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USING THE CORRELATION EXPONENT TO DECIDE 
WHETHER AN ECONOMIC SERIES IS CHAOTIC 

T. LIU 
Department of Economics, Ball State University, Muncie, IN 47302, USA 

C. W. J. GRANGER AND W. P. HELLER 
Department of Economics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 

'In Roman mythology, the god Chaos is the father of the god Time' (Robert Graves, I Claudius-Arthur 
Barker, London, 1934) 

SUMMARY 

We consider two ways of distinguishing deterministic time-series from stochastic white noise; the 
Grassberger-Procaccia correlation exponent test and the Brock, Dechert, Scheinkman (or BDS) test. 
Using simulated data to test the power of these tests, the correlation exponent test can distinguish white 
noise from chaos. It cannot distinguish white noise from chaos mixed with a small amount of white noise. 
With i.i.d. as the null, the BDS correctly rejects the null when the data are deterministic chaos. Although 
the BDS test may also reject the null even when the data are stochastic, it may be useful in distinguishing 
between linear and nonlinear stochastic processes. 

1. INTRODUCTION 

Econometricians and applied economists often take the viewpoint that unforecastable shocks 
and innovations continually bombard the actual economy. In other words, the economy is 
essentially stochastic in nature. By contrast, some models in the economic theory literature (e.g. 
Grandmont, 1985) suggest that an essential nonlinearity in real economic forces permits 
deterministic time-series to have the appearance of chaos. It is our purpose here to examine 
some of the tests that have been proposed to resolve the issue. The choice is whether the 
economy is better modelled as (1) essentially linear in structure with significant stochastic 
elements, or (2) having a nonlinear structure with insignificant stochastic forces or (3) having 
a clear nonlinear structure but with significant stochastic shocks. Much of the chaos literature 
only discusses the first two of these three possibilities. Our results cast doubt on the hope that 
stochastic shocks can be reduced to insignificance in nonlinear models when doing empirical 
work. 

In applied economic models it is common practice for the unforecastable shocks to an 
economy to be equated to the residuals of a specification. Assume that the shocks are 
independent and identically distributed (or i.i.d., for short). Further, assume the existence of 
second moments. Necessary conditions for a series xt to be i.i.d. are: (1) that the mean and 
variance of xt are constant, and (2) autocovariances cov(xt, Xt-k) are all zero for all k  0. 
These are called the 'white noise conditions', and a series that has them is called white noise. 
Clearly an i.i.d. series is a white noise but not necessarily vice-versa, although a Gaussian white 
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noise is i.i.d. It is well known that non-i.i.d. processes can have the white noise properties; see 
the examples in Granger (1983). 

Some deterministic processes can also have white noise properties. Many find this 
observation interesting, and even surprising. A chaotic deterministic process is often 
characterized by its non-periodic trajectory. In particular, some chaos has first and second 
moment properties (means, variances and covariances) that are the same as a stochastic process. 
If these properties are the same as white noise, the process will be called here 'white chaos'. 
An example of such a process is the tent map, where it is generated by: 

Xt = a-'xt-, if 0 < 
= (1 - a)-l(1 - Xt-i), 

XCt-i < a 

if a A xt-_l < 1. 

Sakai and Tokumaru (1980) show that the autocorrelations for the tent map are the same as 
that of some first-order autoregressive process. Especially when the constant a is near to 0 5, 
the autocorrelations for tent map are close to that of an i.i.d. process. 

Time-series data from the 'logistic map' have similar properties. The logistic map is given by: 

Xt = 4xt-(1 - Xt-i) (2) 

with some suitable starting value xo in the range (0,1). Table I shows the estimated 
autocorrelations and partial autocorrelations for a tent map and logistic map. The 
autocorrelations for xt are all small and insignificantly different from zero, indicating that these 
series have at least the dynamic part of the white noise properties. However, Xt is clearly not 
i.i.d., as xt is generated from a nonlinear deterministic process. Surveys of the relevance of 
chaos in economics can be found in Frank and Stengos (1988) and Brock and Sayers (1988). 

Table I. Autocorrelation and partial autocorrelation function for the tent map and logistic map 

The original series The squares of observations 

Tent map Logistic map Tent map Logistic map 
estimated estimated estimated estimated 

Lag ACF PACF ACF PACF ACF PACF ACF PACF 

1 0.001 0.001 0-016 0-016 -0-215* -0.215* -0.221* -0-221* 
2 -0-006 -0-006 0-006 0-006 -0-058* -0-110* 0.001 -0-050* 
3 -0-012 -0-012 0-004 0-004 -0-024 -0-066* 0.001 - 0009 
4 0'001 0.001 0-006 0-006 -0-000 -0-030* 0-005 0-004 
5 0-004 0-003 -0-001 -0-001 0-005 -0-008 0-004 0-007 
6 -0-008 -0-008 -0-025 -0-025 -0-008 -0-013 - 0026* -0-025 
7 -0-003 -0-003 0-003 0-004 -0-003 -0'009 0'010 -0-000 
8 0-006 0-006 -0-003 - 0002 0 009 0-004 - 0003 - 0002 
9 -0-006 -0-007 -0-002 -0-002 -0-008 -0-007 -0-004 -0-005 

10 0-003 0-003 0-012 0-012 0-006 0-004 0-014 0-012 

Note: The initial vale is 0 1 and 6000 observations are generated. The first 100 observations are truncated. For the 
tent map, the constant a in (1) is 0-49999. Asterisks indicate significant lags. 
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2. CORRELATION EXPONENT TABLES 

The existence of deterministic white chaos raises the question of how one can distinguish 
between it and a true stochastic white noise, such as an i.i.d. series. One possibility is to use 
a statistic known as the 'correlation exponent'. Let [xt) be a univariate time series. Define first 
the 'correlation integral' as 

C(e) = lim -2 number of pairs (i, j) such that xi- xj| < e} (3) 

Thus, all pairs of values of the series are compared and those within e of each other are 
counted; they are then normalized by the number of all possible pairs N2. The limit is taken 
as N grows large. 

