On Irreducible No-hole L(2, 1)-coloring of the Cartesian Product of a Path and a Tree Pratima Panigrahi¹ Nibedita Mandal²

¹) Department of Mathematics, Indian Institute of Technology Kharagpur, India pratima@maths.iitkgp.ernet.in

²) Department of Mathematics, Indian Institute of Information Technology Ranchi, India

An L(2,1)-coloring of a graph G is a mapping $f: V(G) \to Z^+ \cup \{0\}$ such that $|f(u) - f(v)| \ge 2$ for all edges uv of G, and $|f(u) - f(v)| \ge 1$ if u and v are at distance two in G. The span of an L(2, 1)-coloring f of G, denoted by span(f), is $\max\{f(v): v \in V(G)\}$. The span of G, denoted by $\lambda(G)$, is the minimum span of all possible L(2, 1)-colorings of G. If f is an L(2, 1)-coloring of a graph G with span k then an integer l is a hole in f, if $l \in (0, k)$ and there is no vertex v in G such that f(v) = l. A no-hole coloring is defined to be an L(2, 1)-coloring with no hole in it. An L(2,1)-coloring is said to be *irreducible* if the color of none of the vertices in the graph can be decreased and yield another L(2, 1)coloring of the same graph. An *irreducible no-hole coloring* of a graph G, in short *inh-coloring* of G, is an L(2, 1)-coloring of G which is both irreducible and no-hole. A graph G is *inh-colorable* if there exists an inh-coloring of it. For an inh-colorable graph G the lower inh-span or simply inh-span of G, denoted by $\lambda_{inh}(G)$, is defined as $\lambda_{inh}(G) = \min\{\operatorname{span}(f): f \text{ is an inh-coloring of } G\}$. In this paper, we prove that the Cartesian product of a tree and a path is inh-colorable.