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Abstract 

In feedforward networks, signals flow in only one direction without feedback. Applications in forecasting, signal processing 
and control require explicit treatment of dynamics. Feedforward networks can accommodate dynamics by including past input 
and target values in an augmented set of inputs. A much richer dynamic representation results from also allowing for internal 
network feedbacks. These types of network models are called recurrent network models and are used by Jordan (1986) for 
controlling and learning smooth robot movements, and by Elman (1990) for learning and representing temporal structure in 
linguistics. In Jordan’s network, past values of network output feed back into hidden units; in Elman’s network, past values 
of hidden units feed back into themselves. 

The main focus of this study is to investigate the relative forecast performance of the Elman type recurrent network models 
in comparison to feedforward networks with deterministic and noisy data. The salient property of the Elman type recurrent 
network architecture is that the hidden unit activation functions (internal states) are fed back at every time step to provide 
an additional input. This recurrence gives the network dynamical properties which make it possible for the network to have 
internal memory. Exactly how this memory is represented in the internal states is not determined in advance. Instead, the 
network must discover the underlying temporal structure of the task and learn to encode that structure internally. The simulation 
results of this paper indicate that recurrent networks filter noise more successfully than feedforward networks in small as well 
as large samples. 

Keywords: Recurrent networks; Feedforward networks; Noise filtering 

1. Introduction 

The standard problem in dynamical system analysis 

predictive model. Consider a dynamical system, f : 

W + R”, with the trajectory 

involves the description of the asymptotic behavior of 

the iterates of a given nonlinear system. The inverse 

problem, on the other hand, involves the construction 

of a nonlinear map from a sequence of its iterates. 

The constructed map can then be a candidate for a 

* Corresponding author. 

Xt+l = f&I, t =o, 1,2 ,.... (1) 

In practice, one rarely has the advantage of observ- 

ing the true state of the system, let alone knowing 

the actual functional form, f, which generates the dy- 

namics. The model that is used is the following: as- 

sociated with the dynamical system in (1) there is a 
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measurement function g : R” + R” which generates 

observations 

Yr = 0,). (2) 

It is assumed that only the sequence (yt) is available 

to reconstruct f. Under certain regularity conditions, 

the Takens [30] and Mane [26] embedding theorems 

indicate that this is feasible. 

There are a variety of numerical techniques for 

modelling and prediction of nonlinear time series 

such as the threshold model of Tong [3 11; exponential 

model of Ozaki [27]; local linear model of Farmer 

and Sidorowich [8,9]; nearest neighbors regression of 

Yakowitz [34] and Stengos [29]; feedforward network 

model of Lapedes and Farber [24,25] and Gencay [ 131. 

In addition, the Taylor series expansion, radial basis 

function of Casdagli [4] and the nonparametric ker- 

nel regression are also used for nonlinear prediction. 

These techniques essentially involve interpolating or 

approximating unknown functions from scattered data 

points. The idea behind the Taylor series expansion 

is to increase the order of the expansion to the point 

where a curved surface of that order can follow the 

curvature of the local data points closely. The trade- 

off with this method is that the number of terms in 

a multidimensional Taylor series expansion increases 

quite rapidly with the order. Indeed, the number of 

parameters needed for a Taylor series of a given order 

grows multiplicatively as the order of the expansion 

is increased and this method involves a choice of an 

optimal order of expansion. Casdagli [4] points out 

that there are no known order of convergence results 

for n > 1, and that polynomials of high degree have 

an undesirable tendency to oscillate wildly. 

The nonparametric kernel estimation is a method 

for estimating probability density functions from ob- 

served data. It is a generalization of histograms to con- 

tinuously differentiable density estimators. The kernel 

density estimation involves the choice of a kernel func- 

tion and a smoothing parameter. The idea behind this 

method is to determine the influence of each data point 

by placing a weight to each of the data points. The 

kernel function determines the shape of these weights 

and the window width determines their width. The 

approximation of an unknown function from the data 

can be obtained by calculating the conditional mean of 

the regression function. The kernel density estimator 

works in regression models with a few lags. However, 

as the number of lags gets larger the rate of conver- 

gence of the nonparametric kernel density estimator 

slows down considerably, which leads to the deterio- 

ration of the estimator of the conditional mean in finite 

samples. There is further deterioration in the partial 

derivatives of the conditional mean estimator. 

Radial basis functions are related to the kernel den- 

sity estimator. In radial basis functions the contribu- 

tion of each point is computed by least squares and 

these functions are easy to implement numerically. If 

standard algorithms for the solution of linear systems 

of equations are used, Casdagli [4] indicates that for 

large data sets, their implementation is no longer fea- 

sible on standard workstations. 

Among these techniques, artificial neural networks 

is one of the most recent techniques used in the 

nonlinear signal processing problem. This is partly 

due to some modelling problems encountered in the 

early stage of development. Earliest applications of 

feedforward networks are analyzed in [24,25]. Recent 

developments in the artificial neural network litera- 

ture, however, have provided the theoretical founda- 

tions for the universality of feedforward networks as 

function approximators. The results in [5,10,16-l 81 

indicate that feedforward networks with sufficiently 

many hidden units and properly adjusted parame- 

ters can approximate an arbitrary function arbitrarily 

well in useful spaces of functions. Homik et al. [18] 

and Homik [16] further show that the feedforward 

networks can also approximate the derivatives of an 

arbitrary function. The advantages of these network 

models over other methods mentioned above are that 

feedforward network models use only linearly many 

parameters O(qn), whereas traditional polynomial, 

spline, and trigonometric expansions use exponen- 

tially many parameters O(q”) to achieve the same ap- 

proximation rate [I]. A recent survey of this literature 

is presented in [23]. 

In feedforward networks, signals flow in only one 

direction, without feedback. Applications in forecast- 

ing, signal processing and control require explicit 

treatment of dynamics. Feedforward networks can 
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accommodate dynamics by including past input and 

target values in an augmented set of inputs. A much 

richer dynamic representation results from also allow- 

ing for internal network feedbacks. These types of net- 

work models are called recurrent network models and 

are used by Jordan [ 191 for controlling and learning 

smooth robot movements, and by Elman [7] for leam- 

ing and representing temporal structure in linguistic. 

In Jordan’s network, past values of network output 

feed back into hidden units; in Elman’s network, past 

values of hidden units feed back into themselves. 

The main focus of this study is to investigate the rel- 

ative forecast performance of the Elman type of recur- 

rent network models in comparison to the feedforward 

networks. The first stage of this study focuses on de- 

terministic nonlinear time series estimation. The qual- 

ity of the results with deterministic data will serve as a 

benchmark performance of the estimation techniques 

under study. The second stage involves the investiga- 

tion of out-of-sample performances of the recurrent 

and feedforward network models with noisy data sets. 

The noise component is investigated as a measurement 

noise. The out-of-sample mean square errors are used 

as the criteria for the quality of the forecasts. 

The objective of this paper is to provide an infor- 

mative comparison of the feedforward and recurrent 

networks within the context of nonlinear signal pro- 

cessing with noisy time series data. The results of 

this paper indicate that recurrent networks filter noise 

more successfully than feedforward networks in small 

as well as large samples. This suggests that recurrent 

networks act as more effective filters in the analysis 

of nonlinear dynamics from noisy time series data. 