Intuitively, C(e) measures the probability that any particular pair in the time-series is close. 
Suppose that for small values of e, C(e) grows exponentially at the rate v: 

C(e) = eC (4) 

The symbol v is the above-mentioned correlation exponent; it is also called the 'correlation 
dimension'. Grassberger and Procaccia (1983) show that the correlation exponent is bounded 
above by the Hausdorff dimension and information dimension. 

These dimensions are measures of the local structure of fractal attractors. For some chaotic 
process the dimension of the attractors is fractional. Notice that the correlation exponent is 
used not only for distinguishing white chaos from stochastic white noise, but also for 
distinguishing the low-dimensional chaos from high-dimensional stochastic process. 

A generalization is needed to obtain a useful set of statistics. Let Xt,m be the vector of m 
consecutive terms (xt, Xt+ , ..., Xt+m- 1) Define the correlation integral as: 

Cm(e) = lim N-2 (number of pairs (i, j) such that each corresponding component 
N oo of Xi,m and Xj,m is less than e apart). (5) 

Thus, for each Xi,m all other lengths of m of the series are compared to it . If Xi,m and Xj,,m 
are e close to each other, then they are counted. Similarly, for small values of E, Cm(E) grows 
exponentially at the rate m': 

Cm(V) ~ vm (6) 

The length m is called the 'embedding dimension. By properly choosing m, the correlation 
exponent v of a deterministic white chaotic process can be numerically measured by vm provided 
m > v. Grassberger and Procaccia (1983) give some numeral values of vm with different m 
values for logistic map and Henon map. 

However, it is easily seen that, for stochastic white noise, vm = m for all m. If the correlation 
exponent v is very large (so that one has a high-dimensional chaotic process), then it will be 
very difficult to estimate v without an enormous amount of data. It is also true that it is difficult 
to distinguish high-dimensional chaos from stochastic white noise by just looking at estimates 
of Vm. The length of economic time-series is usually short by comparison with the physical 
sciences, and this fact diminishes the usefulness for macroeconomics of statistics based on the 
correlation exponent. For choosing the proper sample size, refer to the paper by Smith (1992a). 
The correlation exponent, Vm can be approximated by 

m = lim d log(Cm(e)) 
E- 
l og (7) £ - 0 dlog(c) 
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There are several empirical ways of estimating the correlation exponent. For example, ordinary 
linear regression is used by Denker and Keller (1986) and by Scheinkman and Lebanon (1989); 
generalized least-square is used by Cutler (1991); and the random coefficient regression is used 
by Ramsey and Yuan (1989). In the regression method a set of log Cm(e) and log e are obtained 
from the data series by 'properly' choosing some values of E. It is obvious that the choice of 
the range of e is arbitrary and subjective. Brock and Baek (1991) also note this point. 

The other type of estimation of the correlation exponent is the regression-free method. The 
typical examples are the point estimator presented in this paper and the binomial estimator used 
by Smith (1992a,b). Because of the similarity between these two estimators a comparison will 
be made in the following. More extensive references for these estimations of correlation 
exponent can be found in papers listed above. 

The point estimator is defined by 

= log(Cm (Ej)) - log(Cm ( +1)) (8) 
log(Ej)-log(+i) (8) 

where ej and ej+1 are constants greater than zero and less than 1. That is Ej = j with 0 < 0 < 1, 
'j > 1, and Cm (Ej) is the correlation integral defined by (5). Notice that Vmj is the point elasticity 
of Cm(e) on e. In the following empirical work the minimum of the sample will be subtracted 
from each observation and then divided by the sample range. Hence, the transformed 
observations will take a value between zero and one. This ensures that the distance between any 
two points of Ixtj is less than one. Thus the constant Ej can also be restricted within the range 
of zero and one, and the possible range of e is objectively given. As shown in (4) and (6), the 
correlation exponent can be observed only when E is small enough. Let Ej = YJ, for 0 < 0 < 1 
and j > 1. Then the correlation exponent is related to the value of Vm,j for sufficiently large j. 

The point estimator is also used by Brock and Baek (1991). They derived the statistical 
property of this estimator under the assumption that xt is i.i.d. However, this statistical 
property cannot apply to low-dimensional chaos. When statistical inference for chaos is 
conducted, the statistic should be based on an assumption of low information dimension. Also, 
hypothesis testing based on the xt being i.i.d. cannot be used for testing the difference between 
deterministic chaos and a stochastic process. This is because the rejection of the null is caused 
by dependence among the xt. Our section on the BDS test will give details of this argument. 

The assumptions on xt can be relaxed from i.i.d. towards some degree of mixing (as in 
Denker and Keller, 1986 and Hiemstra, 1992). But the derived statistics are still not appropriate 
for statistical inference and hypothesis testing for chaos. Any statistic based on the null of 
stochastic xt, instead of more general assumptions, will give the estimate Vm = m. If the statistic 
is used for low-dimensional chaos, which has Vm = v and v < m, the statistical inference will 
be incorrect and the conclusion from the- hypothesis testing is ambiguous. Furthermore, the 
correlation exponent is only approximated for E close to zero. Any statistic based on the 
correlation exponent needs to consider this point. 

