
Identification and Application of a Model Transformation
Design Pattern

Hüseyin Ergin
hergin@crimson.ua.edu

Eugene Syriani
esyriani@cs.ua.edu

Department of Computer Science
University of Alabama
Tuscaloosa AL, U.S.A.

ABSTRACT
Model-driven engineering and model transformation have
gained significant importance in recent years. However, most
model transformation developments are handled without qual-
ity in mind. This paper presents a new model transforma-
tion design pattern which improves quality in model trans-
formation. We discovered the pattern after solving a specific
problem with two alternative model transformation designs.
The improved solution turns out to be applicable to other
problems and, from this recurrence, we generalize the solu-
tion to a design pattern.

Keywords
model transformation, quality, design patterns

1. INTRODUCTION
Model-driven engineering (MDE) [8] is considered a well-

established software development approach that uses ab-
straction to bridge the gap between the problem and the
software implementation. These abstractions are defined
as models. Models are primary artifacts in MDE and are
used to describe complex systems at multiple levels of ab-
straction, while capturing some of their essential properties.
These levels of abstraction let domain experts describe and
solve problems without depending on a specific platform or
programming language.
Models are instances of a meta-model which defines the

syntax of a modeling language. In MDE, the core devel-
opment process consists of a series of transformations over
models, called model transformation. Model transforma-
tions take as input and output a model according to their
specification defined at the meta-model. Model transfor-
mation languages consist of two main components: rules
and scheduling. Rules are the smallest units of a model
transformation and are defined with pre-condition and post-
condition patterns. The pre-condition pattern determines
the applicability of a rule and is usually defined with a left-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE’13 April 4-6, 2013, Savannah, GA, USA.
Copyright 2013 ACM 978-1-4503-1901-0/13/04 ...$15.00.

Y

X Z

Y

X ZX Z

LinkToAncestors

LHS RHSNAC

Rule: Scheduling:

*

Rule1:
F

Figure 1: Sample MoTif rule and scheduling

hand side (LHS) and optional negative application condi-
tions (NACs). The LHS defines the pattern that must be
found in the input model in order to apply the rule. The
NAC defines a pattern that shall not be present, inhibit-
ing the application of the rule. The post-condition pattern
determines the result of the application of the rule and is
defined by a right-hand side (RHS) which must be satisfied
after the rule is applied. The scheduling describes the order
in which rules are executed.

To develop a model transformation, developers design the
different rules and specify the scheduling. However, this de-
sign phase lacks of re-usability, which hampers the quality
of model transformations. Therefore, there is a need for
reusable, proven, and qualified structures in this phase. A
design pattern encapsulates a proven solution to a recur-
ring design problem [3]. As in the object-oriented world,
design patterns help with the assessment of high quality
model transformations. In this paper, we propose to solve
the well-known lowest common ancestor (LCA) problem [2]
using model transformation. For this purpose, we solve the
problem using a näıve and an improved solution. We show
that the latter improves the quality metrics of the model
transformation with respect to efficiency criteria. Then, we
identify two other problems that can be solved using an ap-
proach similar to the improved LCA solution. We therefore
generalize the solution to a design pattern as it describes a
solution for recurrent problems and increases the quality of
the model transformation that implements it.

In this paper, we are using MoTif [9] as our model trans-
formation language. MoTif is a rule-based model transfor-
mation language with explicit rule sheduling defined as a
control flow. Explicit rule scheduling lets designers define
the control flow of their rules. A sample rule and scheduling
from MoTif is depicted in Figure 1. This rule can be read
as “if there is a link from node X to node Y and a link from
node Y to node Z, then there must be a link from node X
to node Z, unless there is already one.” In the scheduling

A

B

E

F

G

H

I

J

K

C

D

Figure 2: Tree instance for LCA problem

part, each rule is represented by a rule block having three
ports. Conceptually, a rule receives models via the input
port at the top. If the rule is successfully applied (meaning
the post-condition is fulfilled, the resulting model is output
from the success port at the bottom right. Otherwise, the
model does not satisfy the pre-condition (no occurrence of
the LHS without the NAC is found in the model) and the
original model is output from the fail port at the bottom
left.
In Section 2, we describe the näıve and improved solu-

tions of the LCA problem and report some of the quality
metrics. In Section 3, we introduce the solutions of equiv-
alent resistance problem and Dijkstra’s shortest path algo-
rithm. Section 4 presents the generalized solution as a model
transformation design pattern. Section 5 explores existing
work in model transformation design patterns and quality
metrics. Finally, in Section 6, we discuss and conclude the
study.

2. RUNNING EXAMPLE
LCA is a general problem in graph theory and is typically

defined over a directed tree structure. Essentially, it at-
tempts to find the lowest shared ancestor between two given
input nodes of the tree. For example in Figure 2, the LCA of
nodes D and J is node A. In this instance, one can compute
the LCA of node D and node J to be node A.

