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Abstract. In model-driven engineering, most problems are solved using model
transformation. However, the development of a model transformationfor a spe-
cific problem is still a hard task. The main reason for that is the lack of a devel-
opment process where transformations must be designed before implemented. As
in object-oriented design, we believe that “good design” of model transformation
can benefit tremendously from model transformation design patterns.Hence, in
this paper, we present DelTa, a language for expressing design patterns for model
transformations. DelTa is more abstract than and independent from any exist-
ing model transformation language, yet it is expressive enough to define design
patterns as guidelines transformation developers can follow. To validate the lan-
guage, we have redefined four known model transformation design patterns in
DelTa and demonstrated how such abstract transformation guidelines can be im-
plemented in five different model transformation languages.

1 Introduction

Model-driven engineering heavily relies on model transformation. However, although
expressed at a level of abstraction closer to the problem domain than code, the devel-
opment of a model transformation for a specific problem is still a hard, tedious and
error-prone task. As witnessed in [1], one reason for these difficulties is the lack of a
development process where the transformation must first be designed and then imple-
mented, as practiced in software engineering. One of the most essential contribution
to software design was the GoF catalog of object-oriented design patterns [2]. Sim-
ilarly, we believe that the design of model transformationscan tremendously benefit
from model transformation design patterns. Although very few design patterns have
been proposed in the past ([3,4,5,6,7]), they were each expressed in a specific model
transformation language (MTL) and hence hardly re-usable in any other.

As stated in [8], a design pattern language must be independent from any MTL in
which patterns are implemented. Furthermore, it must be fit to definepatternsrather
thantransformations. For example, GoF design patterns are described in UML classdi-
agram which is independent from the object-oriented programming language used for
the implementation of software. A design pattern language must also be understandable
and implementable by a transformation developer. Additionally, it must allow one to
verify if a transformation correctly implements a pattern.To satisfy the language in-
dependence and implementability requirements, this paperproposes DelTa, a domain-
specific language to describe design patterns for model transformations. Furthermore,



DelTa is expressive enough to define design patterns as guidelines transformation de-
velopers can follow. Note that DelTa currently focuses on graph-based model transfor-
mation only.

In Section 2, we present the syntax and informal semantics ofDelTa. To validate the
language in Section 3, we redefine four known model transformation design patterns us-
ing DelTa and demonstrate how design patterns expressed in DelTa can be implemented
in existing graph-based MTLs. In Section 4, we discuss related work. We finally discuss
limitations of our approach and conclude in Section 5.

2 Design Pattern Language for Graph-based Model
Transformation

DelTa is a neutral language, independent from any MTL. It is designed to define design
patterns for model transformations, hence it is not a language to define model transfor-
mations. We could have used an existing MTL as a notation for DelTa, however our
need is a notation that expresses how elements within a rule are related and how rules
are related with each other. In this respect, DelTa offers some concepts borrowed from
any MTL, abstracts away concepts specific to a particular MTL, and adds concepts to
more easily describe designpatterns. This is analogous to how Gammaet al. [2] used
UML class, sequence and state diagrams to define design patterns for object-oriented
languages. In the following, we describe the abstract syntax, concrete syntax, and in-
formal semantics of DelTa.

