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cDepartment of Economics, Göteborg University, P.O. Box 640, SE-405 30 Göteborg, Sweden
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Abstract

The aim of this paper is to illustrate how the stability of a stochastic dynamic system is measured using the Lyapunov

exponents. Specifically, we use a feedforward neural network to estimate these exponents as well as asymptotic results for

this estimator to test for unstable (chaotic) dynamics. The data set used is spot electricity prices from the Nordic power

exchange market, Nord Pool, and the dynamic system that generates these prices appears to be chaotic in one case since the

null hypothesis of a non-positive largest Lyapunov exponent is rejected at the 1 per cent level.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to illustrate how the stability of a stochastic dynamic system is measured using the
Lyapunov exponents. Specifically, we use a feedforward neural network to estimate these exponents as well as
asymptotic results for this estimator to test for unstable (chaotic) dynamics, where a positive exponent is an
operational definition of chaos. The data set used is spot electricity prices from the Nordic power exchange
market, Nord Pool.

The estimation of the Lyapunov exponents using a feedforward neural network can be found in earlier
studies such as Dechert and Gencay [1], Gencay and Dechert [2], McCaffrey et al. [3] and Nychka et al. [4].
The estimation of these exponents has been proved to be quite accurate when applying chaotic series with
additive noise in simulations. However, the statistical properties of the Lyapunov exponent estimator were
e front matter r 2006 Elsevier B.V. All rights reserved.
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unknown until Shintani and Linton’s 2004 paper (see Ref. [5]), and without the statistical distribution for this
estimator, no statistical conclusion can be drawn on the dynamic structure of the empirical data.

This paper applies the statistical distribution derived in Shintani and Linton [5] to test the stability of spot
electricity prices from Nord Pool, and the stochastic dynamic system that generates these prices appears to
be chaotic in one case since the null hypothesis of a non-positive largest Lyapunov exponent is rejected at the
1% level.

The rest of this short paper is organized as follows: the Lyapunov exponents are in focus in Section 2, the
empirical illustration is carried out in Section 3, and Section 4 concludes the paper with a remark.
2. The Lyapunov exponents

The aim of this section is fourfold: (i) to define the Lyapunov exponents of a stochastic dynamic system; (ii)
to motivate why these exponents provide a measure of the stability of a stochastic dynamic system; (iii) to
demonstrate how the Lyapunov exponents can be estimated from time series data; and (iv) to demonstrate
how hypothesis tests of these exponents can be constructed.
2.1. Definition of the Lyapunov exponents

As argued in Bask and de Luna [6,7], and to be further explained in Section 2.2, the Lyapunov exponents
can be used in the determination of the stability of a stochastic dynamic system. Specifically, assume that the
stochastic dynamic system, f : Rn ! Rn, generating, for example, asset returns is

Stþ1 ¼ f ðStÞ þ es
tþ1, (1)

where St and es
t are the state of the system and a shock to the system, respectively, both at time

t 2 ½1; 2; . . . ;1�. For an n-dimensional system as in (1), there are n Lyapunov exponents that are ranked from
the largest to the smallest exponent:

l1Xl2X � � �Xln, (2)

and it is these exponents that provide information on the stability properties of the dynamic system f in (1).
Now, how are the Lyapunov exponents in (2) defined? Temporarily, assume that there are no shocks to the

dynamic system f in (1), and consider how the system amplifies a small difference between the initial states S0

and S00:

Sj � S0j ¼ f j
ðS0Þ � f j

ðS00Þ ’ Df j
ðS0ÞðS0 � S00Þ, (3)

where f j
ðS0Þ ¼ f ð� � � f ðf ðS0ÞÞ � � �Þ denotes j successive iterations of the dynamic system starting at state S0, and

where Df is the Jacobian of the system:

Df j
ðS0Þ ¼ Df ðSj�1ÞDf ðSj�2Þ � � �Df ðS0Þ. (4)

Then, associated with each Lyapunov exponent, li, i 2 ½1; 2; . . . ; n�, there are nested subspaces Ui � Rn of
dimension nþ 1� i with the property that

li � lim
j!1

logekDf j
ðS0Þk

j
¼ lim

j!1

1

j

Xj�1
k¼0

logekDf ðSkÞk, (5)

for all S0 2 Ui �Uiþ1. Due to Oseledec’s multiplicative ergodic theorem, the limits in (5) exist and are
independent of S0 almost surely with respect to the measure induced by the process fStg

1
t¼1.

