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Abstract

Using Markov-switching model, five return regimes are statislically determined for the monthly stock returns covering the period
1926 to 1992 and probabilistic inferences about these regimes are drawn. The results provide no support for the existence of the
January effect. To account for the small-firm effect, again Markov-switching model Is applied to ten portfolios sorted by market value
deciles. We found a strong January efTecl for low capitalization stocks.
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Introduction

The traditional approaches use one January dummy
variable or use eleven or twelve monthly dummy variables
to estimate the January effect. These approaches assume
two or several regime-shifts and impose an automatic
switching mechanism triggered by a calendar date. If
abnormal returns do not occur every January, it is a
mistake to set the January dummy be the value one in
every January. The January dummy regression creates
an error-in-variables problem, which invalidates the
statistical inferences. Furthermore, if the regime shift was
caused by economic shocks rather than the calendar dates,
a January dummy variable regression will wrongly
attribute some of the non-seasonal regime shifts to
seasonal dummies. This can lead to a spurious January
effect. This paper uses a Markov-switching model to

estimate the regime shifts and to compare the return in
January with other months. After the number of regimes
is identified in this Markov-switching model, the model
can estimate the transition probabilities from one regime
to another regime. The regime shift prohability is not zero
or one as in the dummy variable regressions. Also, the
Markov-switching mode! can designate each month to
one of the regimes based on the inferential probabilities.
Each January month may belong to a high or tow mean
retum regime.

Stock Market Seasonality

The stock market seasonality, specially the
anomalous January effect, has long been an interesting
issue in empirical finance. (see.Wachtel',). Quite a few
researchers have documented the calendar anomaly of
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January effect in stock markets (Scbwert^. and Jones and
Wilson'). Do stock return series really exhibit abnormal
behavior in a particular month of a year? Or is it better
characterized as tbe way Mark Twain says,

October-- This is one of the peculiarly dangerous months to
speculate in stocks in. The others are July. January.
September, April, November, May. March. June. December.
August and February.

This paper investigates January effect in stock markets
by applying a rigorous Markov-switching model.

Seasonality is defined as the cyclical behavior that
occurs on a regular calendar basis. The easiest way to
examine the seasonality is to plot the data. A simple plot
of a monthly stock return series shows no regular pattern
repeated over time. Intuitively, this is true since there is
no obvious source of seasonal variation, such as the
weather, summer vacation or holidays, etc., that can affect
the stock market returns. Moreover, seasonality is not
observable when it cannot be distinguisbed from other
sources of fluctuation. This difficulty exists especially
for those series with considerable fluctuations, such as
stock returns. Using a graphic plot is definitely not a
good approach and one needs a model of seasonal
variations to provide a better answer.

A commonly used technique in the study of stock
market seasonality is the regression analysis witb dummy
variables. Two types of dummy variable regressions are
found in the literature: tbe regression witb eleven monthly
dummy variables and the regression with a single January
dummy variable. To document the well-known January
effect, the dummy variable regression has been applied
by Keim^, Tmic and West', Scbultz', Jones, Pearce and
Wilson' and Jones and Wilson', Clark. McConnell and
Singb". among others. Despite the well-known problems
of beteroskedasticity and autocorrelation of error terms,
tbe dummy variable regression approach for analyzing
tbe stock seasonality bas never been questioned. This
paper draws attention to some of the shortcomings of the
traditional approaches and applies a robust metbod to
examine the January effect in stock market returns.

Method(dogy Used

We use the equally weighted (EWR) monthly New
York Stock Exchange (NYSE) index returiis from the Center
for Research in Security Prices (CRSP), and the
corresponding decile portfolios i=l,2,... 10, covering the
sample period January 1926 to December 1992.

Dummy Variable Regression

There are a wide variety of techniques for modeling
tbe seasonal variations. Using eleven monthly dummies
is one possibility. This approach is definitely not infallible.
As Thomas and Wallis' point out, a dummy variable
regression will remove too much variation from tbe original
series (in our case, tbe monthly stock return), attributing
some of it incorrectly to variation in tbe seasonal dummy
variables. Hence it is likely that tbe magnitude of the
January effect resulting from the dummy variable
regression is exaggerated. In addition to this fundamental
criticism by Thomas and Wallis. a regression with eleven
monthly dummies will not work well unless the pattern of
seasonality remains constant over time. It is important to
note that the seasonality is a deterministic component in
a time series. If tbe seasonaiity pattern is indeed constant
over time, then there are good reasons to expect the
empirical results on the stock return seasonality to be
more or less consistent.