2.1 Abstract Syntax

ModelTransformationDesignPattern

name : String

Transformation

UnitRelation

Pattern

Metamodel

Transformation

Unit

DesignPatternElement Annotation

note : String

1..* 1..* 1..*

*

1

condition

TransformationUnitRelation

Decision Sequence

Random

TransformationUnit

Rule

Action

abstract : boolean

Constraint

NegativeConstraint

PseudoUnit

name : String

START END

result : boolean

Expression

Variable

exists : boolean

name : String

Type

name : String

TransformationBlock

*

*

1

0..1

operatesOn

*

declarations

*
1

DesignPattern

Element

applicationCount

1

PatternMetamodel

Variable

exists : boolean

name : String

Type

name : String

Trace Element

Flag

name : String

value : boolean

RelationEntity

ElementGroup

*
1

source1

target1

*
*

<<enum>>

TUAppCount

single

recursive

TransformationUnit 2..*

<<ordered
>>

1..*

success

1..*

fail

1*

Fig. 1.DelTa Metamodel



As depicted in Fig. 1, amodel transformation design pattern (MTDP) consists of
three kinds of components:transformation units (TU), pattern elements andtransforma-
tion unit relations (TUR). This is consistent with the structure of common MTLs [9].
TUs represent the concept of rule in graph-based model transformations [10]. A MTDP
rule consists of aconstraint, anaction, and optionalnegative constraints. These corre-
spond to the usual left-hand side (LHS), right-hand side (RHS) and negative application
conditions (NACs) in graph transformation. A constraint defines the pattern that must be
present, a negative constraint defines the pattern that shall not be present, and the action
defines the changes to be performed on the constraint (creation, deletion, or update).
All these expressions operate on strongly typedvariables.

There are three types for variables: apattern metamodel, a metamodelelement, or a
trace. The pattern metamodel is a label to distinguish between elements from different
metamodels, since a MTDP is independent from the source and target metamodels used
by an actual model transformation. When implementing a MTPD,the pattern meta-
model shall not be confused with the original metamodel of the source and/or target
models of a transformation, but ideally be implemented by their ramified version [11].
The metamodel labels also indicate the number of metamodelsinvolved in the trans-
formation to be implemented. Metamodel elements are typically either entity-like and
relation-like elements, this is why it is sufficient to only considerentities or relations in
DelTa. An element may be assigned booleanflags to refer to the same variables across
rules. Undeclared flags are defaulted tofalse . This is similar to pivot passing in Mo-
Tif [12] and GReAT [13], and parameter passing in Viatra2 [14]. When implementing a
MTDP, flags may require to extend the original or ramified metamodels with additional
attributes. Anelement group is an entity that represents a collection of entities and rela-
tions implicitly, when fixing the number of elements is too restrictive. Traceability links
are crucial in MTLs but, depending on the language, they are either created implicitly
or explicitly by a rule. In DelTa, we opted for the latter, which is more general, in order
to require the developer to take into account traceability links in the implementation.

As surveyed in [15], different MTLs have different flavors ofTUs. For example, in
MoTif, an ARule applies a rule once, anFRule applies a rule on all matches found, and
anSRule applies a rule recursively as long as there are matches. Another example is in
Henshin [16] where rules with multi-node elements are applied on all matches found.
Nevertheless, all MTLs offer at least a TU to apply a rule onceor recursively as long as
possible which are two TUapplication counts in DelTa. All other flavors of TUs can be
expressed in TURs as demonstrated in [15]. For reuse purposes, rules in DelTa can be
grouped intotransformation blocks, similarly to aBlock in GReAT.

As surveyed in [12,17], in any MTL, rules are subject to a scheduling policy, whether
it is implicit or explicit. For example, AGG [18] uses layers, MoTif and VMTS [19]
use a control flow language, and GReAT defines causality relations between rules. As
shown in [20], it is sufficient to have mechanisms for sequencing, branching, and loop-
ing in order to support any scheduling offered by a MTL. This is covered by the three
TURs of DelTa:Sequence, Random, andDecision that are explained in Section 2.3.
The former two act on at least two TUs and the latter has three parts; condition, success
and fail TUs.PseudoUnits mark the beginning and the end of the scheduling part of a
design pattern.



Finally, annotations can be placed on anydesign pattern element in order to give
more insight on the particular design pattern element. Thisis especially used for ele-
ment groups and abstract actions.

2.2 Concrete Syntax

Listing 1.1. EBNF Grammar of DelTa in XText

1 MTDP: 'mtdp' NAME
2 'metamodels:' NAME(',' NAME)* ANNOTATION?
3 (('tblock' NAME' *' ? ANNOTATION?)?
4 'rule' NAME' *' ? ANNOTATION?
5 ElementGroup?
6 Entity?
7 Relation?
8 Trace?
9 Constraint

