHop

:IsAllNodesVisited

*

*

:VisitImmNeighbors

?

Rules: Scheduling:

A A

SelectLowest

VisitItsNeighbors

Figure 11: Rules for Dijkstra’s Algorithm

6.3 Generalization of the Solution

The improved LCA, equivalent resistance, and Dijkstra’s shortest pathmodel transformation solutions
look very alike. The structure is like a fixed-point iteration. In general there are three blocks. The first
block initializes the input model with creation of some temporary elements and results in an intermediate
form of the model (Initiate step). The initialization is optional (e.g.,Equivalent resistance problem in
Section 6.2.1) but I have to include it in generalization. Then, a query verifies if a solution if found (Check
step). Finally, if the query fails, the last block encodes one more step towards the solution (Advance step).
The structure can also be seen as awhile not loop in programming languages. I created the following
pattern by using this generalization.

6.4 Fixed Point Iteration

• Motivation: Fixed point iteration is a pattern for representing a "do-until" loop structure. It solves
the problem by modifying the input model iteratively until a condition is satisfied.We previously
identified this pattern in [44]. Asztaloset al.[45] also identified a similar structure named traverser
model transformation analysis pattern.

• Applicability: This pattern is applicable when the problem can be solved iteratively until a fixed
point is reached. Each iteration must perform the same modification on the model, possibly at
different locations: either adding new elements, removing elements, or modifying attributes.

• Structure: The structure is depicted in Figure 12. The fixed point iteration consists of rules that
have abstract actions because processing at each iteration entirely depends on the application. Nev-
ertheless, it enforces the following scheduling. The pattern starts by selecting a predetermined
group of elements in theinitiate rule and checks if the model has reached a fixed point (the con-
dition is encoded in the constraint of thecheckFixedPoint rule). If it has, thecheckFixedPoint
rule may perform some action,e.g.,marking the elements that satisfied the condition. Otherwise,
the iterate rule modifies the current model and the fixed point is checked again.

22

initiate

eg
selected

initiate the

element group

fail

process the

element group

checkFixedPoint

{abstract}

success

iterate advance the

initiated group

{abstract}

fail

success

mm

eg
mm

eg
selected

mm

Fixed Point Iteration(mm)

Figure 12: Structure of Fixed Point Iteration in Graphical Syntax

• Examples: In [44], we showed how to solve three problems with this pattern: computing the
lowest common ancestor (LCA) of two nodes in a directed tree, which adds more elements to
the input model; finding the equivalent resistance in an electrical circuit, which removes elements
from the input model; and finding the shortest path using Dijkstra’s algorithm,which only modifies
attributes.

• Implementation: Figure 9 shows the implementation of the LCA in MoTif using the fixed point
iteration pattern. Theinitiate rule is extended to create traceability links on the input nodes
themselves with theLinkToSelf rules and with their parents with theLinkToParent rules. The
GetLCA rule implements thecheckFixedPoint rule and tries to find the LCA of the two nodes in
the resulting model following traceability links. This rule does not have a RHS but it sets a pivot
to the result for further processing. TheLinkToAncestor rules implement theiterate rule by
connecting the input nodes to their ancestors. The MoTif control structure reflects exactly the same
scheduling with the design pattern.

• Variations: In some cases, theinitiate rule can be omitted when, for instance, theiterate rule
deletes selected elements such as in the computation of the equivalent resistance of an electrical
circuit [44].

7 Additional Model Transformation Design Patterns

In this section, I show the additional model transformation design patterns (MTDP) by redefining the
ones in existing studies or trying to identify new ones as in Section 6. A common practice while solving
a problem is considered as a “design pattern” if we can apply it to different problems. This also implies the
model transformation languages we use in the implementation can be different. Therefore, some useful
practices within a single model transformation language should not be considered a design pattern, but
on the contrary it can be a reusable idiom that can be supported with built-in structures. This list can be
extended by other transformation developers, following the same style and using DelTa to represent the
structure.

As mentioned in Section 6.3, each design pattern has some fields to describe. Inspired by the Gammaet
al. [2] catalog templates, I use the following characteristics to describe a model transformation design
pattern:motivationdescribes the need for and usefulness of the pattern,applicabilityoutlines typical sit-
uations when the pattern can be applied,structuredefines the pattern in DelTa and explains the pattern,

23

examplesillustrates practical cases where the patterns can be used,implementationprovides a concrete
implementation of the pattern in a MTL, andvariationsdiscusses some common variants of the pattern.
In the structure characteristic, I use the graphical syntax of DelTa, butI also show the textual syntax in
the first design pattern to give an idea how it looks like in action. For the example characteristic, I use a
subset the UML class diagram metamodel with the concepts of class, attributes, and superclasses in most
cases. For the implementation characteristic, I have implemented all design patterns in more than one
languages such as MoTif, AGG, Henshin, Viatra2, GrGen.NET. AlthoughI only show one implementa-
tion for each in this paper, the complete implementations can be found in [46]. This is how I validated
the expressiveness, usability, and implementability of patterns defined in DelTa.