Feedforward and recurrent networks are reviewed in 

Section 2. Simulation design, including the descrip- 

tions of the simulated model, estimation and forecast 

approach, and comparison statistics, are introduced in 

Section 3. Section 4 presents numerical results. We 

conclude thereafter. 

2. Feedforward and recurrent networks 

Over the past decade, researchers from a wide col- 

lection of fields such as engineering, physics, cognitive 

science, medicine, statistics and economics have been 

making important contributions to the understanding, 

development and application of artificial systems that 

models certain aspects of the form and functionality 

of human intelligence. 

An artificial neural network is a model that emu- 

lates a biological neural network. Although an artifi- 

cial neuron is analogous to the biological neuron, the 

artificial neural networks are still far from anything 

close to a realistic description of how brains actually 

work. They nevertheless provide a rich, powerful and 

interesting modelling framework with proven and po- 

tential applications across sciences. Examples of such 

applications include Elman [7] for learning and repre- 

senting temporal structure in linguistics; Jordan [19] 

for controlling and learning smooth robot movements; 

Gencay and Dechert [ 151, Gencay [ 141 and Dechert 

and Gencay [6] to decode deterministic and noisy 

chaos and Lyapunov exponent estimations and Kuan 

and Liu [22] for exchange rate prediction. Successes 

in these and other areas of sciences may serve as a 

useful addition to the tools available to the nonlinear 

time series modelling and prediction. In this section, 

we review two types of network structures, namely 

feedforward and recurrent networks. The structure 

and the learning algorithms of these networks are 

reviewed first. Second, we review recent theoretical 

contributions on the universal approximations of neu- 

ral networks. Finally, we provide an explanation of 

why recurrent networks may be preferred over feed- 

forward networks when they are used as noise filters. 

2.1. Feedforward networks 

In a simple neural network model, the signal from 

input units is directly connected with the output units 

through the output function. The earliest form for the 

output function is a threshold function, which takes 

a value of 0 or 1 determined by a threshold param- 

eter. The output unit is activated when the function 

value is 1 and inactivated otherwise. Conventionally, 

this output function is called the activation function. 

A rich class of networks contains intermediate layers 

between inputs and outputs. These intermediate lay- 

ers are usually called the hidden layers. A common 



122 R. Geqay, 7: Liu/Physica D 108 (1997) 119-134 

feedforward network model with hidden layers is the 

single hidden layer feedforward network model. Given 

inputsx, = (xI,~,..., x~,~), an output of a single layer 

feedforward network with q hidden units is written as 

(3) 

or 

Ot = @(PO+2 Bi* (J+CJ+$J?jXj,t)) 

=: .f(xt , e), (4) 

where 0 = (PO, . . . , Bs, ~1, . . . , yq)’ (vj = (yj.0, . . . , 
yj,n)) are the parameters to be estimated and ly and 

@ are known activation functions. or is the estimator 

for the target variable yt; xt is the vector of inputs and 

ht represents the vector of hidden units. As shown in 

Fig. 1, the hidden units of the feedforward networks 

are not dynamic as they do not depend on past val- 

ues generated from the networks. For this reason, the 

network is called a feedforward network. 

Given the network structure as in Eq. (3) and the 

chosen functional forms for 9 and @, a major em- 

Output Layer 

Activation 

FunPon 

Hidden Layer 

Activation 
Function 

Q! 

Input Layer 

Fig, 1. The feedforward network 

pirical issue in the neural networks is to estimate the 

unknown parameters 8 with a sample of data values 

of targets and inputs. Cognitive scientists use the fol- 

lowing learning algorithm: 

a,, = 4 + rl V.f(xt, &r>[Yt - f(%, bl, 

where Vf(x, 0) is the (column) gradient vector of 

f with respect to 8 and 11 is a learning rate. Here, 

Vf(x, e)[y - f(x, f9)] is the vector of the first-order 

derivatives of the squared-error loss: [y - f(x, Q)12. 

This estimation procedure is characterized by the 

recursive updating or the learning of estimated pa- 

rameters. This algorithm is called the method of 

backpropagation. By imposing appropriate conditions 

on the learning rate and functional forms of 9 and 

@, White [33] derives the statistical properties for 

this estimator. He shows that the backpropagation 

estimator asymptotically converges to the estimator 

which locally minimizes the expected squared error 

loss. Let y be the target variable, x be the vector for 

input variables, and f(x, 0) be the network structure. 

The estimator 8* to minimize the expected squared 

error loss is the solution of minimizing 

E IY - f(& @)I2 

= E IY - E(ulx)12 + E IE(ylx) - f(x, ‘U2. 

This is equivalent to minimizing 

E lE(ylx) - f(x, @12. 

A modified version of the backpropagation is the in- 

clusion of the Newton direction in recursively updating 

6r [23]. The form of this recursive Newton algorithm 

is 

&,I = 4 + rlt &’ V”f(xt, &Yt - f<xt, 4,>1, 

kt+, = & + ‘It [Vf(xt, &>ym. 4) - &I, (5) 

where kt is an estimated, approximate Newton direc- 

tion matrix and {qt) is a sequence of learning rates of 

order l/t. The inclusion of Newton direction induces 

the recursively updating of ht, which is obtained by 

considering the outer product of Vf(xtr &). In prac- 

tice, an algebraically equivalent form of this algorithm 

can be employed to avoid matrix inversion. 
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These recursive estimation (or on-line) techniques 
are important for large samples and real time appli- 
cations since they allow for adaptive learning or on- 
line signal processing. However, recursive estimation 
techniques do not fully utilize the information in the 
data sample. White [33] further shows that the recur- 
sive estimator is not as efficient as the nonlinear least 
squares (NLS) estimator. The NLS estimator is de- 
rived by minimizing 

L(e) = &Yt - fbt, w>*. (6) 
r=1 

This is a straightforward multivariate minimization 
problem. Conjugant gradient routines studied in [ 151 

work very well for this problem. 

2.2. Recurrent networks 

Applications in forecasting, signal processing and 
control require explicit treatment of dynamics. Feed- 
forward networks can accommodate dynamics by in- 
cluding past input and target values in an augmented 
set of inputs. However, this kind of dynamic represen- 
tation does not exploit a known feature of biological 
networks, that of internal feedback. Returning to a rel- 
atively simple single hidden layer network, such feed- 
backs can be represented as in Fig. 2. In Fig. 2, the 
hidden layer output feeds back into the hidden layer 
with a time delay, as proposed by Elman [7]. The out- 
put function of the Elman network can thus be repre- 
sented as 

=:@i(Xt,hf-l,8), i = l,..., 4, 

By recursive substitution, 

hi,t=1C/i(xr,1CI‘(X~-I,ht-*,e>,e)=..., 

i=l,...,q, 

oj =4~~~~,~~-1,e) =: &,e), 

(8) 

(9) 

W-1 

qt x2,1 x3,t 

Fig. 2. The recurrent network: the Elman [7] network. 

where xf = (xt , x,-l, . . . , xl). As a consequence of 
this feedback, network output depends on the initial 
values of hi,u, i = 1, . . . , q, and the entire history of 
the system inputs, x’ = (xr, ~~-1, . . . , xl). These net- 
works are capable of rich dynamic behavior, exhibit- 
ing memory and context sensitivity. Because of the 
presence of internal feedbacks, these networks are re- 
ferred to as recurrent networks in the artificial neural 
networks literature. 