2.1 Naïve Solution
Typically, solutions using model transformation approaches

tend to take advantage of the declarativeness and non-deter-
minism of rule-based systems. In the first solution we pro-
pose, we first create all ancestor links of every node as de-
picted by the first three rules in Figure 3. Then GetLCA rule
checks if, given the two initial nodes (A and B), there is an
ancestor node common to both nodes that do not have a
successor that is also a common ancestor of the two nodes.
The rules and scheduling of these rules are depicted in Fig-
ure 3. For this study, we have focused on three metrics: the
number of rule applications counts how many times the rule
is applied, the size of the rule counts the number of elements
present in the patterns of each rule, and the number of aux-
iliary elements created counts the number of ancestor links
created to compute the LCA.
To compute the metrics, we consider a tree with n nodes

and hence n − 1 edges. The LinkToSelf rule creates self-
ancestor links for all nodes, to cover the trivial case, and
is applied n times, once for every node in the tree. The Link-

ToParent rule creates ancestor links to the parents of each
node and is applied n − 1 times, once per edge. The Link-

X

Y

X

Y

LinkToParent

Y

X Z

Y

X ZX Z

LinkToAncestors

Rules: Scheduling:

?

*

LinkToParent:
F

:LinkToAncestors

GetLCA

C

A BA BD

C

X X

LinkToSelf

:LinkToSelf
F

Figure 3: Rules for näıve solution

ToAncestors rule creates ancestor links to all ancestors of each
node, recursively. Therefore, the number of ancestor links
is proportional to the depth of each node. The following
equation gives the total number of ancestor links that need
to be created, where ki is the depth level of node i.

n∑
i=1

ki − 2 = O(n2)

After all ancestor links are created, the GetLCA rule is applied
only once and returns the LCA of the given input nodes if it
exists. The NAC part of the GetLCA rule guarantees that the
solution is the lowest one among other common ancestors.
The metrics for the näıve solution are depicted in Table 1.

2.2 Improved Solution
In the improved solution, we use locality, focusing on only

the given input nodes. We adopt an iterative approach. We
start to create ancestor links one step at a time and, at each
time, we check for a solution. The rules and scheduling of
these rules are depicted in Figure 4.

The LinkToSelf rule creates self-ancestor links for the given
input nodes only and therefore is applied twice. To acheieve
that, we use the pivot feature in MoTif which forces the rule
to be applied on bound or elements. That is, A and B are
parametrized nodes bound to nodes from the input model
at run-time. Then, the LinkToParent rule creates ancestor
links to the parents of input nodes, which is applied twice.
This results in an intermediate form of the tree instance,
which may possibly solve the LCA task. Therefore, we ap-
ply the GetLCA rule and try to find the solution if it exists.
If we cannot find a solution, we execute the LinkToAncestor

rule and create one more level of ancestor links. Again, we
use only the given input nodes. With only one more step,
this rule takes the intermediate form closer to a solution.
Then, we use the GetLCA rule to check again. These iter-
ative steps continue until the GetLCA rule finds a solution
or the LinkToAncestor rule fails by not making a contribution
to the solution i.e., if the root is reached and GetLCA fails.
For the tree instance in Figure 2, the solution is found in
three steps. Therefore, the GetLCA rule is applied four times
and the LinkToAncestor rule is applied three times. In gen-
eral, the given input nodes might be in different depth levels
(k1 and k2 respectively). The ancestor link creation contin-

Table 1: Metrics for näıve and improved LCA solutions

Rules Size of rules # Rule Applications # Auxiliary Elements

Näıve Improved Näıve Improved Näıve Improved

LinkToSelf 3 3 n 2 n− 1 2
LinkToParent 7 7 n− 1 2 O(n2) 2n− 2
LinkToAncestors 14 14 O(n2) 2n− 2 O(n2) 2n− 2
GetLCA 14 14 1 n 0 0
Total 38 38 O(n2 + 2n) 3n+ 2 O(n2 + 2n) 2n+ 2

LinkToSelf

X

Y

X

Y

LinkToAncestor

:GetLCA
?

C
A B

GetLCA

,

,
X

Y

X

YBB

A A

Rules: Scheduling:

A A B B

X X

LinkToParent

A A

X X

B B,

Figure 4: Rules for improved solution

ues up to the root node, so the maximum of depth levels is
the number of iterations needed to find the solution. In the
worst case, this depth can be n and we create n−1 ancestor
links. Therefore, the LinkToAncestor rule is applied a total of
2(n−1) times for input nodes and the GetLCA rule is applied
n times.
Metrics for the improved solution are also depicted in Ta-

ble 1. One can clearly see the improvement by comparing
the metric counts between näıve solution and improved so-
lution. All three metrics are related to the efficiency quality
criteria. Therefore, we can say the improved solution is more
efficient than the näıve solution. We did not take the exe-
cution time of the model transformations because they are
already proportional to the enumerated metrics.