7.1 Entity Relation Mapping

• Motivation: Entity relation mapping (ER mapping) is one of the most commonly used transfor-
mation pattern in exogenous transformations encoding a mapping between two languages. It cre-
ates the elements in a language corresponding to elements from another language and establishes
traceability links between the elements of source and target languages. Thispattern was originally
proposed in [4] and later refined in [6].

• Applicability: The ER mapping is applicable when we want to translate elements from one meta-
model into elements from another metamodel.

• Structure: The structure is depicted in Listing 2 in textual syntax and in Figure 13 in the graphical
syntax. The pattern refers to two metamodels labeledsrc and trgt , corresponding to the source
and target languages. It consists of a MTDP rule for mapping entities firstand another for mapping
relations. TheentityMapping rule states that if an entitye from src is found, then an entityf
must be created intrgt as well as a tracet1 between them, ift1 and f do not exist yet. The
relationMapping rule states that if there is a relationr1 betweene and f in src and there is a
tracet1 betweene andg, and a tracet2 betweenf andh, then create a relationr2 betweeng and
h if it does not exist yet. Both rules should be applied recursively.

Listing 2: One-to-one Entity Relationship Mapping MTDP

mtdp OneToOneERMapping
metamodels: src , trgt
rule ent i tyMapping *

Entity src .e , trgt . f
Trace t1 (src .e , trgt . f)
constraint: src .e , ~ trgt .f , ~ t1
action: trgt .f , t1

rule re lat ionMapping *
Entity src .e , src .f , trgt .g , trgt .h
Relation r1 (src .e , src . f) , r2 (trgt .g , trgt .h)
Trace t1 (src .e , trgt .g) , t2 (src .f , trgt .h)
constraint: src .e , src .f , trgt .g , trgt .h , r1 , t1 , t2 , ~ r2
action: r2

Sequence: START, ent i tyMapping , relat ionMapping , END

• Examples: A typical example of ER mapping is in the transformation from class diagram to
relational database diagrams, where, for example, a class is transformedto a table, an attribute to a
column, and the relation between class and attribute to a relation between table and column.

• Implementation: I show the implementation of ER mapping in Henshin in Figure 14. The pattern
states to apply the rules for entities before those for relations. Henshin provides a sequence structure
with SequentialUnit . Henshin uses a compact notation for rules together with stereotypes on

24

src

e

entityMapping

trgt

x
n0

relationMapping

src

e
trgt

x

src

f
trgt

y

n0

One-to-one Entity

Relationship Mapping (src,trgt)

n0

Figure 13: Structure of ER Mapping in Graphical Syntax

Rules:

Scheduling:

Figure 14: Rules of ER Mapping in Henshin

pattern elements.«preserve» is used for the elements found in the constraint of the MTDP rule
and«create» is used to create elements found in the action of the MTDP rule. Here there aretwo
rules corresponding toentityMapping : one for mapping classes to tables and one for mapping
attributes to columns. In Henshin, traceability links must be modeled explicitly as a separate class
connecting the source and target elements. I did not need to use NACs because Henshin provides a
multi-node option that already prevents applying a rule more than once on the same match.

• Variations: Sometimes the entities in specific metamodels cannot be mapped one-to-one. It is pos-
sible to define one-to-many or many-to-many ER mappings pattern using elementgroups instead
of entities (see [46]). Also, some implementations may require the creation of a trace between the
two relations in therelationMapping rule.

7.2 Transitive Closure

• Motivation: Transitive closure is a pattern typically used for analyzing reachability related prob-
lems with an inplace transformation. It was proposed as a pattern in [3] and in[34]. It generates the
intermediate paths between nodes that are not necessarily directly connected via traceability links.

• Applicability: The transitive closure pattern is applicable when the metamodels in the domain
have a structure that can be considered as a directed tree.