Smith (1992b) defines his binomial estimator with this in mind. He uses the independence 
assumption in a different way. In his estimator for correlation exponent, independence is 
applied to the inter-point distance. If there are N data points for xt, then there are N(N- 1)/2 
inter-point distances. The 'independent distance hypothesis' (IDH) implies that these 
inter-point distances are independent when -+ 0 (Theiler, 1990). This IDH is different from 
an independence assumption on xt, and it avoids the problem of Vm = m if Xt is assumed to be 
stochastic. Let Nj be the number of inter-point distances less than ej, where ej = Eo0J for j ) 0 
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and 0 < 0 < 1. Based on IDH, Smith's binomial estimator is 

log ( Nj+ 1) -log (E Nj) 
V 

mj== 
j=0 

(9) 
log q 

For sufficiently large N, equation (5) implies that 

C(j)= [N(N- 1)/2] 

and 

log ( L C(E+ 1)) - log ( C(ej)) 
Vm = =0 j=O (10) 

log ej+ - log ej 

An alternative estimator for the correlation exponent used by Smith (1992a) is 

1K 
- E (log Nj - log Nj-1) 

=Kj= 1 (11) 
log 4 

It is equivalent to 

1 (log C(j) - (log C(- (1) Vm = (12) 
Kj= logge - log eog- 

which is the average of the point estimator in (8) for some range values of Ej. The following 
simulation shows the properties of the point estimator and consequentially it also provides 
some of the properties of the binomial estimator vm. 

Table II shows the point estimates of the correlation exponent, Vmj, for six values of the 
embedding dimension m and 25 epsilon values. The table uses data from the logistic map with 
sample sizes of 500 and 5900. For most macroeconomic series, 500 is a large but plausible 
sample size (approximately 40 years of monthly data). A sample of 5900 observations is large 
compared to most economic time-series. However, financial data are often of this size (20 years 
of week-day daily price data). The data are chaotic and known to have a true correlation 
dimension of one. Thus, for m > 2 and small ej (or large j), where ej = 0 9J, the figures in the 
table should all equal one if the sample size is large enough. Using the larger sample of 5900 
observations the values are indeed near one for 2 S m < 5 and small epsilon, or j > 20. There 
does appear to be a slight downward bias, with most values under 1 0. 

The estimate is less reliable for m = 10. Using a much smaller sample of 500 observations, 
this general pattern is the same but with higher variability. Looking at the table for m > 1 and 
small enough epsilon (or large j) gives ample visual evidence that the quantity being estimated 
is close to unity. It is stable as m goes from 2 to 5. This result is consistent with those of 
Grassberger and Procaccia (1983). In particular, they also found that Vm is underestimated 
when m = 1. 

These results are thus encouraging, as tables such as thes e do give the correct pattern if the 
data are truly chaotic. The same results were found with data from the Henon map, but these 
are not shown. Table III shows the same results for 'stochastic' Gaussian white noise series, 
of sample sizes 500 and 5900 respectively. Theory suggests that these estimates should equal 
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Table II. Correlation exponents for logistic map 

Sample size = 500 Sample size = 5900 
m m 

j 1 2 3 4 5 10 1 2 3 4 5 10 

16 0-78 0-96 1-05 1.00 0-95 0-80 0-76 0-89 0-97 1-02 1-14 2-16 
17 0-66 0-82 0-84 0-88 0-96 1-27 0-77 0'90 0-97 1'01 1.11 1-41 
18 0-66 0-80 0-78 0-84 0'91 0-80 0-77 0'90 0-97 1'00 1-08 1-32 
19 0-74 0-86 0-85 0-87 0-98 2-17 0-79 0'90 0-96 0'99 1-05 1-39 
20 0-77 0'90 0-92 1-02 1-12 0-76 0-78 0'90 0-96 0-98 1-02 1 19 
21 0-82 0-88 0-95 0-92 0-92 0-73 0-78 0-89 0-94 0-97 0'99 1-18 
22 0-77 0-89 0'90 0-94 0-96 0-79 0-78 0-89 0-95 0-98 1-02 1-33 
23 0-73 0-84 0-87 0-88 0-82 0-53 0-77 0-89 0-94 0-97 1 00 1-38 
24 0-86 0-89 0-93 0-92 0'90 1-04 0-78 0-88 0-93 0-97 0'99 1-22 
25 0-81 0-89 0-94 0-93 0-86 0-50 0-80 0'91 0-97 1 00 1-03 1-15 
26 0-81 0-95 0'99 1 01 0-93 0-39 0-81 0'91 0-96 0'99 1-02 1-05 
27 0-77 0-83 0'90 0'91 0-87 0-84 0-80 0-89 0-95 0-98 1 00 1-12 
28 0-79 0-81 0-86 0-87 0-83 0-45 0-80 0-88 0-94 0-96 0'99 1-14 
29 0-81 0-81 0-87 0-88 0-88 0-97 0-80 0-88 0-94 0-97 0-97 1-22 
30 0-74 0-88 1 00 0-98 0-97 1-08 0-81 0-89 0-95 0-98 0-98 1.11 
31 0-74 0-85 0-93 1-02 1-16 0-79 0-82 0'90 0-95 0-98 0'99 0-98 
32 0-68 0-79 0-83 0-80 0-82 0-86 0-82 0'90 0-95 0-97 0-98 0-98 
33 0-83 0-89 1-02 1-06 0-88 0-23 0-83 0'91 0-96 0-97 0-98 1 10 
34 0-83 0-93 0'99 1-06 0-81 0'00 0-82 0'90 0-95 0-98 0-96 0-95 
35 0-81 0-85 0-84 0-86 0-97 0-47 0-83 0'90 0-94 0-97 0-95 1'01 
36 0-77 0-86 0-84 0-71 0-87 1-59 0-82 0-89 0-93 0-95 0-94 0-94 
37 0-88 0-83 0-82 0-93 0-97 0'90 0-82 0-89 0-94 0-96 0-94 1 01 
38 0-88 0-95 0-93 0-89 0-78 0'00 0-85 0-92 0-96 0-98 0'99 1-02 
39 0-87 0'90 0-96 0-94 0-82 1 00 0-86 0'91 0-96 0-96 0-98 1-08 
40 0-74 0-80 0-81 0-78 0'90 1-94 0-83 0'91 0-97 0'99 1-05 1-20 

Note: Each column represents different embedding dimension m and each row shows different value of j such that 
E = 0'9J. Each cell is the point estimate of the correlation exponent, Um,j, as defined in (8). 

m and thus should take the value 1, 2, 3, 4, 5 and 10 in the columns. The pattern in these tables 
is as predicted by the theory for small enough epsilon, say j > 25. Note that there is a fairly 
consistent downward bias in the calculated dimension. The results from the correlation 
exponent tables are rather similar to those from the regression approach, such as Ramsey and 
Yuan (1990). 

