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Abstract. In model-driven engineering, most problems are solved using model
transformation. However, the development of a model transformédioa spe-
cific problem is still a hard task. The main reason for that is the lack of aldev
opment process where transformations must be designed befdesrmped. As
in object-oriented design, we believe that “good design” of model toamsftion
can benefit tremendously from model transformation design pattderse, in
this paper, we present DelTa, a language for expressing desigmgdtiemodel
transformations. DelTa is more abstract than and independent frgnexast-
ing model transformation language, yet it is expressive enough toedééisign
patterns as guidelines transformation developers can follow. To validatarth
guage, we have redefined four known model transformation desigiarps in
DelTa and demonstrated how such abstract transformation guideliné® ¢m-
plemented in five different model transformation languages.

1 Introduction

Model-driven engineering heavily relies on model transfation. However, although
expressed at a level of abstraction closer to the problemadothan code, the devel-
opment of a model transformation for a specific problem i athard, tedious and
error-prone task. As witnessed [n [1], one reason for thé§eudties is the lack of a
development process where the transformation must firsebigided and then imple-
mented, as practiced in software engineering. One of thd essential contribution
to software design was the GoF catalog of object-orientasiigdepatterns[[2]. Sim-
ilarly, we believe that the design of model transformaticas tremendously benefit
from model transformation design patterns. Although vexwy flesign patterns have
been proposed in the padtl([84]56,7]), they were eachesged in a specific model
transformation language (MTL) and hence hardly re-usabény other.

As stated in[[8], a design pattern language must be indepéfiaen any MTL in
which patterns are implemented. Furthermore, it must be fitefinepatternsrather
thantransformationsFor example, GoF design patterns are described in UML diass
agram which is independent from the object-oriented prognang language used for
the implementation of software. A design pattern languagstm@lso be understandable
and implementable by a transformation developer. Additilgnit must allow one to
verify if a transformation correctly implements a pattefo. satisfy the language in-
dependence and implementability requirements, this paogroses DelTa, a domain-
specific language to describe design patterns for modedfsemations. Furthermore,



DelTa is expressive enough to define design patterns asligpgisléransformation de-
velopers can follow. Note that DelTa currently focuses apgrbased model transfor-
mation only.

In Sectiorl 2, we present the syntax and informal semantiBetifa. To validate the
language in Sectidd 3, we redefine four known model transdtion design patterns us-
ing DelTa and demonstrate how design patterns expressesgiTia Dan be implemented
in existing graph-based MTLs. In Sectign 4, we discussedlatork. We finally discuss
limitations of our approach and conclude in Secfibn 5.

2 Design Pattern Language for Graph-based Model
Transformation

DelTais a neutral language, independent from any MTL. leisigihed to define design
patterns for model transformations, hence it is not a laggua define model transfor-
mations. We could have used an existing MTL as a notation fi&) however our
need is a notation that expresses how elements within a relleeated and how rules
are related with each other. In this respect, DelTa offemsesconcepts borrowed from
any MTL, abstracts away concepts specific to a particular Marld adds concepts to
more easily describe desigratterns This is analogous to how Gamneaal. [2] used
UML class, sequence and state diagrams to define desigmnzatte object-oriented
languages. In the following, we describe the abstract sym@ancrete syntax, and in-
formal semantics of DelTa.

2.1 Abstract Syntax

ModeiTransformatlonDeﬂgnPattern TransformationUnit ' e
name : String applicationCount name:: String declarations name Sting
14—? 1.% Y—v 1 * l jl
- - Variable
Transformation Transformation Pattern —<enum>> TransformationBlock o
. . . I eXxists : boolean
Unit UnitRelation Metamodel TUAppCount I—I name Sting
\—47 J7 é—‘ single
- * - recursive
|Des:gnPattemElement|—> Annotation opergtestn
note : String Action
””” - B abstract : boolean
v
TransformationUnitRelation Type <’—|PatternMetamodeI - Desi
esignPattern
o o name: String g
3 Flag Element
5 name : String +>| NegativeConstraint
E] value : boolean
R - PseudoUnit
! Variable =
— [ ntity| (1 target | Relation i
TransformationUnit [<2.» | | exists: boolean ] tarce - [stART] [EnD
i | name: String i
ElementGroup i result: boolean

Fig. 1. DelTa Metamodel



As depicted in Figl1l, anodel transformation design pattern (MTDP) consists of
three kinds of componentsansformation units (TU), pattern elements andtransforma-
tion unit relations (TUR). This is consistent with the structure of common MTR}. [
TUs represent the concept of rule in graph-based modefftnanations|[10]. A MTDP
rule consists of @onstraint, anaction, and optionahegative constraints. These corre-
spond to the usual left-hand side (LHS), right-hand side$R&hd negative application
conditions (NACs) in graph transformation. A constrairfimies the pattern that must be
present, a negative constraint defines the pattern thatrsitdde present, and the action
defines the changes to be performed on the constraint @neakeletion, or update).
All these expressions operate on strongly typadhbles.

