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Abstract

This paper provides a complete analysis on the properties of six basic estimators under correlated
random effects models. We examine the relationships of these estimators as in panel data models
and extend the results to models with group variables and cluster data. In our analysis, we
consider the between and within regressions as two fundamental regressions and assume there
are two partial effects of an explanatory variable. Our theoretic results demonstrate some
different discussions and new findings. A noteworthy new finding is that the inference of the

coefficients of group variables can be made directly with the between regression.
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Estimators Under Correlated Random Effects Models with Cluster Data

1. Introduction

Correlated random effects (CRE) models are extensions of the random effects model with
additional group mean variables and other group variables in the regression (Wooldridge, 2010).
One simplified version of CRE models is the well-known Mundlak model (Mundlak, 1978),
where only group mean variables are added to the random effects model. In CRE models, there
are three sets of key parameters: the coefficients of the explanatory variables, group means of the
explanatory variables, and other group variables. To make inferences of these parameters,
several estimators are commonly considered, and their relationships have been examined. For
models with balanced panel data, two examples of the relationship are commonly known: (1)
The pooled ordinary least squares (OLS) estimator of the pooled regression and the random
effects estimator are matrix weighted averages of the between and within estimators (Maddala,
1971), and (2) The generalized least squares (GLS) estimator of the coefficients of the
explanatory variables in the Mundlak model is the same as the within estimator (Mundlak, 1978).
Wooldridge (2019) extended Mundlak’s (1978) result to CRE models with unbalanced panel
data. But his extension is only limited to the equivalence of the GLS estimator of the coefficients
of the explanatory variables and the within estimator. Currently, it is still unknown how the GLS
estimators of group mean variables and other group variables are related to the between and
within estimators of CRE models.

The choice between the fixed effects and random effects estimators has long been a
debate in panel data analysis. Mundlak (1978) used a CRE model with balanced panel data to
unify the fixed effects model and the random effects model. His extension of the random effects
model to CRE models is an important step in understanding the relationship between the two
estimators (Greene, 2018, p. 415; Wooldridge, 2010, p. 286). Furthermore, based on the
Mundlak model and CRE models, an alternative to the Hausman test (Hausman, 1978) can be
derived for determining between the fixed effects and random effects estimators (Baltagi, 2021;
Wooldridge, 2010 & 2019; Greene, 2018). This paper follows Mundlak (1978) and provides a
complete analysis on the properties of six estimators under CRE models with cluster data. The
six estimators are: the between estimator, the within estimator, the pooled OLS estimator, the

random effects estimator, the GLS estimator of CRE models, and the GLS estimator of panel



data regression with group variables (Moulton, 1986, 1990). Our analysis of these estimators
begins and focuses on the between and within regressions derived from CRE models. Based on
these two essential regressions, we use the variances of their random errors and estimators to
analyze the properties of different estimators under CRE models. Then we examine the
relationships of six estimators. Since classical panel data models are similar to restricted CRE
models, our results can be applied to models with balanced and unbalanced panel data.

We consider two types of CRE models. The first type of CRE models is the basic CRE
model where the explanatory variables and their group means are included in the regression. This
basic model with balanced panel data is the specification in Mundlak (1978). The second type of
CRE models extends the basic CRE model with the inclusion of other group variables. The use
of the basic CRE model allows us to reexamine the previous results derived from models with
balanced panel data (Maddala, 1971; Mundlak, 1978). Mundlak’s (1978) main results on the
relationships of different estimators are: the GLS estimator of the coefficients of the explanatory
variables in the basic CRE model is the same as the within estimator, and the GLS estimator of
the coefficients of group mean variables is equal to the difference of the between estimator and
the within estimator. His analysis of the results focused on the single partial effect of an
explanatory variable. For example, his comparison of the mean squared error (MSE) for different
estimators is based on this single partial effect. In his modeling and interpretation, an additional
parameter associated with the group mean of the explanatory variable is added only to reflect the
statistical correlation between the explanatory variable and unobserved group characteristics, and
this correlation is not considered as a partial effect. We, instead, argue that there are two partial
effects of an explanatory variable. The first partial effect is the direct impact of the explanatory
variable, and the second partial effect is the impact of the group mean of the explanatory
variable. Treating the impact of the group mean variable of the explanatory variable as the
second partial effect or as a “structural” parameter is well known in the literature of social
interactions model (Manski, 1993, 2000; Blume, et al. 2015), where the second partial effect is a
measure of network or peer effects. With this different interpretation, we examine the
unbiasedness, efficiency, asymptotic and small sample properties of each estimator. We also
compare our interpretation of minimum mean squared error (MMSE) estimators with those in
Mundlak (1978). Our observations provide a different viewpoint in selecting a better estimator

between the fixed effects estimator and other estimators.