Using the regression with just one January dummy
to test tbe January effect has its own problems as well.
First, this approach is not a model for seasonal variations.
Since there are twelve months in a year, one monthly
dummy cannot characterize tbe seasonal pattern of twelve
months over a whole year. It is better to consider tbe
January dummy regression as a two-regime model instead
of a model for seasonality. In particular, it is a temporal
regime shift model since the regime change is associated
witb a particular time of year. This regime shift
interpretation seems to fit some financial economists'
need; the model is simple (and perhaps robust, see
discussion below) and it appears to provide useful
information about whether January's mean return is higher
than the average mean return for all months other than
January.

To model a time series characterized by regime shift,
there are alternatives besides the dummy variable
regressions. Before we present an alternative, we
demonstrate that the January dummy regression is a very
restricted regime shift model in that it implicitly assumes
a two-regime shift and imposes an automatic switching
mechanism from one regime to another triggered by a
calendar date, January. In otber words, tbe number of
regimes is known and the regime shifts are certain and
observable. To be more specific, these models assume
that tbere are exactly two regimes, which is very restrictive
- - Simplicity is its chief merit. Moreover, a recent celebrated



24 JOURNAL OF FINANCIAL MANAGEMENT AND ANALYSIS

result by Andrews" shows that a test of parameter shift
based on the explicit alternative of two regimes still has
nontrivial power against a wide range of other alternatives,
including the alternative of more than two regimes. For
example, suppose that the time series is subject to a regime
shift every January and August (a three-regime model), a
regression with only one January dummy (a two-regime
model) is capable of revealing the January regime (but
certainly not the August regime). Hence it can be a useful
model for studying the January anomaly provided one
does not question the assumption of the regime shifts
being certain and observable. The most disputable
restriction of the January dummy regression lies in the
assumption of a certain and observable regime shift, i.e.,
a higher return automatically occurs in every January. In
terms of the literature of regime shift, this amounts to the
study of regime shift with the change points being known.
Furthermore, regime shift triggered by the January is a
very specialized model ofregime shift. The consequence
is Ihat, if there were a regime shift caused by economic
shocks rather than the calendar dates, a January dummy
variable regression will wrongly attribute some of the
non-seasonal regime shifts to seasonal dummies. This
can lead to a spurious January effect.

Thus, both traditiona] approaches, the regression
with eleven dummy variables and the regression with a
single January dummy may, given their limitations, not
be the best or appropriate for studying the January effect.
In search of a better model, one is led to consider a new
model from the study of the seasonal variation or the
regime shift. Since it is generally very difficult to model
seasonality (see Davidson and MacKinnon" for further
discussions) and there is no compelling reason to model
the seasonality of stock returns, the chance of gaining
from modeling stoek returns with unsure seasonality
should be very rare. On the other hand, it is convincing
to note that the stock return series is subject to regime
shifts rather than seasonal variations. This is particularly
true for a univariate time series with a long sample period,
which has a higher probability of regime shift. Therefore,
it seems natural to start with a model ofregime shift.

Prelude

Regime Shifts and Maricov-switching Model

To make sure that a model ofregime shift is relevant,
we apply the Lagrange Multiplier (LM) test of Andrews'"
to detect parameter instability. When the LM test is

applied to the equally weighted monthly returns of stocks
ontheNYSEfrom 1926 to 1992, the statistic is 9.3S9 which
leads to the rejection of the hypothesis of parameter
constancy. In search a better regime shift model than the
January dummy regression, we first review some existing
regime shift models.

