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TUNG LIU 
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SUMMARY 

In this paper we investigate the out-of-sample forecasting ability of feedforward and recurrent neural 
networks based on empirical foreign exchange rate data. A two-step procedure is proposed to construct 
suitable networks, in which networks are selected based on the predictive stochastic complexity (PSC) 
criterion, and the selected networks are estimated using both recursive Newton algorithms and the method 
of nonlinear least squares. Our results show that PSC is a sensible criterion for selecting networks and for 
certain exchange rate series, some selected network models have significant market timing ability and/or 
significantly lower out-of-sample mean squared prediction error relative to the random walk model. 

1. INTRODUCTION 

Neural networks provide a general class of nonlinear models which has been successfully applied 
in many different fields. Numerous empirical and computational applications can be found in the 
Proceedings of the International Joint Conference on Neural Networks and Conference of Neural 
Information Processing Systems. In spite of its success in various fields, there are only a few 
applications of neural networks in economics. Neural networks are novel in econometric 
applications in the following two respects. First, the class of multilayer neural networks can well 
approximate a large class of functions (Hornik et al., 1989; and Cybenko, 1989), whereas most 
of the commonly used nonlinear time-series models do not have this property. Second, as shown 
in Barron (1991), neural networks are more parsimonious models than linear subspace methods 
such as polynomial, spline, and trigonometric series expansions in approximating unknown 
functions. Thus, if the behaviour of economic variables exhibits nonlinearity, a suitably 
constructed neural network can serve as a useful tool to capture such regularity. 

In this paper we investigate possible nonlinear patterns in foreign exchange data using 
feedforward, and recurrent networks. It has been widely accepted that foreign exchange rates 
are I(1) (integrated of order one) processes and that changes of exchange rates are uncorrelated 
over time. Hence, changes in exchange rates are not linearly predictable in general. For a 

comprehensive review of these issues, see Baillie and McMahon (1989). Since the empirical 
studies supporting these conclusions rely mainly on linear time series techniques, it is not 
unreasonable to conjecture that the linear unpredictability of exchange rates may be due to 
limitations of linear models. Hsieh (1989) finds that changes of exchange rates may be 
nonlinearly dependent, even though they are linearly uncorrelated. Some researchers also 
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provide evidence in favor of nonlinear forecasts (e.g. Taylor, 1980, 1982; Engel and Hamilton, 
1990; Engel, 1991; Chinn, 1991). On the other hand, Diebold and Nason (1990) find that 
nonlinearities of exchange rates, if any, cannot be exploited to improve forecasting. Therefore, 
we treat neural networks as alternative nonlinear models and focus on whether neural networks 
can provide superior out-of-sample forecasts. 

This paper has two objectives. First, we introduce different neural network modeling 
techniques and propose a two-step procedure to construct suitable neural networks. In the first 
step of the proposed procedure, we apply the recursive Newton algorithms of Kuan and White 
(1994a) and Kuan (1994) to estimate a family of networks and compute the so-called 
'predictive stochastic complexity' (Rissanen, 1987), from which we can easily select suitable 
network structures. In the second step, statistically more efficient estimates for networks selected 
from the first step are obtained by the method of nonlinear least squares using recursive 
estimates as initial values. Our procedure differs from previous applications of feedforward 
networks in economics (e.g. White, 1988; Kuan and White, 1990) in that networks are selected 
objectively. Also, the application of recurrent networks is new in applied econometrics; hence 
its performance would also be of interest to researchers. 

Second, we investigate the forecasting performance of networks selected from the proposed 
procedure. In particular, model performance is evaluated using various statistical tests, rather 
than crude comparison. Financial economists are usually interested in sign predictions (i.e. 
forecasts of the direction of future price changes) which yield important information for 
financial decisions such as market timing (see e.g. Levich, 1981; Merton, 1981). We apply the 
market timing test of Henriksson and Merton (1981) to justify whether the forecasts from 
network models are of economic value in practice; a nonparametric test for sign predictions 
proposed by Pesaran and Timmermann (1992) is also conducted. Other than sign predictions, 
we, as many other econometricians, are also interested in out-of-sample MSPE (mean squared 
prediction errors) performance. We use the Mizrach (1992) test to evaluate the MSPE 
performance of networks relative to the random walk model. Our results show that network 
models perform differently for different exchange rate series and that predictive stochastic 
complexity is a sensible criterion for selecting networks. For certain exchange rates, some 
network models perform reasonably well; for example, for the Japanese yen and British pound 
some selected networks have significant market timing ability and/or significantly lower out-of- 
sample MSPE relative to the random walk model in different testing periods; for the Canadian 
dollar and deutsche mark, however, selected networks exhibit only mediocre performance. 

This paper proceeds as follows. We review feedforward and recurrent networks in Section 2. 
The network building procedure, including the estimation methods, complexity regularization 
criteria, and a two-step procedure, are described in Section 3. Empirical results are analysed in 
Section 4. Section 5 concludes the paper. Details of the recursive Newton algorithms are 
summarized in the Appendix. 

2. FEEDFORWARD AND RECURRENT NETWORKS 

In this section we briefly describe the functional forms of feedforward and recurrent networks 
and their properties; for more details see Kuan and White (1994a). 

A neural network may be interpreted as a nonlinear regression function characterizing the 
relationship between the dependent variable (target) y and an n-vector of explanatory variables 
(inputs) x. Instead of postulating a specific nonlinear function, a neural network model is 
constructed by combining many 'basic' nonlinear functions via a multilayer structure. In a 
feedforward network, the explanatory variables first simultaneously activate q hidden units in 
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an intermediate layer through some function I, and the resulting hidden-unit activations hi, 
i= 1, ..., q, then activate output units through some function i to produce the network output o 
(see Figure 1). Symbolically, we have 

f n n 

hi,,= Ty Yio + Ey,i . i = 

1 

... . q 
j=1 

* q , (1) 
o, = PO + ,Ahi,, 

i=! 

or more compactly, 
P 4 t n ! 

o,= a PO + E, Ai' Yo + YX,, 
i i=1 j= I (2) 

=f,(x,, 0) 
where 0 is the vector of parameters containing all 4's and y's, and the subscript q of f signifies 
the number of hidden units in the network. 

