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ABSTRACT 

This paper relates variation in stock market volatility to regime shifts in stock market 
returns. We apply a Markov switching model to market returns and examine the 
variation in volatility in different return regimes. We find that stock returns are best 
characterized by a model containing six regimes with significantly different volatility 
across the regimes. Volatility is higher when returns are either above or below the 
normal regimcnthe further returns deviate from the normal regime, the higher the 
volatility. Furthermore, volatility is higher in negative return regimes than in positive 
return regimes. These observations lead us to conclude that return and volatility are 
related nonlinearly and that the relationship is asymmetric. 

1. I N T R O D U C T I O N  

The  Oc tober  1987 stock market  crash and  a series of sharp breaks in 
stock prices that  followed he ightened  concern  about  stock marke t  volatil- 
ity. Large changes in volatility can change  investor 's  percept ions  regarding 
risk, which will likely affect the desired rate of capital  accumula t ion  and  
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rate of  economic growth. 1 Despite the public concern, several studies by 
Schwert [21, 22] find that stock market  volatility has not increased in 
recent years. However,  since Mandelbrot 's  paper  [16], numerous studies 
indicate that the volatility of stock returns varies over time. The at tempt  to 
explain this variation has led to fairly wide use of Engle's [7] autoregressive 
conditional heteroskedastic (ARCH) model and its derivatives. Recently, 
variation in volatility has been associated with regime shifts. For example, 
Glosten, Jagannathan,  and Runkle [11, p. 1789] speculate on this possibil- 
ity by suggesting the data may be explained by " . . .d i f fe ren t  regimes in 
which variance is relatively persistent but there are frequent and relatively 
unpredictable regime shifts. ''2 

This paper  relates variation in stock volatility to regime shifts in returns. 
In particular, we apply Hamil ton 's  [12] Markov switching model to the time 
series of  monthly stock market  retmrns and examine the variation in 
volatility in different return regimes. We find that stock returns are best 
characterized by a model containing six regimes. Volatility is significantly 
higher when returns are either above or below "normal ,"  which suggests a 
nonlinear relationship between returns and volatility. Furthermore,  the 
relationship between returns and volatility is asymmetric. Volatility is 
higher in negative return regimes than in positive return regimes. These 
results may help explain the inverse relationship between returns and 
volatility that emerges in some estimates when a straight line is forced 
through the data. 

The paper  is organized as follows. Section 2 describes the two-stage 
estimation procedure we use to relate volatility with regime shifts in 
returns. Section 3 presents our empirical results and Section 4 concludes 
the paper. 

2. T W O - S T A G E  E S T I M A T I O N  A P P R O A C H  

This paper  uses a two-stage estimation procedure to relate volatility and 
returns. Markov switching models with two to seven regimes are applied to 

1Markowitz ([17], p. 89) notes that, "The concepts 'yield' and 'risk' appear frequently 
in financial writings. Usually if the term 'yield' were replaced by ... 'expected return,' 
and 'risk' by 'variance of return,' little change of apparent meaning would result." We 
use the term "volatility" to encompass all the different methods that are used to 
measure thc variation in stock returns. 

2See, as well, Hamilton and Susmel [13] and Turner, Startz, and Nelson [24]. 
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stock returns in the first stage. The second stage estimates a volatility 
equation given different return regimes derived from the first stage. 

Assume that all currently available information at time t is summarized 
in a state variable S t, taking a value of 1,2 . . . . .  or k, i.e., S t~{1,2  . . . . .  k}. 
Since state variable S t is unobservable, it is usually assumed that S t 
evolves as a first-order Markov chain: 

P ( S t = j l S , _ 1 = i ) = P i  i f o r i , j = l , 2  . . . .  k, (1) 

where the P0 form the transition probability matrix P, P = [Pi~]. These are 
the probabilities associated with moving to, say, state 2 (or 1 or 3, etc.) next 
period given that state 1 (or 2 or 3, etc.) currently prevails. 

L e t  R t be the rate of return generated by the market portfolio from 
time t -  1 to time t. The expected return in terms of Hamilton's [12] 
Markov switching model can be written as 

E ( R , )  = X ;  ~ + 4a,( R t_ l - X '  t _ l / 3 ) W . . . + d p q ( R t _ q - X t _ q / 3 ) ,  (2) 

where X~ is a vector which contains state dummy variables l i . t ,  i = 
1,2 . . . . .  k, and /3 contains the mean return in each state. The state dummy 
variable li, t takes a value of 1 when S t = i and 0 otherwise. 