Interpretation of this type of 'ocular econometrics' is not easy. One has to be selective as 
to which parts of the table are emphasized. Statistical inference is needed for more accurate 
conclusions. Brook and Baek (1991) and Smith (1991a,b) give statistical properties for the 
correlation exponent. The simulations as shown in Tables II and III reveal an important 
message on the empirical use of the correlation exponent. The choice of epsilon is important. 
Different ranges of epsilon may give different conclusions. Further, distinguishing stochastic 
white noise from white chaos based on the correlation exponent is only valid for small epsilon. 
Brook and Baek (1991) have similar and intensive simulations on point estimates for Gaussian 
white noise. It should be noticed that their statistic is for all epsilon and not only for small 
epsilon, as is required for the definition of the correlation exponent. 

Smith (1992b) has a simulation for the binomial estimates of low-dimension chaos. It is clear 
from Table II that the quality of binomial estimates is related to the range of epsilon chosen. 
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Table III. Correlation exponents for Gaussian white noise 

Sample size = 500 Sample size = 5900 
m m 

j 1 2 3 4 5 10 1 2 3 4 5 10 

16 0-78 1-56 2-34 3-13 3-91 7-49 0-66 1-32 1-97 2-63 3-30 6-61 
17 0-83 1-67 2-47 3-25 4-01 9-95 0-72 1-43 2-15 2-86 3-58 7-21 
18 0-88 1-80 2-76 3-74 4-73 9-79 0-76 1-52 2-28 3-04 3-81 7-61 
19 0-89 1-82 2-75 3-61 4-26 5-79 0-80 1-61 2-41 3-22 4-03 8-15 
20 0-88 1-75 2-62 3-46 4-39 9-70 0-84 1-68 2-52 3-35 4-20 8-43 
21 0'90 1-83 2-68 3-38 3-89 10-43 0-87 1-73 2-60 3-46 4-33 8-51 
22 0-95 1-86 2-87 3-87 5-17 3-85 0-89 1-78 2-67 3-55 4-43 8-46 
23 0-96 1 91 2-93 4-01 4-96 - 091 1-83 2-75 3-67 4-60 943 
24 0-96 1-90 2-90 3-64 4-33 - 093 1-86 2-79 3-73 4-69 9-24 
25 0-99 1-95 2-91 3-71 4-55 - 094 1-88 2-81 3-76 4-69 10-61 
26 0-99 2-01 2-81 4-19 5-22 - 095 1-90 2-85 3-79 4-75 7-14 
27 0-99 2-06 3-12 3-88 4-59 - 096 1-92 2-87 3-79 4-67 8-84 
28 0-99 1-89 2-64 3-56 2-99 - 097 1-94 2-91 3-85 4-86 5-88 
29 0-99 2-05 3-08 5-06 8-52 - 097 1-95 2-93 3-93 4-94 11-89 
30 0-99 1-99 3-04 4-33 5-75 0-98 1-97 2-95 3-92 4-98 
31 0-99 2-13 2-88 4-17 1-73 - 098 1-97 2-95 3-90 4-88 
32 0-94 1-82 2-73 4-01 4-85 - 099 1-98 2-97 4-00 5-23 
33 1-00 2-07 3-14 6-09 3-85 0 99 1-98 3-01 4-11 5-32 
34 0-99 1-94 2-73 3-39 6-58 0 99 1-99 2-92 3-88 4-95 
35 0-96 1-83 2-46 0-00 - 099 1-97 2-93 4-00 5-53 
36 0-96 1-82 2-69 8-04 - 099 1-98 2-98 4-00 5-62 
37 0-96 1-97 2-08 3-85 - 099 1-98 2-93 3-87 4-81 
38 0-97 1-84 2-67 0-00 1 00 1-97 2-94 4-00 5-37 
39 0-95 2-26 2-99 6-58 - 099 1-98 2-91 3-85 2-86 
40 1.00 1-71 1-94 0-00 1-00 2-02 3-03 4-15 5-38 

Note: See footnote in Table II. 

In addition, the reliability in estimating the correlation exponent varies with the sample size and 
the embedding dimension. Ramsey and Yuan (1989) and Ramsey, Sayers, and Rothman (1990) 
also recognize this point. 

It follows that a chaotic series can be distinguished if it has a fairly low correlation 
dimension, say five or less. Random number generators on computers typically have at least 
this dimension. Brock (1986) reports a dimension of approximately 11 for the Gauss random 
number generator. It is also true that it is difficult to distinguish high-dimensional chaos from 
stochastic white noise just by looking at estimates of Vm. For more on choosing the proper 
sample sizes and embedding dimensions, refer to the papers by Smith (1992a,b), Sugihara and 
May (1990), and Cheng and Tong (1992). 

Statistical inference on chaos is a difficult task, and it is not easy to solve all the issues at 
the same time. When using statistics based on the correlation exponent for chaos, one must bear 
in mind their limitations. The point estimate tables indicate that it may be possible to 
distinguish a low-dimensional chaotic process from a truly stochastic i.i.d. process. 
Operationally, a 'stochastic process' here is a high-dimensional chaotic process, such as the 
random number generators used in this experiment. 

To be useful with economic data these techniques must cope with added, independent 
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'measurement error'. With this in mind, data were formed 

Zt = Xt+ aCt (13) 

where xt is white chaos generated by the logistic map as in (2), Et is i.i.d. Gaussian white noise 
and U2 is varied to produce four alternative 'signal to noise ratios' (S). We show the results 
in Table IV for various signal to noise ratios. 