This is a flexible nonlinear functional form in that the activation functions v and b can be 
chosen quite arbitrarily, except that v is usually required to be a bounded function. Hornik et al. 
(1989) and Cybenko (1989) show that the function fq constructed in equation (2) can 
approximate a large class of functions arbitrarily well (in a suitable metric), provided that the 
number of hidden units, q, is sufficiently large. This property is analogous to that of 
nonparametric methods. As an example, consider the L2 approximation property. Given the 
dependent variable y and some explanatory variables x, we are typically interested in the 
unknown conditional mean M(x) - E(y Ix). The L2 approximation property asserts that if 
M(x) E L2, then for any e > O, there is a q such that 

EI M(x) - fq(x, O) 12< (3) 

Ot 

Output Layer 

Activation Function 

h) , h2,t Hidden Layer 

Activation Function 

Input Layer 

Figure 1. A simple feedforward network with one output unit, two hidden units, and three input units 
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Barron (1991) also shows that a feedforward network can achieve an approximation rate O(l/q) 
by using a number of parameters O(qn) that grows linearly in q, whereas traditional 
polynomial, spline, and trigonometric expansions require exponentially O(qe) terms to achieve 
the same approximation rate. Thus, neural networks are (asymptotically) relatively more 
parsimonious than these series expansions in approximating unknown functions. These two 
properties make feedforward networks an attractive econometric tool in (nonparametric) 
applications. 

In a dynamic context, it is natural to include lagged dependent variables as explanatory 
variables in a feedforward network to capture dynamics. This approach suffers the drawback 
that the correct number of lags needed is typically unknown (this is analogous to the problem 
of determining the order of an autoregression). Hence. the lagged dependent variables in a 
network may not be enough to characterize the behaviour of y in some applications. To 
overcome this deficiency, various recurrent networks, i.e. networks with feedbacks, have been 
proposed. A recurrent network has a richer dynamic structure and is similar to a linear time- 
series model with moving average terms. In particular, we consider the following network due 
to Elman (1990) (see Figure 2): 

n q 

hi,t = yio + E lYiji, + E A1ih.,- 
j=l 1=1 

(x,, h, , 0), i= 1, ..., q 
(4) 

o, = ( + Afi,(x,, h, , 0)) 
i '=1 / 

pq(t,, h,_ 1, 0) 

where 0 denotes the vector of parameters containing all /'s, y's, and 6's, and the subscript q 
of 0 again signifies the number of hidden units. Here, the hidden-unit activations hi feed back 

ot 

Output Layer 

Activation Function 

Feedback with Delay 

hi,t ( . h2,t / Hidden Layer 

Activation Function 

lt 1 ,_ I Input Layer 
IT iT IT ^"^i.i~~~hl~-i ' 2,- 

Figure 2. A simple Elman (1990) network with hidden-unit activations feedback 
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to the input layer with delay and serve to 'memorize' the past information (cf. equation (1)). 
From equation (4) we can write, by recursive substitution, 

hi,,= ip(x,,ip(x,_, h,2, ..., 0), 0)= =.=:ri(x', 0) i=1,..., q (5) 

where x' = (x,,x, x,...,xi), and ip is vector-valued with ipi as its ith element. Hence, hj, 
depends on x, and its entire history. It follows that 

o, = (q(X,, h,_1, 0)- gq(X, 0) (6) 

is also a function of x, and its history (cf. equation (2)). In view of equation (6), a recurrent 
network may capture more dynamic characteristics of y, than does a feedforward network. In 
the L2 context, a recurrent network may be interpreted as an approximation of E(y, Ix'). To 
ensure proper behaviour of the Elman (1990) network, Kuan and White (1994b) show that, 
aside from some regularity conditions on the data y and x and some smoothness conditions 
(such as continuous differentiability) on m and Y, the hidden unit activation function v must 
also be a contraction mapping in h, _; otherwise, hi, will approach its upper or lower bound very 
quickly when t is a bounded function or will explod whhen v is an unbounded function. Kuan 
et al. (1994) show that a sufficient condition assuring the contraction mapping property is 
6i, <4/q, for all i, 1. 

3. BUILDING EMPIRICAL NETWORKS 

In practice, there are basically two tasks in building neural networks: (i) unknown network 
parameters must be estimated, and (ii) a suitable network structure fq or 0 must be determined. 
We will discuss these two tasks in turn and propose a two-step procedure for constructing 
empirical neural networks. 

3.1. Estimation methods 

In view of equation (3), for a feedforward network fq it is quite natural to estimate the 
parameters of interest 0Q which minimize mean squared approximation error, i.e. 

= argmin E I E(y x) - f(x, 0)12 

Observe that 

E I y -f,(x, 0)12 = E I y -E(y Ix) 12 + E I E(y I x) - f(x, 0) 12 (7) 

As E(y Ix) is the best L2 predictor of y given x, the first term on the right-hand side of equation 
(7) cannot be minimized in L2; hence 0* is an MSE (mean squared error) minimizer: 

q0 =argmin E|y- f4(x, 0)12 

where the function on the right-hand side is just the well-known least-squares criterion function. 
Practically, estimates of 0 can be obtained using nonrecursive (off-line) or recursive (on-line) 
estimation methods. Econometricians are familiar with various nonrecursive, nonlinear least 
squares (NLS) optimization techniques. It is well known that NLS estimates are consistent for 
0 and asymptotically normally distributed under very general conditions. Recursive estimation 
methods include, e.g. the back-propagation (BP) algorithm of Rumelhart et al (1986) and the 
Newton algorithm of Kuan and White (1994a). Kuan and White (1994a) show that both the BP 
and Newton algorithms are root-t consistent for 06 where t denotes the recursive step, but the 
Newton algorithm is statistically more efficient than the BP algorithm and is asymptotically 
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equivalent to the NLS method. Although recursive estimates are not as efficient as NLS 
estimates in finite samples, they are useful when on-line information processing is important. 
Moreover, recursive methods can facilitate network selection, as discussed in the subsection 
below. White (1989) also suggests that one can perform recursive estimation up to certain time 
point and then apply a NLS technique to improve efficiency of estimates. 