10 NegativeConstraint*
11 Action)+
12 TURelation+ ;
13
14 ElementGroup: 'ElementGroup' ELEMENTNAME(',' ELEMENTNAME)* ;
15 Entity: 'Entity' ELEMENTNAME(',' ELEMENTNAME)* ;
16 Relation: 'Relation' NAME' (' ELEMENTNAME',' ELEMENTNAME' )'
17 (',' NAME' (' ELEMENTNAME',' ELEMENTNAME' )' )* ;
18 Trace: 'Trace' NAME' (' ELEMENTNAME(',' ELEMENTNAME)+ ' )'
19 (',' NAME' (' ELEMENTNAME(',' ELEMENTNAME)+ ' )' )* ;
20 Constraint: 'constraint:' '~' ? (ELEMENTNAME|NAME)
21 (',' '~' ? (ELEMENTNAME|NAME))* ANNOTATION? ;
22 NegativeConstraint: 'negative constraint:' (ELEMENTNAME|NAME)
23 (',' (ELEMENTNAME|NAME))* ANNOTATION? ;
24 Action: ('abstract action:' | 'action:' ('~' ? (ELEMENTNAME|NAME)
25 (',' '~' ? (ELEMENTNAME|NAME))* ) ) ANNOTATION? ;
26 TURelation: (TURTYPE('START' | (NAME(' [' NAME'=' ('true' | 'false' )' ]' )?) )
27 (',' ('END' | NAME) (' [' NAME'=' ('true' | 'false' )' ]' )? ) + )
28 | Decision;
29 Decision: NAME ' ?' DecisionBlock ':' DecisionBlock;
30 DecisionBlock: ('END' | NAME) (' [' ('END' | NAME) '=' ('true' | 'false' )' ]' ) ?
31 (',' ('END' | NAME) ( ' [ ' ( 'END' | NAME) '=' ('true' | 'false' )' ]' ) ? ) * ;
32 terminal NAME: ('a' .. 'z' |'A' .. 'Z' ) ('a' .. 'z' |'A' .. 'Z' |'0' .. '9' )* ;
33 terminal ELEMENTNAME: NAME'.' NAME(' [' NAME'=' ('true' |'false' )
34 (',' NAME'=' ('true' |'false' ))* ' ]' )? ;
35 terminal ANNOTATION: '#' (!'#' )* '#' ;
36 terminal TURTYPE: ('Sequence' | 'Random' ) ':' ;

We opted for a textual concrete syntax for DelTa. Listing 1.1shows the EBNF
grammar implemented in Xtext. The structure of a DelTa design pattern is as follows.
A new design pattern is declared using themtdp keyword. This is followed by a list
of metamodel names. The rules are defined thereafter. Rules can be contained inside
transformation blocks represented by thetblock keyword. The ‘∗’ next to the name of
the rule indicates that the rule is recursive; the application count is single by default. A
rule always starts with the declaration of all the variablesit will use in its constraints
and actions. Then, theconstraint pattern is constructed by enumerating the variables
that constitute its elements. Elements can be prefixed with ‘∼’ to indicate their non-
existence. Flags can be defined on elements using the square bracket notation. Optional
negative constraints can be constructed, followed by an action. An abstract action may
not enumerate elements. The final component of a MTDP is the mandatory TUR def-
initions. A TUR is defined by its type and followed by a list of rule or transformation



block names. As an exception, decision TUR is a single line conditional that creates a
branch according to the success or fail of the condition rule. Annotations are enclosed
within ‘#’. Listings 1.2– 1.5 show concrete examples of MTDPs using this notation.

2.3 Informal Semantics

The semantics of MTDP rules is borrowed from graph transformation rules [10], but
adapted for patterns. Informally, a MTDP rule is applicableif its constraint can be
matched and no negative constraints can. If it is applicable, then the action must be
performed. Conceptually, we can represent this by:constraint ∧ ¬neg1 ∧ ¬neg2 ∧

. . . → action. The presence of a negated variable (i.e., with exists=false ) in a
constraint means that its corresponding element shall not be found. Since constraints
are conjunctive, negated variables are also combined in a conjunctive way. Disjunctions
can be expressed with multiple negative constraints. Actions follow the exact same
semantics as the “modify” rules in GrGen.NET [21]. Elementspresent in the action
must be created or have their flags updated. Negated variables in an action indicate
the deletion of the corresponding element. Only abstract actions are empty, giving the
freedom to the actual implementation of the rule to perform aspecific action. Flags are
not attributes but label some elements to be reused across rules.