Two-regime models with permanent shift are well
known in the econometrics and statistics literature, e.g.,
Goldfeld and Quandt'^ and Hinklcy'^ among others; for a
recent application in empirical finance, {.see Chou and
DeGennaro''*). This model is rather restrictive since it
explicitly assumes only two regimes. The multiple regimes
model with permanent shift appears more promising. The
challenging task here is to identify multiple change points.
Wichem, Miller and Hsu" developed a methodology of
estimating multiple change points. Haugen, Talmor and
Torcus" applied this procedure to study Dow Jones
industrial Average (DJIA) volatility changes. However,
the methodology developed by Wichem, et al. depends
on some restrictive assumptions such as the normality
and the first order autoregressive structure. A more
serious problem is that, as Haugen, Talmor and Torous's
simulations indicate that the methcxl is imperfect as many
change points are falsely identified. In general,
econometricians and statisticians know very little about
estimating multiple change points.

Another possibility is to consider a two-regime
model with temporary shift. The temporary parameter shift
can be pictured as a step function with one head and two
shoulders. The most important aspect of this model is
how to estimate the duration of the temporary regime.
This type of modeling regime shift has been used by
HiUmer and Yu" in event studies. Hilimer and Yu's model
is appropriate for high frequency data collected in a
shorter sampling period; it is not suitable for our study.

The Markov-switching model, developed by
Hamiiton'^ provides an attractive alternative to model a
time series subject to regime shifts. It has had many
fruitful applications in empirical macroeconomics
(Hamiiton'*; Goodwin"), hut has not heen fully explored
in empirical finance. The Markov-switching model is a
multiple-regime model. It does not assume a priori the
number of regimes, though Turner, Startz and Nelson"
and Cecchetti, Lam, and Mark '̂ study stock markets using
exactly two regimes in their Markov-switching models.
The number of regimes is data dependent and can be
estimated. Furthermore, the regime shift is dominated by
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the Markov chain, a kind of stochastic process. More
interestingly, the Markov-switching model permits optimal
statistical inference about tbe estimated regimes.
Specifically, tbis model derives the probability of the return
of a given month belonging to a certain estimated regime.
Thus, the Markov-switching model provides a statistical
method of segmenting observed data into different
regimes through this probabilistic inference. Wben tbe
regime classification is done, we can examine the frequency
distribution of January in high return regimes to discern
the presence of January effect. Tbis is similar to the
methods of Hamilton and Goodwin, where Markov-
switching models are used to date business cycles.

In the Markov-switching model, the path of time
series data takes the form of a non-linear stationary
process. In particular, the data is modeled as an
autoregressive process with parameters subject to regime
switcbing as determined by tbe outcome of a first-order
Markov chain. Suppose the stock return follows a
Markov-switching model. Then,

(1)

where, R^ is the stock return at time / and f̂  is assumed to
be normally distributed with zero mean and finite variance
(f. The regime-dependent mean //̂  has its own dynamics,
specified as a K-state first-order Markov chain.

(2)

where. S^ is an unobserved state variable at time t with
values in a finite state space 5= {I, l...K\. Since elements
of S are tbe possible regimes of the mean return, S^
represents the regime at time t. When tbe regime at time t
is equal toy (S^ =j), the mean return at time l is equal to

Instead being a non-stochastic dummy variable, Ŝ  is
cbaracterized by a first-order Markov chain,

Prob(S, =j \ 5,., = i. S,_, = k.....R,.r R.^-) (3)

The sequence (S^, S,, Sj,...) represents tbe
historical regimes of the mean return tbat evolve according
to tbe probability law shown above. One distinct property
is tbat tbe conditional distribution of tbe next regime 5̂ ^̂ ,
given tbe present regime 5̂ , must not depend on the distant
past information set {S^^, 5,^..., R,,, /?,,....). The transition
probability, p.. is the probability of observing regime; at
time /, given that the regime at time t-1 is equal to /. Tbese
probabilities cbaracterize regime shifts of the time series
data. The transition probabilities,p, form a K*K transition
probability matrix, P = |j?.J , with tbe constraint

I , p- = ' - ' ^ * . It is possible to extend tbe first order
Markov chain to a higher order to allow for longer memory
in the stock return regime shift. However, it involves
enormous unknown parameters when large numbers of
regimes are considered, as in tbis paper. Hence, we avoid
tbis complication in this paper.