Similarly, the parameters of interest in a recurrent network q5 are 

0 = argmin lim E y, - 0,(x,, h,_ , 0)12 
t ->00 

where limit is taken to accommodate the effects of network feedbacks h,_l (Kuan and White, 
1994b). The estimates of 0* can also be obtained using nonrecursive or recursive methods. In 
view of equation (5) and (6), h, and o, depend on 0 directly and also indirectly through the 
presence of lagged hidden-unit activations h,_l. Thus, in calculating the derivatives of S q with 
respect to 0, parameter dependence of h,_l must be taken into account to ensure proper search 
direction. Owing to this parameter-dependent structure and the constraints required for 6's 
(discussed in Section 2), NLS optimization techniques involving analytic derivatives are difficult 
to implement. Our experience shows that NLS estimation using numerical derivatives usually 
suffers the problem of a singular information matrix. Alternatively, one could use a recursive 
estimation method such as the 'recurrent Newton algorithm' of Kuan (1994), which is 
analogous to that of Kuan and White (1994a) for feedforward networks. This algorithm is also 
root-t consistent for Oq (see e.g. Benveniste et al., 1990). Kuan (1994) also shows that it is more 
efficient than the recurrent BP algorithm of Kuan et al. (1994). The recursive Newton 
algorithms for feedforward and recurrent networks used in our applications are described in the 
Appendix. 

3.2. Complexity regularization criteria 

The second task in practice is to determine a suitable network structure so that the unknown 
conditional mean function can be well approximated. As network functions D and Y can be 
chosen quite arbitrarily, this task amounts to determining network complexity, i.e. the number 
of explanatory variables and the number of hidden units. A very simple network may not be 
able to approximate the unknown conditional mean function well; an excessively complex 
network may over fit the data with little improvement in approximation accuracy. There is, 
however, no definite conclusion regarding how the complexity should be regularized. As neural 
network models are, by construction, some approximating functions, it is our opinion that the 
determination of network complexity is a model-selection problem. Thus, one possible criterion 
is the Schwarz (1978) Information Criterion (SIC). Note that selecting networks based on SIC is 
computationally demanding because NLS is required for estimating every possible network. 

An alternative criterion to regularize network complexity is the 'Predictive Stochastic 
Complexity' (PSC) criterion due to Rissanen (1986a,b); see also Rissanen (1987). Given a 
function m(x, 0), where 0 is a k-dimensional parameter vector, and a sample of T 
observations, PSC is computed as the average of squared, 'honest' prediction errors: 

T 

T- E ( - m(x,, ))2 (8) k t=k+l 

where 0, is the predicted parameter obtained from the data up to time t- 1. The prediction error 
Y - m(x,, 0,) is 'honest' in the sense that no information at time t or beyond is used to calculate 
0,; in particular, the well-known recursive residual is a special case of honest prediction error. A 

352 



FORECASTING WITH NEURAL NETWORKS 

model is selected if it has the smallest PSC within a class of models. If two models have the 
same PSC, the simpler one is selected. Clearly, the PSC criterion is based on forward 
validation, which is important in forecasting. Rissanen also shows that for encoding a sequence 
of numbers, the PSC criterion can determine the code with the shortest code length 
asymptotically. For a thorough discussion of the notion of stochastic complexity we refer to 
Rissanen (1989). Obviously, calculation of PSC is also computationally demanding if NLS is 

required to obtain 0, for each t. Following the idea of Gerencser and Rissanen (1992), we can 

compute 0, using recursive estimation methods, which are more tractable computationally. 
Thus, recursive estimation methods are also useful for selecting appropriate network structures 
based on PSC. 

3.3. Two-step procedure 

In this paper we employ a two-step procedure to construct our empirical neural networks. We 
first choose the activation functions Y as the logistic function and D as the identity function in 
the networks equations (1) and (4). These choices are quite standard in the neural network 
literature. The dependent variables y are changes of log exchange rates, and for each exchange 
rate, networks explanatory variables x are own lagged dependent variables. The resulting 
networks are therefore nonlinear AR models. One could, of course, include other explanatory 
variables in networks to create nonlinear ARX models. 

Specifically, our feedforward networks are of the form: 

qI1 I 
f,(x,, )= A + - 1 

'=l 1+ exp -(i + E YiiYt-i 
i _ \ j=l _- 

and recurrent networks are: 

q)= 
+ S - , 1 I 4q(Xt 0) = Po + A n 9 

i \ v yj=l /=1 

1 
hi, + exp -o + ,h,, 

1 + exp - 0 + Z y-j + Z <h/.t-1 
j=l /=1 

The following two-step procedure is then used to determine the network structures and estimate 
their unknown parameters: 

(1) Recursive estimation. A family of feedforward or recurrent networks with different n and q 
(the numbers of lagged dependent variables and hidden units) is estimated using the 
Newton algorithms (Al) or (A2) in the Appendix. For each network, 
(a) Ten sets of initial parameters are generated randomly from N(0,1), and the one that 
results in the lowest MSE is used as the initial values for recursive algorithms. 
(b) We then let the Newton algorithms run through the data set once and compute the 

resulting PSC values. 
Note that network structures are fixed during recursive estimation. After recursive 
estimation is complete, we select the three networks with the lowest PSC values and 

proceed to the second step. 
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(2) NLS estimation. The networks selected from the first step are estimated using a modification 
of the Levenberg-Marquardt algorithm (More, 1977). This algorithm is implemented using 
the FORTRAN subroutine LMDER in MINPACK distributed by Argonne National 
Laboratory. 
(a) For each selected feedforward network, the final values of the Newton estimates from 
the first step are used as initial values for the NLS algorithm. The NLS estimates of /'s and 
y's are computed by minimizing 

T 

T E (Y- f(X,,, ))2 
t= 1 

(b) For each selected recurrent network, the NLS estimates of /'s and y's are computed by 
minimizing 

1 E (y- 0(x,,-, , /,y ))2 
t=1 

where h, = ,(x,, h/,, , y) is h, evaluated at B and y, the final recursive estimates of 6 and 
y from the first step. 