MTDP rules are guidelines to the transformation developer and are not meant to
be executed. On one hand, the constraint (together with negative constraints) of a rule
should be interpreted asmaximal: i.e., a MT rule shall find at most as many matches
as the MTDP rule it implements. On the other hand, the action of a rule should be
interpreted asminimal: i.e., a MT rule shall perform at least the modifications of the
MTDP rule it implements. This means that more elements in theLHS or additional
NACs may be present in the MT rule and that it may perform more CRUD operations.
Furthermore, additional rules may be needed when implementing a MTDP for a specific
application. Note that the absence of anaction in a rule indicates that the rule is side-
effect free, meaning that it cannot perform any modifications.

The scheduling of the TUs of a MTDP (or contained inside atransformation block)
must always begin withSTART and end withEND. TUs can be scheduled in four ways.
The Sequence relation defines a sequencing relation between two or more TUs re-
gardless of their applicability. For exampleSequence:A,B means thatA should be ap-
plied first and thenB can be applied. TheRandom relation defines the non-deterministic
choice to apply one TU out of a set of TUs. For exampleRandom:A,B means thatA or
B should be applied, but not both. TheDecision relation defines a conditional branching
and applies the TUs in the success or fail branches accordingto the application of the
rule in the condition. For exampleA?B:C means that ifA is applicable thenB should
be applied after, otherwiseC should be applied. Note that the latter TUR can be used
to define loop structures. For example,A?A:A is equivalent to definingA as recursive,
i.e.,A* . The notion of applicability of a transformation block is determined by the result
of its END TU. For example, consider a transformation blockT and a ruleR andP. The
schedulingT?R:P means that ifEND[result=true] is reached inT, thenR will be
applied.



3 Model Transformation Design Patterns

In this section, we illustrate how to use DelTa pragmatically by redefining four existing
design patterns for MT. Inspired by the GoF catalog templates, we describe a MTDP us-
ing the following characteristics:motivationdescribes the need for and usefulness of the
pattern,applicability outlines typical situations when the pattern can be applied, struc-
ture defines the pattern in DelTa and explains the pattern,examplesillustrates practical
cases where the patterns can be used,implementationprovides a concrete implemen-
tation of the pattern in a MTL, andvariationsdiscusses some common variants of the
pattern. For the example characteristic, we use a subset theUML class diagram meta-
model with the concepts of class, attributes, and superclasses. For the implementation
characteristic, we have implemented all design patterns infive languages: MoTif, AGG,
Henshin, Viatra2, GrGen.NET. Although we only show one implementation for each in
this paper, the complete implementations can be found in [22]. This is how we validated
the expressiveness, usability, and implementability of patterns defined in DelTa.

3.1 Entity Relation Mapping

– Motivation: Entity relation mapping (ER mapping) is one of the most commonly
used transformation pattern in exogenous transformationsencoding a mapping be-
tween two languages. It creates the elements in a language corresponding to el-
ements from another language and establishes traceabilitylinks between the ele-
ments of source and target languages. This pattern was originally proposed in [6]
and later refined in [23].

– Applicability: The ER mapping is applicable when we want to translate elements
from one metamodel into elements from another metamodel.

– Structure: The structure is depicted in Listing 1.2. The pattern refersto two meta-
models labeledsrc and trgt , corresponding to the source and target languages.
It consists of a MTDP rule for mapping entities first and another for mapping rela-
tions. TheentityMapping rule states that if an entitye from src is found, then an
entity f must be created intrgt as well as a tracet1 between them, ift1 andf do
not exist yet. TherelationMapping rule states that if there is a relationr1 between
e andf in src and there is a tracet1 betweene andg, and a tracet2 betweenf

andh, then create a relationr2 betweeng andh if it does not exist yet. Both rules
should be applied recursively.

Listing 1.2. One-to-one Entity Relationship Mapping MTDP

mtdp OneToOneERMapping
metamodels: src, trgt
rule entityMapping *

Entity src.e, trgt.f
Trace t1(src.e, trgt.f)
constraint: src.e, ~trgt.f, ~t1
action: trgt.f, t1

rule relationMapping *
Entity src.e, src.f, trgt.g, trgt.h
Relation r1(src.e, src.f), r2(trgt.g, trgt.h)
Trace t1(src.e, trgt.g), t2(src.f, trgt.h)
constraint: src.e, src.f, trgt.g, trgt.h, r1, t1, t2, ~r2
action: r2

Sequence: START, entityMapping, relationMapping, END



– Examples: A typical example of ER mapping is in the transformation fromclass
diagram to relational database diagrams, where, for example, a class is transformed
to a table, an attribute to a column, and the relation betweenclass and attribute to a
relation between table and column.