• Structure: The structure is depicted in Figure 15. The pattern operates on single metamodel. First,

25

immediateRelation

mm

e
mm

f

recursiveRelation

mm

e
mm

f

mm

g

Transitive Closure(mm)

n0
n0

Figure 15: Structure of Transitive Closure in Graphical Syntax

the immediateRelation rule creates a trace element between entities connected with a relation.
It is applied recursively to cover all relations. Then, therecursiveRelation rule creates trace
elements between the node indirectly connected. That is if entitiese-f andf-g are connected with
a trace, thene andg will also connected with a trace. It is also applied recursively to cover all nodes
exhaustively.

• Examples: The transitive closure pattern can be used to find the lowest common ancestor between
two nodes in a directed tree, such as finding all superclasses of a class inUML class diagram.

• Implementation: I have implemented the transitive closure in AGG. Figure 16 depicts the corre-

Figure 16: Transitive Closure rules in AGG

sponding rules. AGG rules consist of the traditional LHS, RHS, and NACs. The LHS and NACs
represent the constraint of the MTDP rule and the RHS encodes the action. TheimmediateSuperclass
rule creates a traceability link between a class and its superclass. The NAC prevents this traceability
link from being created again. TherecursiveSuperclass rule creates the remaining traceability
links between a class and higher level superclasses. AGG lets the user assign layer numbers to each
rule and starts to execute from layer zero until all layers are complete. Completion criteria for a
layer is executing all possible rules in that layer until none are applicable anymore. Therefore, I
set the layer ofimmediateSuperclass to 0 andrecursiveSuperclass to 1 as the design pattern
structure stated these rules to be applied in a sequence.

• Variations: In some cases, a recursiveselfRelation rule may be applied first, for example when
computing the least common ancestor class of two classes, as in [44].

26

7.3 Visitor

• Motivation: The visitor pattern traverses all the nodes in a graph and processes each entity indi-
vidually in a breadth-first fashion. This pattern is similar to the “leaf collector pattern” in [3] that
is restricted to collecting the leaf nodes in a tree.

• Applicability: The visitor pattern can be applied to problems that consist of or can be mapped to
any kind of graph structure where all nodes need to be processed individually.

• Structure: As depicted in Figure 17, the visitor pattern makes use of flags. ThemarkInitEntity

e is a

prefixed entity

process

current entities

failsuccess

markInitEntity

mm

e
marked

visitEntity

mm
e

marked

processed

markNextEntity

mm

e
processed

mm

f
marked

Visitor(mm)

Figure 17: Structure of Visitor in Graphical Syntax

rule flags a predetermined initial entity as “marked”. Note that in actual implementation, this
rule maybe more complex. This rule is applied first and once. The next rule tobe applied is the
visitEntity rule. It visits the marked but unprocessed nodes by changing their processed flags
to true . The actual processing of the node is left at the discretion of the implementation. Then,
themarkNextEntity rule marks the nodes that are adjacent to the processed nodes. Markingand
processing are split into two steps to reflect the breadth-first traversal.ThemarkNextEntity rule
then initiates the loop to visit the remaining nodes. Visiting ends whenmarkNextEntity is not
applicable,i.e.,when all nodes are marked and have been processed.

• Examples: The visitor pattern helps to compute the depth level of each class in a class inheritance
hierarchy, meaning its distance from the base class.

• Implementation: I have implemented visitor in GrGen.Net as depicted in Figure 18. This MTL
provides a textual syntax for both rules and scheduling mechanisms. In a rule, the constraint is
defined by declaring the elements of the pattern and conditions on attributes are checked with
an if statement. Actions are written in amodify or replace statement for new node creation
andeval statements are used for attribute manipulation. ThemarkBaseClass rule selects a class
with no superclass as the initial element to visit. Since this class already has a depth level of 0, I
flag it as processed to prevent thevisitSubclass rule from increasing its depth. This is a clear
example of the minimality of a MTDP rule, where the implementation extends the rule accord-
ing to the application. ThevisitSubclass rule processes the marked elements. Here, processing
consists of increasing the depth of the subclass by one more than the depth of the superclass.
ThemarkSubclass rule marks subclasses of already marked classes. The scheduling of these Gr-
Gen.Net rules is depicted in the bottom of Figure 18. As stated in the design pattern structure,
markBaseClass is executed only once.visitSubclass andmarkSubclass are sequenced with
the ;> symbol. The∗ indicates to execute this sequence as long asmarkSubclass rule succeeds.
At the end, all classes should have their correct depth level set and allmarked as processed. Note
that in this implementation,visitSubclass will not be applied in the first iteration of the loop.

27

Figure 18: Visitor rules and scheduling in GrGen.Net

• Variations: It is possible to vary the traversal order, for example a depth-first strategy may be
implemented. It is also possible to visit relations instead of entities. Another variation is to only
have one recursive rule that processes all entities if the order in which they processed is irrelevant.