The point estimates for the correlation exponent are shown only for m = 1, 3, 5 and for a 
reduced set of epsilon. Note that if the data were pure white chaos, the numbers should be 
approximately equal (to one) for each m value. For the majority of the table the estimates 
increase approximately proportionally to m, suggesting that the data are stochastic. Only for 
the largest S values and for a narrow range of epsilon values (10 < j < 20, say) does the 
estimate seem to be approximately constant. Smith (1992b) also gives estimators of the 
correlation exponent and variance of noise for the chaos with additive noise. From Table IV 
it is found that his estimators are sensitive to the range of epsilon chosen. 

In a sense the correlation technique is working too well, since the true data-generating 
mechanism does contain a stochastic (or high-dimensional) element, et. This is what is 'seen' 
by the point estimates. The low-dimensional deterministic chaos component, xt, is totally 
missed, even when it has a much larger variance than the noise. It may well be that when 
deterministic chaos is present in economic data, it can be found only if it contains very little 
measurement error. Further, the generating process must be of low correlation dimension for 
detection to take place. 

A possible source of such data is stock market prices. Two series were used: daily rates of 
returns for IBM and the Standard and Poors 500 stock index, for the period 2 July 1962 to 
31 December 1985, giving 5903 observations. The autocorrelations for both series were 
uniformly very small and generally insignificant, as predicted by efficient market theory. Table 
V shows the point estimates for the IBM returns and S&P 500 returns. The patterns of the 
estimates for these two returns are extremely similar. Values were small for larger epsilon. 
Further, for small enough epsilon, the estimates are seen to increase approximately with m, but 

Table IV. Correlation exponents for logistic map with additive white noise (sample size = 5900) 

m m m m 

1 3 5 1 3 5 1 3 5 1 3 5 

j a2=03, S=0 4 a2=0 1, S= 1-2 a2001, S=12 a2 = 0001, S = 120 

4 0'01 0-02 0-03 0.01 0-03 0-06 0-21 0-64 1-07 0-65 2-27 3-59 
8 0-13 0-40 0-66 0-21 0-64 1-08 0-67 2-02 3-46 0-69 1-40 1-83 

12 0-45 1-34 2-24 0-56 1-66 2-76 0-73 1-38 1'99 0-71 1-03 1-43 
16 0-72 2-15 3-57 0-79 2-30 3-80 0-80 1-49 2-10 0-76 1'01 1-18 
20 0-87 2-61 4-33 0'90 2-65 4-39 0-88 2-01 3-12 0-79 1-07 1-21 
24 0-94 2-83 4-74 0-96 2-85 4-72 0-94 2-50 4-03 0-84 1-39 1-78 
28 0-98 2-89 4-75 0-98 2-92 4-83 0-97 2-75 4-74 0'90 1-96 2-94 
32 0'99 2-98 5-03 0'99 3-00 4-90 0-98 2-85 4-72 0-95 2-45 3-95 
36 0'99 3-00 5'04 1 00 2-95 4-91 1 00 2-96 5-00 0-98 2-76 4-62 
40 1'00 3-11 9-16 1 00 2-92 5-31 1'00 3-02 5-46 0'99 2-82 5-39 

Note: The variance of the logistic map is about 0. 12 and a2 is the variance of the white noise. S = (variance of logistic 
map/variance of noise), i.e. 'signal/noise ratio'. See also footnote in Table II. Only partials of j are shown in this 
table. 
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Table V. Correlation exponents for daily IBM and S&P500 rate of returns (from 2 July 1962 to 
31 December 1985 with 5903 observations) 

IBM daily returns S&P 500 daily returns 
m m 

j 1 2 3 4 5 10 1 2 3 4 5 10 

16 0*20 0-38 0-55 0-72 0-87 1-56 0-33 0-63 0-89 1-14 1-36 2-27 
17 0*26 0-50 0-72 0-94 1-14 2-04 0-40 0-75 1-07 1-37 1-64 2-71 
18 0-33 0-63 0-91 1-18 1-43 2-56 0-46 0-87 1-24 1-59 1 90 3-13 
19 0-39 0-76 1 10 1-43 1-73 3-09 0-52 0-99 1-42 1-81 2-17 3-54 
20 0-46 0-90 1-31 1-68 2-05 3-63 0-58 1 10 1-58 2-03 2-43 3-93 
21 0-53 1-03 1-49 1-93 2-35 4-17 0-63 1-21 1-74 2-23 2-68 4-30 
22 0-59 1.15 1-68 2-18 2-65 4-75 0-69 1-32 1-90 2-43 2-91 4-63 
23 0-65 1-27 1-85 2-40 2-93 5-26 0-73 1-41 2-03 2-61 3-13 4-97 
24 0-70 1-37 2-00 2-60 3-18 5-79 0-77 1-49 2-16 2-77 3-33 5-32 
25 0-74 1-46 2-14 2-78 3-41 6-27 0-81 1-57 2-27 2-92 3-51 5-65 
26 0-79 1-55 2-28 2-98 3-66 6-77 0-84 1-63 2-37 3-07 3-69 5-94 
27 0-83 1-63 2-40 3-14 3-86 7-22 0-87 1-69 2-45 3-16 3-82 6-44 
28 0-85 1-69 2-49 3-26 4-02 7-68 0-89 1-74 2-53 3-28 3-96 6-59 
29 0-88 1-74 2-58 3-39 4-19 8-08 0-91 1-78 2-60 3-39 4-12 7-00 
30 0-89 1-76 2-61 3-44 4-27 8-44 0-93 1-82 2-67 3-49 4-25 6-93 
31 0-92 1-82 2-70 3-56 4-42 8-81 0-94 1-86 2-72 3-56 4-35 7-81 
32 0-93 1-85 2-76 3-65 4-52 8-56 0-95 1-88 2-77 3-63 4-47 8-37 
33 0-95 1-89 2-83 3-74 4-62 9-54 0-96 1-89 2-80 3-69 4-56 7-67 
34 0-96 1 91 2-86 3-82 4-82 9-10 0-97 1-92 2-84 3-74 4-60 7-60 
35 0-97 1-93 2-88 3-82 4-79 9-84 0-98 1-94 2-88 3-79 4-75 11-00 
36 0-96 1 90 2-84 3-79 4-78 14-62 0-98 1-95 2-90 3-82 4-71 7-75 
37 0-99 1-98 2-97 3-98 5-04 10-43 0-98 1-94 2-90 3-84 4-75 7-09 
38 0-96 1-92 2-87 3-77 4-85 - 099 1-96 2-91 3-81 4-74 10-43 
39 0-98 1-96 2-90 3-89 4-89 - 099 1-98 2-93 3-95 4-79 
40 0-98 1-96 2-94 3-86 4-94 - 099 1-98 2-92 3-84 4-81 