The parameters of interest are 8* which are found by 
minimizing E Iyr--g(x’, @)I*. Hence, g(x’, e*) can be 
viewed as an approximation of E (yr Ix’). The network 
output o depends on 0 directly and indirectly through 
the presence of lagged hidden-unit activations. Owing 
to this state dependent structure, the method of non- 
linear least squares becomes infeasible. 8* can be es- 
timated by the recurrent backpropagation algorithm of 
Kuan et al. [21] and the recurrent Newton algorithm 
by Kuan [20]. These algorithms are strongly consis- 
tent, provided that recurrent connection 6’s are con- 
strained suitably. In this paper, the recurrent Newton 
algorithm is used. It has the form: 

& = yr - d(Xt, Ll, &,>3 
02, = -40(X,, Ll, 4) - & dJh(Xt, Ll, &L ^ . 

e,,, =et - 11, 6;’ 02, zt, 
1 

Gr+l = 6’, + qt (V&0$ - &), (10) 
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where 40 and $Q are column vectors of the first-order 

derivatives of 4 with respect to 0 and h, respectively. 

The ith (i = 1, . . . , q) hidden-unit activation is up- 

dated according to 

=~i(~*~~t-l~~tt)~ (11) 

andthe jth(j = l,... , q) column of a,+, is updated 

according to 

(12) 

2.3. Universal approximation 

In the earlier literature, the statistical properties of 

the backpropagation estimator were unknown and the 

universal approximation was questionable. For exam- 

ple, there was no guidance in terms of how to choose 

the number of neurons and their configurations in a 

given layer and how to decide the number of hidden 

layers in a given network. 

In recent years, a number of these issues have been 

addressed. The results in [5,10,16-181 indicate that 

feedforward networks with sufficiently many hidden 

units and properly adjusted parameters can approxi- 

mate an arbitrary function arbitrarily well in useful 

spaces of functions with arbitrary squashing func- 

tions (e.g., logistic, hyperbolic tangent). Homik [16] 

gives the conditions under which networks with as 

few as a single hidden layer and arbitrary bounded 

and nonconstant activation functions are universal 

approximators. Broomhead and Lowe [3] consider 

this approximation as an extension of multivariable 

functional interpolation. 

For studying deterministic processes, such as chaos, 

the derivatives of an unknown function under study 

are also needed. A typical measure of a chaotic system 

is the existence of a positive largest Lyapunov expo- 

nent. Numerical measures of Lyapunov exponents re- 

quire the estimation of the derivatives of the true data 

process [ 151. A poor approximation of the derivatives 

implies an inaccurate measure of the Lyapunov expo- 

nents. Homik et al. [ 181 and Homik [ 161 show that 

single hidden layer feedforward neural networks can 

accurately approximate the derivatives of an arbitrary 

function. The results of the universal approximations 

both to the functions and its derivatives provide a suit- 

able platform to use the feedforward network mod- 

els to the approximation of a chaotic system and its 

Lyapunov exponents. 

As indicated in Section 1, there are other meth- 

ods for modelling and predicting nonlinear time se- 

ries other than neural network models. For instance, 

the idea behind the Taylor series expansion is to in- 

crease the order of the expansion to the point where 

a curved surface of that order can follow the curva- 

ture of the local data points closely. The trade-off with 

this method is that the number of terms in a multi- 

dimensional Taylor series expansion increases quite 

rapidly with the order. Indeed, the number of parame- 

ters needed for a Taylor series of a given order grows 

multiplicatively as the order of the expansion is in- 

creased, and this method involves a choice of an op- 

timal order of expansion. Casdagli [4] points out that 

there are no known order of convergence results for 

n > 1, and that polynomials of high degree have an 

undesirable tendency to oscillate wildly. 

In radial basis functions the contribution of each 

data point is computed by least squares and these func- 

tions are easy to implement numerically. If standard al- 

gorithms for the solution of linear systems of equations 

are used, Casdagli [4] indicates that for large data sets, 

their implementation is no longer feasible on standard 

workstations. The advantages of these network models 

over other methods mentioned above are that feedfor- 

ward network models use only linearly many param- 

eters O(qn), whereas traditional polynomial, spline, 

and trigonometric expansions use exponentially many 

parameters O(q”) to achieve the same approximation 

rate [ 11. A recent survey of this literature is presented 

in [23]. 

2.4. Advantages of recurrent networks as noiseJilters 

Recurrent networks, with the consideration of 

the internal feedback, are more general models than 

the feedforward networks. The salient property of the 
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recurrent network architecture is that the hidden unit 

activation functions (internal states) are fed back at 

every time step to provide an additional input. This 

recurrence gives the network dynamical properties 

which make it possible for the network to possess 

internal memory. Exactly how this internal memory is 

represented is not determined in advance. Instead, the 

network must discover the underlying temporal struc- 

ture of the task and learn to encode that structure inter- 

nally. In a typical feedforward network, hidden units 

develop representations which enable the network to 

perform the assigned task. The similarity structure 

of the internal representations reflects the demands 

of the task being learned, rather than the similarity of 

the form of the inputs. When the recurrence is added, 

the hidden units assume an additional function. They 

now provide the network with memory. 

There are two important considerations as to why 

recurrent networks are attractive modelling tools for 

prediction in noisy environments. In a recurrent net- 

work architecture, the hidden unit activation functions 

(internal states) are fed back at every time step to pro- 

vide an additional input. Since the recurrent network 

learning algorithms are sequential, the recurrence of 

hidden units enables the filtered data of the previous 

period to be used as an additional input in the cur- 

rent period. In other words, each time period network 

is subject to not only the new noisy data but the past 

history of all noisy inputs as well as their filtered 

counterparts. This additional information of filtered 

input history acts as an additional guidance to evalu- 

ate the current noisy input and its signal component. 

In contrast, filtered history never enters into the leam- 

ing algorithm in a feedforward network. This is where 

recurrent networks differ from a feedforward network. 

Secondly, because recurrent networks have the 

ability to keep past history of the filtered inputs as 

an additional information in the memory, a recurrent 

network would have the ability to filter noise even 

when the noise distribution is allowed to vary over 

time. In a feedforward network, however, a complete 

new training has to be performed with a new set of 

examples containing the new type of noise structure. 

In a recent paper, Broomhead et al. [2] propose a 

method of noise cancellation where the noise is deter- 

ministic generated by some possibly chaotic system. 

Their method exploits the fact that a time series mea- 

sured from a nonlinear dynamical system can be used 

to reconstruct the phase space of the system, and that 

this is still true if the time series is first passed through 

a linear finite impulse response filter. This paper’s con- 

tribution is to allow both deterministic or stochastic 

noise in the construction of nonlinear inverses from 

data. The recurrent network modelling provides a suit- 

able platform for this purpose as indicated above. 

