
Model Transformation Design Patterns

Hüseyin Ergin
hergin@crimson.ua.edu

Department of Computer Science, University of Alabama, U.S.A.

Abstract. In this document, a brief overview of my doctoral research is pre-
sented. In model-driven engineering (MDE), most problems are solved using
model transformation. An efficient process to solving these problems is to apply
reusable patterns while solving them. Finding reusable design patterns to specific
subsets of problems helps to decrease the time and cost needed to solve them.
My doctoral research is based on finding these design patterns to be applied on
model transformation problems and evaluating them in terms of quality criteria.
My next step is to generate these design pattern instances automatically by using
higher-order transformation.

1 Introduction

Model-driven engineering (MDE) [1] is considered a well-established software devel-
opment approach that uses abstraction to bridge the gap between the problem and the
software implementation. These abstractions are defined as models. Models are primary
artifacts in MDE and are used to describe complex systems at multiple levels of abstrac-
tion, while capturing some of their essential properties. These levels of abstraction let
domain experts describe and solve problems without depending on a specific platform
or programming language.

Models are instances of a meta-model which defines the syntax of a modeling lan-
guage. In MDE, the core development process consists of a series of transformations
over models, called model transformation. Model transformations take models as input
and output according to the specifications defined by the meta-model.

In this document, I summarize the subject that I want to work on in my dissertation.
My dissertation will involve creating a formalism for new possible model transforma-
tion design patterns. With the help of the formalism, existing model transformation
design patterns can be represent in a generic way. I will also identify more design pat-
terns and evaluate them. In parallel my design pattern formalism will evolve as new
ones are identified.

Rest of the document is organized as follows. Section 2 describes the problem. In
Section 3, I give related work in this area. Section 4 introduces the solution I plan. In
Section 5, I present current status and necessary steps to complete. Finally, Section 6
concludes the document.

2 Problem

MDE problems are solved using a series of model transformations. Model transfor-
mations have their own languages and they consist of two main components: rules and



scheduling. Rules are the smallest units of a model transformation and are used to trans-
form one or more elements from source language to their intended equivalents in target
language. Scheduling describes the order in which rules are executed. To develop a
model transformation, developers design different rules and specify the scheduling of
them. However, this design phase lacks reusability, which hampers the quality of model
transformations. Therefore, there is a need for reusable, proven, and qualified structures
in this phase. A design pattern encapsulates a proven solution to a recurring design
problem [2]. As in the object-oriented world, design patterns help with the assessment
of high quality model transformations. The first purpose of this doctoral research is to
find design patterns that help developers to solve model transformation problems. In
object-oriented design patterns, the community has agreed to provide design patterns
in UML class diagrams. Due to the few works in the literature, there is no common
language or standard for the model transformation field. Another purpose is to find the
best formalism to express existing and newly identified model transformation design
patterns.

3 Related Work

I have identified two studies in literature that introduce reusable structures in model
transformation.

Agrawal et al. [3] used GReAT language to define three model transformation de-
sign patterns. This is the first structured design pattern study in the model transfor-
mation field. Each design pattern has motivation, applicability, structure, known uses,
limitation, and benefits fields. They introduced the following design patterns: the leaf
collector, which has a visitor pattern [2] like structure and aims to collect or process
all leaf nodes in a hierarchy; the transitive closure, which can be used to compute the
transitive closure of a graph; and the proxy generator idiom, which can be used in dis-
tributed systems where remote interactions to the system need to be abstracted and
optimized.

Iacob et al. [4] used QVT Relations language to define five model transformation
design patterns. Their design pattern structure has name, goal, motivation, specifica-
tion, example, and applicability fields. They introduced the following design patterns:
the mapping pattern, which establishes one-to-one relations between elements from the
source model and elements from the target model and can be used to translate a model
from one syntax to another; the refinement pattern, which obtains a more detailed target
model by refining an edge or a node to multiple edges or nodes; the node abstraction
pattern, which abstracts information from source nodes while keeping their relations
and can be used to remove elements from models that hold certain criteria; the dual-
ity pattern, which generates a semantic dual of an instance model; and the flattening
pattern, which removes the hierarchy from the source model.

These studies are excellent resources, but need to be analyzed, extended and im-
proved. First, the design patterns are not analyzed in terms of quality. Agrawal et al. and
Iacob et al. introduce design patterns as the core of their studies, but often do not men-
tion how they affect quality in model transformation problems. Secondly, they often do



not provide a generic way of representing design patterns in terms of a design pattern
formalism.

In this work, I extend these studies with a generic formalism, evaluation of proposed
design patterns and identication of new design patterns.

4 Solution

In this dissertation, I focus on the solution to the reusability problem by working on de-
sign patterns. The initial step in this direction is to identify a design pattern formalism.
The formalism is important in terms of providing the standardization of future design
patterns and automically applying them to the transformations. The formalism will also
provide an abstract representation of the solution independent from different model
transformation languages. In this section, I provide some details about the solution in
this direction.