The first step in the proposed procedure implements a convenient network selection device based 
on recursive estimation results, in contrast with the White (1989) procedure. For feedforward 
networks, recursive estimation is needed to compute PSC, from which suitable networks can be 
selected; for recurrent networks, other than facilitating network selection, recursive estimation 
is crucial as NLS estimation is difficult to implement (Section 3.1). We use the Newton 
algorithms because they are statistically more efficient than the BP algorithm. We emphasize 
that for a feedforward network the first step is not needed when the desired network structure is 
known a priori or when other network-selection procedures are adopted. The second step in the 
proposed procedure performs NLS estimation to improve efficiency of parameter estimates. 
Note that for recurrent networks, fixing 6 and h,_I avoids troublesome constrained 
minimization. (Recall that 6's must be constrained suitably to ensure the desired contraction 
mapping property of h,.) The resulting estimates are not full NLS estimates, and their 
convergence properties hold only conditional on 6 (see e.g., Kuan and Homik, 1991). 

4. EMPIRICAL RESULTS 

In this paper five exchange rates against the US dollar, including the British pound (BP), the 
Canadian dollar (CD), the Deutsche mark (DM), the Japanese yen (JY), and the Swiss franc 
(SF), are investigated. The data are daily opening bid prices of the NY Foreign Exchange 
Market from 1 March 1980 to 28 January 1985, consisting of 1245 observations. All series 
except BP are US dollars per unit of foreign currency. This data set has also been used in Baillie 
and Bollerslev (1989). Let S,, denote the ith exchange rate at time t, and 
yi, = log S,, - log S,,_, i = BP, CD, DM, JY, SF. By applying various unit-root tests, Baillie 
and Bollerslev (1989) find that log S,, are unit root processes without drift and that y,, behave 
like a martingale difference sequence. We also estimated 36 ARMA models for y,, from 
ARMA (0,0) to ARMA(5, 5) and found that ARMA(0, 0) is the best model for all five series in 
terms of the SIC values. This is consistent with the results of Baillie and Bollerslev (1989). In 
what follows, we will abuse terminology and refer to ARMA(0,0) as the random walk model. 

Neural network models are constructed according to the two-step procedure described in 
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Section 3. For each series, the network explanatory variables are lagged dependent variables; all 
variables are multiplied by 100 to reduce round-off errors. We have also constructed networks 
for each y,, using lagged yjt,, j* i, as additional explanatory variables, but the results are not 
particularly exciting. We therefore confine ourselves to networks of the present form which, as 
we have mentioned, are simply nonlinear AR models. In the first step, 30 feedforward and 
recurrent networks (with 1-6 lagged yi,, and 2-6 hidden units) are estimated using the recursive 
Newton algorithms, and the three networks with the best PSC values are selected.1 In the second 
step, the selected networks are further 'smoothed' using the method of NLS. (We omit- 
networks with one hidden unit because they are not practically interesting.) Ideally, we can 
construct a multiple-output network for all five series, analogous to a multivariate nonlinear 
regression model. A program implementing multiple-output networks is currently under 
development. 

Table I. Out-of-sample RMSPE and sign predictions from selected networks: British pound 

Recursive result NLS result 
Net Test Selected 
type obs. network PSC RMSPE Sign RMSPE (Stat.) Sign (p-value) 

(1,2) 0.4355 0.5972b 64.0 0.6047c (1-608) 62.0 (N/A) 
50 (1,4) 0.4358 0.6043b 72.0 0.6023c (1-530) 58.0 (60-1) 

(2,2) 0.4365 0.6047b 72.0 0.6182 (0.905) 72.0 (N/A) 

(4,3) 0.4199 0.7718 59.0 0.7829d (-1.699) 40.0 (97.8) 
FF 100 (1,2) 0.4208 0.7437b 61.0 0.7405b (1.970) 62.0 (11.2) 

(6,2) 0.4211 0.7508 620Oc 0.7475 (0.813) 61.0b (1.2) 

(4,3) 0.4231 0.7174 56.6 0.7317d (-1.866) 40.6 (99.0) 
150 (1,2) 0.4242 0.6971b 59.3 0.6942a (2.536) 59.3 (15.7) 

(5,3) 0.4247 0.7022 62.0b 0.7090 (-0.075) 54.6 (50.5) 

(6,3) 0.4356 0.6104c 68.0 0.6405 (-0.701) 54.0 (97.1) 
50 (6,2) 0.4356 0.6065b 72.0 0.6173 (0.772) 50.0 (73.2) 

(1,3) 0.4357 0.6081b 72.0 0.6014c (1.597) 74.0' (6.4) 

(3,2) 0.4199 0.7683 58.0 0.7807 (-1.218) 54.0 (44.6) 
REC 100 (1,2) 0.4210 0.7493c 61.0 0.7500c (1.340) 61.0 (60.5) 

(2,3) 0.4212 0.7513 61.0 0.7560 (0.093) 52.0 (94.1) 

(3,2) 0.4237 0.7117 55.3 0.7213 (-0.937) 54.0 (41.0) 
150 (1,2) 0.4242 0.7016b 59.3 0.6953a (2.328) 61.3b (4.6) 

(6,2) 0.4248 0.7043 54.6 0.7270" (-1.453) 54.0 (73.9) 