The first stage of our estimation procedure uses Hamilton's [12] method 
to estimate the parameters (~b,/3, P )  in (1) and (2). We consider various 
models with two to seven regimes and one to four lags. The Akaike 
Information Criterion (AIC) as in Sclove [23] is used to determine the 
optimum number of regimes and lags) 

In the second stage, the volatility equation is considered. We follow 
Officer [19], Black [2], Merton [18], Christie [5], Schwert [21], and Whitelaw 
[25] in using the sample data to measure volatility. In our case, monthly 
volatility is measured by the standard deviation of daily returns. To 
examine the relationship between volatility and the different return 
regimes, we consider the following volatility equation: 

V t ' = D ' t ' , / + Z ~ 6 +  r h, (3) 

3Hansen [14] suggests an alternative test of the model. However, this type of test 
involves the difficult issue of unidentified parameters under the "alternative and it is far 
more complex than the AIC model selection procedure. 
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where D t contains the regime dummy variables, Z t contains lagged volatil- 
ity, and T/t is a random error. The regime dummy variables are generated 
by classifying the return in each month by regime. Suppose the optimum 
number of regimes and lags in ihe regime shift model for returns is 
determined. The probabilistic inferences about the regimes that the vari- 
ous months belong in are: 

P(St)=p(St /R,+q,  Rt+q_I .... ,R_q, OT), (4) 

where q is the ntimber of lags used in (2) and 0T is the set of coefficients 
from the first-stage estimation, including the estimates of /3, ~, and P. 
Equation (4) gives the probabilities that a given month belongs in the 
various regimes. This permits us to assign observed monthly returns to 
various regimes. Specifically, month t is assigned to regime i if regime i 
has the highest smoothed probability among the k regimes. Using this 
regime classification, the regime dummy variables are defined as follows: 

Oi,t=l if P ( £ = i ) > P ( £ = j ) ,  forall  j ~ i  and (5) 

Oi,t=O i fP(St=i)<-. .P(St=j),  for any j ¢ i .  (6) 

Then D t in (3) is defined as Dt=[D1, t, D2, t . . . . .  Dk,t]. The parameters of 
the volatility equation are estimated by ordinary least squares. The esti- 
mates of y show the levels of volatility in different return regimes. 

3. EMPIRICAL RESULTS 

We apply our model to the value-weighted New York Stock Exchange 
index from July 1962 to December 1993. The data are obtained from the 
CRSP data tape. Monthly returns are used for the first-stage estimation. 
Schwert's [21] measure of monthly volatility is used for the second-stage 
estimation. Denote Ri, as the daily return in month t. Then monthly 
volatility, Vt r, is 

¥ i =  } 
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Fig. 1. Stock re turns  and volatility 1962.07-1993.12. 

where ~ is the number of daily returns and ~ is the average return in 
month t. Figure 1 shows the plot of monthly stock returns against volatil- 
ity. 

3.1. E S T I M A T I N G  THE EXPECTED R E T U R N  EQUATION A N D  
REGIME CLASSIFICATION 

In the first stage, we apply the maximum likelihood procedure and 
Hamilton's [12] filtering algorithm to estimate (1) and (2). Table 1 presents 
the parameter  estimates for the return equation with four lags and two to 
seven regimes. The numbers in the parentheses under the lag coefficients, 
~b, are standard errors. The numbers in square brackets below the /3 
coefficients indicate the number of months that fall into that regime. For  
example, in the case of a two-regime model, the mean return in regime 1 is 
1.29% per month and 361 months fall into this regime, while the mean 
return is - 9 . 1 1 %  per month in regime 2 with 9 months falling into this 
regime. 

Previous applications of the Markov switching model to the return 
equation restrict the analysis to two regimes. While these studies use 
different sample periods and slightly different financial series than used 
here, our  Table 1 result for the two-regime case (see regression 2) is 
similar to those obtained previously. Like them, we find one regime in 
which the mean return is positive and one in which it is negative and many 
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TABLE 1 

Estimates of the Return Equation for Four-Lag Markov Switching Models 

Regimes 

Coefficient 2 3 4 5 6 7 

~b 1 - 0.0330 - 0.0060 - 0.1598 - 0.2995 - 0.3760 - 0.4462 
(0.0423) (0.0480) (0.0484) (0.0596) (0.0605) (0.0658) 

~b 2 -0.0286 -0.0418 -0.1663 -0.2325 -0.2688 -0.2874 
(0.0396) (0.0455) (0.0507) (0.0763) (0.0735) (0.0642) 

t~ 3 0.0218 0.0433 -- 0.0719 -- 0.0337 0.0239 0.0276 
(0.0426) (0.0558) (0.0550) (0.0742) (0.0642) (0.0703) 