4.1 Preliminary Work

In [5], I have identified a model transformation design pattern, called Fixed-point Iter-
ation. This design pattern is applicable when the problem can be solved stepwise, and
a single answer or a subset of the input model is returned as a solution. I have applied
the design pattern to find the lowest common ancestor, to compute the equivalent resis-
tance and to find the shortest path by using Dijkstra’s shortest path algorithm. In this
design pattern, I have used MoTif [6] as my model transformation language. MoTif has
the modern modeling concepts such as explicit scheduling and rule-based model trans-
formation. Thus, the formalism I used to represent the design pattern was MoTif-like,
which will be improved to be more general.

A new formalism is needed to represent other design patterns that will be identi-
fied. For that reason, I designed the formalism depicted in Fig. 1. Each design pattern
represents a subset of a regular model transformation solution and can be counted as a
transformation itself. For that reason, the main element in the formalism is a transfor-
mation. The transformation has a list of components and meta-models. The components are
rules, the smallest unit of a transformation, and blocks to support nesting and hierarchy.
Each component is connected with an output class to another component to represent the
control flow of the transformation language. Each rule has some sections e.g., left-hand
side (LHS) as pre-section, right-hand side (RHS) as post-section, when/where clause,
etc. and expressions. Expressions represent the actions to be executed after a rule appli-
cation and the constraints to satisfy before/during transformation. Each rule also has
access to variables of the involved modeling languages, which is depicted with abstract
type class. The variables include both the model elements and their attributes. This for-
malism assumes the meta-model of each modeling language has a rootType for the types
they provide.

4.2 Expected Contributions

My contributions will be a list of design patterns for model transformation problems.
This may lead to a bigger output than I expected, so I have filtered some of the categories



Transformation

Component Meta-model

Block Rule

Section

Variable Type

RootType

Output

Pre Post

Expression

Action Constraint

1...
*

*

*

1 *

*

1...
* *

*

1...
*

1...
*

* 1

1...
*

Fig. 1. Model transformation design pattern formalism

of design patterns by the model transformation intents. A model transformation intent
is a description of the goal behind the model transformation and the reason for using
it [7]. Classifying model transformation by intents is of paramount importance when
working on design patterns. It helps target specific patterns for specific use cases and
ensures they are useful in practice. Some of these intents are: manipulation, restrictive
query, refinement, abstraction, translational semantics etc.

Each design pattern will have elements that are describing them. I have used pattern
name, problem, solution and structure elements to describe a design pattern.

Also I am extending the features of our model transformation tool, AToMPM [8].
AToMPM allows one to model and execute model transformations. It provides a graph-
ical user interface to define the meta-models of the intended formalisms, to describe
rules graphically as well as control structure for model transformations, and to execute
step-by-step transformations on given models.

4.3 Plan for Evaluation and Validation

I have analyzed the design pattern introduced in [5] in terms of some quality metrics.
The analysis consists of the following metrics: size of rules, number of rule applica-
tions, and number of auxiliary elements. These metrics will be extended to support a
more reliable and comprehensive evaluation and used in the following quality frame-
work. In this doctoral research, I initially extended the analysis and created the quality
framework in Fig. 2 by adapting Mohagheghi and Dehlen [9]’s study to MDE. The
framework has the following steps:

1. Identify quality criteria, such as maintainability and reusability.



Quality Criteria Quality Metric

Metamodel

Elements

Relations

Correctness

Re-usability

Efficiency

Reliability

Maintainability

Interoperability

Language Independent

Transformation Independent

Transformation Dependent

Constraints

...

Model

Size

Modularity

...

Languages

Scheduling Struct.

Rule Struct.

...

1
measured by

...

have impact on

2

3

4

5

...

Fig. 2. Quality framework

2. Identify target objects that have an impact on quality criteria. These objects are
meta-models, models, languages, transformations; i.e., all concepts related to model
transformation.

3. Identify the properties of target objects that have an impact on quality criteria.
Following the example objects in the previous step, these properties can be ele-
ments, relations, and constraints for meta-models, size, and modularity for models,
scheduling structure, and rule structure of languages.

4. Specify how to evaluate the quality properties. This includes the metrics to be
measured quantitatively or subjective evaluation of the transformation. Other ap-
proaches may be empirical evaluation by interviewing the users or inspections us-
ing checklists.

5. Specify traceability links between quality properties and quality criteria and initiate
the implementation of quality properties and evaluation of metrics. Evaluation of
metrics together with the quality criteria in mind lets the designer which design
pattern is good or bad for a specific purpose and intent.