Note: The selected networks are ordered from the best to the third best according to their PSC values. 'RMSPE' stands 
for the square root of out-of-sample MSPE; 'Sign' stands for the proportion of correct sign predictions in out-of- 
sample periods; 'Stat' is the Mizrach (1992) statistic; 'p-value' is for the Henriksson and Merton (1981) test. If the 
forecasts are either all positive or all negative, the resulting p-value is listed as 'N/A'. Significance at 1%, 5%, and 
10% is marked with superscripts a, b, and c, respectively; similarly, superscript d is used to indicate that a model is 

'As we found in other simulations that huge prediction errors may occur in the very beginning of recursive estimation, 
we compute PSC according to equation (8) with k starting from L + 65, where L is the number of lagged dependent 
variables in the network, to get rid of beginning erratic prediction errors for all possible networks. This modification 
should not alter the asymptotic property of PSC. 
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To evaluate the forecasting performance of different models of yj,, we reserve the last 
50, 100, and 150 observations as out-of-sample testing periods and estimate models using 
1194, 1144, and 1094 observations, respectively. These choices are arbitrary. The out-of- 
sample performances of network models are evaluated using two criteria: one based on sign 
predictions (i.e. forecasts of the direction of future price changes) and the other based on 
one-step-ahead MSPE. As sign predictions yield important information for financial 
decisions such as market timing, it is important to test whether they are of economic value 
in practice (see e.g., Levich, 1981; Merton, 1981; Henriksson and Merton, 1981). For this 
purpose, we apply the market timing test of Henriksson and Merton (1981), which is the 
uniformly most powerful test for market timing ability under their conditions. In this test, 
the number of correct forecasts has a hypergeometric distribution under the null of no 
market timing ability, and we use the IMSL subroutine HYPDF to compute the resulting p- 
values. We also apply a test proposed by Pesaran and Timmermann (1992) which is a 
Hausman-type of test designed to assess the performance of sign predictions. As the 
limiting distribution of this test is N(0, 1), its one-sided critical values at 1%, 5%, and 10% 
levels are 2.33, 1.645, and 1.282, respectively. (We thank referees and the editor for these 
suggestions.) It is also typical in econometric applications to compare out-of-sample MSPE 
performance of a model relative to the random walk model. We therefore apply the MSPE- 
comparison test of Mizrach (1992) to evaluate statistical significance of network forecasts 
(cf. Diebold and Mariano, 1991). The limiting distribution of this test is also N(0, 1); in our 

Table II. Out-of-sample RMSPE and sign predictions from selected networks: Canadian dollars 

Recursive result NLS result 
Net Test Selected 
type obs. network PSC RMSPE Sign RMSPE (Stat. ) Sign (p-value) 

(1,4) 0.6123 0.1372 54.0 0.1374 (0-361) 56.0 (N/A) 
50 (1,5) 0.6143 0.1374 54.0 0.1392 (-0.558) 56.0 (31-5) 

(1,3) 0.6165 0.1373 56.0 0.1373 (0-299) 54.0 (N/A) 

(1,4) 0.6212 0.1778 49-0 0.1770 (-0-293) 52-0 (71.0) 
FF 100 (5,2) 0.6237 0.1817d 44.0 0.1875d (-1-860) 52.0 (50-2) 

(2,2) 0.6244 0.1771 49.0 0.1756 (0-363) 53.0 (42-0) 

(1,4) 0.6214 0-2041 49.3 0-2038 (0-060) 52.0 (16-7) 
150 (2,2) 0.6242 0.2047 48-0 0-2036 (0-184) 50-0 (58-0) 

(1,2) 0.6242 0.2049 47.3 0-2040 (-0-050) 51.3 (34.5) 

(2,4) 0.6138 0.1367 56.0 0-1371 (0-500) 56.0 (N/A) 
50 (1,3) 0.6140 0.1365 56.0 0-1371 (0-602) 56-0 (N/A) 

(1,2) 0.6167 0.1372 56.0 0.1372 (0-711) 56.0 (N/A) 

(2,4) 0.6207 0.1762 52.0 0-1762 (0-218) 51.0 (63-7) 
REC 100 (1,2) 0.6258 0.1761 52.0 0-1765 (0-095) 51.0 (84-6) 

(6,2) 0-6265 0.1770 49.0 0-1800 (-0.875) 50-0 (85-6) 

(1,4) 0.6227 0.2057" 48.6 0-2036 (0-223) 52.0 (16-7) 
150 (1,3) 0.6252 0.2042 50-0 0.2033 (0-429) 52.0 (23-6) 

(1,2) 0.6254 0.2039 50.0 0.2035 (0-347) 52.6 (14-2) 

Note: PSC are the numbers in the table x 10- . 
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computation, models with out-of-sample MSPE smaller than the random walk model have 
positive statistics. Out-of-sample forecasting results from recursive and NLS estimation are 
summarized in Tables I-V, where we use FF and REC to denote feedforward and recurrent 
networks and write a network with L lagged dependent variables and H hidden units as 
(L, H). We report only the Mizrach statistics and p-values for NLS results; complete tables 
including statistics and p-values for recursive results are available upon request. Note also 
that the Mizrach test is based on MSPE comparison, but our tables report the square root of 
MSPE (RMSPE). 

We first observe that a wide variety of networks have been selected and that there is at least 
one common FF or REC network selected from three in-sample periods, except that for REC in 
BP and FF in JY the common networks are taken from the periods with 100 and 150 test 
observations. These common networks are: 

BP: FF(1,2); REC(1,2). 
CD: FF(1,4); REC(1,2). 
DM: FF(2,2); REC(1,2). 
JY: FF(6,2); REC(1,2). 
SF: FF(2,2); REC(1,2) and REC(3,2). 