For the extended CRE model, we expand the results on the relationship between two
estimators (Wooldridge, 2019) to the relationships among six estimators. We check if Mundlak’s
main results on the relationships of different estimators continue to hold when other group
variables are included in the model. In addition, we show how the analysis of the extended CRE
model is related to studies in Moulton (1986, 1990), Amemiya (1978), and Donald and Lang
(2007). Moulton (1986, 1990) examined the biased issue of OLS standard errors when group
variables are included in panel data models. Using a random coefficients model, Amemiya
(1978) showed that the coefficients of group variables in a restricted CRE model can be
estimated by a two-step procedure. Donald and Lang (2007) used this two-step procedure to
address the degrees of freedom issue in inference with panel data models when the number of
groups is small. Their study challenged some conclusions and policy implications derived from
inference with difference-in-differences models. Using our result on the coefficients of group
variables, we revisit Moulton’s concern, and the two-step procedure and its implications.

The rest paper is organized as follows. Section 2 reviews basic data matrices for cluster
data. Section 3 focuses on the basic CRE model with cluster data. We derive the properties of
between and within estimators and examine how the GLS estimator of the basic CRE model, the
pooled OLS estimator, and random effects estimator are related to the between and within
estimators under the basic CRE model. Then, we compare these five estimators in terms of bias,
efficiency, and MSE. We also address the issues in choosing between the fixed effects/within
estimator and other estimators. In Section 4, we extend the basic CRE model in Section 3 with
additional group variables. In addition to the five estimators under the basic CRE model, we
consider an additional estimator: the GLS estimator of the Moulton model (Moulton, 1986,
1990). We show the relationships among six different estimators and discuss the implications

with additional group variables. The last section concludes our results and observations.

2. Review of Basic Data Matrices for CRE Models with Cluster Data

Consider regressions with cluster data. Suppose there are n groups and the g group
contains my individuals, g = 1,2, ---,n. The variables for the regression include y, x and z,
where y is a scalar dependent variable, x represents k explanatory variables observable at both
group and individual levels, and z represents [ explanatory group variables observable only at the

group level. Both x and z are exogenous variables in the model. With these variables, we



consider two types of CRE models. The CRE1 model includes x and their group means; the
CRE2 model extends the CRE1 model to include group variables z. The CRE1 model with
balanced panel data is the model used in Mundlak (1978). Instead of using the term “the
Mundlak model,” we use “the CRE1 model” for convenience and for the generalized Mundlak
model with cluster data. The two models are

CREL: yg; = x4 + X5y + ag + &g (1)

CRE2: yg; = xgif + X5y + 24§ + ag + &4 (2)
where  and y are k X 1 parameter vectors and ¢ is an [ X 1 parameter vector. Both @, and &4,
are unobserved random errors and we denote ug; = a4 + £;; as the composite random error. The
subscript gi is the index for the ith individual in the gth group, where g = 1,2,---,nand i =
1,2,---,my. In Equations (1) and (2), y,; is a scalar value of y, x,; is a 1 X k row vector of k
explanatory variables, and z; is a 1 X [ row vector of explanatory variables observable only at
the group level. The row vector of group mean variables of x is X; = 1/mg Y;; x4;. This model
representation with cluster data is similar to models for panel data with g as the index for the
cross-sectional domain and i as the index for the time domain. The CRE1 model with y = 0 for
panel data is the random effects model. For balanced panel data, my; = m forall g and m is a
constant.