– Implementation: We show the implementation of ER mapping in Henshin in

Rules:

Scheduling:

Fig. 2.Rules of ER Mapping in Henshin

Fig. 2. The pattern states to apply the rules for entities before those for relations.
Henshin provides a sequence structure withSequentialUnit. Henshin uses a com-
pact notation for rules together with stereotypes on pattern elements.«preserve»
is used for the elements found in the constraint of the MTDP rule and«create» is
used to create elements found in the action of the MTDP rule. Here there are two
rules corresponding toentityMapping: one for mapping classes to tables and one
for mapping attributes to columns. In Henshin, traceability links must be modeled
explicitly as a separate class connecting the source and target elements. We did
not need to use NACs because Henshin provides a multi-node option that already
prevents applying a rule more than once on the same match.

– Variations: Sometimes the entities in specific metamodels cannot be mapped one-
to-one. It is possible to define one-to-many or many-to-manyER mappings pattern
using element groups instead of entities (see [22]). Also, some implementations
may require the creation of a trace between the two relationsin therelationMapping
rule.

3.2 Transitive Closure

– Motivation: Transitive closure is a pattern typically used for analyzing reachabil-
ity related problems with an inplace transformation. It wasproposed as a pattern
in [3] and in [24]. It generates the intermediate paths between nodes that are not
necessarily directly connected via traceability links.

– Applicability: The transitive closure pattern is applicable when the metamodels in
the domain have a structure that can be considered as a directed tree.



– Structure:

Listing 1.3. Transitive Closure MTDP

mtdp TransitiveClosure
metamodels: mm
rule immediateRelation *

Entity mm.e, mm.f
Relation r1(mm.e, mm.f)
Trace t1(mm.e, mm.f)
constraint: mm.e, mm.f, r1, ~t1
action: t1

rule recursiveRelation *
Entity mm.a, mm.b, mm.c
Trace t1(mm.a, mm.b), t2(mm.b, mm.c), t3(mm.a, mm.c)
constraint: mm.a, mm.b, mm.c, t1, t2, ~t3
action: t3

Sequence: START, immediateRelation, recursiveRelation, END

The structure is depicted in Listing 1.3. The pattern operates on single metamodel.
First, theimmediateRelation rule creates a trace element between entities connected
with a relation. It is applied recursively to cover all relations. Then, therecursiveRe-
lation rule creates trace elements between the node indirectly connected. That is if
entitiesa-b andb-c are connected with a trace, thena andc will also connected
with a trace. It is also applied recursively to cover all nodes exhaustively.

– Examples: The transitive closure pattern can be used to find the lowest common
ancestor between two nodes in a directed tree, such as findingall superclasses of a
class in UML class diagram.

– Implementation: We have implemented the transitive closure in AGG. Fig. 3 de-

Fig. 3.Transitive Closure rules in AGG

picts the corresponding rules. AGG rules consist of the traditional LHS, RHS, and
NACs. The LHS and NACs represent the constraint of the MTDP rule and the RHS
encodes the action. TheimmediateSuperclass rule creates a traceability link be-
tween a class and its superclass. The NAC prevents this traceability link from being
created again. TherecursiveSuperclass rule creates the remaining traceability links



between a class and higher level superclasses. AGG lets the user assign layer num-
bers to each rule and starts to execute from layer zero until all layers are complete.
Completion criteria for a layer is executing all possible rules in that layer until none
are applicable anymore. Therefore, we set the layer ofimmediateSuperclass to 0

andrecursiveSuperclass to 1 as the design pattern structure stated these rules to be
applied in a sequence.

– Variations: In some cases, a recursiveselfRelation rule may be applied first, for
example when computing the least common ancestor class of two classes, as in [5].

3.3 Visitor

– Motivation: The visitor pattern traverses all the nodes in a graph and processes
each entity individually in a breadth-first fashion. This pattern is similar to the “leaf
collector pattern” in [3] that is restricted to collecting the leaf nodes in a tree.