3. Simulation design 

Although the universal approximation for the feed- 

forward networks have theoretically been proved and 

empirically been applied to the chaotic systems (such 

as [3,12,25,32]), there are very few similar studies for 

recurrent networks. Since feedforward networks can 

be considered as the recurrent networks without feed- 

back, the feedforward network model is a special case 

of the recurrent networks model. It is reasonable to 

assume that the universal approximation property can 

also be applied to the recurrent networks. In this paper, 

we empirically show the approximation properties for 

the recurrent networks using simulated data generated 

from well-known nonlinear deterministic systems. 

3.1. Models and data generation 

We study three well-known chaotic systems which 

are the Logistic map, the H&on map and a discretized 

version of the Mackey-Glass delay equation. The lo- 

gistic map is a one dimensional, discrete time, uni- 

modal map 

Xt = /%X_l(l -X,-i). (13) 

For /I E [O, 41 the state of the system maps itself 

onto itself in the closed interval [0, 11. In the interval 

B E (3.5699,4], the logistic map exhibits determinis- 

tic chaos and contains the presence of periodic as well 

as aperiodic cycles. Here, we set p = 4. The Henon 

map is expressed by 

X,+1 = 1 - 1.4.X; + at, zr+t = 0.3x,. (14) 
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The matrix of derivatives of the H&on map 

[-Zxt :] 
(15) 

has a constant determinant so that the Lyapunov ex- 

ponents for this map satisfy 

hl + A2 = ln(0.3) % -1.2. (16) 

The largest Lyapunov exponent of the HCnon map is 

0.408. A discretized variant of the Mackey-Glass delay 

equation is 

Xl = Xl-1 + 
[ 

axt -s 

1 + (Xl--s)= 
-b-l t 

1 
(17) 

where we use a = 0.2, b = 0.1, c = 10.0 and 

s = 17. This equation is chosen to show the perfor- 

mance of the feedforward and recurrent networks with 

higher-dimensional systems and the resulting largest 

Lyapunov exponent estimate. The largest Lyapunov 

exponent of the Mackey-Glass delay equation is 

0.0086. 

Our simulation study is performed both on the deter- 

ministic systems without any external noise and with 

additive noise. For the series without noise, we let 

yt = xl and treat yt as the target variable. The series 

with added noise is computed by 

yt =xt + ut, 

where uI is the noise component. The noise is gener- 

ated from the normal distribution such that ut = agut, 

where a! = 0.01, 0.1, 0.25 and 0.5, c is the sample 

standard deviation of the xl, and Ut is a standard nor- 

mal random variable. 

For each simulation model, we generate small sam- 

ples with 200 observations for the logistic and the 

Henon map, and large samples with 2000 observations 

for Mackey-Glass delay equation. The data set with 

200 observations is included to measure the sensitiv- 

ity of the results to small sample bias and variation. 

In the simulation with 200 observations, the last 20 

observations are kept for the out-of-sample forecasts. 

For 2000 observations, the last 200 observations are 

reserved for forecast purposes. Let the sample size be 

denoted by (~1, ~2, . . . , yn , . . . , ym] such that n obser- 

vations are utilized in the in-sample observations and 

the last m - n are kept for the out-of-sample forecast 

comparisons. 

The most important part of the forecast comparisons 

of this paper is that the results do not rely on the one 

time estimation of each studied model. Rather, each 

model is replicated 1000 times by generating a new 

set of data for each replication. To generate a set of 

sample data in each replication, a set of suitable initial 

valuesforyo, y-1 ,..., y-, is randomly selected from 

a uniform distribution, then the transients are discarded 

before collecting observations for each replication. 

3.2. Estimation and out-of-sam$e forecasts 

We let activation functions P be an identity function 

and @ a logistic function as in [23]. Each network is 

estimated with 4-6 hidden units. ’ 

To estimate the unknown parameters 6’ in Eqs. (3) 

and (7), we use both recursive Newton algorithm and 

nonlinear least squares (NLS) estimation. The recur- 

sive Newton algorithms for feedforward networks 

and recurrent networks are described in (5) and (lo), 

respectively. For NLS estimation, we use modified 

Levenberg-Marquardt algorithm. Although recursive 

estimator is not as efficient as the NLS estimator, the 

estimates from the recursive algorithm can be served 

as the starting values for NLS estimation [33]. These 

two methods form our two-step estimation procedure. 

In the first step, 50 sets of parameters are randomly 

generated and the one with the lowest mean square 

error is chosen as the initial values for recursive.esti- 

mation. We let the recursive algorithm run through the 

data set 10 times and use the resulting estimates as the 

starting values for the NLS estimation, which consti- 

tutes the second step of our estimation procedure. For 

the feedforward network, the final recursive estimates 

from the first step are used as initial values for the 

NLS estimation. For the recurrent network, the method 

of nonlinear least squares is not infeasible because of 

state dependence of parameters. We work around this 

problem by fixing the recurrent connection 6’s at the 

final recursive estimates. The parameter /?‘s and y’s 

are then estimated by the NLS method using the final 

’ This range is purely for computational considerations. 
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estimates of the 6’s and y’s from the first step as ini- 

tial values. Since we find that the in-sample estimation 

and the out-of-sample forecast from the NLS estima- 

tion are uniformly superior to those from the recursive 

estimation, we only report the results from the NLS. 

In addition to the feedforward and recurrent net- 

work models, we also apply the ordinary least squares 

(LS) model to the data for comparison. For the out- 

of-sample forecast, we compute the one-step forecast 

for all models. Let jr+, denote the one-step forecast 

value of yt+ 1, then 

%+I = f(Yl, Y2T.. .? yt; e^,? 

t=n,n+l,..., m-l, 

where 6 contains the parameters estimated from the in- 

sample data, (YI , ~2, . . . , yn). The out-of-sample com- 

parison is then based on the one-step forecast error, 

Y, - 5. 

3.3. Comparison statistics 

For each set of estimations, we apply several statis- 

tics to compare their in-sample fit and out-of-sample 

forecast performancesAs a model selection criterion, 

we use the Schwarz information criterion (SIC). The 

SIC is computed by [28] 

where w is the number of parameters in the model. 

The SIC is used to determine the best model among 

linear and neural network models. The model with the 

smallest SIC is the preferred model. The second term 

in SIC indicates that the simple estimation model with 

fewer number of parameters is better if both models 

give the same mean squared errors (( 1 /n) Cy=, (y, - 

jr)*). When two models have the same number of 

parameters, the comparison of SIC is the same as the 

comparison of the mean squared errors. We also use 

SIC to determine the proper number of hidden units 

for neural network models. 2 Only the model with the 

best SIC is reported. 

*How to determine the proper number of hidden units for 
a neural network model is still an unsolved issue. White [33] 

For the in-sample comparison, we measure errors 

resulting from the estimated function as well as its 

estimated derivatives. The squared root of the mean 

squared errors is defined as 

RMSE=lF, 

where j, is the in-sample estimate of yI for time t. 