Before we examine the properties of different estimators under CRE1 and CRE2 models,
this section reviews basic data matrices for analysis. These matrices for balanced panel data are
introduced in Maddala (1978) and most econometrics textbooks (i.e., Hsiao, 2014, pp. 41 - 43;
Baltagi, 2021, pp. 15 — 28; Greene, 2018, p. 391, 404 — 408). Here, we construct data matrices
for cluster data. The data matrices are constructed by stacking the data of individuals in the same

group together like panel data. For example, the data matrix of xg; is

Xl xgl
Xg2

X = X:Z ~N><k,witth= g ~mg><k,g:1,2,---n
Xn xgmg

where N is the total number of data values, i.e., N = ). g Mgy. Based on the data matrix X, we

introduce the cross-product matrices Ty, Byy, and Wy for the total, between, and within

variations of x, respectively. Let I be an N-dimensional identity matrix and em, beanmg X 1



column vector of ones. We follow Mundlak (1978) to define the following two basic matrix

operators, | and M.

T, 0 0

=0 [ 0+ _ 1 , _

]_ 2 ,]g m_gemgemg;g - 1;2r ;n
0 O In

M=I1-]

Both J and M are symmetric and idempotent matrices, and they satisfy

J'=1]]=]M =MMM=MJM=M]=0
The operator J is used to define group mean variables and M is used to define variables deviated
from their group means. Denote Ty as the cross-product of xg; for the total variation:

Txx = X'X = Lg=1XgXy = Lg XiXgiXgi

For the between variation, we introduce two different data matrices for group mean variables X,:

X1
X = 92.2 ~n Xk
Xn
X, Xg
X=J]X = }_(_2 ~N x k,with X, = g ~myg xk,g=12-,n

Xn Xg
The row elements of X, 4 are the same; X and X have different row dimensions. These two data
matrices give two different cross-product matrices of X, for the between variation:
byx = ¥'% = Y01 X%,
Byx = X'X = XX = X'JX = X'JX = S0, my %)%,
For balanced panel data, m; = m for all g. Then Byy = mbyy.

The deviation of x,; from its group mean X, is defined as X;; = x4; — X5. The data

matrix of X; is

Xl Xl Xl
5 _ _ . Ll_[X X o 5
X=MX=X-X;or '2 =l " |- .2 ,with Xy = X, —X;,9g =12-n
) \x/ \x,

Then the cross-product of X; for the within variation is



Wiy = X'% = X'MX = 53, X%y = 5 8%y

UsingM =1 —],
XMX=X'(I-DX=X'X-X']X
Rearranging the terms in the equation, it gives the following relationship among Ty, Wxyx and
Byx.
Txx = Wxx + Bxx = Wxx + Xg=1myXgX,
For balanced panel data, Tyy = Wxy + mbyy.

The cross-product matrices with y and the decomposition of total variation of y can be

constructed and derived similarly. Denote y, = 1/mg ¥.; y,; and Jg; = v, — ¥4 We define data

matrices: Y, ¥, ¥ and ¥, which have the same data structure as X, ¥, X, and X, respectively.
Then, Y = JY,Y = MY, Tyy = Wyy + Byy and Tyy = Wyy + Byy. More specifically, Y'Y =
P77 =07+ 50 my35, and X'Y = X7 + X7 = X7 + X0, my%.3,.

The above introduced data matrices are similar to those in panel data analysis. However,
we note two things. First, the individuals are not repeatedly observed in different groups in
cluster samples. For panel data, the same individuals are observed in different time periods. This
difference cannot be specified and addressed with above data matrices. Second, it is common to
use balanced data for panel data analysis. For cluster data, it is common that sample size for each
group varies across different groups. In the following sections, the data matrices are assumed to

be for cluster data. These matrices can be applied to both balanced and unbalanced panel data.