– Applicability: The visitor pattern can be applied to problems that consist of or
can be mapped to any kind of graph structure where all nodes need to be processed
individually.

– Structure:

Listing 1.4. Visitor MTDP

mtdp Visitor
metamodels: mm
rule markInitEntity

Entity mm.e
constraint: mm.e # e is a predetermined entity #
action: mm.e[marked= true ]

rule visitEntity *
Entity mm.e
constraint: mm.e[marked= true ,processed= false ]
action: mm.e[processed= true ] # Process current entities #

rule markNextEntity *
Entity mm.e, mm.f
Relation r1(mm.e, mm.f)
constraint: mm.e[processed= true ], mm.f[marked= false ], r1
action: mm.f[marked= true ]

Sequence: START, markInitEntity, visitEntity, markNextEntity
markNextEntity ? visitEntity : END

As depicted in Listing 1.4, the visitor pattern makes use of flags. ThemarkInitEntity
rule flags a predetermined initial entity as “marked”. Note that in actual implemen-
tation, this rule maybe more complex. This rule is applied first and once. The next
rule to be applied is thevisitEntity rule. It visits the marked but unprocessed nodes
by changing their processed flags totrue . The actual processing of the node is left
at the discretion of the implementation. Then, themarkNextEntity rule marks the
nodes that are adjacent to the processed nodes. Marking and processing are split
into two steps to reflect the breadth-first traversal. ThemarkNextEntity rule then
initiates the loop to visit the remaining nodes. Visiting ends whenmarkNextEntity
is not applicable,i.e.,when all nodes are marked and have been processed.

– Examples: The visitor pattern helps to compute the depth level of each class in a
class inheritance hierarchy, meaning its distance from thebase class.



Fig. 4.Visitor rules and scheduling in GrGen.NET

– Implementation: We have implemented visitor in GrGen.NET as depicted in
Fig. 4. This MTL provides a textual syntax for both rules and scheduling mech-
anisms. In a rule, the constraint is defined by declaring the elements of the pattern
and conditions on attributes are checked with anif statement. Actions are written in
a modify or replace statement for new node creation andeval statements are used
for attribute manipulation. ThemarkBaseClass rule selects a class with no super-
class as the initial element to visit. Since this class already has a depth level of0,
we flag it as processed to prevent thevisitSubclass rule from increasing its depth.
This is a clear example of the minimality of a MTDP rule, wherethe implementa-
tion extends the rule according to the application. ThevisitSubclass rule processes
the marked elements. Here, processing consists of increasing the depth of the sub-
class by one more than the depth of the superclass. ThemarkSubclass rule marks
subclasses of already marked classes. The scheduling of these GrGen.NET rules is
depicted in the bottom of Fig. 4. As stated in the design pattern structure,mark-
BaseClass is executed only once.visitSubclass andmarkSubclass are sequenced
with the ;> symbol. The∗ indicates to execute this sequence as long asmarkSub-
class rule succeeds. At the end, all classes should have their correct depth level set
and all marked as processed. Note that in this implementation, visitSubclass will
not be applied in the first iteration of the loop.

– Variations: It is possible to vary the traversal order, for example a depth-first
strategy may be implemented. It is also possible to visit relations instead of entities.
Another variation is to only have one recursive rule that processes all entities if the
order in which they processed is irrelevant.

3.4 Fixed Point Iteration

– Motivation: Fixed point iteration is a pattern for representing a "do-until" loop
structure. It solves the problem by modifying the input model iteratively until a con-
dition is satisfied. We previously identified this pattern in[5]. Asztalos et al. [25]



also identified a similar structure named traverser model transformation analysis
pattern.

– Applicability: This pattern is applicable when the problem can be solved itera-
tively until a fixed point is reached. Each iteration must perform the same modi-
fication on the model, possibly at different locations: either adding new elements,
removing elements, or modifying attributes.