To measure the errors from approximating the 

derivatives, we compute the difference between the 

true and the estimated derivatives of the studied ex- 

amples. The statistic used is the squared root of the 

mean squared derivative errors, 

where xi is the explanatory variable used in the esti- 

mation. Since the functions under study in our simula- 

tion are low-dimensional chaotic systems, the largest 

Lyapunov exponent for these systems is positive. We 

use the Gencay and Dechert [ 151 methodology to mea- 

sure Lyapunov exponents. In their methodology, the 

estimated derivative matrices are used to calculate the 

Lyapunov exponents. The quality of the measure of 

the Lyapunov exponents is then related to RMSDE. 

For the out-of-sample forecast, we use the squared 

root of the mean squared one-step prediction errors 

(RMSPE) to compare the performances of different 

estimation models. The computation of RMSPE is 

RMSPE = LF (Yt - $)2? 
m-n r=n+l 

where j, is the one-step forecast of yI. We also com- 

pute the ratio of the RMSPE from the neural net- 

work model to the RMSPE from the linear regression 

model. This ratio directly compares the forecast per- 

formance from the neural network models with that of 

the linear regression model. When this ratio is close 

to zero, the performance of the neural network model 

suggests to use the cross-validated average squared error. Here, 

we follow [22] to use SIC. 
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is superior to the performance of the ordinary least 

squares regression. 

Further comparisons can be done by examining the 

RMSPE from the raw data. We compute the ratio of 

the RMSPE from the estimated model to the RMSPE 

from the raw data. This ratio evaluates the forecast 

performance for each estimated model based on the 

prior knowledge of the simulated model. For the sim- 

ulated models without noise, RMSPE from the raw 

data is calculated by 

(Yr - Yj27 

where j is the sample mean of yt in the out-of-sample 

period. In other words, RMSPEocp is the sample stan- 

dard deviation in the out-of-sample period. If the es- 

timated model gives a perfect forecast, the ratio of 

RMSPE to RMSPEmp should be very close to zero. 

On the other extreme, it is close to one for the worst 

forecast. 

When the simulated model contains an additive 

noise, RMSPEDGP is defined as 

RMSPEDGP = 

where 17 is the sample mean of ut in the out-of-sample 

period. Since ut is generated by ut = crcut, the value 

of RMSPEDGP is close to the standard deviation of ul, 

which is equal to crcr. In the case of a perfect forecast, 

the forecast error will be close to the additive noise. 

Hence, the RMSPE from the estimated model is equal 

to RMSPEbop and the ratio of RMSPE to RMSPEoop 

is close to one. In the worst case, the value of RMSPE 

from the estimated model is close to the sample stan- 

dard deviation of y, in the out-of-sample period. This 

standard deviation is close to (1 + ar)a. Therefore, the 

maximum ratio of RMSPE to RMSPEbop is close to 

(1 + a)/(~. For (Y = O.Ol,O.l, 0.25, and 0.5, these 

maximum ratios are 101, 11, 5, and 3, respectively. 

4. Numerical results 

Our simulation results are summarized in Tables l- 

4. In each table, we present the in-sample and out- 

of-sample statistics for three estimation models. The 

results for each model are labelled by LS (for linear 

regression), RN (for recurrent networks), and FN (for 

feedforward networks). The number in the parenthe- 

sis after RN and FN is the selected number of hidden 

units based on the best SIC. The in-sample statistics 

in the tables are the squared root of the mean squared 

errors (RMSE), Schwarz information criterion (SIC), 

and the squared root of the mean squared derivative er- 

rors (RMSDE). A preferred model should deliver the 

smallest statistic among three models. We also show 

the measure of the largest Lyapunov exponent, i 1, in 

the tables. Since the simulated models are chaotic, we 

expect a positive measure of h t . The accuracy of this 

measure is closely related to RMSDE. For the out-of- 

sample statistics, each table lists the squared root of 

mean squared prediction errors (RMSPE). The ratio 

of the RMSPE of the estimated model to RMSPEDGP 

is labelled by R/DGP and presented in the second 

last column in each table. This ratio shows the rela- 

tive forecast performance for each model. The ratio 

of RMSPE from the neural networks to RMSPE from 

the linear regression model is labelled by R/LS and 

presented in the last column of each table. 

In each table, the first panel is the result applied to 

the original series without added noise. We also refer 

to the case without added noise as (11 = 0.0. The rest 

of the panels contain the results for those series with 

added noise of cr = 0.01,0.1,0.25, and 0.5. In all 

tables, there are two values in each cell. The numbers 

without parentheses are the sample averages of those 

in-sample and out-of-sample statistics obtained from 

1000 replications and the numbers within parentheses 

are their standard deviations. 

Table 1 shows the results for the logistic map with 

200 observations. Since there is only one lagged de- 

pendent variable in the true model, the first-order lag 

is used as an explanatory variable in the linear and the 

neural network models. The feedforward neural net- 

work model with six hidden units, FN(6), gives the 

best in-sample fit and the lowest SIC when there is no 
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Table 1 
Logistic map: 200 observations 

Model RMSE SIC AI RMSDE RMSPE R/DGP R/LS 

LS 0.3515 
(0.0096) 

RN6) 0.0080 

(0.0116) 
W6) 0.0008 

(0.0007) 

With noise of ct = 0.01 
LS 0.3515 

(0.0096) 
RN(5) 0.0168 

(0.0208) 
m(4) 0.0130 

(0.0291) 

With noise of a = 0.1 
LS 0.3532 

(0.0099) 
RN(4) 0.0918 

(0.0287) 
PN4) 0.0894 

(0.0140) 

With noise of (Y = 0.25 
LS 0.3622 

(0.0116) 
RN4) 0.1900 

(0.0183) 
W4) 0.1936 

(0.0170) 

With noise of (Y = 0.5 
LS 0.3927 

(0.0159) 
RN4) 0.3144 

(0.0199) 
W4) 0.3189 

(0.0198) 

-2.0340 

(0.0552) 
-8.8070 
(1.5430) 

- 14.2300 

(1.6320) 

-2.0340 
(0.0552) 
-7.3140 

(0.8730) 
-8.7060 

(0.6489) 

-2.0240 

(0.0568) 
-3.9840 
(0.3718) 
-4.4640 
(0.1929) 

- 1.9740 

(0.0645) 
-2.4900 
(0.1766) 
-2.9140 

(0.1573) 

-1.8130 
(0.08 16) 
- 1.4780 
(0.1257) 
-1.9130 

(0.1229) 

-3.2668 
(1.1220) 
0.6591 

(0.0598) 
0.6879 

(0.0111) 

-3.2684 

(1.1258) 
0.6230 

(0.2000) 
0.6441 

(0.4330) 

-3.2758 
(1.1539) 
0.2939 

(0.5435) 
0.4273 

(0.2174) 

-3.2703 

(1.1965) 
0.0694 

(0.3809) 
0.1704 

(0.2903) 

-3.2286 

(1.1177) 
-0.4059 
(0.49 18) 
-0.2845 

(0.4699) 

7.9812 
(0.4182) 

0.0835 
(0.2260) 

0.0023 
(0.0039) 

7.9821 
(0.4182) 

0.1705 
(0.4125) 
0.0723 

(0.6743) 