~b 4 0.0318 -0.0195 -0.0949 -0.1374 -0.0973 -0.1578 
(0.0397) (0.0495) (0.0525) (0.0609) (0.0599) (0.0606) 

/3~ 1.2886 8.3212 10.7693 11.6572 11.1957 14.8234 
[361] [17] [15] [13] [15] [1] 

/32 - 9.1114 0.8980 1.7783 3.9251 4.1355 11.0588 
[9] [339] [227] [120] [117] [12] 

/33 - 8.4690 - 0.6107 1.0549 1.0551 4.2539 
[14] [116] [100] [99] [118] 

/34 - 8.8932 - 1.8873 - 1.7193 0.9541 
[12] [124] [118] [106] 

/35 - 9.4258 - 7.3269 - 2.0203 
[131 [20] [1181 

/36 - 21.2665 - 7.9122 
[1] [141 

/37 - 20.8122 
[1] 

Note: The cxpected return equation is E ( R t ) = X ' t / 3 + ~ b l ( R , _  1 - X ; _ I / 3 )  
+ "'" + q b 4 ( R t _ 4 - S t _ 4 / 3 )  , where X I contains state dummy variables such that 

X't=-[ll,t,12,~ . . . .  lk,t]. The numbers in the parentheses under ~ coefficients are 
standard errors. The numbers in the brackets under/3 coefficients are the numbers 
of months assigned to each regime. 

t imes  lower  t h a n  the  r e t u r n  in  the  pos i t ive  r eg ime .  4 Howeve r ,  this  two-reg-  
ime  res t r i c t ion  does  n o t  c o n f o r m  well  wi th  the  d a t a  b e c a u s e  it c o n t a i n s  the  
impl ic i t  a s s u m p t i o n  that  all e x t r e m e  o u t c o m e s  for  m o n t h l y  s tock r e t u r n s  
have  the  s a m e  sign. Th i s  is c lear ly  r e j ec ted  by the  d a t a  w h e n  the  two-reg-  
i m e  res t r i c t ion  is re laxed.  T a b l e  2 shows the  A I C  va lues  for  two to seven  
r eg imes  a n d  o n e  to fou r  lags. T h e y  sugges t  tha t  re lax ing  the  two- r eg ime  
res t r i c t ion  resu l t s  in i den t i fy ing  six r eg imes  a n d  fou r  lags for  this  d a t a  set. 
In  this  s ix - reg ime m o d e l ,  15 m o n t h s  fall i n to  r e g i m e  1 ( e x t r e m e  posi t ive  

4See, for example, Turner Startz, and Nelson [24], Cecchetti, Lam, and Mark [4], and 
Hung [15]. 
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TABLE 2 
AIC Values for Markov Switching Models 

185 

Regimes 1 Lag 2 Lags 3 Lags 4 Lags 

2 3633 3628 3617 3612 
3 3613 3608 3596 3592 
4 3604 3591 3582 3575 
5 3569 3552 3543 3536 
6 3527 3501 3492 3488* 
.7 3535 3518 3508 3499 

Asterisk indicates the lowest AIC value. 

returns of 11.20% per month), 20 months fall into regime 5 (extreme 
negative returns of - 7 . 3 3 %  per month), and one month (October 1987) 
falls into regime 6 with a return of -21 .27%.  The number of months 
falling into more moderate return regimes is much larger (117, 99, and 118 
months). Furthermore, we are interested in analyzing the relationship 
between expected return and volatility. Confining the analysis to only two 
regimes restricts the relationship between expected return and volatility to 
one that is linear. This is overly binding given the results that are obtained 

0 

when this assumption is relaxed. 
Table 3 reports estimates of the transition probabilities for the six-reg- 

ime model. The data indicate that the "normal"  regime (regime 3 with a 
mean monthly return of 1.06%) is very stable. For example, if the current 
month falls in the normal regime, the probability is more than 92% that 
the following month will also fall in the normal regime. However, if the 
current month falls outside the normal regime, the probability of returning 
to the normal regime next month is typically very small, except in the case 
of regime 1. 