There are three types for variablegiatern metamodel, a metamodetlement, or a
trace. The pattern metamodel is a label to distinguish betweeneais from different
metamodels, since a MTDP is independent from the sourcesagettmetamodels used
by an actual model transformation. When implementing a MT#B, pattern meta-
model shall not be confused with the original metamodel efsburce and/or target
models of a transformation, but ideally be implemented lyrttamified version[[1/1].
The metamodel labels also indicate the number of metamdneifved in the trans-
formation to be implemented. Metamodel elements are tilgiegher entity-like and
relation-like elements, this is why it is sufficient to onlgrisiderentities or relations in
DelTa. An element may be assigned booléags to refer to the same variables across
rules. Undeclared flags are defaulteddise . This is similar to pivot passing in Mo-
Tif [L2] and GReAT [13], and parameter passing in ViatiaZ[Yhen implementing a
MTDP, flags may require to extend the original or ramified nmetdels with additional
attributes. Arelement group is an entity that represents a collection of entities aralrel
tions implicitly, when fixing the number of elements is tostréctive. Traceability links
are crucial in MTLs but, depending on the language, they iinerecreated implicitly
or explicitly by a rule. In DelTa, we opted for the latter, whiis more general, in order
to require the developer to take into account traceabilityslin the implementation.

As surveyed in[[15], different MTLs have different flavorsTfls. For example, in
MoTif, an ARule applies a rule once, &Rule applies a rule on all matches found, and
anSRule applies a rule recursively as long as there are matchesh&nekample is in
Henshin [16] where rules with multi-node elements are @gpdin all matches found.
Nevertheless, all MTLs offer at least a TU to apply a rule omceecursively as long as
possible which are two Tldpplication counts in DelTa. All other flavors of TUs can be
expressed in TURs as demonstrated_id [15]. For reuse pwgpagdes in DelTa can be
grouped intaransformation blocks, similarly to aBlock in GReAT.

As surveyed in[12,17], in any MTL, rules are subject to a sicieg policy, whether
it is implicit or explicit. For example, AGG_[18] uses layetdoTif and VMTS [19]
use a control flow language, and GReAT defines causalityisakabetween rules. As
shown in [20], it is sufficient to have mechanisms for sequegndranching, and loop-
ing in order to support any scheduling offered by a MTL. Teigovered by the three
TURs of DelTa:Sequence, Random, andDecision that are explained in Sectign 2.3.
The former two act on at least two TUs and the latter has thaiets;condition, success
and fail TUs.PseudoUnits mark the beginning and the end of the scheduling part of a
design pattern.
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Finally, annotations can be placed on anjesign pattern element in order to give
more insight on the particular design pattern element. Ehéspecially used for ele-
ment groups and abstract actions.

2.2 Concrete Syntax

Listing 1.1. EBNF Grammar of DelTa in XText

MTDP: 'mtdp’  NAME
‘metamodels:' NAME(',  NAME* ANNOTATIOR
( ('tblock’ NAME' ' ? ANNOTATIONR) ?
rule’ NAME' ' ?2 ANNOTATIOR

El enent G oup?
Entity?
Rel ation?
Trace?
Constrai nt
Negat i veConst rai nt *
Action) +

TURel ation+ ;

El enent G oup: ‘'ElementGroup’ ELEMENTNAME ;' ELEMENTNANE ;
Entity: 'Entity’ ELEMENTNAME'' ELEMENTNANE ;
Rel ati on: 'Relation’ NAME' (* ELEMENTNAME' ELEMENTNAME)'

(/" NAME' (' ELEMENTNAME' ELEMENTNAME)')* ;
Trace: 'Trace' NAME' (* ELEMENTNAME'' ELEMENTNANE ')’

(' NAME' (' ELEMENTNAME'' ELEMENTNANE ')')* ;