Note: See footnote in Table II. 

again with a downward bias. The pattern is consistent either with these returns being a 
stochastic white noise or being chaotic with a true correlation dimension of around six. To 
distinguish between these alternatives higher m values would have to be used. This would 
require a much larger sample size. These stock price series are not low-dimensional chaos, 
according to this technique. Other studies involving aggregate and individual stock market 
time-series confirm this experience (Scheinkman and LeBaron, 1989). 

3. THE BDS TEST 

Looking for patterns in tables may be useful, but as different people may reach different 
conclusions it is preferable to have a formal test with no subjectivity. Brook and Baek (1991) 
describe the statistical properties of the point estimator for the correlation exponent under the 
i.i.d. assumption for xt. We are interested in how well it detects the presence of chaos. Since 
the point estimator for the correlation exponent is equal to the point elasticity of the correlation 
integral, Brock and Baek's statistic is derived from a statistic using the correlation integral. 
Such a statistic was developed by Brock, Dechert and Scheinkman (1987) (henceforth BDS). 
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We examine the properties of the BDS statistic here, yielding some insight into the statistic 
proposed by Brock and Baek. A good discussion of a BDS application can be found in Brock 
and Sayers (1988). 

Using the correlation integral Cm(e) defined in (5), the BDS test statistic is 

S(m,e)= Cm(e)- [C (E)]m (14) 

The null hypothesis is 

Ho: xt is i.i.d. (15) 

and it is shown that for large samples under the null, S(m, e) is asymptotically distributed as 
normal, i.e. 

S(m,e)- N(o,q) (16) 

where q is a complicated expression depending on m, e, and sample size. 
If a series is linear but has autocorrelation, then the test should reject the null. In practice 

the BDS test statistic is applied to the residuals of a fitted linear model. The model specification 
is constructed first and then tested to see if the fitted model gives i.i.d. residuals. BDS (1987) 
show that asymptotically, (16) still applies when residuals are used, so that there is no 'nuisance 
parameter' problem. However, it was pointed out by Brock et tal. (1991a) that the BDS test 
is not free of the nuisance parameter problem if heteroscedastic errors are involved. Since BDS 
is being used here as a test for stochastic or deterministic nonlinearity, it is necessary to remove 
linear components of the series before applying the test. To do this in practice, an AR(p) model 
is built for xt, using some criteria such as AIC or BIC1 to select the order p of the model. The 
test is then applied to the residuals of this linear fitting procedure. 

Recall that the test is constructed using a null of i.i.d., and that rejection of the null does 
not imply chaos. The test may well have good power against other alternatives, such as 
stochastic nonlinear processes. Nevertheless, if the linear component has been properly 
removed, rejection of the null does correspond to presence of 'nonlinearity' in the data, 
however defined. 

Lee, White and Granger (1990) have compared the BDS with several other tests of 
nonlinearity for a variety of univariate nonlinear processes. They find that it often has good 
power, but does less well than some of the other tests. However, the test used there had an 
embedding dimension of m = 2 and just a single epsilon value. Other simulations, such as Hsieh 
and LeBaron (1991) and Hsieh (1991), also show the size and power of BDS test for some 
nonlinear models. We study here how the BDS test is affected by other values of m and how 
sensitive it is to the choice of epsilon. Also, it is essential to look at the BDS test properties 
when epsilon values are small, where it is the only relevant range for the testing of chaos. Then 
it can also be applied to the statistical properties of the point estimator used by Brock and Baek 
(1991). 

The following experiment was conducted. A series of length 200 is generated by some 
mechanism. As the BDS test is not affected by the norm used in calculating the correlation 
integral, each observation can be transformed within the range (0, 1) as above. The BDS test 
is then applied and the null rejected or not, and this procedure repeated 1000 times. The tables 
show the percentage of rejections with given significance levels for m = 2, 3, and 4, and for 
epsilon values ej = 0.87, with j = 1,2, 4, 6, 8 and 10. Small j values correspond to large epsilons, 
and this is a range of no relevance for testing chaos. 

1 I.e., Akaike's Information Criterion and the Bayesian Information Criterion, respectively. 
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To check if the critical values used in the test (which are based on the asymptotic theorem) 
are unbiased, the experiment was first run in the case where the null hypothesis was correct. 
Machine-generated random numbers from a Gaussian distribution were used. These numbers 
were random shuffled to reduce any hidden non-randomness in the data. Both sets of data 
produced similar results, and just those for the shuffled data are shown. Table VI shows the 
size of the BDS test for various significance levels. 

For columns with significance level a = 0 05, for example, if the asymptotic critical values 
were correct, the proportion of times the null hypothesis is rejected should be 5 per cent of 
the time. The approximate 95 per cent region is 0 037-0 063. The values are seen consistently 
biased towards too frequent rejection of Ho with a sample size of 200.2 

However, in most cases, with j = 6 and j = 8, the values are not badly biased. With the other 
values of j the critical values are so biased that they are unusable. This is not surprising. When 
low j values (i.e. larger epsilon values) are considered, most of the pairwise distances in (5) will 
be smaller than epsilon. Clearly, when epsilon is small (e.g. j= 10), few pairs are within an 
epsilon distance. In either case it is not easy to find the independence based on the relationship 
of Cm(e) = Ci(e)m. It will be more likely that Cm(e) is close to Ci(e) instead of Ci(e)m. Hence 
S(m, e) should not have mean zero and the null hypothesis is easily rejected. The results are 
seen to vary little as m goes from 2 to 4. Although values are shown for all j with the other 
experiments, only for j= 6 and 8 are sensible interpretations and comments about power 
possible. 