TABLE 3 
Estimated Markov Probabilities for the Six-Regime and Four-Lag Model 

Regime at Regime at time t + 1 
time t 1 2 3 4 5 6 

1 0.0000 0 .2508 0 .5523  0 .1968 0 .0000  0.0001 
2 0.0000 0 .5448 0 .0035 0.4411 0 .0106  0.0001 
3 0.0097 0 .0055 0.9241 0 .0607  0 .0000 0.0000 
4 0.1054 0 .2970  0 .0000 0 .4758  0 .1139 0.0079 
5 0.0725 0 .5448  0 .0000  0 .1619 0 .2207 0.0001 
6 0.0003 0 .0000  0.0001 0 .0014  0 .9978 0.0004 
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3.2. E S T I M A T I N G  T H E  V O L A T I L I T Y  E Q U A T I O N  

In the  second  stage,  we e s t ima te  the  p a r a m e t e r s  of  the  volat i l i ty  
equa t ion .  Tab le  4 shows the  l eas t - squares  e s t ima t ion  resul ts  for  (3) and  
con t ras t s  t hem with several  o t h e r  specif ica t ions .  T h e  resul ts  shown in the  
first co lumn of  Tab le  4 a re  o b t a i n e d  for  a s imple  au to reg res s ion  of  o r d e r  6. 

TABLE 4 

Estimates of the Volatility Regression 

Regression 

Regressors 1 2 3 4 5 

Constant 

v:-i 

v:_3 

v:_, 

v:-5 

vtr_6 

Rt  

DI d 

D2, t 

D4,t 

Ds, t 

D6, t 

0.9143 0.9085 0.9775 0.9706 0.7933 
(0.2211) (0.2078) (0.1582) (0.1544) (0.1425) 
0.3344 0.2988 0.3087 0.2932 0.1980 

(0.0523) (0.0494) (0.0374) (0.0367) (0.0343) 
0.1965 0.2353 0.1824 0.2021 0.1933 

(0.0550) (0.0520) (0.0394) (0.0387) (0.0346) 
0.1028 0.1266 0.1462 0.1549 0.1640 

(0.0554) (0.0522) (0.0397) (0.0388) (0.0348) 
-0.1075 -0.0815 -0.0711 -0.0610 -0.0712 
(0.0553) (0.0522) (0.0397) (0.0388) (0.0348) 
0.0761 0.0549 0.0576 0.0486 0.0386 

(0.0547) (0.0515) (0.0392) (0.0383) (0.0342) 
0.1155 0.1207 0.0579 0.0641 0.0577 

(0.0520) (0.0489) (0.0374) (0.0365) (0.0327) 
- 0.1196 - 0.0577 

(0.0172) (0.0133) 

19.9808 18.6883 
(1.0756) (1.0909) 

1.5878 
(0.2728) 
0.3678 

(0.1395) 
0.6486 

(0.1320) 
2.3604 

(0.2418) 
20.6641 
(0.9420) 

~2 0.2941 0.3761 0.6386 0.6557 0.7259 
X2(24) 12.54 16.54 26.00 21.28 19.18 

(0.97) (0.87) (0.35) (0.62) (0.74) 

Note: R t is the monthly return.  D6, t is also the dummy variable for October 1987. 
X2(24) is the Ljung-Box statistic with 24 lags of residuals. The numbers in the 
parentheses under the estimatcd coefficients are the standard errors. The numbers 
in the parentheses under X 2 are the p-values. 
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For purposes of comparison, the specifications in columns 2-4 add the 
monthly return a n d / o r  a dummy for October 1987. The last column shows 
the results obtained when the six regime dummy variables, Dj.t, j = 
1, 2 . . . . .  6, generated in stage 1 are included in the regression. The regime 
dummy variable for the normal regime, D3.t,  is suppressed in these 
estimates. Its coefficient is measured by the estimate of the constant term. 
The Ljung-Box test statistics X2(24) for the residuals are insignificant for 
each of the Table 4 regressions, which implies that the appropriate number 
of autoregressive lags are included in each. 

3.3. INTERPRETING THE RESULTS 

There are several important points that can be drawn from the Table 4 
comparisons. Our first-stage estimation indicates that October 1987 is an 
outlier since regime 6 contains only that observation. It is an important 
outlier because the results in Table 4 suggest that this one observation 
accounts for a considerable amount of the variation in volatility. For 
example, the ~2 in the regressions that control for this outlier (regressions 
3, 4, and 5) are about twice as high as the others. These results show that 
including an October dummy in the regression will understate the unusual 
behavior in October 1987 and overstate the effect of other Octobers. s 
Second, the equation (3) result shown by regre.~sion 5 fits the data best 
since its ~2 is the highest. The coefficients of the regime dummy variables 
are all significantly positive in this regression, which means that volatility is 
higher whenever market returns deviate from the normal regime in either 
direction. Finally, regressions 2 and 4 indicate that returns and volatility 
are negatively related in linear specifications, which is what some others 
have found. However, regression 5 implies that returns and volatility are 
related nonlinearly. This can be seen by comparing the estimated coeffi- 
cients of /3 and 3" for expected returns and volatility across the six regimes. 