8.0619 
(0.4365) 

1.8504 
(0.8890) 
I .6742 

(0.7082) 

8.4822 
(0.5289) 

3.9617 
(1.1013) 
3.9888 

(1.5810) 

9.9799 

(0.7990) 
7.0742 

(1.8124) 
7.3086 

(2.4974) 

0.3541 
(0.0304) 

0.0077 
(0.0119) 
0.0009 

(0.0008) 

0.3541 

(0.0303) 
0.0169 

(0.0204) 
0.0132 

(0.0289) 

0.3559 
(0.0309) 
0.1001 

(0.1091) 
0.0929 

(0.0212) 

0.3648 
(0.0347) 

0.1990 

(0.0384) 
0.2011 

(0.0384) 

0.4040 

(0.0479) 
0.335 1 

(0.0614) 
0.3335 

(0.0562) 

1.0340 
(0.0573) 
0.0226 

(0.0346) 
0.0026 

(0.0023) 

107.3611 

(20.7242) 
5.0338 

(5.9554) 
3.9412 

(8.9662) 

10.7866 

(2.0717) 
2.9626 

(2.9150) 
2.7467 

(0.5455) 

4.4173 

(0.8363) 
2.3681 

(0.3918) 
2.3863 

(0.3403) 

2.3821 

(0.4335) 
I .9908 

(0.3597) 
1.9879 

(0.2885) 

0.0219 

(0.0342) 
0.0025 

(0.0022) 

0.0478 
(0.0572) 
0.0376 

(0.0840) 

0.2827 

(0.3097) 
0.2626 

(0.0630) 

0.5488 

(0.1086) 
0.5560 

(0.1076) 

0.8513 
(0.1555) 
0.8471 

(0.1202) 

added noise. It also has the lowest out-of-sample fore- 

cast errors. The RMSPE is 0.0009 while (R/DGP) and 

the (R/LS) ratios are 0.0026 and 0.0025, respectively. 

This implies that the feedforward network model ap- 

proximates the data closely both for the in-sample and 

out-of-sample much better than the linear model. The 

estimation from FN(6) also provides an accurate mean 

largest Lyapunov exponent estimate of 0.6879. The 

RMSDE is 0.0023 and is close to zero revealing that 

the calculated derivative vector approximates the true 

one closely. The standard deviations of these estimates 

are given within parentheses below the corresponding 

statistics. These standard deviations are quite small 

indicating the minimal sample variation of the calcu- 

lated statistics over 1000 replications. 

When the noise is included with a! = 0.01, the feed- 

forward network is still the best model both for the 

in-sample estimation and out-of-sample forecast. For 

larger noise levels of (Y = 0.25 and 0.5, the (R/LS) 

ratio drops from 3% to 84% indicating the deteriorat- 

ing performance of the feedforward network in noisy 

environments. This deterioration is clearly noticeable 

in the averages of RMSPE and the RMSDE across 

various noise levels, as well as in the larger stan- 

dard deviations of these statistics. Up to a! = 0.25, 

the Lyapunov exponent remains positive after which 
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Table 2 
H&non map with one lag: 200 observations 

Model RMSE SIC AI RMSDE RMSPE R/DGP R/LS 

LS 0.6814 -0.7112 
(0.0288) (0.0855) 

RN(4) 0.0456 -5.7230 
(0.0356) (1.1900) 

FN(4) 0. I948 -2.8960 
(0.0072) (0.0764) 

With noise of (Y = 0.01 
LS 0.6814 

(0.0288) 
RN4) 0.0519 

(0.0396) 
FN(4) 0.1955 

(0.0075) 

-0.7111 
(0.0856) 
-5.4320 
(1 .OSSO) 
-2.8890 
(0.0788) 

With noise of a = 0. I 
LS 0.6855 

(0.0293) 

RN4) 0.1607 

(0.0232) 

FN(4) 0.2470 

(0.0123) 

-0.6992 
(0.0867) 
-2.8330 
(0.255 I) 
-2.4220 
(0.1000) 

With noise of a = 0.25 

LS 0.7067 
(0.0314) 

RN(4) 0.3496 
(0.0339) 

FN4) 0.3988 
(0.0233) 

-0.6385 
(0.0897) 
-1.2710 
(0.1848) 
-I .4650 
(0. I 176) 

With noise of a = 0.5 
LS 0.7766 

(0.037 I) 
RN(4) 0.5982 

(0.0398) 
FN(4) 0.6285 

(0.0344) 

-0.4500 
(0.0960) 
-0.1917 
(0.1339) 
-0.5550 
(0.1102) 

-1.1710 
(0.2333) 
0.3601 
(0.1681) 
0.351 I 

(0.0936) 

-1.1710 
(0.2333) 
0.3582 
(0.1028) 
0.3500 

(0.1027) 

-1.1801 
(0.2361) 
0.2259 

(0.2053) 
0.2546 

(0. I 104) 

-1.2317 
(0.2519) 

-0.0390 
(0.4127) 
0.004s 
(0.1875) 

-I .4044 
(0.3 159) 
-0.430s 
(0.3805) 
-0.4455 
(0.5210) 

4.2388 
(0.1655) 
0.1201 

(0.1596) 
0.2027 

(0.2492) 

4.2394 
(0.1658) 
0.1268 

(0.1943) 
0.2059 

(0.2763) 

4.2835 
(0.1796) 
0.5130 

(0.3327) 
0.7067 

(0.4618) 

4.5133 
(0.2376) 
I .5860 

(0.8871) 
2.0427 

(2.0442) 

5.3248 
(0.3885) 
3.5706 

(1.8174) 
4.2759 

(3.4277) 

0.6784 
(0.085 I) 
0.0430 

(0.0388) 
0.2023 

(0.0247) 

0.6784 
(0.0850) 
0.0500 

(0.0417) 
0.2030 

(0.0253) 

0.6822 
(0.0853) 
0.1706 

(0.0397) 
0.2589 

(0.0423) 

0.7210 
(0.091 I) 
0.3656 

(0.0709) 
0.4170 

(0.0749) 

0.7726 
(0.1024) 
0.6273 

(0.1030) 
0.6634 

(0.1413) 

0.9492 
(0.0777) 
0.0603 

(0.0532) 
0.2837 

(0.0293) 

100.8301 
(21.7886) 
7.3672 

(6.1794) 
30.1189 
(6.2605) 

10.1359 
(2.1721) 
2.4765 

(0.5268) 
3.8217 

(0.7608) 

4.1722 
(0.8661) 
2.1257 

(0.3530) 
2.4388 

(0.4140) 

2.2837 
(0.4366) 
1 X359 

(0.2782) 
1.9371 

(0.3763) 

0.0634 
(0.0550) 
0.3000 

(0.03 13) 

0.0744 
(0.061 I) 
0.3007 

(0.03 IS) 

0.2524 
(0.0617) 
0.3827 

(0.0626) 

0.5270 
(0.1071) 
0.5976 

(0.1114) 

0.8152 
(0.1183) 
0.8599 

(0.1583) 

it becomes negative for a! = 0.5. The performance of 

the recurrent network is better than the feedforward 

network for a! = 0.25 and close to that of the feedfor- 

ward network for cx = 0.5 in average RMSPE com- 

parisons. Note that all (R/DGP) ratios for the linear 

model are fairly close to their maximum values. This 

implies that the linear model provides almost no fore- 

cast capability. 