7.4 Execution by Translation

• Motivation: To execute a domain-specific language (DSL), we often refer to some other languages
that have well-defined semantics and easy to execute. This saves the time andeffort of the developer
to write an executor from scratch for the DSL and standardizes the execution in a way. With this
pattern, the DSL is mapped to another intermediate language. Then, this language is simulated and
the corresponding DSL elements are modified accordingly to show the animation.

• Applicability: The pattern is applicable when we want to execute a DSL and have another language
to rely the simulation on.

• Structure: The structure of the pattern is depicted in Figure 19. The pattern refers to two meta-
models; thedsl , which is the DSL we want to execute, and thesimLang , which is the interme-
diate language we simulate instead ofdsl . First, thedsl is mapped to thesimLang by using the
OneToOneERMapping design pattern described in [41]. This results in having each element in the
dsl mapped to its corresponding equivalent in thesimLang . Then, in theinit rule, we setup
the initial state of the model ready for the simulation. The simulation runs in a loop. First, we
check aterminatingCondition to know when to stop the execution. If it is not satisfied, the
simulateAndAnimate transformation block is activated. In this block, the state of specific ele-
ments needs to be modified according to a criterion in thesimulate rule. Then theanimate rule
finds the corresponding elements of the elements whose state has been modified in thedsl and
does the necessary changes, which means either changing an attribute orthe concrete syntax of
those elements. After this block, theterminatingCondition is checked again and the simulation
goes on.

• Examples:In [38], Kühne et al.executes FSA by translating to PN. As they simulate the PN, they

28

init

Execution by Translation (dsl,simLang)

{reference}

mapping(dsl,simLang)
<OneToOneERMapping> eg

simLang

{abstract}

pre-processing
terminatingCondition

eg
simLang

{abstract}

Is target state

reached? &

post-processing

simulate

stateChanged

eg
simLang

modify the

current state of eg animate

stateChanged

eg
simLang

do processing

changes in CS of eg2

eg2
dsl

simulateAndAnimate

success
fail

Figure 19: Execution by Translation Design Pattern Structure

animate the FSA accordingly. In [12], we have defined a translation from AD to PN, and simulated
the PN to animate the AD. De Lara and Vangheluwe mapped production system DSL to PN and
used PN for the dynamic behavior of production system in [47].

• Implementation: I implement PN to SC in MoTif [39]. In this example, the source language is
executed and then the second language is animated, as described in the variants of the design
pattern. The rules and scheduling are depicted in Figure 20. I only map the basic states and hy-
peredges in SC for simplicity, but the advanced transformation can be found in [48]. Themapping
part maps the places to basic states and transitions to hyperedges with theplaceToBasicState
and thetransitionToHyperedge rules. Then, the arcs of PN are mapped to links in SC with the
arcsToLinks and thearcsToLinksT2P rules. After mapping, theinit part is doing the same job
as in the previous examples. ThesetOneTokenToInitial rule puts one token to the place of the
initial node, which is the place without an incoming transition in this case. Then thehighlight
rule highlights the current state. MoTif supports pivots to pass the matched elements between rules.
Therefore, this makes it easier to get a transition and check if it is firing or not by just passing it
to the other rule, without the need for another attribute. A special complex query rule in Mo-
Tif makes it possible to get the firing transition with the help of thefindTransition and the
nonFiringTransition rules. ThefindTransition gets one transition, assigns a pivot to it and
the nonFiringTransition checks if this transition is blocked or not. If the pattern is matched,
that means it is not a firing transition and the rule tries another transition. Thesimulate and the
animate part rules are same as the previous examples, as they are regular PN simulation rules. In
the fullControlFlow structure, one can realize that it looks similar to the structure of the “exe-
cution by translation” design pattern. This is because I inspire myself from existing model trans-
formation languages while creating DelTa and the control flow of DelTa, which is the TURelation,
consists of the primitives of MoTif scheduling structures.