Note that most of these common networks are not very complex; 
common recurrent network for all series. These results seem to 
mild nonlinearity in these series. 

in particular, REC(1, 2) is the 
suggest that there exists only 

Table III. Out-of-sample RMSPE and sign predictions from selected networks: Deutsche marks 

Recursive result NLS result 
Net Test Selected 
type obs. network PSC RMSPE Sign RMSPE (Stat.) Sign (p-value) 

(2,2) 0.4990 0.4460c 62.0 0.4353 (0-973) 52.0 (72-0) 
50 (2,5) 0.5003 0.4431 64.0 0.4407 (1-230) 64.0 (31-9) 

(5,2) 0.5006 0.4465b 60.0 04471 (0-943) 64.0 (27-4) 

(2,5) 0.4750 0.7726 61.0 0.8898 (-1.054) 58.0 (57-3) 
FF 100 (2,2) 0.4766 0.7730 60.0 0.7785 (-0.024) 52.0 (57-9) 

(1,2) 0.4767 0.7875 59.0 0.7814 (-0.393) 53.0 (77-7) 

(2,2) 0.4819 07212 58.0 0.7307 (-0.464) 53.3 (62-5) 
150 (1,2) 0.4820 0.7322 56.6 0.7288 (-0.412) 52.6 (81-2) 

(5,2) 04827 0.7236 58.0 0.7303 (-0.385) 50.6 (33-0) 

(1,2) 0.4969 0.4479c 62.0 0.4488c (1-569) 62.0 (N/A) 
50 (2,2) 0.4997 0.4455b 66.0 0.4481 (1-236) 50.0 (95-8) 

(1,3) 0.4999 0.4448 66.0 0.4393c (1-308) 60.0 (63-7) 

(1,2) 04734 0.7753 61.0 0.7780 (0-013) 57.0 (65-5) 
REC 100 (3,2) 0-4755 0.7723 58.0 0.7731 (0-703) 59.0 (23-4) 

(2,3) 04769 0.7790 60.0 07682 (1-240) 59.0 (59-9) 

(1,2) 0.4787 0.7228 60.0 0.7214c (1-504) 60.0 (N/A) 
150 (1,4) 0.4804 0.7249 60.0 0.7227 (0-322) 58.0 (44.0) 

(1,3) 0.4817 0.7215 59.3 0-7168 (0-874) 56.6 (41.9) 
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Table IV. Out-of-sample RMSPE and sign predictions from selected networks: Japanese yen 

Recursive result NLS result 
Net Test Selected 
type obs. network PSC RMSPE Sign RMSPE (Stat.) Sign (p-value) 

(1,6) 0.4489 0.3432c 64.0 0.3355c (1-418) 60.0 (27-9) 
50 (2,6) 0.4538 0.3437b 64-0 0.3392 (0-895) 64.0c (8-3) 

(5,2) 0.4608 0.3440c 56.0 0.3413 (0-629) 50.0 (61-3) 

(2,3) 0.4732 0.4149 50.0 0.4232 (-0.729) 49.0 (74.9) 
FF 100 (6,2) 0.4742 0.4205 47.0 0.4335 (-1.062) 50.0 (50-3) 

(6,5) 0.4745 0.4242 52.0 0.4437d (-1.348) 56.0 (16.5) 

(1,5) 0.4787 0.4788 58.0 0.4759 (1.059) 56.6 (11.8) 
150 (6,2) 0.4811 0.4793 52.6 0.4879 (-0.922) 54.0 (18.1) 

(6,3) 0.4811 0.4818 52.0 0.4866 (-0.671) 52.0 (45.2) 

(1,2) 0.4599 0.3417c 62.0 0.3441b (1.983) 66.0c (7.5) 
50 (1,3) 0.4609 0.3385b 66-0c 0.3426c (1.633) 66.0c (5.8) 

(5,4) 0.4614 0.3346c 64.0 0.3531 (-0.278) 60.0 (52.8) 

(1,3) 0.4645 0.4131c 61.0a 0.4140b (1.687) 59.0C (6.6) 
REC 100 (1,2) 0.4705 0.4139c 60*0b 0.4142C (1.547) 61.0C (0.3) 

(6,3) 0.4713 0.4188 50.0 0.4243 (-1.041) 51.0 (50.6) 

(1,2) 0.4765 0.4785 57.3 0.4788 (0-435) 58.6c (6-2) 
150 (6,3) 0.4772 0.4766 54.0 0.5021d (-1.722) 50.6 (32.9) 

(6,2) 0.4773 0.4798 49.3 0.4916 (-1.240) 54.6 (33.0) 

Our primary concern is whether selected network models have systematic, superior 
performance in out-of-sample testing periods. Some interesting NLS results are summarized 
below. Note that when models yield either all positive or all negative sign predictions, the 
Henriksson and Merton (1981) test cannot be computed, and their p-values are listed as 'N/A'. 

(1) For the JY, Table IV shows that the common feedforward network does not perform well, 
and there is only one selected feedforward network has significant market timing ability. 
However, the common recurrent network, REC(1,2), has significant market timing ability 
in all three testing periods and has significant MSPE performance in the first two testing 
periods (with 50 and 100 observations). Note that REC(1,3), which is selected for the first 
two testing periods, is also significant in terms of both market timing ability and MSPE in 
these two periods. 

(2) For the BP, it can be seen from Table I that the common feedforward network, FF(1, 2), 
does not have significant market timing ability, and that the common recurrent network, 
REC(1,2), has significant market timing ability only in the last testing period. In terms of 
out-of-sample MSPE, FF(1,2) and REC(1,2) both perform significantly better than the 
random walk model in all periods (except that for the first testing period REC(1,2) is not 
selected). Note that the market timing ability of FF(6, 2) is significant at the 5% level in the 
period with 100 observations, but it is not selected for other testing periods. 

