AToMPM: A Web-based Modeling Environment

Eugene Syriarli Hans Vangheluw®?, Raphael Mannadidyr Conner Hansen Simon
Van Mierle?, and Huseyin Ergih

1 University of Alabama, U.S.A.
2 University of Antwerp, Belgium
3 McGill University, Canada

Abstract. We introduce AToMPM, an open-source framework for desigmio-

main-specific modeling environments, performing modehgfarmations, ma-
nipulating and managing models. It runs completely ovemikb, making it in-

dependent from any operating system, platform, or devigaay execute on.
AToMPM offers an online collaborative experience for madg! Its unique ar-
chitecture makes the framework flexible and completelyamgtable, given that
AToMPM is modeled by itself, and external applications carebsily integrated.
Demo:htt ps: // ww. yout ube. com wat ch?v=i Bodpnpwn6M

1 Introduction

Today, several tools and technologies allow modelers teldpvdomain-specific mod-
eling languages (DSMLs) and manipulate models, such as ATdM DSLTools [2],
EMF [3], GME [4], MetaEdit+ [5], and VMTS[[B], just to name avie They often re-
quire aninstallation of the tool and depend on external artifacts such as opgrayisr
tem (VMTS), middleware platform (DSL Tools), or virtual ntdne (EMF, AToM?).
Furthermore, the degree afllaboration between developers and their models is often
restricted to the version controlled repository used bytdioé(SVN, CVS, or GitHub).
Nevertheless, one of the reasons for the success and pibpofaEMF is its plugin
framework that allows tremendous extensions of its corelwvbave birth to a suite of
numerous modeling and transformation tools, such as ATLHgkilon [8], XText [9],
VIATRAZ [L0O]. However, the development of these extensioeguires expertise in
EMF, and its Java API.

In this paper, we introduce AToMPM (A Tool for Multi-ParadigModeling) [11],
the successor of ATof AToMPM is an open-source framework for designing DSML
environments, performing model transformations, marifiod and managing models.
It runs completely over the web, making it independent frarg eperating system,
platform, or device it may execute on. AToMPM follows the Ipebphy of modeling
everything explicitly, at the right level of abstractiop(sising the most appropriate
formalism(s) and process(es), being completely modeldtsblf (i.e., bootstrapped).

2 Highlight of Features

AToMPM is a modern, versatile and theoretically sound rpdtiadigm modeling envi-
ronment. It is a tool for modeling any and every part of a sysa¢the most appropriate

https://www.youtube.com/watch?v=iBbdpmpwn6M

level(s) of abstraction, using the most appropriate foigna(s). For instance, AToOMPM
is explicitly modeled using a combination of UML Class diagys and Statecharts. The
tool offers unique features given its web-based natureweaiutline below.

2.1 Modeling in the Cloud

AToMPM runs entirely online and requires no client-sideatiation. It allows one to

model in the cloud, although it is possible to install theveeon-premise. The client
consists only of an SVG-compliant web browser. Models caddwenloaded locally if

desired.

2.2 Graphical Modeling vs. Textual Commands

AToMPM is primarily a graphical modeling environment. Or ttoncrete syntax side,
all model elements displayed are SVG elements. All stattcdymamic manipulation
offered by SVG are fully supportec.§., translation, scaling, rotation, transparency,
Bézier curves). Model manipulation, such as CRUD operatioan be performed with
mouse clicks and movements as in traditional modeling enwirents. In AToOMPM, it

is also possible to write textual commands to perform theesayanipulations, designed
with a modeled textual DSL. Textual commands can be morailefmore advanced
users, especially for creating/deleting/updating mldtedements at a time.

2.3 Synthesis of Domain-Specific Modeling Environments

As in any modeling tool, the specification and synthesis oMDS is central function-
ality of AToMPM. The default modeling language for definingta-models is a sim-
plification of UML class diagrams. Nevertheless, any madglanguage can be used
to define meta-models, as long as there is a transformatioredemapping that meta-
modeling language to the default language. Synthesis ofMLD&liting environment
for that new DSML is automatically supported. Static coaisiis are expressed on top
of the meta-model in a textual DSL for constraints or usirgtavascript API directly.

Multiple concrete syntaxes can be assigned to the sameaabsyntax. This allows
different users to have their own representation of the saodel. A graphical concrete
syntax is defined by mapping a group of SVG elements to each-metel element,
both class-like and association-like elements. Sinceyévieig is modeled explicitly in
AToMPM, the concrete syntax is itself specified by a DSML es@nting geometric
shapes.