• Variations: Usually, the simulation language,simLang , has fewer elements than thedsl language.
In this case, the mapping part can be one-to-many, many-to-one or many-to-many entity relation
mapping. One-to-many ER mapping is described in DelTa in [46]. Another variation is when the
transformation simulates the first language and animates the second languageaccordingly. This

29

mapping
placeToBasicState

Node(2).name=Node(1).name

transitionToHyperedge

Node(2).name=Node(1).name
arcsToLinks

3 4

1 2

3 43 4

arcsToLinksT2P

1 2

3 4

1 2

3 43 4

init
setOneTokenToInitial

1 1
Node(1).token=1

1
2

terminatingCondition

highlightBasicState

1

2

Node(1).token>0

1

2

findTransition

1

t 1 2

nonFiringTransition (NEG)

t

3

Node(3).weight>Node(1).token

simulate

produceTokens

4
2

t

5

Node(4).token+=Node(5).weight

4
2

5

consumeTokens

1 2

t

3
1 2
3

Node(1).token-=Node(3).weight

animate
removeHighlight

1

2

Node(1).token==0

1

2

highlightBasicState

1

2

Node(1).token>0

1

2

arcsToLinksT2P *

placeToBasicState
F

transitionToHyperedge
F

arcsToLinks
*

setOneTokenToInitial

highlightBasicState

:findTransition
??

:nonFiringTransition

mapping
F

consumeTokens

produceTokens
F

F
removeHighlight

highlightBasicState
F

init

terminatingCondition

?

simulate

animate

fullControlFlow

Figure 20: Petri Nets to statecharts in MoTif.

only inverts the two metamodels in the four rules of this design pattern.

8 Further Work & Schedule

In this section, I briefly explain what is the next phases of my research.

8.1 Identification of New Design Patterns and Intents Study

Identification of new design patterns is an important phase to complete the design pattern catalog. In the
previous work, I have used two methods to identify a design pattern: 1) to solve different problems and
try to come up with a common solution 2) to analyze existing studies.

For the latter, we are in the process of preparing a systematic literature review that will cover all model
transformation related papers between 2003-2013, that have case studies, examples or demonstrations.
The purpose of the work is to identify the intents of model transformations by using the real data. The
study is a systematic literature review which will help to identify the intents of each model transformation

30

and it will provide a systematic way of examining model transformations which maylead us to common
practices and then design patterns. During that study, I will investigate a lotof model transformation
papers which will help me to analyze how different problems are solved in different languages.

With more design patterns identified, I will also classify them like Gammaet al.did. They classified
the object-oriented design patterns in three groups: creational, behavioral, and structural.

8.2 Uses of DelTa

The main purpose of DelTa is to provide an abstract language to express model transformation design
patterns and help the transformation developers as a guideline. However,I also investigate how to auto-
matically generate transformation using DelTa code. Model transformation languages are really diverse
in terms of structure, therefore I have kept DelTa as abtract as possible. This brings the issue that DelTa
cannot generate a transformation alone. For that purpose, I will checkhow to come up a Rule Diagram
(RD) [1] like structure. In [1], authors create RDs for each languageto generate the transformation.
Therefore, I will also make use of specialized structures for each language and along with DelTa, I will
use them to generate the transformation. The overall architecture is depicted in Figure 21. Each RD will

Design Pattern in DelTa

RD
 fo

r M
oT

if

MoTif Trafo. Henshin Trafo. GrGen.NET Trafo.

RD
 fo

r M
oT

if

RD
 fo

r M
oT

if
RD

 fo
r H

en
sh

in

RD for GrGen.NET

......

Figure 21: Transformation Generation in Different Languages

fill the necessary gap for each language to generate the transformationsfrom DelTa.

8.3 Empirical Evaluation of DelTa

The empirical evaluation of DelTa consists of preparing an experiment forreal transformation developers.
For that reason, I choose Transformation Tool Contest (TTC), where real developers try to solve proposed
problems in their own languages. For TTC, I will prepare a case study thatwill reveal all details of DelTa
and let the developers implement them in their own choice of languages. This will give me a great insight
about the usefullness and expresiveness of DelTa.

I conduct the experiment with the help of surveys and observational studies. The suryeys are to collect
the experience of the developers with DelTa. The observational studies will be done in our university
with the selected model transformation developers. They will be asked to develop a transformation from
scratch. Later, they will be provided a design pattern that may help with the problem and some variables
will be measured. One possible threat to the validity of this study is to find a goodnumber of model
transformation developers. I need two groups of model transformation developers; one for the control
group and one for the experimental group. If I cannot find enough developers, I will provide necessary
education on model transformation. I choose MoTif as the main transformationlanguage for the first
iterations of the user study. Then the case study in TTC will show how different languages are interacting
with DelTa.

31

8.4 Detection of DelTa Design Patterns

As an initial start to detect design patterns in actual model transformations, Iwill use MoTif language.
The effort consists of finding the design patterns instances in model transformations. Since DelTa is
a language that has its own metamodel, detection of design patterns will be doneby using an explicit
model transformation. DelTa provides the rule and scheduling structures combined in its metamodel,
whereas MoTif has the rule and scheduling structures in seperate metamodels, because a rule can be used
regardless of the model transformation language. Therefore, the detection model transformation takes the
DelTa design patterns and a model transformation designed in MoTif with the rules as inputs and tries to
find a match. If the process succeeds, it will be expanded to other model transformation languages.