(3) For the SF, we w find from Table V that common feedforward and recurrent networks do not 
have significant market timing ability. There is only one feedforward network, FF(3, 3), 
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Table V. Out-of-sample RMSPE and sign predictions from selected networks: Swiss franc 

Recursive result NLS result 
Net Test Selected 
type obs. network PSC RMSPE Sign RMSPE (Stat.) Sign (p-value) 

(3,3) 0.5745 0.4513b 60-0 0.4482b (1-497) 66.0 (12.6) 
50 (2,5) 0.5752 0.4515b 66.0 0.4505b (1-786) 62.0 (45-6) 

(2,2) 0.5757 0.4548b 62.0 0.4432b (1-890) 66.0 (12-4) 

(3,3) 05718 0.6443 58.0 0.6471 (0-098) 59.0c (10-0) 
FF 100 (2,4) 0.5722 0-6498 55.0 0.6695 (- 1045) 53.0 (54-4) 

(2,2) 0.5732 0.6450 57.0 0.6469 (0-100) 54.0 (32.0) 

(2,5) 0.5782 0.6502 58.0 0.6683d (-1.396) 56.6 (54.0) 
150 (2,2) 0.5795 0.6452 58.6 0.6490 (-0.092) 58.6 (21.4) 

(2,3) 0.5797 0.6428 57.3 0.6644d (-1-330) 50.0 (57-3) 

(1,2) 0.5725 0.4513b 62.0 0.4552b (2-227) 62.0 (N/A) 
50 (4,2) 0.5776 0.4565b 54.0 0.4494 (1.240) 62.0 (36.8) 

(3,2) 0.5791 0.4548b 62.0 0.4554c (1-296) 64.0 (11-1) 

(1,2) 0.5698 0-6437 57.0 0.6437 (1-225) 57.0 (N/A) 
REC 100 (3,2) 0.5723 0.6426 58.0 0.6461 (0-196) 48.0 (59-0) 

(4,2) 0.5743 0.6460 57.0 0.6472 (0-133) 55.0 (71.4) 

(1,2) 0.5796 0-6439 58.6 0.6501 (-0.367) 57.3 (42.4) 
150 (3,2) 0.5799 0.6453 56.6 0.6510 (-0.327) 55.3 (23.0) 

(1,3) 0.5817 0.6463 56.0 0.6610 (-0.941) 54.6 (71.3) 
_ ~~~ ~ ~~~~~~~~~~~~~~~~~~, .m 

that has (marginally) significant market timing ability. In terms of MSPE, all three selected 
feedforward networks and two out of three selected recurrent networks are significant in 
the first testing period; they do not have similar performance in other testing periods, 
however. 

(4) For the CD and DM, neither feedforward nor recurrent network has systematic good 
performance in all testing periods. 

These results show that different network models perform differently in these series and that 
the PSC criterion is a quite sensible criterion to determine network structures. Although the CD 
and DM do not exhibit regularity that can be 'captured' by neural networks, we note that for the 
JY, the common recurrent networks perform well in terms of both market timing ability and 
MSPE, and that for the BP, the common feedforward and recurrent networks perform well in 
terms of MSPE. It is also interesting to note that for the BP and JY, most of networks with 

significant market timing ability also have significantly lower out-of-sample MSPE relative to 
the random walk model. This suggests that these two objectives need not be conflicting with 
each other. As our estimation methods are based on MSE minimization, which is not a loss 
function for sign predictions, it would be very interesting to construct estimation methods based 
on a suitable loss function and compare the resulting sign prediction results; this is beyond the 

scope of this paper, however. 
We also observe from the tables that recursive results may be even better than the NLS 

results. In fact, for the BP, JY, and SF, recursive results that are significant usually agree with 
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the NLS results. This indicates that the Newton algorithms for a sample of more than 1000 
observations have quite satisfactory performance; some simulation results of the Newton 
algorithm can be found in Kuan (1994). 

For the sake of comparison, we also evaluate out-of-sample performance of four commonly 
used ARMA models, including ARMA(1,0), (0,1), (1,1), and (2,2). The results are 
summarized in Table VI. Almost all ARMA models do not have significant market timing 

Table VI. Out-of-sample RMSPE and sign predictions from ARMA models 

BP CD DM JY SF 
Test ARMA 
obs. model RMSPE Sign RMSPE Sign RMSPE Sign RMSPE Sign RMSPE Sign 

(0,0) 0.6232 48.2 0.1381 48-3 0.4581 46-5 0.3500 47-3 0.4644 46-8 
(1,0) 0.6239 60-0 0-1375c 38-0 0.4580 46.0 0-3463 50-0 0-4651 52-0 

50 (0,1) 0.6243 60-0 0-1374c 46-0 0.4581 48.0 0-3467 50.0 0-4651 54-0 
(1,1) 0.6257 56-0 0-1373C 46-0 0-4578 46.0 0-3461 52-0 0-4647 58-.0 
(2,2) 0-6253 58.0 0-1377 44.0 0-4510 54-0 0.3467 50-0 0-4609 52-0 

(0,0) 0-7570 48.2 0-1766 48-1 0.7781 46.8 0.4171 47-1 0.6479 46-7 
(1,0) 0.7577 57.0c 0-1773 39-0 0-7763 47.0 0.4133c 55-0 0-6469 51-0 

100 (0,1) 0.7578 59.0c 0.1773 44-0 0-7765 48.0 0.4133C 54.0 0.6470 51.0 
(1,1) 0.7580 56-0 0-1773 44.0 0.7764 47-0 0.4134c 56-0 0-6468 54-0 
(2,2) 0*7625d 48.0 0-1771 44-0 0.7747 55.0 0-4129b 53.0 0-6473 53-0 

(0,0) 0.7082 48.4 0-2039 47.9 0.7262 47-0 0.4795 47.3 0.6481 47-1 
(1,0) 0.7087 54.0 0.2049d 42-0 0-7248 49-3 0.4746b 53.3 0-6484 47.3 

150 (0,1) 0.7088 55.3 0-2049d 45.3 0.7249 50-7 0.4746b 52.7 0-6483 47-3 
(1,1) 0.7089 52.0 0-2049d 45.3 0.7248 50.7 0-4748b 55-3 0.6488 50-7 
(2,2) 0.7120d 47.3 0-2049d 44-0 0-7252 51.3 0-4744b 54-0 0-6534 49-3 

Note: For ARMA(0,0), 'Sign' is in-sample proportion of positive changes of log prices. 