Constraint: 'constraint:' '~' ? (ELEMENTNAMBAME
(') '~ ? (ELEMENTNAMENAME)* ANNOTATION ;

Negat i veConstrai nt: ‘negative constraint:' ( ELEMENTNAMBNAME
("} (ELEMENTNAMBAME)* ANNOTATIOR ;

Action: ('abstract action:' | ‘action:’ ('~ ? (ELEMENTNAMENAME
(') '~ ? (ELEMENTNAMEBNAME)*) ) ANNOTATION ;

TURel ation: (TURTYPE('START' | (NAME('[' NAME'=" ('true' | ‘false’  )'1')?) )
("' ('END'" | NAME ('[' NAME'=" ('true' | ‘false’ )']1')?) + )
| Decision;

Decision: NAME ' ?' DecisionBlock ! DecisionBlock;

DecisionBlock: ('END' | NAME ('[' ('END' | NAME '=" ('true' | ‘false’ )'1') ?

(' ('END'" | NAME (' ["' ('END'" | NAME '=" ('true' | ‘false’  )'1') ? ) *;
termnal NAME: (‘&' .. 'z |'A" .. 'Z" ) (@& .'z7 |'A .'Z |'0 .9 ) ;

ternminal ELEMENTNAME: NAME NAME('[' NAME'=" (‘true’ |‘false’ )

(') NAME'=" ('true'" |'false’ ))* ']1')? ;
term nal ANNOTATION: '# (!'# )* '# ;
term nal TURTYPE: ('Sequence’ | ‘Random' ) "

We opted for a textual concrete syntax for DelTa. Listing $hbws the EBNF
grammar implemented in Xtext. The structure of a DelTa degattern is as follows.
A new design pattern is declared using thedp keyword. This is followed by a list
of metamodel names. The rules are defined thereafter. Ratebe contained inside
transformation blocks represented by thick keyword. The %' next to the name of
the rule indicates that the rule is recursive; the applicatiount is single by default. A
rule always starts with the declaration of all the varialitesill use in its constraints

and actions. Then, thenstraint pattern is constructed by enumerating the variables

that constitute its elements. Elements can be prefixed wititd indicate their non-
existence. Flags can be defined on elements using the sqaakebnotation. Optional
negative constraints can be constructed, followed by dorachn abstract action may
not enumerate elements. The final component of a MTDP is thlatary TUR def-
initions. A TUR is defined by its type and followed by a list efle or transformation



block names. As an exception, decision TUR is a single limelitimnal that creates a
branch according to the success or fail of the condition. iilenotations are enclosed
within ‘4. Listings[1.2-[ 1.5 show concrete examples of MTDPs usilgrbtation.

2.3 Informal Semantics

The semantics of MTDP rules is borrowed from graph transétion rules|[10], but
adapted for patterns. Informally, a MTDP rule is applicaiblés constraint can be
matched and no negative constraints can. If it is applicahlen the action must be
performed. Conceptually, we can represent thisdoyistraint A —negl A —neg2 A

. — action. The presence of a negated variakle.(with exists=false ) in a
constraint means that its corresponding element shall @dbbnd. Since constraints
are conjunctive, negated variables are also combined injamctive way. Disjunctions
can be expressed with multiple negative constraints. Astifollow the exact same
semantics as the “modify” rules in GrGen.NET [21]. Elemeptssent in the action
must be created or have their flags updated. Negated vagiablen action indicate
the deletion of the corresponding element. Only abstraa e are empty, giving the
freedom to the actual implementation of the rule to perforspecific action. Flags are
not attributes but label some elements to be reused acress ru

MTDP rules are guidelines to the transformation developer @e not meant to
be executed. On one hand, the constraint (together withtimegapnstraints) of a rule
should be interpreted anaximal i.e., a MT rule shall find at most as many matches
as the MTDP rule it implements. On the other hand, the actfoa le should be
interpreted asninimat i.e.,a MT rule shall perform at least the modifications of the
MTDP rule it implements. This means that more elements inLtH8 or additional
NACs may be present in the MT rule and that it may perform mdR&JD operations.
Furthermore, additional rules may be needed when impleénmeatMTDP for a specific
application. Note that the absence ofation in a rule indicates that the rule is side-
effect free, meaning that it cannot perform any modification