Table 5 summarizes estimates of 13 and 3' from Tables 1 and 4 for the 
six-regime model. It shows that volatility in regime 1 (the regime in which 
mean return is the highest) is higher than in regime 2 and is higher in 
regime 2 than in regime 3 (the normal return regime). Returns and 
volatility are positively related across regimes 1, 2, and 3. On the other 
hand, volatility increases in regimes 4-6 as mean returns fall below 
normal. It is highest in regime 6 where the mean return is lowest. Returns 
and volatility are negatively related across regimes 3, 4, 5, and 6. As shown 

5See, for example, Glosten, Jagannathan, and Runkle [11]. 
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TABLE 5 
The Expected Returns and Volatility in Different Regimes for Six-Regime 

and Four-Lag Markov Switching Model 

Regime Expected Expected Number of 
i returns (/3 i) volatility (yi) months 

1 11.1957 2.3811 15 
2 4.1355 1.1611 117 
3 1.0551 0.7933 99 
4 - 1.7193 1.4419 118 
5 -7.3269 3.1537 20 
6 -21.2665 21.4573 1 

Note: The expected returns are estimates of /3 for the model with six 
regimes in Table 1. The expected volatility are estimates of y for the 
regression 5 in Table 4, where estimate of 3'3 is the constant and other 
estimates are adjusted for this constant term. The numbers in the last 
column are the numbers of months assigned to each regime. 

in Figure 2, these results indicate that  returns and volatility are nonlinearly 
related across the six regimes. 6 Fur the rmore ,  the relationship is asymmet-  
ric. This is seen by compar ing  the es t imated coefficients of  D2, t and D4. t 
as well as those o f  D~,, and Ds, t shown in Table  4. Tests for  the equality 
between these coefficients yield F statistics o f  5.62 and 5.53. Both  are 
significant at 5% level, indicating that  expected volatility is significantly 
higher  when returns are below normal  compared  to when they are above 
normal.  

The  above helps explain why forcing a straight line through the observa-  
tions o f  returns and volatility produces  the negative slope coefficient that  
has puzzled others.  In addition, if s tock returns are best  character ized by a 
regime shift model ,  ignoring the different  return regimes may have con- 
tr ibuted to the observat ion of  Mande lb ro t  [16], F a m a  [8], and F a m a  and 
Roll [9, 10] that the distribution o f  stock returns is fat-tailed. Fur thermore ,  
the asymmetry  we note  is likely related to skewness in the return distribu- 
tion noted by Ardit t i  [1], Blume [3], and Duffee  [6]. 

4. C O N C L U S I O N  

This paper  relates variat ion in the volatility of  stock returns to regime 
shifts in returns.  In particular,  we apply a Markov  switching model  to stock 

6Using different methodology, Pettengill, Sundaram, and Mathur [20] find a similar 
result for the relationship between systematic risk and return in the context of a CAPM 
model. 
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Fig. 2. Expected stock returns and volatility. 

r e tu rns  and  examine  the  var ia t ion  in volat i l i ty  in d i f ferent  r e tu rn  regimes.  
W e  conc lude  tha t  r e tu rns  are  bes t  cha rac t e r i zed  by six reg imes  and tha t  
O c t o b e r  1987 is an ou t l i e r  accoun t ing  for  a large  po r t i on  of  the  var ia t ion  
in volati l i ty.  In  addi t ion ,  ou r  e s t ima tes  a re  cons i s ten t  with a s t rong  con tem-  
p o r a n e o u s  re la t ionsh ip  be tween  re tu rns  and volat i l i ty  across  reg imes  with 
h igher  volat i l i ty  when  r e t u r n s  a re  e i the r  above  o r  be low " n o r m a l . "  Fur -  
t he rmore ,  the  inc rease  in volat i l i ty  is la rger  for  negat ive  devia t ions  in 
re tu rns  than  for  posi t ive  devia t ions .  T h e s e  obse rva t ions  lead  us to con-  
c lude  tha t  r e tu rn  and volat i l i ty  a re  r e l a t ed  non l inea r ly  and  that  the  
re la t ionsh ip  is asymmetr ic .  I f  so, it he lps  expla in  the  weak  inverse  re la t ion-  
ship  tha t  o the r s  have found  when  a s t ra ight  l ine is fo rced  th rough  the data .  
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