1 Then, allow for
shocks to the dynamic system f in (1), meaning that the aforementioned measure is induced by a stochastic
process.
1See Guckenheimer and Holmes [8] for a careful definition of the Lyapunov exponents and their properties.
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2.2. Motivation of the Lyapunov exponents

The reason why the Lyapunov exponents provide a measure of the stability of a stochastic dynamic system
may be seen by considering two different starting values of the system, where the difference is an exogenous
shock at time t ¼ 0. The largest Lyapunov exponent, l1, measures the slowest exponential rate of convergence
of two trajectories of the dynamic system starting at these two different values at time t ¼ 0, but with identical
exogenous shocks at times t40. Indeed, l1 measures the convergence of a shock in the direction defined by the
eigenvector corresponding to this exponent. If the difference between the two starting values lies in another
direction of Rn, then the convergence is faster. Thus, l1 measures the ‘‘worst case scenario.’’2 In particular,
when l140, the two trajectories diverge from each other, and for a bounded stochastic dynamic system, a
positive exponent is an operational definition of chaotic dynamics.

2.3. Estimation of the Lyapunov exponents

Since the actual functional form of the dynamic system f in (1) is not known, it may seem like an impossible
task to determine the stability of the system. However, it is possible to reconstruct the dynamics of the system
using only a scalar time series, and, then, measure the stability of this reconstructed system. Therefore, associate
the dynamic system f in (1) with an observer function, g : Rn ! R, that generates observed asset returns:

st ¼ gðStÞ þ em
t , (6)

where st 2 St and em
t are the asset return and a measurement error, respectively, both at time t. Thus, (6) means

that the asset return series

fstg
N
t¼1, (7)

is observed, which is used to reconstruct the dynamics of the system f in (1), where N is the number of
consecutive returns in the time series.

Specifically, the observations in a scalar time series, like the asset return series in (7), contain information
about unobserved state variables that can be used to define a state in present time. Therefore, let

T ¼ ðT1;T2; . . . ;TMÞ
0, (8)

be the reconstructed trajectory, where Tt is the reconstructed state at time t and M is the number of states on
the reconstructed trajectory. Each Tt is given by

Tt ¼ fstþm�1; stþm�2; . . . ; stg, (9)

where m is the embedding dimension, and time t 2 ½1; 2; . . . ;N �mþ 1�. Thus, T is an M �m matrix and the
constants M, m and N are related as M ¼ N �mþ 1.

Takens [9] proved that the map

FðStÞ ¼ fgðf
m�1
ðStÞÞ; gðf

m�2
ðStÞÞ; . . . ; gðf

0
ðStÞÞg, (10)

which maps the n-dimensional state St onto the m-dimensional state Tt, is an embedding if m42n. This means
that the map is a smooth map that performs a one-to-one coordinate transformation and has a smooth
inverse. A map that is an embedding preserves topological information about the unknown dynamic system,
like the Lyapunov exponents, and, in particular, the map induces a function, h : Rm ! Rm, on the
reconstructed trajectory,

Ttþ1 ¼ hðTtÞ, (11)

which is topologically conjugate to the unknown dynamic system f in (1). That is,

hj
ðTtÞ ¼ F � f j

� F�1ðTtÞ. (12)
2An extensive discussion of the Lyapunov exponents as a measure of the stability of a stochastic dynamic system is provided in Bask and

de Luna [6]. For example, it is argued therein that the average of the Lyapunov exponents, l � ð1=nÞ
Pn

i¼1 li, is useful as a measure of an

‘‘average scenario.’’
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Thus, h in (11) is a reconstructed dynamic system that has the same Lyapunov exponents as the unknown
dynamic system f in (1).3

Now, to estimate the Lyapunov exponents of the dynamic system generating asset returns, one has to
estimate h in (11). However, since

h :

stþm�1

stþm�2

..

.

st

0
BBBB@

1
CCCCA�!

vðstþm�1; stþm�2; . . . ; stÞ

stþm�1

..