8.5 Schedule

Fall 2014

• Starting intents study to identify new design patterns

• Creating a modeling environment for DelTa in AToMPM

• Preparing of the empirical evaluation experiment and case study of DelTa

• Conducting the empirical evaluation on test subjects in our university

• Taking a numbered course

Spring 2015

• Investigating the uses of DelTa and how to generate transformations

• Conducting the empirical evaluation in TTC 2015

• Preparing the paper that consists of newly identified design patterns with the initial results from
empirical evaluation and possible revisions to DelTa

• Preparing the “Software and Systems Modeling” journal paper which willhave the DelTa in its
final form, with all design patterns identified and the results of the full empirical evaluation

• Taking a special topics course

• Detecting the DelTa design patterns in actual model transformations

• Continuing on intents study

Summer 2015

• Write dissertation

Fall 2015

• Dissertation Defense & Graduation

32

9 Conclusion

In this proposal, I have listed a summary of what I am planning to do in my dissertation and what I have
done. I have analyzed the model transformation development process and found out that in its current
situation it is hard to develop model transformations. This is mostly because of the diversified nature of
model transformation languages (MTL). Therefore, I have analyzed the structure of MTLs. At the same
time, I have implemented the transformation engine (MoTif and T-Core) of AToMPM in Python. I have
also created DSLs for these two languages. I have proposed a catalog of common practices that each
transformation developer can adopt while creating their model transformation. I have named them model
transformation design patterns. Currently, there are five model transformation design patterns. For each
design pattern, I have created the necessary information to describe andimplemented in five different
model transformation languages. These languages are MoTif, Henshin,GrGen.NET, Viatra2, and AGG.
As a result of analyzing the MTLs’ structure, I have created the language DelTa to describe the structure
of each design pattern. I have assigned a textual syntax to DelTa and generated a DelTa environment
to edit design patterns using XText. DelTa is a concise and expressive language that I believe will play
the role of UML as in object-oriented design patterns. The next steps includeidentifying more design
patterns to reach to a more complete list like Gammaet al. [2] did for object-oriented community. I will
also support DelTa with empirical experiments.

References

[1] Guerra, E., de Lara, J., Kolovos, D., Paige, R., and dos Santos, O.(2013) Engineering model trans-
formations with transML.Software and Systems Modeling, 12, 555–577.

[2] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995)Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, Boston, MA, USA.

[3] Agrawal, A. (2005) Reusable Idioms and Patterns in Graph Transformation Languages.Interna-
tional Workshop on Graph-Based Tools, ENTCS,127, pp. 181–192. Elsevier.

[4] Iacob, M.-E., Steen, M. W. A., and Heerink, L. (2008) Reusable Model Transformation Patterns.
EDOC Workshops, September, pp. 1–10. IEEE Computer Society.

[5] Bézivin, J., Jouault, F., and Paliès, J. (2005) Towards model transformation design patterns.Pro-
ceedings of the First European Workshop on Model Transformations (EWMT 2005).

[6] Kevin Lano and Shekoufeh Kolahdouz Rahimi (2013) Constraint-based specification of model
transformations.Journal of Systems and Software, 86, 412–436.

[7] Stahl, T., Voelter, M., and Czarnecki, K. (2006)Model-Driven Software Development: Technology,
Engineering, Management. John Wiley & Sons.

[8] Kleppe, A. G., Warmer, J., and Bast, W. (2003)MDA Explained. The Model Driven Architecture:
Practice And Promise. Addison-Wesley.

[9] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008) ATL: A model transformation tool.Sci-
ence of Computer Programming, 72, 31–39.

[10] Amrani, M., Dingel, J., Lambers, L., Lucio, L., Salay, R., Selim, G., Syriani,E., and Wimmer, M.
(2012) Towards a Model Transformation Intent Catalog.MoDELS workshop on Analysis of model
Transformation. IEEE.

[11] Czarnecki, K. and Helsen, S. (2006) Feature-Based Survey of Model Transformation Approaches.
IBM Systems Journal, 45, 621–645.

33

[12] Syriani, E. and Ergin, H. (2012) Operational Semantics of UML Activity Diagram: An Application
in Project Management.RE 2012 Workshops, IEEE, Chicago.