The first-order Markov-switching model is
represented by the Equations 1 through 3. It contains
two kinds of dynamics: the dynamics of tbe conditional
mean, which is modeled by tbe autoregressive process;
and the dynamics for tbe state variable Ŝ , which is modeled
by the first-order Markov chain. The parameters in tbe
Markov-switcbing model in Equations 1 through 3
include the lag coefficients <̂ .̂ 0j,...,and 0^, tbe mean
returns for different regimes ̂ ,, y9,,...,and /? ,̂ the transition
probabilities/?., i, j = 1.2 K. and cf. These unknown
parameters can be estimated using the maximum likelihood
method*. As a by-product, probabilistic inferences about
the unobserved regimes can also be drawn via the "r-lag
smoother". The r-lag smoother is the inferential
probability of 5̂  given tbe observations up to time t+r, i.e.
P(S^ \.) = P(S^ I R^^^ R^^^^,...)P(S I). Tbese estimation and
inference procedures are derived from tbe basic filtering
algorithm in Hamilton'".

Tbe regression witb tbe January dummy and the
Markov-switching model share some similarities; tbey
also differ in other respects. Both approaches are the
regime shift models and tbe regime sbifts are temporal
dependent. In a two-regime case, the regime shift in the
regression with the January dummy is determined by the
calendar. The regitne shift in the Markov-switching model
is determined by the regimes in tbe consecutive periods.
More specifically, the dummy variable regression can be

* We use the subroutine UMINF from the Fortran IMSL Library to perform the nonlinear optimization. The initial probabilities P(S)
are assumed to be unknown parameters. Those values are also estimated in optimization.
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viewed as a special case of the Markov-switching model.
The regression with a January dummy implies that Ŝ  = I
for January and Ŝ  = 2 otherwise. In other words,
P(S, = i )= 1 when in January and ?{S^ = 1 )=0 otherwise.
Hence, the regime switches are certain (non-stochastic)
and exogenously determined by the calendar. In contrast,
the Markov-switching model permits two possihlc
regimes at each time t, both in January and non-January.
Above all, regime switches are modeled by a stochastic
Markov chain. Each regime in any given time period can
shift to either regime in the next period. The characteristic
of the regime shift is then endogenously determined by
the observed data. As these differences suggest, the
Markov-switching model is a more flexible model of regime
shifts than is the dummy variable regression approach.

Market Returns

We begin the estimation with the NYSE, EWR
market returns. We fit a variety of Markov-switching
models with r = 1 to 3 lags and K = 2 to 7 regimes in the
conditional mean equation. Among these 18 models, we
pick the best model based on the Schwartz Information
Criterion (SIC). Table 1 gives the SIC statistics for these
models. It shows that the best model should have three
lags and five or six regimes*. We use five regimes instead
of six hecause of the parsimony. For this selected model,
the estimated lag coefficients mode! are, 0j =0.1177, 0̂  =
0.1032, and the estimated mean returns of each regime are
^, = 50.96, ̂ j= 14.78,/?,= 1.55. y?̂  = -3.56. and ;5, = -I9.09.
These five regimes will he referred as follows: (1) the
positive outlier regime (the PO regime), (2) the bull regime,
(3) the normal regime. (4) the bear regime, and (5) the
negative outlier regime (the NO regime).

Table 2 displays the transition probability matrices,
along with the estimated mean returns in parentheses.
The number in the (th row andyth column in the table is
the transition probability p , which is the probability of
observing regime j at time /, given that regime / is
observed at time I-1. Note that the sum of each row is
equa! to one. This table shows that the estimated transition
probabilities are consistent with the irreducible, persistent
Markov chain. If the current regime is "normal", then
there is a 99 per cent chance that the state in the next
month will also be "normal" for the market returns. This

TABLE1
THE SIC STATISTICS FOR DIFFERENT LAGS AND

REGIMES FOR EQUAL-WEIGHTED STOCK
RETURNS

Number of
Regimes

2

3

4

5

6

7

Lags

AR(1)

918723

9065.3

89583

8933.02

8925.53

8984.78

AR(2)

9181.45

9045.11

8952.22

8921.38

8968J5

8976.28

AR(3)

9173.91

9011.22

8940.23

8902.74

8902.85

8962.26

indicates that regime shifts occur only in response to
surprising discrete events. For the positive outlier regime,
the chance to stay in the same regime next montli is 42 per
cent. The chances to he in the bull, normal, and bear
regimes in the next month are 12 per cent. 15 per cent and
22 per cent respectively. It is not surprising to see that
the probability from a positive outlier to a negative outlier
is zero. For the bull regime, it will most likely become the
bear regime next month. The chance is 83 per cent. The
chances of changing to a bull or a normal regime are
much smaller, which are 8 per cent and 9 per cent
respectively - - The chance from a bull regime to apositive
outlier or a negative outlier is zero.