.

stþ1

0
BBBBB@

1
CCCCCA, (13)

the estimation of h reduces to the estimation of v:

stþm ¼ vðstþm�1; stþm�2; . . . ; stÞ. (14)

Moreover, note that the Jacobian of h at the reconstructed state Tt is

DhðTtÞ ¼

qv
qstþm�1

qv
qstþm�2

qv
qstþm�3

� � � qv
qstþ1

qv
qst

1 0 0 � � � 0 0

0 1 0 � � � 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 1 0

0
BBBBBBB@

1
CCCCCCCA
. (15)

We use a feedforward neural network to estimate the above derivatives and to derive the Lyapunov
exponents in (5) (see Refs. [1–4]). A neural network model with q hidden units, uit, and m inputs, xjt, can be
represented as

st ¼ b0 þ
Pq

i¼1 biuit þ et;

uit ¼
1

1þ expð�witÞ
;

wit ¼ g0t þ
Pm

j¼1gijxjt;

8>>><
>>>:

(16)

where et is a random error, and time t 2 ½1; 2; . . . ;N �mþ 1�. The input variable xjt in the estimation of a
dynamic system are the lagged dependent variables, st�1; st�2; . . . ; st�m. The parameters to be estimated in the
model are bi, gij and the variance of et, and we use nonlinear least squares to estimate these parameters.

Hornik et al. [13] show that the mapping and its derivatives of any unknown functional form can be
approximated by the neural network model in (16). This universal approximation property enables us to apply
the estimates of the derivatives from the neural network for the estimates of the derivatives in (15), and the
estimation of the Lyapunov exponents in (5) can be derived. In choosing the best model, we use the Schwarz
information criterion (SIC) as in Nychka et al. [4] to determine the numbers of hidden units and inputs.

2.4. Inference of the Lyapunov exponents

Shintani and Linton [5] derive the asymptotic distribution of a neural network estimator of the Lyapunov
exponents. Specifically, given some technical conditions (see Ref. [5] for details), they show thatffiffiffiffiffiffi

M
p
ðbliM � liÞ¼)Nð0;ViÞ, (17)

where bliM is the estimator of the ith Lyapunov exponent, based on the M reconstructed states on the
trajectory, V i is the variance of the ith Lyapunov exponent, and i 2 ½1; 2; . . . ; n�. The stability of a stochastic
dynamic system can be measured by the estimates of these exponents, and if the value of the largest exponent
is positive, then the system appears to be chaotic.
3Since the m-dimensional system h in (11) has a larger dimension than the n-dimensional system f in (1), the number of spurious

Lyapunov exponents are m� n. This issue is discussed in Dechert and Gencay [10,11] and Gencay and Dechert [12].
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To test the stability of a dynamic system, we consider the following null and alternative hypotheses,

H0 : lip0; H1 : li40, (18)

and the test statistic is

bti ¼
bliMffiffiffiffibV i

M

q , (19)

where bV i is a consistent estimator of Vi (see Ref. [14]), and i 2 ½1; 2; . . . ; n�. Thus, the null hypothesis is rejected
when

btiXza, (20)

where the significance level is

Pr½ZXza� ¼ a, (21)

where Z is the standard normal random variable, and i 2 ½1; 2; . . . ; n�.

3. Illustration: stability of electricity prices

The Nordic power exchange market and the data set used are described in Section 3.1, and the empirical
results are found in Section 3.2 that also includes a sensitivity analysis of the results.

3.1. Nord Pool and data set used

Nord Pool is a multi-national exchange for trade in power, joining the Nordic countries. Norway was, in
1991, the first of the Nordic countries to deregulate the power market, and Nord Pool ASA was established in
1993, then under the name Statnett Marked AS. Sweden started the deregulation process in 1991, and went
step-wise to a deregulated power market. January 1, 1996, was the start-up of the joint Norwegian–Swedish
power exchange market, renamed to Nord Pool ASA.

Finland started a power exchange market of its own, EL-EX, in 1996, and joined Nord Pool in 1997. In
1999, Elbas is launched as a separate market for power balance adjustments in Sweden and Finland, giving a
fully integrated market between Norway, Sweden and Finland. Denmark Nord Pool Consulting is established
in 1998, and western Denmark joins the market in 1999 as a Nordic power exchange price area. When eastern
Denmark joins in 2000, the Nordic power exchange market becomes fully integrated.

The data set used is spot electricity prices from Nord Pool. Specifically, it is the daily average of
the hourly system price for the period January 1, 1993, to December 31, 2005. The data are analyzed split in
parts with the natural breakpoints when a new country is joining the common market. Since the prices are not
stationary, we use the returns, which is the logarithm-difference of the prices, in the empirical analysis.
See Table 1 for the specific dates in the integration process and for the results of the stationarity tests of the
time series.