[13] Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G. (2010) Henshin: Advanced Con-
cepts and Tools for In-Place EMF Model Transformations.MODELS 2010, LNCS, 6394, pp.
121–135. Springer.

[14] Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., and Vizhanyo,A. (2006) The Design of a
Language for Model Transformations.Journal on Software and Systems Modeling, 5, 261–288.

[15] Klein, T., Nickel, U., Niere, J., and Zündorf, A. (1999) From UML toJava And Back Again. Tech-
nical Report tr-ri-00-216. University of Paderborn, Paderborn.

[16] Varró, D. and Balogh, A. (2007) The model transformation language of the VIATRA2 framework.
Science of Computer Programming, 68, 214–234.

[17] Taentzer, G. (2004) AGG: A graph transformation environment for modeling and validation of
software.AGTIVE, pp. 446–453. Springer.

[18] Jouault, F. and Kurtev, I. (2007) On the interoperability of model-to-model transformation lan-
guages.Science of Computer Programming, Special Issue on Model Transformation, 68, 114–137.

[19] Syriani, E., Vangheluwe, H., and LaShomb, B. (2013) T-Core: a framework for custom-built model
transformation engines.Software & Systems Modeling, 13, 1–29.

[20] Syriani, E., Gray, J., and Vangheluwe, H. (2012) Modeling a Model Transformation Language.
Domain Engineering: Product Lines, Conceptual Models, and Languages. Springer.

[21] Syriani, E. and Vangheluwe, H. (2010) De-/Re-constructing Model Transformation Languages.
EASST, 29.

[22] Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., and Ergin, H. (2013)
Atompm: A web-based modeling environment.MODELS’13: Invited Talks, Demos, Posters, and
ACM SRC. CEUR-WS.org.

[23] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and Halkidis, S. (2006) Design Pattern Detection
Using Similarity Scoring.Software Engineering, IEEE Transactions on, 32, 896 –909.

[24] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996) Pattern-oriented
Software Architecture: A System of Patterns. John Wiley & Sons, Inc., New York, NY, USA.

[25] Mowbray, T. J. and Malveau, R. C. (1997)CORBA Design Patterns. Wiley.

[26] Douglass, B. P. (2002)Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[27] Buschmann, F., Henney, K., and Schmidt, D. C. (2007)Pattern-Oriented Software Architecture: A
Pattern Language for Distributed Computing. Wiley.

[28] Wahba, S. K., Hallstrom, J. O., and Soundarajan, N. (2010) Initiatinga design pattern catalog for
embedded network systems.Proceedings of the Tenth ACM International Conference on Embedded
Software, New York, NY, USA EMSOFT ’10, pp. 249–258. ACM.

[29] Cho, H. and Gray, J. (2011) Design patterns for metamodels.Proceedings of the Compilation
of the Co-located Workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, &
VMIL’11, New York, NY, USA SPLASH ’11 Workshops, pp. 25–32. ACM.

[30] Krasner, G., Pope, S., et al. (1988) A description of the model-view-controller user interface
paradigm in the smalltalk-80 system.Journal of object oriented programming, 1, 26–49.

34

[31] Hasheminejad, S. M. H. and Jalili, S. (2012) Design patterns selection: An automatic two-phase
method.Journal of Systems and Software, 85, 408–424.

[32] Correa, A., Werner, C., and Zaverucha, G. (2000) Object oriented design expertise reuse: An ap-
proach based on heuristics, design patterns and anti-patterns. In Frakes, W. (ed.),Software Reuse:
Advances in Software Reusability, Lecture Notes in Computer Science,1844, pp. 336–352. Springer
Berlin Heidelberg.

[33] Blomqvist, E. (2008) Pattern ranking for semi-automatic ontology construction. Proceedings of
the 2008 ACM Symposium on Applied Computing, New York, NY, USA SAC ’08, pp. 2248–2255.
ACM.

[34] Levendovszky, T., Lengyel, L., and Mészáros, T. (2009) Supporting domain-specific model patterns
with metamodeling.Software & Systems Modeling, 8, 501–520.

[35] Dong, J., Zhao, Y., and Peng, T. (2009) A Review of Design Pattern Mining Techniques.Interna-
tional Journal of Software Engineering and Knowledge Engineering, 19, 823–855.

[36] Syriani, E. and Gray, J. (2012) Challenges for Addressing Quality Factors in Model Transformation.
Software Testing, Verification and Validation, apr ICST’12, pp. 929–937. IEEE.

[37] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006)Fundamentals of Algebraic Graph Trans-
formationEATCS. Springer-Verlag.