The transition probability for the bear regime is
different from that of the bull regime. For the bear regime,
it will never go back to the normal regime. Actually, 52 per
cent of the time it will stay in the same bear regime and 20
per cent of the time it will be worse and will go to the
negative outlier regime. For the negative outlier regime,
only there is an 8 per cent of chances that it will be in the
same state next month. Most likely, it will recover from
the negative regime, with 49 per cent of chances of heing
back to the bear regime, 16 per cent back to normal, and
26 percent for it go up to the bear regime. Comparing the
bull and the hear regimes, we found that the patterns of
changes are different in these two states. Tbe negative
returns are usually followed by negative returns.
However, positive returns are not usually followed by

•In a Markov-switching model with multiple regimes, the number of parameters is typically large. We chose the SIC instead of the
Akaikc Information Criterion (AIC) for deciding on the best model because the SIC uses a heavier penalty factor for over-
parameterization. If the AIC is used, the best model would have had three lags and seven regimes.
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TABLE 2
TRANSITION PROBABILrrV MATRICES FOR EQUAL-WEIGHTED STOCK RETURNS

Regime
al time
t-1

Positive Outlier
BuU
Normal
Bear
Negative Outlier

Regime at Time /

Positive
Outlier
(50.96)

0.4219
0.0001
0
0.0453
0

Bull

(14.78)

0.2067
0.0826
0
0.2316
0.2645

Normal

(1.55)

0.1511
0.0876
0.9913
0
0.1632

Bear

(-3.56)

0.2195
0.8292
0.0025
0.5242
0.4899

Negative
Outlier
(-19.09)

0.0007
0.0006
0.0062
0.1989
0.0823

Note: The mean returns of each regime are included in the parentheses.

positive returns. These are usually followed by negative
returns. For the negative outlier regime, it will stay in the
same regime wilh only 8 percent of chances. It will recover
and be hack to the bear, normal, and bull regimes with
probahilities of 49 per cent, 16 per cent and 26 per cent,
respectively.

Significance and Impact of January and October Effect

There are five different regimes identified by the
Markov-switching model. In addition to the normal
regime, we specify the positive and negative outliers,
bull and bear regimes as well as abnormal regimes.
Figure 1 in the paper shows that most of the abnormal
regimes are observed between 1929 and 1942 and between
1972 and 1974. The period between 1929 and 1942 covers
the period after the crash of 1929 and the Great
Depression. This period is generally considered an

unusual period for stock market. The economy
experienced a high inflation caused by oil price shocks
during 1972 and 1974. The financial market seems to be
affected by the oil shocks as well. The stock market
crashes in October 1929 and October 1987 are identfied
as negative outliers by the Markov-switch model. In
addition to these two months. Table 4 shows that there
are four Octobers that belong to negative outliers.
However, the table also shows that there are three
September months identified as negative outliers as well.
Therefore, we cannot conclude that October is the only
"bad" month for investors. For the January effect.
Table 4 shows five of the January months of sixty-six
years are in bull regime. Besides January, we found that
threeof the July months are in the bull regime and one in
the positive outlier regime. Comparing the frequencies of
January and July, it is difficult to conclude a strong
evidence of the January effect.

