\mathbb{Z}_q -supermagic labeling of $C_m \Box C_n$ Dalibor Froncek¹ Joint work with Sylwia Cichacz² James McKeown³ John McKeown⁴ Michael McKeown⁵

 ¹) University of Minnesota Duluth dalibor@d.umn.edu
² AGH-University of Science and Technology, Kraków, Poland ³) University of Miami
⁴) University of Minnesota Duluth and University of Miami
⁵) University of Minnesota Duluth

A graph G = (V, E) with |V| = p, |E| = q is called Γ -supermagic if there exists a bijection h from E to an Abelian group Γ of order q such that the weight w(x) of each vertex x is equal to the same element μ of the group Γ , that is,

$$w(x) = \sum_{xy \in E} h(xy) = \mu$$

for all $x \in V$ and some $\mu \in \Gamma$. The labeling is called a Γ -supermagic labeling or sometimes also Γ -vertex magic edge labeling.

We present two different methods of $\mathbb{Z}_q\text{-supermagic labeling of Cartesian products of two cycles.$