Interviewing the users is an effective way to get feedback and identify the effect of
some different technologies in empirical software engineering. This consists of prepar-
ing predefined experiments with scenarios and applying these experiments on the tar-
geted users. In my case, I am planning to apply some design experiments, which will
consist of finding solutions to some modeling problems, on different set of developers



in modeling community. The experiments may be supported with a questionnares and
surveys at the beginning or at the end. The results of the experiments will lead to more
improvements in the formalism and the design patterns I will identify.

5 Current Status & Plan

AToMPM is an online modeling and transformation tool [8]. Currently, it lets users de-
sign modeling languages, create instances of these languages as models and execute
model transformations over these models. One of its unique features is letting users
do all of these tasks graphically. The overall purpose of this dissertation is to extend
AToMPM in a way that users will specify their model transformation solutions in terms
of the design pattern formalism I provided in Section 4.1. The specification of the model
transformation in the formalism enables users to be independent from any model trans-
formation language.

The main steps are listed below:

– The improvement of the design pattern formalism (Fall 2013): Currently, the
formalism is very similar to the transformation language of AToMPM: MoTif. The
design pattern formalism will be refined to support other popular model transforma-
tion languages, beginning with ATL [10] and QVT [11]. Each model transformation
language has its own unique characteristics, so the formalism should be as abstract
as possible to satisfy them.

– The identification of new design patterns (Fall 2013 - Spring 2014): So far, we
have identified one model transformation design pattern [5]. Design pattern identi-
fication requires finding the problems in the model transformation design process.
Examples must be investigated carefully to find the recurring problems in existing
model transformation problems. Another way to identify a design pattern is to fo-
cus on single problems and solve them efficiently by adopting different approaches,
which we have applied to three different problems in [5]. While identifying new
design patterns, categorization with respect to intents will help me to work on a
subset.

– Adapting the existing design patterns (Fall 2013): The existing design patterns,
which the authors call reusable patterns and idioms, will be adapted, analyzed and
represented in the new formalism. This will help me to gather and utilize existing
work.

– Application and generation (Spring 2013 - Spring 2014): AToMPM currently
has MoTif and T-Core [6] as model transformation languages. In AToMPM, every-
thing is modeled and can be manipulated using model transformations. Therefore,
the solutions designed by users in the design pattern formalism can generate the
results in any model transformation language. This can be realized by using the
higher-order transformation (HOT) feature of AToMPM. By using HOT, users can
not only generate their solutions in intended model transformation language, but
also transform one language to another.

My dissertation touches a subject where the community does not have many studies.
Therefore, an IDE with the ability of inserting design patterns automatically and gener-
ation of these pieces of transformations to a preferred model transformation language



to be a part of a larger solution is expected at the end. A list of newly identified design
patterns will also be available as a part of this project.

6 Conclusion

In this document, I gave some details about the field I want to work on in my disser-
tation. I believe the design patterns will lead developers to increase their effectiveness
and decrease the time and cost required to solve a model transformation problem. By
using the design pattern catalog, related intents as categories and evaluation of each
design pattern with respect to its purpose and metrics, developers will be able to reduce
the amount of work they need. I also believe the formalism will help the model trans-
formation community to represent the solutions independent from the specific model
transformation languages. In this doctoral symposium, I hope to receive feedback on
my approach and direction in order to improve the contents and my research focus.

References

1. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology,
Engineering, Management. John Wiley & Sons (2006)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. 1 edn. Addison-Wesley Professional (November 1994)

3. Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G.: Reusable Idioms
and Patterns in Graph Transformation Languages. In: International Workshop on Graph-
Based Tools. Volume 127 of ENTCS., Rome, Elsevier (March 2005) 181–192

4. Iacob, M.E., Steen, M.W.A., Heerink, L.: Reusable Model Transformation Patterns. In: Pro-
ceedings of the Enterprise Distributed Object Computing Conference Workshops, Munich,
IEEE Computer Society (September 2008) 1–10

5. Ergin, H., Syriani, E.: Identification and application of a model transformation design pat-
tern. In: ACM Southeast Conference, Savannah, GA. (April 2013)

6. Syriani, E., Vangheluwe, H.: A Modular Timed Model Transformation Language. Journal
on Software and Systems Modeling 11 (June 2011) 1–28

7. Amrani, M., Dingel, J., Lambers, L., Lucio, L., Salay, R., Selim, G., Syriani, E., Wimmer,
M.: Towards a Model Transformation Intent Catalog. In: MoDELS workshop on Analysis
of model Transformation, IEEE (2012)

8. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.: Atompm:
A web-based modeling environment. In: MODELS’13 Demonstrations. (2013)

9. Mohagheghi, P., Dehlen, V.: Developing a Quality Framework for Model-Driven Engineer-
ing. In Giese, H., ed.: Models in Software Engineering. Volume 5002 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2008) 275–286

10. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming 72(1-2) (June 2008) 31–39

11. Object Management Group: Meta Object Facility 2.0 Query/View/Transformation Specifi-
cation. (jan 2011)