TABLE 3
FREQUENCY DISTRIBUTION OF FIVE REGIMES FOR EQUAL-WEIGHTED STOCK RETURNS

State

Positive
Outlier

Bull

Normal

Bear

Negative
Outlier

Jan

0

5

57

4

0

Feb

0

1

58

6

I

Mar

0

1

60

4

2

Apr

I

1

60

3

2

May

1

i

58

5

2

Jun

0

3

58

5

1

Jul

1

3

58

4

I

Aug

1

2

57

7

0

Sep

I

1

57

5

3

Oct

0

3

M

5

4

Nw

0

2

56

7

1

Dec

0

0

57

7

2

Total

5

23

690

62

19
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nGUREl
PROBABILnY OF REGIMES FOR EQUAL-WEIGHTED STOCK RETURNS

POSITIVE OUTLIER AND BULL REGIMES

b
•
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NORMALREGIME
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BEAR AND NEGATIVE OUTLIER REGIMES

Ji [I

The upper graph displays the sum of the inferential probabilities in positive outlier and bull regimeS; the middle one plots
probability in the normal regime; the lower one is the sum of the probabilities in bear and negative outlier regimes. Note
that the vertical sum of the probabilities in each month should be equal to one.



ROBUST TEST OF THE JANUARY EFFECT IN STOCK MARKETS USING MARKET SWITCHING MODEL 29

We have determined five possible regimes from the
dataset,5,= 1,2,...,5. For any given month, the probability
of this month falling witbin one of these regimes can be
computed from tbe r-lag smootber P(S^ I). The grapbs of
these are shown in Figure 1. Tbere are tbree graphs in
Figure I. These grapbs show that the normal regime is
the most important regime for most months, but not for all
months. In particular, the normal regime dominates in tbe
period after 1941.

A useful implication from these inferential
probabilities is tbe classification of regimes. In each
monlb, we can identify the regime which has the highest
probability. Each montb is then assigned to this unique
regime. If a montb is assigned to the regimey, then tbe
inferential probability in the regime^ is greater than Ibe
inferential probability of any other regime in this month,
i.e., P(5^=jl.J>;*(5,= ilJ for all/and/Vy. With this regime
classification, each month's observed return is assigned
to one of these five regimes. A detailed look at this regime
allocation gives us information on the January effect.
Notice that this regime classification does not depend on
tbe calendar date like tbe January dummy variable
regression. The regime classification in tbe Markov-
switcbing model is data dependent and it shows the time
series characteristics of each month's return.

The two outlier regimes, PO and NO, contain the
"extreme" stock returns 50.96 per cent and -19.09 per cent,
respectively. This indicates tbe existence of significant
positive and negative "shocks." Table 3 lists montbs
assigned to PO and NO regimes and it sbows 5 montbs
are assigned to a PO regime and 19 montbs are assigned
to a NO regime, interestingly, the months assigned to tbe
NO regime occurred during the Great Depression,
European War, oil shocks in 1973 and 1978, and the 1987
stock market crash. It is also interesting to note that all of
tbe PO regimes occuned before World War 11. Since events
like these arise randomly, it makes more sense to discuss
the probabilistic inference for the bull, normal, and bear
regimes only. Among those 19 months in the NO regime,
four of those are in October, tbree are in September, and
otbers in various montbs. It is difficult to conclude which
montb tends to be in the PO regime. Since tbere are only
five months in PO regimes and tbese five months are
different, we cannot relate the PO regime to the certain
montbs of year

Table 4 summarizes tbe number if observations
assigned to PO, bull, normal, bear and NO regimes. The

TABLE 4
MONTHS ASSIGNED TO POSITIVE AND

NEGATIVE O i m J E R REGIMES

Year

1929

1930

1931

1932

1933

1934

1937

1938

1939

1940

1973

1978

1987

Positive Outlier

July, August

April, May

September

Negative Outlier

October

June, September. December

April, September, December

April, May, October

February

July

September

March

March
May

November

October

October

details of the distribution of months in PO and NO regimes
are already sbown and discussed. For the rest of the
tbree regimes, it sbows the frequencies of different months
in the normal regime are uniformly distributed among the
twelve calendar montbs. Tbe frequencies assigned to
the bear regime are less uniformly distributed, but close
enougb. Inspecting the distribution of bull regimes, we
find tbat tbe relative frequency of January {5 out of 23) is
the highest. Compared to June, July, and October, each
with three years in the bull regime, the bull regime
observed in January is not statistically significantly higher
than the other months to assert tbe presence of January
effect.