3.2. Empirical results

For each time series, we estimated the Lyapunov exponents making use of 4, 8 and 12 inputs,
respectively, to the feedforward neural network. Moreover, the number of hidden units in the neural
network in each case runs from 1 unit to 12 units.4 In Table 2, the estimates of the Lyapunov exponents
that minimizes SIC in each subperiod in the integration process in the power market is reported, including

three types of standard errors. The three types of standard errors,

ffiffiffiffiffiffiffiffiffiffiffiffiffibVi=M

q
in (19), are the heteroskedasticity
4We have used NETLE 4, a computer program developed by C.-M. Kuan, T. Liu and R. Gencay, when estimating the Lyapunov

exponents (see Refs. [2,15] for details).
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Table 1

The Dickey–Fuller unit root test for the system price and the logarithm-difference of the system price (return) at Nord Pool

Countries Date of entry of new country Price Return

Norway 1/1/93 �0.70 �10.67*

Norway and Sweden 1/1/96 �0.44 �9.59*

Norway, Sweden and Finland 12/29/97 �1.30 �8.67*

Norway, Sweden, Finland and 7/1/99 �0.36 �6.13*

western Denmark

Norway, Sweden, Finland and 10/1/00 �1.19 �15.66*

Denmark**

*Indicates that the t-test is significant at the 1% level.
**Indicates that it is eastern Denmark that joins the power exchange market at this date.

Table 2

Estimates of the Lyapunov exponents (LE) and three standard errors (SE). The top, middle and bottom SEs are the estimates based on the

Newey-West, Parzen and Quadratic Spectral kernel, respectively

1/1/93-12/31/95 1/1/96-12/28/97 12/29/97-6/30/99 7/1/99-9/30/00 10/1/00-12/31/05

LE SE LE SE LE SE LE SE LE SE

l1 �0.0606 0.00452 �0.0623 0.00776 �0.0421 0.00740 �0.0664 0.00134 �0.0319 0.00568

0.00473 0.00782 0.00753 0.00321 0.00525

0.00444 0.00787 0.00685 0.00376 0.00504

l2 �0.0743 0.00442 �0.116 0.00840 �0.0588 0.00821 �0.0677 0.00172 �0.101 0.00426

0.00447 0.00844 0.00840 0.00323 0.00420

0.00437 0.00858 0.00731 0.00378 0.00431

l3 �0.130 0.00661 �0.148 0.0110 �0.0994 0.00495 �0.0988 0.00609 �0.125 0.00439

0.00664 0.0109 0.00533 0.00539 0.00439

0.00660 0.0111 0.00556 0.00531 0.00460

l4 �0.160 0.00651 �0.183 0.0109 �0.107 0.00508 �0.102 0.00682 �0.157 0.00517

0.00652 0.0109 0.00558 0.00582 0.00512

0.00650 0.0109 0.00585 0.00573 0.00520

l5 �0.169 0.00709 �0.235 0.0130 �0.124 0.00750 �0.171 NA �0.176 0.00580

0.00708 0.0129 0.00741 NA 0.00580

0.00709 0.0131 0.00732 NA 0.00581

l6 �0.199 0.00811 �0.291 0.0151 �0.135 0.00778 �0.174 NA �0.277 0.00707

0.00811 0.0149 0.00807 NA 0.00707

0.00812 0.0153 0.00816 NA 0.00706

l7 �0.211 0.00872 �0.423 0.0177 �0.145 0.00790 �0.281 0.00283 �0.323 0.00901

0.00869 0.0172 0.00789 0.00393 0.00898

0.00882 0.0178 0.00791 0.00418 0.00903

l8 �0.231 0.00847 �1.41 0.0265 �0.166 0.00850 �1.23 0.00480 �1.01 0.0169

0.00837 0.0312 0.00850 0.00645 0.0166

0.00865 0.0331 0.00849 0.00707 0.0190

l9 �0.253 0.00928 �0.267 0.0135

0.00941 0.0132

0.00968 0.0141

l10 �0.286 0.0112 �0.284 0.00935

0.0110 0.0117

0.0114 0.0133

l11 �0.367 0.0146 �0.290 0.00978

0.0145 0.0132

0.0148 0.0145

l12 �1.07 0.0355 �0.296 0.0139

0.0360 0.0139

0.0336 0.0140

NA or ‘‘not available’’ means that the estimated variance is negative. Note that the kernel estimator of a variance may be negative,

meaning that the SE does not exist.