Further experiments are conducted for the testing i.i.d. of the fitted residuals. Table VII 
shows the size and power of the BDS test based on fitted residuals using 5 per cent significance 
level. Applying the BDS test to the residuals from a linear fitted model of autoregressive order 
1 and 2, gives the size of the test. As shown in th the upper part of Table VII, the size is similar 
to the random numbers case. The power of the test is examined by applying the test to: (1) a 
moving average model, (2) two white chaos series and (3) seven nonlinear stochastic processes. 
In the white chaos case, no linear regression is needed before applying the BDS- test. 

Table VI. Size of BDS test for shuffled pseudo-random numbers 

ao = 1o o = 25%o o = 5% ao = 10% 
m m m m 

j 2 3 4 2 3 4 2 3 4 2 3 4 

1 0-878 0-821 0-819 0-893 0-848 0-832 0-910 0-868 0-849 0-931 0-884 0-867 
2 0-157 0-207 0-268 0225 0-284 0-331 0-315 0-374 0-430 0-421 0-480 0-514 
4 0-033 0-033 0-034 0-056 0-059 0-060 0-085 0094 0-105 0-154 0-166 0-181 
6 0-016 0-018 0-015 0041 0-033 0-034 0-067 0-059 0-067 0-118 0-116 0-112 
8 0-017 0-019 0-016 0045 0-032 0-050 0-072 0072 0075 0-126 0-128 0-131 

10 0-041 0-059 0-078 0070 0-086 0-124 0-111 0139 0-169 0-184 0-207 0-240 

Note: Four significance levels (ca), 0-01, 0-25, 0-05 and 0-10, are used for the BDS statistic, S(m, ej), with different 
embedding dimension m and different epsilons, ej = 0 8J. The pseudo-random numbers are generated from Fortran 
subroutine, IMSL. Each observation in the replication is randomly chosen from an array of 100 dimension. The 
numbers in this array are randomly generated from pseudo-normal numbers and the position of the array being chosen 
is randomly decided by pseudo-uniform random numbers. 

2 Hsieh and LeBaron (1988) and Brock, Hsieh and LeBaron (1991b) find that the BDS test does not have good finite 
sample properties. The size of the test can be improved by increasing the sample size. 
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Table VII. Size and power of BDS test for residuals 

m m m m 

1 2 3 1 2 3 1 2 3 1 2 3 

j AR(1) AR(2) MA(2) NLSIGN 

1 0-931 0-885 0-885 0-916 0-892 0-877 0-909 0-860 0-864 0-886 0-845 0-840 
2 0-350 0-413 0-439 0-338 0-405 0-442 0-344 0-436 0-448 0-310 0-374 0-394 
4 0-086 0-092 0-099 0-098 0-106 0-107 0-100 0-126 0-130 0-102 0-119 0-108 
6 0-061 0-058 0-057 0-061 0-068 0-079 0-073 0-094 0-089 0-059 0-073 0-075 
8 0-070 0-064 0-078 0-063 0-079 0-100 0-092 0-095 0-116 0-070 0-123 0-162 

10 0-107 0-124 0-157 0-102 0-124 0-155 0-132 0-158 0-226 0-113 0-205 0-311 

j Logistic map Tent map Bilinear BLMA 

1 1-000 0-985 0-887 0-776 0-872 0-847 0-969 0-907 0-911 0-975 0-931 0-934 
2 0-955 0-961 0-978 0-999 0-802 0-592 0-546 0-584 0-579 0-393 0-391 0-400 
4 1-000 1-000 1-000 1-000 1-000 0-985 0-878 0-920 0-917 0-675 0-725 0-717 
6 1-000 1-000 1-000 1-000 1-000 1-000 0-988 0-996 0-995 0-971 0-988 0-990 
8 1-000 1-000 1-000 1-000 1-000 1-000 0-987 0-997 0-996 0-992 0-996 P-996 

10 1-000 1-000 1-000 1-000 1-000 1-000 0-981 0-993 0-991 0-986 0-997 0-996 

j NLMA1 NLAR TAR NLMA2 

1 0-969 0-925 0-902 0-942 0-910 0-906 0-896 0-853 0-861 0-894 0-824 0-832 
2 0-405 0-480 0-518 0-381 0-486 0-516 0-325 0-408 0-453 0-375 0-426 0-442 
4 0-080 0-120 0-150 0-082 0-100 0-103 0-187 0-185 0-182 0-371 0-464 0-455 
6 0-081 0-165 0-194 0-126 0-171 0-209 0-145 0-134 0-132 0-328 0-435 0-436 
8 0-075 0-170 0-234 0-242 0-372 0-489 0-195 0-168 0-168 0-285 0-402 0-414 

10 0-065 0-182 0-245 0-417 0-711 0-914 0-464 0-443 0-391 0-273 0-400 0-420 

Note: The residuals from first-order autoregressive regression for AR(1), NLSIGN, Bilinear, NLAR, and TAR models 
are derived for the BDS statistic S(m, ej), ej = 0 8. For AR(2), MA(2), BLMA, NLMA1, and NLMA2 models, the 
residuals are derived from the second-order autoregressive regression. In case of chaos, the BDS test is applied to the 
original series. The numbers show the percentage rejections in 1000 replications with 5 per cent significance level. 

The test works very well for a fairly small sample size with true chaotic series, in that the 
null is rejected uniformly for smaller epsilon values. Using data from the logistic map which 
is chaos data, the BDS test rejected the null with a probability of 1 0 for all j values, j > 4. 
Similar results were found with chaotic data generated by the tent map. 