January Size Effect

The relationship between the capitalization of the
firm and seasonality in its stock return is well documented
(see, Keim*). It has been found that average returns for
small firms are substantially higher in January. TTierefore,
to further examine tbe January effect for different market
value portfolios, ten portfolios witb different capitalization
are considered. Tbese portfolios are denoted by D1, D2,
... and DIO. where DI contains the lowest and DIO
contains the highest capitalized stocks. Markov-
switching models witb r=l to 3 and K=2 to 7 are also
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applied to each portfolio. We continue to use the SIC to
determine (he best model for eacb portfolio. The orders
of auto regression for the best models are: AR(!)forDl,
D2, D4, and DIO; AR(2) forD5: AR(3) forD3, D6. D7,and
D9. For the number of regimes, all ten portfolios yield 5
regimes except fur D2(7 regimes) and D3 (6 regimes).

After computing the r-Iag smoother, the same regime
classification criterion is used to match months with
regimes* Summary results highlighting tbe January effect
are shown in Figures 2 and 3. Figure 2 displays the
percentage of the bull regime that occurred in January
against firm size. Tbe percentage of bull regimes tbat
occurred in January is calculated as the ratio of the total
number of Januarys classified in the bull regimes to the

total number of months classified in this regime. This
figure sbows that the percentage of abnormal returns
occurring in January does not decrease monotonically
witb the firm size. Nevertheless, the percentage of
abnormal returns occurring in January is more prominent
for the smaller than the larger firms. To Illustrate this
further. Figure 3 examines tbe frequency distributions in
the bull regime for each of tbe ten portfolios. Tbe vertical
axis in each graph is the number of months assigned to
tbe bull regime. For Ihc low capitalization portfolios
(D1-D2). the January effect is evident. On the other band,
for D7-DI0, there is no evidence of January effect. Tbe
medium coital ization portfolios (D3-D6) present a "gray"
area, with a higher frequency occurring in January than
in other months.

FIGURE 2
THE PERCENTAGE OF THE BULL REGIME IN JANUARY
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DI is the portfolio with lowest capitalization and DIO is the one with the highest capitalization. The height of this bar
graph is the percentage of tbe hull regime that occurred in January, which is calculated as the ratio of the total number of
Januarys classified in the buH regime to the total number of months classified in this regime. The numbers in the
parenthesis are the total number of months classified in the bull regime.

•In drawing an inference on ihc unobserved state, we estimate the D2 and D3 portfolios with a five state Markov switch instead of
7 and 6, in part because il makes it easier to make compari.sons wiih oiher portfolio.s.
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nGURE3
FREQUENCY OF THE BULL REGIME
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The height of these bar graphs is the numher of months assigned to the bull regime in each calendar month.

Figure 3 Contd.
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Conclusions and Implications for Policy

In this paper, applying the Maritov-switching modd
to the NYSE stock equally-weighted monthly returns,
we Tind there are five regimes instead of two regimes as
it has been documented in the traditional January effect
literature. Tiirough the inferential probabilities on these
five regimes and the derived regime classification, we
find no evidence of the January effect for the market as a
whole. However, the January effect is found for low
capitalization stock portfolios. Therefore, our more robust
time series analysis research approach reinforces the
existence of the January size e^ect for the small cap
stocks.

We use a Markov-switching model to estimate the
transition probabilities of stock returns in a regime shift
model. The transition probabilities from our estimation
indicate the chance to stay in the same normal regime
next period is 99 per cent. This shows that the stock

market behavior is very stable in the normal regime.
However, there are always random shocks that occur in
our economy similar to the stock market crash in the other
regimes. The transition probabilities for the other regimes
do not show an instant return to the normal regime.
Therefore, the cycles of bull and bear markets are usually
observed in the real world.

From these results, two policy implications may be
derived. If the transition probability reflects the outcome
of the economic policies, this indicates that the hose
policies may not be very effective in reducing the market
cycles. The probability of staying in the same bear regime
is still high. The second implication is about the January
effect. When we analyze the details of the months
assigned to the bull market, this paper shows that the
January effect cannot be found for NYSE equally-weighted
monthly market stock returns. Therefore, the investors
will not experience high mean returns in January.
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