M. Bask et al. / Physica A 376 (2007) 565–572570
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Table 3

Estimates of the Lyapunov exponents (LE) and three standard errors (SE)

1/1/93-12/31/95 1/1/96-12/28/97 12/29/97-6/30/99 7/1/99-9/30/00 10/1/00-12/31/05

LE SE LE SE LE SE LE SE LE SE

l1 �0.0806 0.00410 �0.0623 0.00776 �0.0215 0.00554 0.0670 0.0169 �0.0386 0.00294

0.00408 0.00782 0.00548 0.0167 0.00286

0.00398 0.00787 0.00551 0.0168 0.00306

l2 �0.0855 0.00435 �0.116 0.00840 �0.0482 0.00594 �0.0193 0.00852 �0.0775 0.00336

0.00432 0.00844 0.00600 0.00862 0.00336

0.00432 0.00858 0.00594 0.00843 0.00336

l3 �0.118 0.00545 �0.148 0.0110 �0.0734 0.00663 �0.0451 0.00762 �0.119 0.00400

0.00544 0.0109 0.00665 0.00769 0.00395

0.00541 0.0111 0.00665 0.00761 0.00405

l4 �0.134 0.00521 �0.183 0.0109 �0.0940 0.00650 �0.0757 0.00811 �0.131 0.00413

0.00515 0.0109 0.00650 0.00806 0.00408

0.00550 0.0109 0.00663 0.00822 0.00420

l5 �0.176 0.00653 �0.235 0.0130 �0.100 0.00769 �0.130 0.0113 �0.147 0.00468

0.00648 0.0129 0.00769 0.0114 0.00460

0.00667 0.0131 0.00769 0.0113 0.00473

l6 �0.201 0.00715 �0.291 0.0151 �0.124 0.00724 �0.148 0.0118 �0.170 0.00534

0.00704 0.0149 0.00717 0.0117 0.00532

0.00719 0.0153 0.00743 0.0119 0.00537

l7 �0.213 0.00789 �0.423 0.0177 �0.143 0.00875 �0.271 0.0195 �0.196 0.00621

0.00783 0.0172 0.00875 0.0196 0.00617

0.00793 0.0178 0.00918 0.0197 0.00625

l8 �0.237 0.00875 �1.41 0.0265 �0.148 0.00931 �1.12 0.0576 �0.263 0.00679

0.00860 0.0312 0.00925 0.0589 0.00689

0.00878 0.0331 0.00944 0.0562 0.00706

l9 �0.284 0.00956 �0.175 0.0102 �0.300 0.00768

0.00943 0.0102 0.00781

0.00961 0.0103 0.00788

l10 �0.330 0.00937 �0.206 0.0132 �0.344 0.00863

0.00982 0.0132 0.00878

0.0105 0.0134 0.00913

l11 �0.400 0.0115 �0.319 0.0182 �0.471 0.0108

0.0121 0.0185 0.0113

0.0124 0.0188 0.0115

l12 �1.86 0.0710 �0.506 0.0318 �0.593 0.0165

0.0675 0.0329 0.0164

0.0535 0.0278 0.0160

The top, middle and bottom SEs are the estimates based on the Newey-West, Parzen and Quadratic Spectral kernel, respectively. Outliers

are eliminated in the estimations.
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and autocorrelation consistent estimators based on Newey-West, Parzen and Quadratic Spectral kernels (see
Ref. [14]).5

Clearly, there is no unstable (chaotic) dynamics in the time series since all estimates of the largest Lyapunov
exponent are negative.

When inspecting the time series, it is clear that there are some extreme values, outliers. To see their impact
on the result, we eliminated the outliers from the time series and performed the same analysis as above.6 See
Table 3 for the results.
5Detailed results of the estimations are available on request from the authors.
6The excluded outliers are from February 28, 1994, to March 2, 1994, December 8, 1998, January 24, 2000, February 5, 2001, from

December 5, 2002, to January 14, 2003. In total, 44 outliers are excluded.
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When eliminating the outliers, the dynamic system appears to be chaotic for the period July 1, 1999, to
September 30, 2000, since the null hypothesis in (18) is rejected for the largest Lyapunov exponent at the 1%
level. For all other time series, there is no chaotic dynamics.

4. Concluding remark

We should also mention impulse–response functions as another tool to measure the stability of a stochastic
dynamic system. Specifically, Koop et al. [16] and Potter [17] extend, in an appealing way, the linear technique
of impulse–response functions to the non-linear case, although they show that there is no unique definition of
such a function when a non-linear dynamic system is considered. Certainly, impulse–response functions are
useful graphical tools in the non-linear case, even if they are less appropriate when inference needs to be
performed on a change in the stability. It is, therefore, we recommend the estimation and inference of the
Lyapunov exponents to measure the stability of a stochastic dynamic system.
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