2.4 Model Transformation, Code Generation and Debugging

Model transformations are also explicitly modeled in AToOMPAIl model transforma-
tions are based oRcCore [12], a minimal collection of model transformation operato
This has the advantage of executing automatically any outailt rule-based trans-
formation language. Given the input and output meta-modebs transformation, a
language for designing domain-specific rules is automiftiganerated [13]. Rules are
defined with a left-hand side, right-hand side and negafipdi@ation conditions, as in
graph transformations. The patterns inside the rules presented using the concrete

[T @ 10w - st - Formatss/PNsmiston_smuteatanosei - Gooole rvome | = 5| 5
Ao i =

Fig. 1. Model transformation debugging.

syntax of the input and output languages, adapted to patt&éhe default scheduling
language of a model transformation is MoTif [14]. Never#issl, any modeling lan-
guage can be used to define the transformation languagengsothere is a higher-
order transformation defined mapping that language ta4bere language. Execution
and debugging of that new model transformation languagetenaatically supported.

There are two modes of execution of model transformatioASgMPM. In release
mode, the input model displayed on the canvas is sent to thers&ransformed com-
pletely, and the new resulting model is then displayed orcthwas. Inrdebug mode,
the transformation is animated on the client’'s canvas. Keewion can be continuous,
or step-by-step. Breakpoints can be specified at the cditamllevel and a new win-
dow pops up to inspect the current state of the model andftranation as depicted in
Fig.[d. The model transformation execution is deployed dagipin AToMPM, which
may run on a dedicated server. The transformation enginassdon Himesis [15], a
Python implementation.

2.5 Process Modeling

Any process enforced by ATOMPM is also modeled explicithadyML activity diagram-
like DSML. For example, the process for defining a meta-moitheln assigning the

concrete syntax and, finally, generating the modeling envirent is a process model.
A chain of model transformations is also modeled with thigjlaage. The activities in

a process model can be automatic (like a transformationugim) or manual. In the

latter case, a window pops up to let the user manipulate aimode

2.6 Collaborative Modeling

One motivation behind an online development environmethtgsability to collaborate
and share modeling artifacts among users. Multiple userdedogged in simultane-
ously with each having their own view of the models. Modeld arodel elements vis-
ibility is controlled with permission roles that an adminégor can assign and specify.
Currently, ATOMPM supports two types of real-time distibd collaboration mech-

anisms.Screenshare allows two or more clients to share the exact same canvas: any

change made to a model (abstract or concrete syntax) icadgdi on all observing
clients. Modelshare only shares the abstract syntax of a model between clieatsh E

client has its own view of the same model, using its own caegntax. For example,
if a client updates the value of an attribute of a model elanthis may change the
displayed text next to the represented element on thatsliedel while changing the
color of that element on another client’s representation.

3 Modeled Plugin Framework Architecture

. Custom Plugins
v A
il /2—\| PluginManager | | GUIUtils | D D D s .

Client 1 ~—
<5]

6 External
Server

w

Stateful

socket-io SCION| | DB driver

1]
£/

Client 2

Node.js

<

AToMPM Server

Fig. 2. High level architecture of ATOMPM.

ATOMPM is a completely bootstrapped environment. The t¢igerver architecture
depicted in Fig[R allows multiple web-browsers (client)siend and receive HTTP
requests with ATOMPM (server) following the MVC pattern.@NIPM is a Node.js
server driven by SCXML statecharts executed within the SC#@gine[[16]. It consists
of a minimal kernel “Stateful” deprived from any modelingesific functionality. It is
a plugin framework where every toolbar and functionalityriedeled explicitly as a
plugin.

On startup, Stateful loads the kernel statechart, whichllearall requests to and
responses from the server. The kernel also brings in therflamager plugin during
initialization, which is enough to then drive the loadingvafious custom plugins, such
as AToMPM. The PluginManager design provides registeggister hooks so that any
plugin can easily register and load or unregister and unitsadf within the Plugin-
Manager package system. Stateful allows for plugins tcstegiheir own statecharts to
respond to specific server endpoints, which allows for plago easily extend the be-
havior of Stateful. Within this framework, if some degreecommunication is needed
with an external server then that behavior can be added, meckssible, and begin
responding in Stateful. This provides the ability for a bawtt to be written in a com-
pletely different language than Javascript, while stilingeable to fully interact with
Stateful using only a very small amount of mostly generatablde. While this design
does allow for easy extension, it also relies heavily on jplsipeing properly designed
which may make it less robust from the client’s experience.