In Table 2, the results for the H&on map are pre- 

sented with the first lag of the dependent variable used 

as the explanatory variable. The reason for studying 

the H&on map with one lag is to demonstrate the 

ability of the recurrent networks to pick up the miss- 

ing second lag through its recurrent memory structure. 

With only one lag included in the estimation, the re- 

current networks provide the best result for all out-of- 

sample forecast horizons (a = 0.00, 0.01, 0.1,0.25 

and a = 0.5). When there is no noise, the in-sample 

fitted errors and out-of-sample forecast errors from re- 

current networks are about five times lower than those 

from feedforward networks. This shows that recurrent 

neural networks can pick up the dynamic structure 

of the data through its recurrent memory structure. 

More importantly, the recurrent networks filter the data 

successfully and lead to more accurate out-of-sample 

forecasts relative to that of the feedforward model. 
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Table 3 
H&non map with two lags: 200 observations 

Model RMSE SIC AI RMSDE RMSPE R/DGP R/LS 

Yr-I Yr-2 

LS 0.6722 
(0.0283) 

RN(6) 0.0140 
(0.0178) 

m(6) 0.0025 
(0.0028) 

With noise of a = 0.01 

LS 0.6722 
(0.0283) 

RN6) 0.0222 
(0.0145) 

FN4) 0.0185 
(0.0118) 

With noise of Q = 0.1 
LS 0.6764 

(0.0289) 
RN(4) 0.1539 

(0.0392) 
FN4) 0.1474 

(0.0121) 

With noise of CY = 0.25 
LS 0.6978 

(0.0312) 
RN(4) 0.3301 

(0.0436) 
FN(4) 0.3348 

(0.0237) 

With noise of a = 0.5 
LS 0.7685 

(0.0373) 
RN(4) 0.5722 

(0.0421) 
W(4) 0.5797 

(0.0368) 

-0.7089 
(0.0852) 
-7.4220 
(1.5210) 
-11.7900 
(1.3130) 

-0.7088 
(0.0853) 
-6.0030 
(0.6812) 
-7.5770 
(0.4652) 

-0.6964 
(0.0865) 
-2.8220 
(0.3570) 
-3.3410 
(0.1615) 

-0.6342 
(0.0902) 
-1.2710 
(0.2373) 
-1.6990 
(0.1423) 

-0.4417 
(0.0976) 
-0.1613 
(0.1468) 
-0.5995 
(0.1273) 

-0.5932 
(0.0893) 
0.4012 
(0.0518) 
0.4197 
(0.0281) 

-0.5934 
(0.0895) 
0.3978 
(0.0523) 
0.4114 
(0.0350) 

-0.5996 
(0.0939) 
0.2427 
(0.1524) 
0.3394 
(0.0671) 

-0.6290 
(0.1117) 
0.0367 
(0.2998) 
0.1910 
(0.1220) 

-0.7270 
(0.1733) 
-0.2751 
(0.3161) 
-0.1122 
(0.2004) 

4.2815 
(0.1586) 
0.1618 
(0.3505) 
0.0044 
(0.0125) 

4.2821 
(0.1588) 
0.1634 
(0.3602) 
0.0250 
(0.1241) 

4.3257 
(0.1719) 
0.9678 
(0.5470) 
0.6347 
(0.3828) 

4.5532 
(0.2302) 
2.0688 
(1.5231) 
1.7366 
(0.8508) 

5.3576 
(0.3829) 
4.1252 
(3.1302) 
3.8401 
(2.1869) 

0.0212 
(0.0101) 
0.3507 
(1.0256) 
0.0026 
(0.0098) 

0.0212 
(0.0102) 
0.2777 
(0.7105) 
0.0222 
(0.1369) 

0.0217 
(0.0106) 
0.4578 
(0.4332) 
0.3191 
(0.3940) 

0.0237 
(0.0124) 
0.6383 
(1.3944) 
0.5969 
(1.0157) 

0.0300 
(0.0171) 
0.8721 
(1.6834) 
0.9877 
(1.8826) 

0.6683 
(0.0848) 
0.0149 
(0.0182) 
0.0030 
(0.0043) 

0.6683 
(0.0847) 
0.0247 
(0.0189) 
0.0199 
(0.0119) 

0.7077 
(0.0894) 
0.1675 
(0.0501) 
0.1618 
(0.0333) 

0.6933 
(0.0886) 
0.3664 
(0.0894) 
0.3697 
(0.0941) 

0.7639 
(0.1026) 
0.6309 
(0.1105) 
0.6402 
(0.1475) 

0.9346 
(0.0857) 
0.0209 
(0.0249) 
0.0041 
(0.0059) 

98.9642 
(21.1335) 
3.6151 
(2.9005) 
2.8887 
(1.7133) 

9.9507 
(2.1088) 
2.4418 
(0.7059) 
2.3518 
(0.4100) 

4.0995 
(0.8428) 
2.1400 
(0.4575) 
2.1433 
(0.4796) 

2.2499 
(0.4263) 
1.8498 
(0.3061) 
1.8630 
(0.3556) 

0.0225 
(0.0280) 
0.0044 
(0.0063) 

0.0371 
(0.0257) 
0.0301 
(0.0180) 

0.2521 
(0.0744) 
0.2435 
(0.0554) 

0.5349 
(0.1352) 
0.5393 
(0.1248) 

0.8287 
(0.1280) 
0.8398 
(0.1564) 

When (Y = 0.01, the recurrent network is still sig- 

nificantly better than the feedforward network (about 

four times better in terms of errors). This superior per- 

formance of the recurrent network to the feedforward 

network also declines as the values of noise increase. 

For up to cx = 0.1, both network models provide pos- 

itive largest Lyapunov exponent estimates. At (Y = 

0.25 and 0.5 level, RMSDEs deteriorate significantly 

which lead to the negative largest Lyapunov exponent 

estimates. 

Table 3 shows the results for the H&on map when 

the first two lags are used in the estimation. Although 

the feedforward network model provides the best 

performance for both the in-sample fit and the out- 

of-sample forecast horizon at lower levels of noise, 

recurrent networks provide more accurate out-of- 

sample predictions at higher levels of noise (a! = 0.25 

and 0.50). Both Tables 2 and 3 show that, in all cases 

with added noise, the ratios (R/DGP) for the linear 

regression model are all close to the maximum val- 

ues. The linear regression model cannot capture any 

nonlinear dynamic for the Htnon map. 