Table VII. The Pesaran and Timmermann (1992) test for sign predictions 

Models for the BP 
Test 
obs. FF(1,2) REC(1,2) ARMA(1,0 ARMA(0,1) 

50 62.0 (-1-95) N/A 60.0 (-0-28) 60-0 (0-07) 
100 62.0 (0-95) 61.0 (-1.10) 57.0 (0-73) 59-0 (1.36)c 
150 59-3 (0-79) 61-3 (1.48)c 54.0 (0-37) 55-3 (0-89) 

Models for the JY 

REC(1,2) REC(1,3) ARMA(1,0) ARMA(1,1) 

50 66-0 (1.94)b 66-0 (2*21)b 50.0 (0-30) 52-0 (0-60) 
100 61.0 (2.99)a 59-0 (1-81)b 55.0 (1-08) 56-0 (1-27) 
150 58.6 (1.81)b N/A 53.3 (0-97) 55.3 (1.45)c 

Note: The numbers in parentheses are the Pesaran and Timmermann (1992) statistic 
from NLS results. If a network was not selected for that testing period, it is listed as 
'N/A'. 
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ability in these testing periods, except that ARMA(1,0) and ARMA(0,1) for the BP are 
significant in the period with 100 observations and ARMA(1, 1) for the SF is significant in the 
period with 50 observations. In terms of MSPE, all ARMA models for the JY have significant 
out-of-sample MSPE in testing periods with 100 and 150 observations, and three ARMA 
models for the CD have significant out-of-sample MSPE in the first testing period. Note that 
these significant ARMA models have almost identical MSPE. 

We also apply the Pesaran and Timmermann (1992) test to evaluate sign predictions. To 
conserve space, we do not report all statistics here, but we summarize the results for some 
'good' models discussed above in Table VII. For the BP, the test results for network models 
agree with those of the market timing test, but significance level is different. Note, however, 
that ARMA(1, 0) becomes insignificant in the second testing period under this test. For the JY, 
both REC(1,2) and REC(1,3) are still significant at the 5% level in all periods, whereas 
ARMA(1, 1) becomes significant at the 10% level in the last testing period. All the results we 
obtained suggest that REC(1, 2) and REC(1, 3) have systematic good performance for the JY 
series. 

5. CONCLUSIONS 

In this paper we propose a two-step procedure to estimate and select feedforward and recurrent 
networks and carefully evaluate the forecasting performance of selected networks in different 
out-of-sample periods. The forecasting results are mixed. We find networks with significant 
market timing ability (sign predictions) and/or significantly lower out-of-sample MSPE 
(relative to the random walk model) in only two out of the five series we evaluated. For other 
series, network models do not exhibit superior forecasting performance. Nevertheless, our 
results suggest that PSC is quite sensible in selecting networks and that the proposed two-step 
procedure may be used as a standard network construction procedure in other applications. Our 
results show that nonlinearity in exchange rates may be exploited to improve both point and sign 
forecasts, in contrast with the conclusion of Diebold and Nason (1990). Although some of the 
results reported here are quite encouraging, they provide only limited evidence supporting the 
usefulness of neural network models. We hope this paper will provoke more research in this 
direction in the future. 

APPENDIX: RECURSIVE ESTIMATION METHODS-NEWTON ALGORITHMS 

We describe recursive estimation methods for feedforward and recurrent networks. For 
feedforward networks we consider the following stochastic Newton algorithm: 

0t+^= ,+ )ritG VfQ(X ,)[y, (-fq(x,, O,)] 

G, +l = G,+ rlt[Vf,(x,, Ot)Vfq(xt, Y,) - (,A 
where Vfq(x, 0) is the (column) gradient vector of f, with respect to 0, G, is an estimated, 
approximate Newton direction matrix, and {?l,) is a sequence of learning rates of order 1/t. 
Here, Vfq(x, 0)[y -f,(x, 0)] is the vector of the first-order derivatives of the squared-error 
loss: [y -fq(x, 0)]2, and G, is obtained by recursively updating the outer product of Vfq(xt, 0,). 
Thus, the algorithm (Al) performs a recursive Newton search in the parameter space. In 

practice, 0, is randomly initialized, and G, is initialized using sI, where s = 100/(I, y2/T) and I 
is the identity matrix. (The initial value for G, is based on the suggestion of Ljung and 
S6derstr6m (1983).) An algebraically equivalent form of (Al) which does not involve matrix 
inversion can be used to simplify computation; see Kuan and White (1994a) for more details. 
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We also note that if f is a linear function, the algorithm (Al) reduces to the well-known 
recursive least square algorithm. 

A recurrent Newton algorithm analogous to (Al) is 

l= 0,-j,G lV^ e,e, (A2) 
e,t, = x,- r/,h,-'vt,I, 
,+ = G, + (VVe - ,) 

where , and h, are column vectors of the first-order derivatives of b with respect to 0 and h, 
respectively. Note that we have omitted the subscript q of 0 for notational simplicity. In this 
algorithm, 0, and G, are initialized as above, the ith (i = l,..., q) hidden-unit activation is 
updated according to 

hs, = (yo,, + ^ ivj + Z .1 = (x,, ,) (A3) 

A 
with initial value 1/2, and the jth (j = 1, ..., q) column of A,+l is updated according to 

Aj,+ = ijp.(x,,/ h,- , 0,) + At,jth(x,, h,_., 0,) (A4) 

with initial values 0, where tij , and Ij.h are column vectors of the first-order derivatives of the 

jth hidden unit tj with respect to 0 and h, respectively. As v is the logistic function in our 
application, it is bounded between 0 and 1. Setting the initial value of h, at 1/2 is equivalent to 
assuming no knowledge of hidden units in the beginning. This algorithm is implemented with a 
truncation device to ensure 6,i <4/q for all i, 1. More details of equation (A2) used in this study 
can be found in the Appendix of Kuan (1994). 

Note that a recurrent network not depending on h,l_ is a feedforward network. In this case, 
the I h term is zero so that the updating equations of A, are not needed, and (A2) simply reduces 
to the standard Newton algorithm (Al). 
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