The scheduling of the TUs of a MTDP (or contained insideaasformation block)
must always begin witBTART and end wittEND. TUs can be scheduled in four ways.
The Sequence relation defines a sequencing relation between two or more B4
gardless of their applicability. For exam@equence:A,B  means thah should be ap-
plied first and them can be applied. ThRandom relation defines the non-deterministic
choice to apply one TU out of a set of TUs. For exanfpé@dom:A,B means tha or
B should be applied, but not both. Thecision relation defines a conditional branching
and applies the TUs in the success or fail branches accortdlitige application of the
rule in the condition. For example?B:C means that ifA is applicable them should
be applied after, otherwise should be applied. Note that the latter TUR can be used
to define loop structures. For examph@A:A is equivalent to defining as recursive,
i.e.,Ax. The notion of applicability of a transformation block igelemined by the result
of its END TU. For example, consider a transformation blacknd a ruleR andP. The
schedulingT?R:P means that iEND[result=true] is reached inT, thenR will be
applied.



3 Model Transformation Design Patterns

In this section, we illustrate how to use DelTa pragmatychyl redefining four existing
design patterns for MT. Inspired by the GoF catalog temp|ate describe a MTDP us-
ing the following characteristicsnotivationdescribes the need for and usefulness of the
patternapplicability outlines typical situations when the pattern can be appliedc-
ture defines the pattern in DelTa and explains the patexampledllustrates practical
cases where the patterns can be uge@lementatiorprovides a concrete implemen-
tation of the pattern in a MTL, andariationsdiscusses some common variants of the
pattern. For the example characteristic, we use a subsétNheclass diagram meta-
model with the concepts of class, attributes, and supesetag-or the implementation
characteristic, we have implemented all design patterfigatanguages: MoTif, AGG,
Henshin, Viatra2, GrGen.NET. Although we only show one iempéntation for each in
this paper, the complete implementations can be fourid ih T2s is how we validated
the expressiveness, usability, and implementability d¢tigpas defined in DelTa.

3.1 Entity Relation Mapping

— Motivation: Entity relation mapping (ER mapping) is one of the most comiyo
used transformation pattern in exogenous transformatoneding a mapping be-
tween two languages. It creates the elements in a languagesponding to el-
ements from another language and establishes tracedlikty between the ele-
ments of source and target languages. This pattern wasaltigproposed in_[6]
and later refined iri.[23].

— Applicability: The ER mapping is applicable when we want to translate ele&snen
from one metamodel into elements from another metamodel.

— Structure: The structure is depicted in Listilg 1.2. The pattern refets/o meta-
models labeledrc andtrgt , corresponding to the source and target languages.
It consists of a MTDP rule for mapping entities first and aeofior mapping rela-
tions. TheentityMapping rule states that if an entity from src is found, then an
entityf must be created imgt as well as a trace between them, ifl andf do
not exist yet. TheelationMapping rule states that if there is a relatioh between
e andf in src and there is a tracea betweere andg, and a trace2 betweerf
andh, then create a relatio betweerg andh if it does not exist yet. Both rules
should be applied recursively.

Listing 1.2. One-to-one Entity Relationship Mapping MTDP

nt dp OneToOneERMapping

nmet anodel s: src, trgt

rul e entityMapping  *
Entity src.e, trgtf
Trace ti(src.e, trgt.f)
constraint: srce, ~trgt.f, ~tl1
action: trgtf, t1

rul e relationMapping *
Entity src.e, src.f, trgtg, trgt.h
Rel ation ri(src.e, src.f), r2(trgt.g, trgt.h)
Trace tl(src.e, trgt.g), t2(src.f, trgt.h)
constraint: srce, srcf, trgtg, trgt.h, rl, t1, t2, ~r2
action: r2

Sequence: START, entityMapping, relationMapping, END




— Examples: A typical example of ER mapping is in the transformation frolass
diagram to relational database diagrams, where, for ex@rapllass is transformed
to a table, an attribute to a column, and the relation betwésess and attribute to a
relation between table and column.