The results with the Mackey-Glass delay equation 

are presented in Table 4. The Mackey-Glass delay 
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Table 4 
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Mackey-Glass delay equation: 2000 observations 

Model RMSE SIU RMSDE 

YI-I Yt-17 

RMSPE R/DGP R/LS 

LS 0.0255 -7.3280 
(0.0002) (0.0181) 

RN6) 0.0058 - 10.7200 
(0.007 I ) (1.5370) 

W6) 0.0012 - 13.6500 
(0.0006) (1.0530) 

With noise of a = 0.01 
LS 0.0257 

(0.0002) 
RN6) 0.0069 

(0.0048) 
W5) 0.0036 

(0.0002) 

-7.3110 
(0.0179) 
-9.9660 
(0.9422) 

-11.1700 
(0. I 197) 

With noise of cr = 0.1 

LS 0.0417 
(0.0006) 

RN4) 0.0308 
(0.005 1) 

lw4) 0.0330 
(0.0007) 

-6.3420 
(0.0279) 
-6.8500 
(0.3545) 
-6.7540 
(0.0438) 

With noise of (Y = 0.25 

LS 0.0850 
(0.0016) 

RN(4) 0.0657 
(0.0152) 

m(4) 0.0775 
(0.0017) 

-4.9190 
(0.0366) 
-5.3750 
(0.5555) 
-5.0450 
(0.0440) 

With noise of (Y = 0.5 

LS 0.1550 
(0.0027) 

RN4) 0.1197 
(0.0300) 

FN(4) 0.1430 
(0.0029) 

-3.7160 
(0.0348) 
-4.1920 
(0.6256) 
-3.8190 
(0.0408) 

-0.0070 

(0.0005) 

0.0635 

(0.0678) 

0.0075 

(0.0014) 

-0.0070 

(0.0005) 

0.0542 

(0.0607) 

0.0068 

(0.0015) 

-0.0117 

(0.0006) 

0.0024 

(0.0501) 

-0.0016 

(0.0023) 

-0.0412 

(0.0022) 

-0.0062 

(0.0688) 

-0.0172 

(0.0063) 

-0.0502 

(0.0046) 
-0.0014 

(0.067 I ) 
-0.0257 
(0.0068) 

0.0012 
(0.0002) 
0.0626 

(0. I 103) 
0.0001 

(0.0002) 

0.0012 
(0.0002) 
0.053 1 

(0.1115) 
0.000 I 

(0.0002) 

0.0008 
(O.OOOl) 
0.064 1 

(0.0538) 
0.0052 

(0.0046) 

0.0001 
(0.0001) 
0.1116 

(0.07 18) 
0.0648 

(0.0139) 

0.0076 
(0.001 I) 
0.1452 

(0.0724) 
0.1648 

(0.0203) 

0.0485 
(0.0003) 
0.0113 

(0.0140) 
0.0010 

(0.0008) 

0.0486 
(0.0003) 
0.01 I1 

(O.Ol55) 
0.0009 

(0.0007) 

0.0490 
(0.0004) 
0.0823 

(0.1281) 
0.0106 

(0.0048) 

0.0533 
(0.0008) 
0.2327 

(0.2564) 
0.0925 

(0.0193) 

0.0835 
(0.003 1) 
0.3524 

(0.2658) 
0.2044 

(0.0255) 

0.0255 
(0.0012) 
0.0056 

(0.007 1) 
0.0012 

(0.0006) 

0.0258 
(0.0011) 
0.0068 

(0.0048) 
0.0036 

(0.0003) 

0.0417 
(0.0017) 
0.0307 

(0.0055) 
0.0330 

(0.0020) 

0.0850 
(0.0045) 
0.0656 

(0.0160) 
0.0777 

(0.0046) 

0.1550 
(0.0079) 
0.1203 

(0.03 11) 
0.1438 

(0.008 1) 

0.1124 
(0.0047) 
0.0247 

(0.0308) 
0.0052 

(0.0025) 

1 I.396 
(0.7660) 
3.0119 

(2.1429) 
I s901 

(0.1207) 

1.8441 
(0.0621) 
1.3549 

(0.2357) 
1.4563 

(0.0546) 

1.5004 
(0.0465) 
1.1584 

(0.2763) 
1.3729 

(0.0539) 

1.3688 
(0.0411) 
1.0627 

(0.2731) 
1.2703 

(0.048 1) 

0.2195 
(0.2731) 
0.0460 

(0.0223) 

0.2646 
(0.1864) 
0.1400 
(0.0129) 

0.7352 
(0.1279) 
0.7900 

(0.0263) 

0.7728 
(0.1826) 
0.9150 

(0.0229) 

0.7764 
(0.1977) 
0.9280 

(0.0240) 

equation simulations are done with 2000 observations 

and the last 200 observations are kept for the out-of- 

sample prediction calculations. In the calculation of 

this equation, the first and the 17th lags are used as 

inputs in both network models. At CY = 0.00, the lin- 

ear regression model provides some prediction power 

since its R/DGP (= 0.1124) is significantly smaller 

than 1. Of all, the feedforward network gives the best 

out-of-sample predictions. The average RMSPE of the 

feedforward network is almost five times smaller than 

that of the recurrent network. The ratio R/LS for the 

recurrent network is as high as 0.2195. This is partly 

because of the prediction power observed in the lin- 

ear regression model. At cx = 0.01, RMSPE is twice 

as much in favor of the feedforward network. Both 

feedforward and recurrent networks provide accurate 

derivative vector estimates which are reflected in the 

largest Lyapunov exponent estimates. 

At higher levels of noise, the performance of the 

recurrent network dominates the performance of the 

feedforward network in the out-of-sample forecast 

comparisons. The average RMSPE comparisons rank 

in favor of the recurrent network models at (Y = 

0.1,0.25 and 0.5. The largest Lyapunov exponent 
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estimate is positive only for the recurrent network 

model at a! = 0.1. At higher levels of noise, both 

network models provide negative largest Lyapunov 

exponents. This is an indication that network models 

require more data to filter noise at higher levels of 

measurement noise. 

5. Conclusions 

This paper provides an informative comparison 

of the feedforward and recurrent network models 

within the framework of nonlinear signal processing 

methodology. An important property of the Elman 

type recurrent network architecture is that the hidden 

unit activation functions (internal states) are fed back 

at every time step to provide an additional input. This 

recurrence gives the network dynamical properties 

which make it possible for the network to possess 

internal memory. Exactly how the internal memory 

is represented is not determined in advance. Instead, 

the network must discover the underlying temporal 

structure of the task and learn to encode that structure 

internally. There are two important considerations as 

to why recurrent networks are attractive modelling 

tools for prediction in noisy environments. In a recur- 

rent network architecture, the hidden unit activation 

functions (internal states) are fed back at every time 

step to provide an additional input. Since the recur- 

rent network learning algorithms are sequential, the 

recurrence of hidden units enables the filtered data of 

the previous period to be used as an additional input 

in the current period. In other words, each time period 

network is subject to not only the new noisy data but 

the past history of all noisy inputs as well as their 

filtered counterparts. This additional information of 

filtered input history acts as an additional guidance to 

evaluate the current noisy input and its signal compo- 

nent. In contrast, filtered history never enters into the 

learning algorithm in a feedforward network. This is 

where recurrent networks differ from a feedforward 

network. 

The three examples studied in this paper suggest 

that recurrent networks provide more accurate out-of- 

sample forecasts for the nonlinear prediction of noisy 

time series. To investigate the sources of these fore- 

cast gains, further research is needed to achieve the 

mathematical understanding of why and how these re- 

current feedbacks improve prediction. 
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