– Structure:

Listing 1.5. Fixed Point Iteration MTDP

mtdp FixedPointIteration
metamodels: mm
rule initiate

ElementGroup mm.eg1
constraint: mm.eg1
action: mm.eg1[selected= true ] # Initiate the element group #

rule checkFixedPoint
ElementGroup mm.eg1
constraint: mm.eg1
abstract action: # Process the element group #

rule iterate
ElementGroup mm.eg1
constraint: mm.eg1[selected= true ]
abstract action: # Advance the initiated group #

Sequence: START, initiate, checkFixedPoint
checkFixedPoint ? END[result= true ] : iterate
iterate ? checkFixedPoint : END[result= false ]

The structure is depicted in Listing 1.5. The fixed point iteration consists of rules
that have abstract actions because processing at each iteration entirely depends
on the application. Nevertheless, it enforces the following scheduling. The pattern
starts by selecting a predetermined group of elements in theinitiate rule and checks
if the model has reached a fixed point (the condition is encoded in the constraint
of thecheckFixedPoint rule). If it has, thecheckFixedPoint rule may perform some
action,e.g.,marking the elements that satisfied the condition. Otherwise, theiterate
rule modifies the current model and the fixed point is checked again.

– Examples: In [5], we showed how to solve three problems with this pattern: com-
puting the lowest common ancestor (LCA) of two nodes in a directed tree, which
adds more elements to the input model; finding the equivalentresistance in an elec-
trical circuit, which removes elements from the input model; and finding the short-
est path using Dijkstra’s algorithm, which only modifies attributes.

– Implementation: Fig. 5 shows the implementation of the LCA from [5] in Mo-
Tif using the fixed point iteration pattern. Theinitiate rule is extended to create
traceability links on the input nodes themselves with theLinkToSelf rules and with
their parents with theLinkToParent rules. TheGetLCA rule implements thecheck-
FixedPoint rule and tries to find the LCA of the two nodes in the resulting model
following traceability links. This rule does not have a RHS but it sets a pivot to
the result for further processing. TheLinkToAncestor rules implement theiterate
rule by connecting the input nodes to their ancestors. The MoTif control structure
reflects exactly the same scheduling of Listing 1.5.

– Variations: In some cases, theinitiate rule can be omitted when, for instance, the
iterate rule deletes selected elements such as in the computation ofthe equivalent
resistance of an electrical circuit [5].
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4 Related Work

The first work that proposed design patterns for model transformation was by Agrawalet
al. [3]. They defined thetransitive closurepattern which is similar to what we showed
in Section 3.2, except that we create traceability links whereas they reuse the same
association type from the input metamodel. Theleaf collectorpattern traverses a hi-
erarchical tree to find and process all leaves. This can be considered as an application
of the visitor pattern in Section 3.3 where thevisitEntity rule is only applied on leaves.
The proxy generatoridiom is not a general design pattern, since that it is specific to
languages modeling distributed systems where remote interactions to the system need
to be abstracted and optimized.

Iacobet al. [6] defined five other design patterns for outplace transformations. Sim-
ilar to the ER mapping pattern in Section 3.1, themappingpattern dictates to first map
entities and then relations. Since it is described using QVT-R, we consider it as an im-
plementation of our ER mapping pattern. Therefinementpattern proposes to transform
an edge into a node with two edges in the context of a refinementso that the target
model contains more detail. Thenode abstractionpattern abstracts a specific type of
node from the target model while preserving the original relations. Theflatteningpat-
tern removes the composition hierarchy of a model along by replacing the containment
relations. We plan to generalize these three patterns and define them in DelTa. Thedu-
ality pattern is not a general design pattern, since it is specific to languages for data
control flow modeling by changing by converting edges to nodes and vice versa.

Bézivinet al.[7] mined ATL transformations and ended up with two design patterns.
The transformation parameterspattern suggests to model explicitly auxiliary variables
needed by the transformation in an additional input metamodel, instead of hard-coding
them in ATL helpers. Themultiple matchingpattern shows how to match multiple el-
ements in thefrom part of an ATL rule. Newer versions of ATL already support this
feature and therefore this pattern is obsolete now.

The first issue with these three previous works is that all thedesign patterns are
defined using GReAT, QVT-R, and ATL respectively. Therefore, they should not be



considered as design patterns for model transformation, but as implementations of de-
sign patterns in a specific MTL. The second issue is that they are all defined as model
transformations, rather than patterns, and use specific input and output metamodels.
Therefore, it is not clear how to reuse these patterns for different application domains.
On the contrary, DelTa is independent from any MTL and definesthe patterns using
abstracted elements independent from the input and output metamodels.