— Implementation: We show the implementation of ER mapping in Henshin in

Rules:

= Rule ClassMapping ||:} Rule attrsMapping

reserve s |
source _[:Class ‘
Create é

target—

1 «preserve
attrs source‘

e |
—1

L
preserve”s [1<target
:Column ‘ preserve

[ ]

source [:Class

target—|*preserve
::,:9: :Table

= Rule AttributeMapping |

P ——

:Attribute

Scheduling:

|£ SequentialUnit erMappingSeq I

.—’[ ClassMapping ]—’[ AttributeMapping H attrsMapping ]—'©

Fig. 2. Rules of ER Mapping in Henshin

Fig.[2. The pattern states to apply the rules for entitiesigethose for relations.
Henshin provides a sequence structure @iglquentialUnit. Henshin uses a com-
pact notation for rules together with stereotypes on patdements«preserve»
is used for the elements found in the constraint of the MTOP and«create» is
used to create elements found in the action of the MTDP rudgetthere are two
rules corresponding tentityMapping: one for mapping classes to tables and one
for mapping attributes to columns. In Henshin, traceabiiitks must be modeled
explicitly as a separate class connecting the source agdttatements. We did
not need to use NACs because Henshin provides a multi-nditendpat already
prevents applying a rule more than once on the same match.

— Variations: Sometimes the entities in specific metamodels cannot be edapye-
to-one. Itis possible to define one-to-many or many-to-ntaRymappings pattern
using element groups instead of entities (see [22]). Alsmesimplementations
may require the creation of a trace between the two relatiotie relationMapping
rule.

3.2 Transitive Closure

— Motivation: Transitive closure is a pattern typically used for analgzieachabil-
ity related problems with an inplace transformation. It aasposed as a pattern
in [3] and in [24]. It generates the intermediate paths betweodes that are not
necessarily directly connected via traceability links.

— Applicability: The transitive closure pattern is applicable when the metkats in
the domain have a structure that can be considered as eseditteee.



— Structure:

Listing 1.3. Transitive Closure MTDP

nt dp TransitiveClosure

nmet anodel s: mm

rul e immediateRelation *
Entity mm.e, mm.f
Rel ati on ri(mm.e, mm.f)
Trace tli(mm.e, mm.f)
constraint: mm.e, mmf, rl, ~tl
action: tl

rul e recursiveRelation *
Entity mm.a, mm.b, mm.c
Trace tl(mm.a, mm.b), t2(mm.b, mm.c), t3(mm.a, mm.c)
constraint: mm.a, mmb, mm.c, t1, t2, ~t3
action: t3

Sequence: START, immediateRelation, recursiveRelation, END

The structure is depicted in Listiig1.3. The pattern ogsran single metamodel.

First, theimmediateRelation rule creates a trace element between entities connected

with arelation. Itis applied recursively to cover all rédats. Then, theecursiveRe-
lation rule creates trace elements between the node indirectlyected. That is if
entitiesa-b andb-c are connected with a trace, therandc will also connected
with a trace. It is also applied recursively to cover all nr@dghaustively.

— Examples: The transitive closure pattern can be used to find the lowastmon
ancestor between two nodes in a directed tree, such as fiallisigperclasses of a
class in UML class diagram.

— Implementation: We have implemented the transitive closure in AGG. Eig. 3 de-

Nac : immediate Superclass of TransitiveClosureCD =]
% T4
i ¥
: | -
! i
§ ‘superclass
1
Nac : recursive Superclass of TransitiveClosureCD =3
| 14
L
 gsuperclass |- S gsperclass
: |1:C|ass| 3’[2:Class| |1:CIass| %ﬁ>|2:CIass|
i I B

Fig. 3. Transitive Closure rules in AGG

picts the corresponding rules. AGG rules consist of theticadhl LHS, RHS, and
NACs. The LHS and NACs represent the constraint of the MTD@ and the RHS
encodes the action. ThmmediateSuperclass rule creates a traceability link be-
tween a class and its superclass. The NAC prevents thisabiditg link from being
created again. ThecursiveSuperclass rule creates the remaining traceability links



between a class and higher level superclasses. AGG letsénassign layer num-
bers to each rule and starts to execute from layer zero dinalygrs are complete.
Completion criteria for a layer is executing all possiblesun that layer until none
are applicable anymore. Therefore, we set the layémofediateSuperclass to 0
andrecursiveSuperclass to 1 as the design pattern structure stated these rules to be
applied in a sequence.

— Variations: In some cases, a recursiselfRelation rule may be applied first, for
example when computing the least common ancestor clasoafisses, as in[5].

3.3 Visitor

— Motivation: The visitor pattern traverses all the nodes in a graph andegees
each entity individually in a breadth-first fashion. Thistpen is similar to the “leaf
collector pattern” in[[3] that is restricted to collectirntgetleaf nodes in a tree.

— Applicability: The visitor pattern can be applied to problems that congdistr o
can be mapped to any kind of graph structure where all nods$ toebe processed
individually.