The experiments for nonlinear stochastic process are divided into two groups. For the first 
group the BDS test has very good power. The BDS test rejects the null hypothesis of i.i.d. more 
than 90 per cent of replications. The results are shown in the centre part of Table VII along 
with the results on white chaos. The models in this group are bilinear (BL) and bilinear moving 
average (BLMA) models, which are 

(BL) Xt = 0'7Xt-1t-2 + Et 

(BLMA) xt= 04Xt-l-03xt-2+O05Xt-let-1+0'8Et-l + Et 

(17) 

(18) 

For the second group the BDS test has power smaller than 50 per cent. This means that the 
BDS test does not easily detect these types of nonlinearity. The models are the nonlinear sign 
model (NLSIGN), two nonlinear moving average models (NLMA1 and NLMA2), rational 
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nonlinear autoregressive model (NLAR), and threshold autoregressive model (TAR), which 
have the following forms: 

(NLSIGN) xt = SIGN(xt-1) + £t, SIGN(x) = 1,0, or - 1, if x < 0, = 0, > 0 (19) 

(NLMA1) Xt = t - 04 04 3t-1 + 035tt-2 + 0 -2 (20) 

(NLAR) xt - 71 x- + Et (21) 2+ - xt-l 1 

(TAR) xt= 09xt-i + t if Ixt-i_ < 1 

= -0-3xt_- + Et if I xt- I > 1 (22) 

(NLMA2) xt= et- 0-3et- + 0-2et-2 + 0'4et-let-2 - 0'25t2-2 (23) 

Table VII shows that the BDS test has the greatest power on the bilinear model. It rejects 
the null hypothesis of i.i.d. more than 90 per cent replications. But the BDS test has the least 
power on the nonlinear sign model. Actually, the residuals are seen to be i.i.d. by the BDS test. 
For the other four models the power for the NLMA1 model is slightly higher than nonlinear 
sign model, and the highest power is found for the NLMA2 model. The power of these four 
models is shown in the lower part of Table VII. The low power of NLMA1 and NLMA2 may 
be because of the heteroscedastic errors. 

As noted before, the figures for j = 1,2 and 10 are based on a biased significance level and 
so should be discounted. The power is seen to vary widely with the type of nonlinearity that 
is present, as is found to occur with other tests of nonlinearity. There is a general pattern of 
increasing power as j increases and as m increases, but this does not happen in all cases. It does 
seem that the choice of epsilon is critical in obtaining a satisfactory test, and that this is more 
important than the choice of the embedding dimension. Furthermore, the 'correct' range of 
epsilon for BDS test may or may not coincide with the range of small epsilon required for the 
definition of low-dimensional chaos. Other simulations, such as Hsieh and LeBaron (1988), 
Hsieh (1991), Brock et al. (1991a) and Brock, Hsieh, and LeBaron (1991b) also show the size 
and power of BDS test for some nonlinear models. Those results are rather similar with what 
has been found here. The BDS test may be useful in distinguishing linear stochastic process 
from nonlinear stochastic process. It cannot be used alone for distinguishing between 
deterministic chaos and stochastic process. In addition to the problem of choosing proper 
epsilon, rejection of the i.i.d. null hypothesis may be caused by dependence among xt or 
stochastic nonlinearity in xt. 

4. CONCLUSIONS 

Our specific results include the following: 

1. Some deterministic systems behave like white noise (Table I). 
2. The correlation exponent technique can be used to distinguish these systems (Table II) from 

stochastic white noise (Table III). 
3. The correlation exponent does not work very well in uncovering even a low-dimensional 

deterministic process when stochastic noise is present (Table IV). 
4. Real economic data fail to exhibit low-dimensional chaos (e.g. Table V). 
5. A BDS test for stochastic white noise correctly rejects a null of white noise when the series 

deterministically generated, but rejected the null too often in cases where the data came 
from essentially stochastic sources (Table VI). 
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6. The BDS test has power to reject the stochastic nonlinearity. But its power varies as models 
differ (Table VII). BDS correctly rejected the i.i.d: null if the data came from bilinear 
processes, but had less power when series came from threshold autoregressive or nonlinear, 
moving-average processes. It had no power for the nonlinear sign model or the NLAR. 

7. For empirical work, both the correlation exponent and the BDS test require a great deal 
of care in choosing epsilon, see Tables II-V and Table VII. 

Our results are consistent with current practice in the economic literature. Any economy is in 
theory essentially nonlinear in nature with complex interactions among many variables of 
economic significance. However, at the current state of the art there is no good way to capture 
the richness of these models in testable form. At the level of applied works the models are 
linearized and the corresponding error terms modelled as residuals. The question remains: Do 
we live in an essentially linear economic world with unforecastable events exogenous to the 
model? Pragmatism dictates that we continue to develop better estimation methods for a world 
having both nonlinear interactions and unforecastable shocks. 

Some general speculative remarks can be made about the difficulties of distinguishing 
between chaotic and stochastic processes. There are several tests, such as BDS, with stochastic 
white noise as the null. If the null is rejected with prewhitened data, then nonlinearity can be 
accepted. However, the theory is still lacking for making the choice between stochastic and 
deterministic. This lacuna follows from our observation that, so far as we are aware, there is 
no statistical test with deterministic chaos as its null hypothesis. 

A common fallacy in many fields using time-series data is that: 'The data-generating process 
G has property P; if our data has property P it is because they are generated by process G.' 
Naturally, this is logically correct only if P characterizes G. That the data are consistent 
with G does not rule out other models of the universe. It is vital for researchers working with 
time-series to have a statistic that completely characterizes chaotic processes. 

One can certainly argue that statistcal tests are not the proper way to detect deterministic 
processes. In this view, evidence of 'strange attractors', say, is convincing enough. However, 
the sample sizes available from economic time-series data are not large enough to provide such 
evidence. New techniques that could cope with small sample sizes are needed here as well. We 
are led to the conclusion that probabilistic methods are for the time being the most appropriate 
technique for analysing economic time-series data. We suspect that this conclusion also applies 
to much data where chaos has been 'found' in the behavioural sciences, biology, health sciences 
and education. 
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