3. SIMILAR PROBLEMS
In this section, we identify and solve two more problems

from very different domains using model transformation.

3.1 Equivalent Resistance
In electrical circuits, the computation of the equivalent

resistance of the whole circuit is a common task. Finding
the equivalent resistance in a series of connected resistors is
an interesting problem to apply our design pattern. In this

A

A

Y
A

Z

R1

R2

R1+R2

R1*R2

R1

R2
R1+R2

IsFinished

CalculateUnitEquivRes

,

R1

R2

Rules: Scheduling:

:IsFinished
?

ParallelRule

SerialRule

Figure 5: Rules for Equivalent Resistance Problem

case, the transformation takes as input an electrical circuit
model with resistors connected both in serial and parallel.
The rules are depicted in Figure 5. The IsFinished rule looks
for resistors set in serial or parallel in the circuit. If the
rule cannot find any more serial or parallel resistors, it will
return the single resistor as the equivalent resistance. The
CalculateUnitEquivalentResistance rule calculates equivalent re-
sistance for only a set of serial and/or parallel resistors and
directs the control flow to the IsFinished rule again depicting
a loop.

3.2 Dijkstra’s Algorithm for Shortest Path
Dijkstra’s algorithm is a well-known graph search algo-

rithm that returns the shortest path and length of this path
between two nodes, source and target. The solution is pro-
vided in Figure 6. The input model is a directed and weighted
tree. The VisitImmediateNeighbors rule initiates the algorithm
by visiting the immediate neighbors of the source node. Af-
ter a visit, each node is assigned with the weight of the path
and is colored in red to represent that it is visited. The
terminating criteria of the algorithm is visiting all nodes,
which is ensured by the IsAllNodesVisited rule. If there are
still unvisited nodes, then the VisitOneMoreHop rule is exe-
cuted. The VisitOneMoreHop rule selects the smallest num-
ber of weighted nodes among visited ones and calculates the
new weights for the unvisited neighbors of this node. After
each node is visited, the target node will have the length of
the shortest path as value and the path with purple marked
arrows will be the shortest path.

A XX w A Xw
w

X J
w

Y X

wz

z<w

X

w

Tw
X
y v

v>y+w

Tw
X
y y+w

VisitImmediateNeighbors

IsAllNodesVisited

VisitOneMoreHop

:IsAllNodesVisited

*

*

:VisitImmNeighbors

?

Rules: Scheduling:

A A

SelectLowest

VisitItsNeighbors

Figure 6: Rules for Dijkstra’s Algorithm

4. GENERALIZATION OF THE SOLUTION
The improved LCA, equivalent resistance, and Dijkstra’s

shortest path model transformation solutions look very alike.
The structure is like a fixed-point iteration. In general there
are three blocks. The first block initializes the input model
with creation of some temporary elements and results in
an intermediate form of the model (Initiate step). The ini-
tialization is optional (e.g., Equivalent resistance problem
in Section 3.1) but we have to include it in generalization.
Then, a query verifies if a solution if found (Check step).
Finally, if the query fails, the last block encodes one more
step towards the solution (Advance step). The structure can
also be seen as a while not loop in programming languages.
Gamma et al. [3] presented the design patterns they pro-

vided in a structured format. In their book, each design pat-
tern has some essential elements that need to be described.
These elements are pattern name, problem, solution and con-
sequences. There are also some helper elements such as clas-
sification, applicability, structure, and participants. Follow-
ing their format this study, we describe the newly identified
model transformation design pattern as follows:

• Pattern name: Fixed-point Iteration design pattern.

• Problem: This pattern is applicable when the prob-
lem can be solved stepwise, and a single answer or a
subset of input model is returned as a solution.

• Solution: The solution can be found in three blocks:
(1) an initialization step, which helps to do necessary
setup to start solving problem or an initial step to-
wards the solution, (2) a check step, which checks the
intermediate form of the input for a possible solution,
and (3) an advance step, which iterates the interme-
diate form of the input one more step closer to the
solution.

• Structure: Figure 7 depicts the flow and blocks of
fixed-point iteration design pattern. The structure
forms a while not loop structure. After the initialization
step, the control flow does not always have to go to fail

Advance

Initiate

Check

Figure 7: Generalization of the improved solution in
three blocks

case. There are variants of this design pattern, which
goes to check step either way after the initialization
step (e.g., Dijkstra’s algorithm in Section 3.2). The
initialization and advance steps are instances of com-
posite rules (CRules), which may include more than
one rule.