Lano et al.[23] proposed other useful patterns using UML class diagrams and OCL
constraints (first-order logic) to specify model transformations. Each transformation is
described with a set ofassumptionsthat represent the precondition of a rule,constraints
that represent the postcondition of a rule,ensuresfor additional constraints, andin-
variants. The design patterns are for exogenous transformations only. Theconjunctive-
implicative formpattern dictates to separate the creation target entities that are at differ-
ent hierarchical levels into different phases. For example, themap objects before links
pattern, essentially our ER mapping pattern, is an instanceof this generic pattern. An-
other instance of this pattern is therecurrent constraintspattern where the creation of
a target entity may require a fixed point computation. The fixed point iteration pattern
in Section 3.4 can be used in one of the creation phases here. Two other instances of
the conjunctive-implicative form pattern are theentity splittingandentity mergingpat-
terns that essentially correspond to the one-to-many and many-to-one variants of the
ER mapping pattern respectively. Theauxiliary metamodelpattern suggests to use an
auxiliary metamodel when the mapping from elements of one language to another is
too complex.

In Lano et al.’s approach, the choice of the design pattern language hinders the un-
derstandability of the patterns. This also makes them hard to implement in MTLs other
than UML-RSDS. Additionally, they defined implementation patterns. In contrast with
design patterns, they are guidelines to implement the assumptions and constraints of
transformation specifications in a MTL. The description is done on an abstract imple-
mentation language that supports sequencing, branching, looping and operation calls,
which is similar to what the TURs of DelTa offer.

Guerraet al. [1] proposed a collection of languages to engineer model transforma-
tions and, in particular, for the design phase. Rule diagrams (RD) are used to describe
the structures of the rules and what they do in the low level implementation phase. Like
DelTa, RD is defined at a level of abstraction that is independent from existing MTLs.
But its purpose is to generate a transformation rather than to define design patterns.
Therefore, there are some similarities and differences between RD and DelTa. In RD,
rules focus on mappings rather than constraints and actions. Hence, they specify designs
for both unidirectional and bidirectional rules. The execution flow of RD supports se-
quencing rules, branching in alternative paths based on a constraint which is similar to
the decision TUR in DelTa, or non-deterministically choosing to apply one rule which
is similar to the random TUR. They also allow rules to explicitly invoke the application
of other rules. RD is inspired from QVT-R and ETL and is therefore more easily imple-
mentable in these language, whereas DelTa currently focuses on graph-based MTLs.

Levendovszkyet al.[24] proposed domain-specific design patterns for model trans-
formation as well as other DSLs. In their approach, they defined design patterns with
a specific MTL, VMTS, where rules support metamodel-based pattern matching. They



proposed two design patterns: thehelper constructs in rewriting rulespattern explicitly
produces traceability links, and theoptimized transitive closurepattern, which is similar
to the transitive closure pattern in Section 3.2.

5 Conclusion

In this paper, we proposed DelTa as candidate for a design pattern language for model
transformations. DelTa is a language for describing patterns, rather than transforma-
tions. It is independent from any MTL yet directly implementable in most graph-based
MTLs. To validate the language, we described four known design patterns for model
transformation and implemented them in five different languages (the complete imple-
mentations can be found in [22]).

As stated in Section 1, a design pattern language must also beunderstandable and
suited to verify correct implementations. For the former, we plan to empirically evaluate
DelTa by running user studies. The verifiability requirement remains to be investigated.
A formal specification language such as in [23] can then be used, but at the price of
the understandability and ease of implementability. Furthermore, identifying additional
design patterns will help us evolve the DelTa language and further validate its expres-
siveness.

When implementing the design patterns, we realized that somepatterns are easier
to implement in some languages than in others due the constructs they offer for trans-
formation units and for scheduling. In particular, when implementing a pattern that
involves more complex scheduling (such as the fixed point iteration) in MTLs with
very limited scheduling policies (such as AGG), several tricks need to be used, such as
modifying the metamodel or making use of temporary elementsor attributes. The lack
of a standard paradigm for model transformations is the mainsource of this difficulty
that the model transformation community has to agree on. We plan to extend DelTa to
cover non-graph-based MTLs, such as QVT-OM and ATL, and possibly bi-directional
MTLs, such as QVT-R and triple graph grammars.
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