— Structure:

Listing 1.4. Visitor MTDP

nt dp Visitor
net anodel s: mm
rul e marklnitEntity
Entity mm.e
constraint: mme # e is a predetermined entity #
action: mm.e[marked= true ]
rul e visitEntity *
Entity mm.e
constraint: mm.e[marked= true ,processed= false ]
action: mm.e[processed= true ] # Process current entities #
rul e markNextEntity
Entity mm.e, mm.f
Rel ati on ri(mm.e, mm.f)
constraint: mm.e[processed= true ], mm.fimarked= false ], rl1
action: mm.flmarked= true ]
Sequence: START, markinitEntity, visitEntity, markNextEntity
markNextEntity ? visitEntity : END

As depicted in Listing 114, the visitor pattern makes usearfdl ThemarkinitEntity
rule flags a predetermined initial entity as “marked”. Ndtattin actual implemen-
tation, this rule maybe more complex. This rule is appliest find once. The next
rule to be applied is theisitEntity rule. It visits the marked but unprocessed nodes
by changing their processed flagsre . The actual processing of the node is left
at the discretion of the implementation. Then, therkNextEntity rule marks the
nodes that are adjacent to the processed nodes. Markingracesping are split
into two steps to reflect the breadth-first traversal. TaekNextEntity rule then
initiates the loop to visit the remaining nodes. VisitinglerwhenmarkNextEntity
is not applicablei.e.,when all nodes are marked and have been processed.

— Examples: The visitor pattern helps to compute the depth level of eda$sdn a
class inheritance hierarchy, meaning its distance fronb#ise class.



rule markBaseClass { rule visitSubclass { rule markSubclass {

e:Class; d:Class; e:Class;
negative { e:Class; f:Class;
d:Class; d-:subclass->e; e-:subclass->f;
d-:subclass->e; if { if {
} e.marked== H e.processed==
modify { e.processed== H £f.marked==
eval { } }
e.marked= : modify { modify {
e.processed= H eval { eval {
e.processed= H f.marked=

e.depth=d.depth+l;

exec markBaseClass
exec ([visitSubclass] ;> [markSubclass])*

Fig. 4. Visitor rules and scheduling in GrGen.NET

— Implementation: We have implemented visitor in GrGen.NET as depicted in
Fig.[4. This MTL provides a textual syntax for both rules astiedluling mech-
anisms. In a rule, the constraint is defined by declaring ka@ents of the pattern
and conditions on attributes are checked witlif atatement. Actions are written in
a modify or replace statement for new node creation asel statements are used
for attribute manipulation. ThemarkBaseClass rule selects a class with no super-
class as the initial element to visit. Since this class dlydsas a depth level df,
we flag it as processed to prevent thgtSubclass rule from increasing its depth.
This is a clear example of the minimality of a MTDP rule, whére implementa-
tion extends the rule according to the application. ¥ik&Subclass rule processes
the marked elements. Here, processing consists of inage#se depth of the sub-
class by one more than the depth of the superclassmBrieSubclass rule marks
subclasses of already marked classes. The schedulingsef @&en.NET rules is
depicted in the bottom of Fifl] 4. As stated in the design patséructure mark-
BaseClass is executed only onceisitSubclass and markSubclass are sequenced
with the;> symbol. Thex indicates to execute this sequence as long@&Sub-
class rule succeeds. At the end, all classes should have thegatatepth level set
and all marked as processed. Note that in this implementatisitSubclass will
not be applied in the first iteration of the loop.

— Variations: It is possible to vary the traversal order, for example a lodijost
strategy may be implemented. It is also possible to visitiehs instead of entities.
Another variation is to only have one recursive rule thatpeses all entities if the
order in which they processed is irrelevant.

3.4 Fixed Point Iteration

— Motivation: Fixed point iteration is a pattern for representing a "dtifutoop
structure. It solves the problem by modifying the input mdteatively until a con-
dition is satisfied. We previously identified this patterrjSh Asztalos et al.[25]



also identified a similar structure named traverser moaelisfiormation analysis
pattern.

Applicability: This pattern is applicable when the problem can be solved-ite
tively until a fixed point is reached. Each iteration mustfpen the same modi-
fication on the model, possibly at different locations: eithdding new elements,
removing elements, or modifying attributes.