5. RELATED WORK
We have identified two studies in the literature that intro-

duce reusable structures in model transformation.
Agrawal et al. [1] used GReAT language to define three

model transformation design patterns. This is the first struc-
tured design pattern study in the model transformation area.
Each design pattern has motivation, applicability, structure,
known uses, limitation, and benefits fields. They introduced
the leaf collector, which has a visitor pattern [3] like struc-
ture and aims to collect or process all leaf nodes in a hier-
archy, the transitive closure, which can be used to compute
the transitive closure of a graph, and the proxy generator
idiom, which can be used in distributed systems where re-
mote interactions to the system need to be abstracted and
optimized.

Iacob et al. [4] used QVT Relations language to define five
model transformation design patterns. Their design pattern
structure has name, goal, motivation, specification, exam-
ple, and applicability fields. They introduced the mapping
pattern, which establishes one-to-one relations between el-
ements from the source model and elements from the tar-
get model and can be used to translate a model from one
syntax to another, the refinement pattern, which obtains a
more detailed target model by refining an edge or a node to
multiple edges or nodes, the node abstraction pattern, which
abstracts information from source nodes while keeping their
relations and can be used to remove elements from models
that hold certain criteria, the duality pattern, which gener-
ates a semantic dual of an instance model, and the flattening
pattern, which removes the hierarchy from the source model.

These studies are excellent resources, but need to be ex-
tended and improved, including some points that need to be
analyzed more in future work. First, they are not analyzed
in terms of quality. Authors introduce design patterns as
the core of their studies, but often do not mention how they
affect quality in model transformation problems. Secondly,

authors often do not provide a generic way of representing
design patterns in terms of a design pattern formalism.
Additionally, we have identified some studies that intro-

duce metrics for ATL [5] and QVT [7] model transformation
languages. Amstel and Brand [10] proposed metrics for ATL
such as the number of rules with local variables, the number
of transformation rules. Kapova et al. [6] proposed a set
of metrics for declarative transformation languages such as
QVT relations language; for example the number of lines of
code, the level of inheritance.

6. CONCLUSION & FUTURE WORK
The design of model transformation rules and scheduling

suffers from a lack of re-usability. We believe that model
transformation design patterns may solve re-usability issues.
For this reason, we have focused on one problem and solved
the problem in two different ways. Then, we applied the
improved solution to solve two other problems with similar
structure. Finally, we generalized the solution, which results
significantly more efficient metrics, and we have come up
with a model transformation design pattern.
We have identified two main points in existing model trans-

formation design patterns that we will analyze for further
studies. We show a preliminary measurement with some
metrics that affect efficiency. We plan to find more met-
rics for this purpose. In object-oriented design patterns, the
community has agreed to provide design pattern solutions in
UML class diagrams [3]. However, there are few studies on
this topic and there is no common language or standard for
model transformation design patterns. In the design pattern
we identified in Section 4, we used MoTif language structures
to describe our design pattern. We also plan to generalize
the language to a model transformation pattern formalism
in order to represent design patterns independently from any
rule-based model transformation language.

7. REFERENCES
[1] A. Agrawal, A. Vizhanyo, Z. Kalmar, F. Shi,

A. Narayanan, and G. Karsai. Reusable Idioms and
Patterns in Graph Transformation Languages. In

International Workshop on Graph-Based Tools,
volume 127 of ENTCS, pages 181–192, Rome, March
2005. Elsevier.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On
finding lowest common ancestors in trees. In
Proceedings of the fifth annual ACM symposium on
Theory of computing, STOC ’73, pages 253–265, New
York, NY, USA, 1973. ACM.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, 1 edition, Nov. 1994.

[4] M.-E. Iacob, M. W. A. Steen, and L. Heerink.
Reusable Model Transformation Patterns. In
Proceedings of the Enterprise Distributed Object
Computing Conference Workshops, pages 1–10,
Munich, September 2008. IEEE Computer Society.

[5] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. Science of
Computer Programming, 72(1-2):31–39, June 2008.

[6] L. Kapová, T. Goldschmidt, S. Becker, and J. Henss.
Evaluating maintainability with code metrics for
model-to-model transformations. In Proceedings of the
6th international conference on Quality of Software
Architectures: research into Practice - Reality and
Gaps, QoSA’10, pages 151–166, Berlin, Heidelberg,
2010. Springer-Verlag.

[7] Object Management Group. Meta Object Facility 2.0
Query/View/Transformation Specification, jan 2011.

[8] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven
Software Development: Technology, Engineering,
Management. John Wiley & Sons, 2006.

[9] E. Syriani and H. Vangheluwe. A Modular Timed
Model Transformation Language. Journal on Software
and Systems Modeling, 11:1–28, June 2011.

[10] M. van Amstel and M. van den Brand. Using metrics
for assessing the quality of atl model transformations.
In Proceedings of the Third International Workshop on
Model Transformation with ATL (MtATL 2011),
volume 742, pages 20–34, 2011.