[38] Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., and Wimmer, M. (2010) Explicit Transforma-
tion Modeling. Models in Software Engineering, Lecture Notes in Computer Science,6002, pp.
240–255. Springer Berlin Heidelberg.

[39] Syriani, E. and Vangheluwe, H. (2011) A Modular Timed Model Transformation Language.Jour-
nal on Software and Systems Modeling, 12, 387–414.

[40] Lengyel, L., Levendovszky, T., Mezei, G., and Charaf, H. (2006) Model Transformation with a
Visual Control Flow Language.International Journal of Computer Science, 1, 45–53.

[41] Ergin, H. and Syriani, E. (2014) Towards a Language for Graph-Based Model Transformation
Design Patterns.Theory and Practice of Model Transformation, LNCS, York, U.K., July, pp. 91–
105. Springer.

[42] Geiß, R. and Kroll, M. (2008) GrGen. net: A fast, expressive, and general purpose graph rewrite
tool. Applications of Graph Transformations with Industrial Relevance, pp. 568–569. Springer.

[43] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1973) On finding lowest common ancestors in trees.
Proceedings of the fifth annual ACM symposium on Theory of computing, New York, NY, USA
STOC ’73, pp. 253–265. ACM.

[44] Ergin, H. and Syriani, E. (2013) Identification and Application of a Model Transformation Design
Pattern.ACM Southeast Conference, Savannah GA, apr ACMSE’13. ACM.

[45] Asztalos, M., Madari, I., and Lengyel, L. (2010) Towards formalanalysis of multi-paradigm model
transformations.SIMULATION, 86, 429–452.

[46] Ergin, H. and Syriani, E. (2014) Implementations of Model Transformation Design Patterns Ex-
pressed in DelTa. Technical Report SERG-2014-01. University of Alabama, Department of Com-
puter Science.

[47] de Lara, J. and Vangheluwe, H. (2010) Automating the transformation-based analysis of visual
languages.Formal Aspects of Computing, 22, 297–326.

[48] Ergin, H. and Syriani, E. (2013) AToMPM Solution for the Petri Netto Statecharts Case Study.
Seventh Transformation Tool Contest, jul.

35

Appendix A List of Papers

A.1 Published

• Eugene Syriani and Huseyin Ergin.Operational Semantics of UML Activity Diagram: An Ap-
plication in Project Management. Requirement Engineering Conference 2012 Workshops, IEEE,
Chicago, IL (September 2012)

• Huseyin Ergin and Eugene Syriani.Identification and Application of a Model Transformation De-
sign Pattern. ACM Southeast Conference 2013, Savannah, GA (April 2013)

• Huseyin Ergin.Model Transformation Design Patterns. MODELS Conference 2013 Doctoral Sym-
posium, Miami, FL (October 2013)

• Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon van Mierlo, and
Huseyin Ergin.AToMPM: A Web-based Modeling Environment. MODELS Conference 2013 Demon-
strations, Miami, FL (October 2013)

Technical Report

• Huseyin Ergin and Eugene Syriani.Implementations of Model Transformation Design Patterns
Expressed in DelTa. Department of Computer Science, University of Alabama, SERG-2014-01
(February 2014)

A.2 Accepted & To Be Presented

• Huseyin Ergin and Eugene Syriani.Towards A Language To Express Design Patterns for Graph-
Based Model Transformation. International Conference on Model Transformation 2014, York, UK
(July 2014)

• Huseyin Ergin and Eugene Syriani.AToMPM Solution for the IMDB Case Study. Transformation
Tool Contest 2014, York, UK (July 2014)

A.3 Submitted

• Huseyin Ergin and Eugene Syriani.Reuse of Model Transformation Design Patterns. 8th System
Analysis and Modelling Conference 2014, Valencia, Spain (September 2014)

A.4 In Preparation & Planning

• Huseyin Ergin and Eugene Syriani.DelTa: A Language for Model Transformation Design Patterns.
Journal of Software and Systems Modeling (2015)

• Huseyin Ergin and Eugene Syriani.Model Transformation Design Patterns in Action: Experiences
with DelTa. Automated Software Engineering (2015)

• Huseyin Ergin and Eugene Syriani.The Experiences on How To Generate Transformations Using
DelTa. International Conference on Model Transformation (2015)

• Eugene Syriani, Jeffrey Carver, Huseyin Ergin, and Ahmet AlZubidy. Model Transformation In-
tents: A Systematic Literature Review. Empirical Software Engineering Conference (2015)

• Huseyin Ergin and Eugene Syriani.DelTa Case Study. Transformation Tool Contest (2015)

36