Structure:

Listing 1.5. Fixed Point Iteration MTDP

nt dp FixedPointlteration

net anodel s: mm
rul e initiate

El enent G oup mm.egl

constraint: mm.egl

action: mm.egl[selected= true ] # Initiate the element group #
rul e checkFixedPoint

El enent G oup mm.egl

constraint: mm.egl

abstract action: # Process the element group #
rul e iterate

El enent G oup mm.egl

constraint: mm.egl[selected= true ]

abstract action: # Advance the initiated group #
Sequence: START, initiate, checkFixedPoint
checkFixedPoint ? END[result= true ] : iterate
iterate ? checkFixedPoint : ENDlresult= false ]

The structure is depicted in Listiig_1.5. The fixed pointaten consists of rules
that have abstract actions because processing at eadioiieeatirely depends
on the application. Nevertheless, it enforces the follgrsoheduling. The pattern
starts by selecting a predetermined group of elements imittate rule and checks
if the model has reached a fixed point (the condition is endddehe constraint
of the checkFixedPoint rule). If it has, thecheckFixedPoint rule may perform some
action,e.g.,marking the elements that satisfied the condition. Othervieeiterate
rule modifies the current model and the fixed point is checkgdna

Examples: In [5], we showed how to solve three problems with this patteom-
puting the lowest common ancestor (LCA) of two nodes in aatiée tree, which
adds more elements to the input model; finding the equivaésigtance in an elec-
trical circuit, which removes elements from the input m¢deld finding the short-
est path using Dijkstra’s algorithm, which only modifiegiatites.
Implementation: Fig.[8 shows the implementation of the LCA frof [5] in Mo-
Tif using the fixed point iteration pattern. Thetiate rule is extended to create
traceability links on the input nodes themselves withltim&ToSelf rules and with
their parents with theinkToParent rules. TheGetLCA rule implements theheck-
FixedPoint rule and tries to find the LCA of the two nodes in the resultingdel
following traceability links. This rule does not have a RH® b sets a pivot to
the result for further processing. ThékToAncestor rules implement théterate
rule by connecting the input nodes to their ancestors. Th&itontrol structure
reflects exactly the same scheduling of Lisfind 1.5.

Variations: In some cases, thaitiate rule can be omitted when, for instance, the
iterate rule deletes selected elements such as in the computatitve equivalent
resistance of an electrical circuit [5].
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4 Related Work

The first work that proposed design patterns for model transdition was by Agrawadt
al. [3]. They defined théransitive closurepattern which is similar to what we showed
in Section[3.2, except that we create traceability links nehe they reuse the same
association type from the input metamodel. Teaf collectorpattern traverses a hi-
erarchical tree to find and process all leaves. This can bsidered as an application
of the visitor pattern in Sectidn 3.3 where tisitEntity rule is only applied on leaves.
The proxy generatoridiom is not a general design pattern, since that it is spetufi
languages modeling distributed systems where remoteattiens to the system need
to be abstracted and optimized.

lacobet al. [6] defined five other design patterns for outplace transétions. Sim-
ilar to the ER mapping pattern in Sectionl3.1, thappingpattern dictates to first map
entities and then relations. Since it is described using-®yive consider it as an im-
plementation of our ER mapping pattern. Tleéinemenpattern proposes to transform
an edge into a node with two edges in the context of a refinesmtiat the target
model contains more detail. Thode abstractiorpattern abstracts a specific type of
node from the target model while preserving the originatiehs. Theflatteningpat-
tern removes the composition hierarchy of a model along plaoing the containment
relations. We plan to generalize these three patterns dimbdbem in DelTa. Thelu-
ality pattern is not a general design pattern, since it is speciflartguages for data
control flow modeling by changing by converting edges to 1saated vice versa.

Bézivinet al.[7] mined ATL transformations and ended up with two desigtigras.
Thetransformation parameterngattern suggests to model explicitly auxiliary variables
needed by the transformation in an additional input metahdaastead of hard-coding
them in ATL helpers. Thenultiple matchingpattern shows how to match multiple el-
ements in thérom part of an ATL rule. Newer versions of ATL already supportsthi
feature and therefore this pattern is obsolete now.

The first issue with these three previous works is that alldbsign patterns are
defined using GReAT, QVT-R, and ATL respectively. Therefdhey should not be



considered as design patterns for model transformatidrabimplementations of de-
sign patterns in a specific MTL. The second issue is that theyakhdefined as model
transformations, rather than patterns, and use specifitt @pd output metamodels.
Therefore, it is not clear how to reuse these patterns féeréifit application domains.
On the contrary, DelTa is independent from any MTL and defthespatterns using
abstracted elements independent from the input and outptamodels.