There are client side variants for the kernel and Pluginnanaomponents as well.
When a user first attempts to access Stateful, these comis@rersent over which then
load either the default plugins or plugins that are spedifithat user’s configuration if
logged in. Any client side components that are availablehenserver can be loaded
by a client at any time, allowing for plugins to be able to baalyically loaded and
unloaded.

As depicted in Fig P, there four asynchronous communiogiths in this frame-
work. (1) A call-back mechanism allows a client to send restgiéo the server and re-
ceive results. (2) A headless mode allows the client to seqdests to be processed in
batch. (3) A broadcast mechanism allows the server to nutififiple client observers.
(4) AToMPM can communicate with external servers in the savag as it does for
clients. The latter is very useful when interoperating endétools (such as transforma-
tion engine, model verification) with AToOMPM. These commnuations are all modeled
with plugins.

Acknowledgments

We would like to thank all the members of MSDL at McGill Unigéy and the Univer-
sity of Antwerp for their work and contributions to the btiilt formalisms available in
AToMPM: Sadaf Mustafiz, Levi Lucio, Maris Jukss, JohachirmiDeand Bart Meyers.

References

1. de Lara, J., Vangheluwe, H.: ATOMA Tool for Multi-formalism and Meta-Modelling. In:
FSE’'02. Volume 2306 of LNCS., Springer-Verlag (2002) 1788-1
2. Cook, S.,Jones, G., Kent, S., Wills, A.C.: Domain-Sped@#velopment with Visual Studio
DSL Tools. Addison-Wesley Professional (2007)
3. Steinberg, D., Budinsky, F., Paternostro, M., Merks BMF: Eclipse Modeling Framework.
2nd edn. Addison Wesley Professional (2008)
4. Lédeczi, A., Bakay, A., Maroti, M., Vdlgyesi, P., Nordstn, G., Sprinkle, J., Karsai, G.:
Composing Domain-Specific Design Environments. |IEEE Caen@#4(11) (2001) 44-51
5. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A fully comfurable multi-user and multi-
tool CASE and CAME environment. In: Conference on Advancefrimation Systems
Engineering. Volume 1080 of LNCS., Crete, Springer-Ve(iagy 1996) 1-21
6. Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: Asfmatic Approach to Metamod-
eling Environments and Model Transformation Systems in \BVITh: GraBaTs’05. Volume
127 of ENTCS., Amsterdam, Elsevier (mar 2005) 65-75
7. Jouault, F., Allilaire, F., Bézivin, J., Kurtey, I.: ATIA model transformation tool. Science
of Computer Programming2(1-2) (jun 2008) 31-39
8. Kolovos, D., Paige, R., Polack, F.: The Epsilon Objectdiaage (EOL). In: ECMDA-FA'06.
Volume 4066 of LNCS., Springer (2006) 128-142
9. Eysholdt, M., Behrens, H.: Xtext: implement your langeidgster than the quick and dirty
way. In: OOPSLA’10, ACM (2010) 307-309
10. Varro, D., Balogh, A.: The model transformation langeiag the VIATRA2 framework.
Science of Computer Programmif§(3) (2007) 214-234
11. https://acomcs. ntgi I I.caltrac/ AToMPM
12. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: A Fesrark for Custom-built Trans-
formation Languages. Journal on Software and Systems lihadgul 2013)
13. Syriani, E., Gray, J., Vangheluwe, H.: Modeling a Modedrisformation Language. In:
Domain Engineering: Product Lines, Conceptual Models,laanmtjuages. Springer (2012)
14. Syriani, E., Vangheluwe, H.: A Modular Timed Model Triorenation Language. Journal
on Software and Systems Modelitig(2) (jun 2011) 387-414
15. Syriani, E., Vangheluwe, H.: Performance Analysis ahklsis. Technical Report SOCS-
TR-2010.8, McGill University, School of Computer Scieneeq 2010)
16. https://github. conl | bear d4/ SClI ON

https://acom.cs.mcgill.ca/trac/AToMPM/
https://github.com/jbeard4/SCION

	AToMPM: A Web-based Modeling Environment