Lano et al.[23] proposed other useful patterns using UML class diagrand OCL
constraints (first-order logic) to specify model transfations. Each transformation is
described with a set afssumptionshat represent the precondition of a ridenstraints
that represent the postcondition of a rudmsuresfor additional constraints, anit-
variants The design patterns are for exogenous transformatiornys Dim conjunctive-
implicative formpattern dictates to separate the creation target entitzste at differ-
ent hierarchical levels into different phases. For exanthiemap objects before links
pattern, essentially our ER mapping pattern, is an instahtgis generic pattern. An-
other instance of this pattern is thecurrent constraintgattern where the creation of
a target entity may require a fixed point computation. Thedfipeint iteration pattern
in Section 3.4 can be used in one of the creation phases heeeofher instances of
the conjunctive-implicative form pattern are tbetity splittingandentity mergingpat-
terns that essentially correspond to the one-to-many amy+teaone variants of the
ER mapping pattern respectively. Thaxiliary metamodepattern suggests to use an
auxiliary metamodel when the mapping from elements of onguage to another is
too complex.

In Lano et al’s approach, the choice of the design pattern language fsirtide un-
derstandability of the patterns. This also makes them lwairdplement in MTLs other
than UML-RSDS. Additionally, they defined implementaticatierns. In contrast with
design patterns, they are guidelines to implement the gstsoms and constraints of
transformation specifications in a MTL. The description @mé on an abstract imple-
mentation language that supports sequencing, branchuaping and operation calls,
which is similar to what the TURs of DelTa offer.

Guerraet al. [1] proposed a collection of languages to engineer modesfoaima-
tions and, in particular, for the design phase. Rule diagréRD) are used to describe
the structures of the rules and what they do in the low levelémentation phase. Like
DelTa, RD is defined at a level of abstraction that is indepahérom existing MTLs.
But its purpose is to generate a transformation rather tbatetine design patterns.
Therefore, there are some similarities and differencesédrst RD and DelTa. In RD,
rules focus on mappings rather than constraints and actitamce, they specify designs
for both unidirectional and bidirectional rules. The exému flow of RD supports se-
quencing rules, branching in alternative paths based omstreint which is similar to
the decision TUR in DelTa, or non-deterministically chaagsto apply one rule which
is similar to the random TUR. They also allow rules to expljcinvoke the application
of other rules. RD is inspired from QVT-R and ETL and is therefmore easily imple-
mentable in these language, whereas DelTa currently fsausgraph-based MTLs.

Levendovszkyet al.[24] proposed domain-specific design patterns for modestra
formation as well as other DSLs. In their approach, they éefidesign patterns with
a specific MTL, VMTS, where rules support metamodel-basétkpamatching. They



proposed two design patterns: thelper constructs in rewriting rulgsattern explicitly
produces traceability links, and tbptimized transitive closungattern, which is similar
to the transitive closure pattern in Sectjion] 3.2.

5 Conclusion

In this paper, we proposed DelTa as candidate for a desig@rpdanguage for model
transformations. DelTa is a language for describing pagterather than transforma-
tions. It is independent from any MTL yet directly implemable in most graph-based
MTLs. To validate the language, we described four knowngtepiatterns for model
transformation and implemented them in five different leaggs (the complete imple-
mentations can be found in [22]).

As stated in Sectionl 1, a design pattern language must alsoderstandable and
suited to verify correctimplementations. For the formez,pan to empirically evaluate
DelTa by running user studies. The verifiability requiretmr@mains to be investigated.
A formal specification language such as|inl[23] can then bd,usat at the price of
the understandability and ease of implementability. Ferrtiore, identifying additional
design patterns will help us evolve the DelTa language arttiduvalidate its expres-
siveness.

When implementing the design patterns, we realized that gmtierns are easier
to implement in some languages than in others due the catsthey offer for trans-
formation units and for scheduling. In particular, when lempenting a pattern that
involves more complex scheduling (such as the fixed poimatien) in MTLs with
very limited scheduling policies (such as AGG), severaksgineed to be used, such as
modifying the metamodel or making use of temporary elementtributes. The lack
of a standard paradigm for model transformations is the reaimce of this difficulty
that the model transformation community has to agree on. Mfetp extend DelTa to
cover non-graph-based MTLs, such as QVT-OM and ATL, andipbsbki-directional
MTLs, such as QVT-R and triple graph grammars.
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