3. The CRE1 Model with Cluster Data

We focus on the CRE1 model in this section. Mundlak (1978) provided an important
analysis on the properties of the GLS estimator and other estimators under the CRE1 model with
balanced panel data. The analysis in this section follows Mundalk’s (1978). We generalize his
analysis to cluster data, which can be applied to unbalanced panel data. In addition to the
generalization, we adopt some different interpretations. One major difference is that we consider
there are two partial effects of an explanatory variable x. One is the direct effect § and the other
is the effect from its group mean, y. Because of these two partial effects, there are two
fundamental regressions to consider: the between and within regressions. We begin our analysis

with these two regressions and explain why they are fundamental to analyze different estimators.
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3.1 The CRE1 Model: Three Main Regressions and the Variances of Their Random Errors

For the CRE1 model in Equation (1), we consider three main regressions and examine the
variances of their random errors. The three main regressions are Equation (1) and the between
and within regressions. Here, the fundamental assumption is that the between and within
regressions are derived from Equation (1). Hence, our analysis begins with the relationship
among these three regressions. Taking the average of the data in each group in Equation (1), it
gives the between regression:

Tg = ZgBs +1, (3)
where g = B + v, Uy = ag + &, and & = 1/mg ¥, £;. Subtracting Equation (3) from
Equation (1), it gives the within regression:

Vgi = XgiB + &g 4)
where &;; = £5; — ;. Note that the between and within regressions have different parameters
such that Sz # f when y # 0. Traditional analysis of partial effects of x focuses only on £5.
However, we consider y as the second partial effect of x caused by group means of x. The
recognition of the two partial effects § and y is important when we compare different estimators.

The variance of the random errors in these three main regressions are essential to the
properties of different estimators of the key parameters f and y. We assume that the two basic
unobserved random errors gg; and @y have zero means and constant variances. Also, random
errors for different individuals and groups are uncorrelated. We have

E(eZ) = 0% E(az) = o2 (5)

E(sgiagr) = 0 forany g, g’,and i;

E(agag/) =0,forg # g’;E(sgiegj) =0,fori #j (6)

Then the variance and covariance of the composite random errors ugy; = @y + £4; of Equation (1)

are
E(ugiugj) = o2 fori #j (7)
E(u};) = 0% + o (8)
E(ug;uy;) =0forg # g' )

Write Equation (1) in data matrix form as



Y=XB+Xy+u (10)

where
uq ugl
U, . Ug2
u=| . |, withu, = : ,g=12,-,n
un ugmg

From Equations (7) — (9), the covariance of u is a block diagonal matrix:

Q 0 -« 0
Q=FE@u) = (_) Q_Z 0_'" = diag(Qy, Qy, -+, Qy),
0 0 - Q
02+ a2 oF
with O, = % o5 +0¢ = 08Iy, + 0F emyem, = 0ln, +mgog J,,
g=1L12,--n (11)

where Img is an my-dimensional identity matrix. We write () as
Q=02+ Dma(%]_ (12)

where D, ;2 is a diagonal matrix with block feature:

— ; 2 2 2
Doz = diag(my02Ly,, my0iLy,, -, my0ily, )

Note that any matrix denoted as D, in this paper is a diagonal matrix with a specific form. The

diagonal elements form in blocks with the form of ¢, Img, where ¢ is a constant on diagonals; the

constant ¢, may vary from one block to another block. Also, D, satisfies D, J =JD. =]D.J. When

the covariance matrix of random errors is not equal to cI, where c is a constant, the inverse of the

covariance matrix of random errors is usually used for the GLS estimator. Using the inverse of a

partition matrix, the inverse of (1, is (Graybill, 1983, p. 189)

-1
-1 _ 2 2 !
Q" = (Ue Img O« emgemg)

= Mol + T1gemyem, = Tolm, + Mgmg]g (13)
where
1 —-05
/%) :a—g, Tl.'lg :W,g: 1,2,"',7’1 (14)

Then



Ot =m,l + Dm,Tl]_ (15)

with Dy, = diag(mymty1Ly,, MaTiohy,, -+, Mpyy Iy, ). For balanced panel data, m; = m and

2

Mg =M = Ug((;z;:‘;n%z) are constants for all g. Then
Q! =m0 + mmy] (16)

This specification is given in Mundlak (1978).
For the between and within regressions, we derive the variances of their random errors
based on the assumptions on the random errors of the CRE1 model. The variance and covariance

of the random errors #, of the between regression in Equation (3) are

E(T,t,) = Ul‘%g'arfg =0 + ;_i (17)

E(ugu,) =0,forg # g’ (18)
The matrix form of Equation (3) with ¥ and X is

y =xfp+u (19)
where & = (U4, Uy, **+, Uy, )". The covariance matrix of the random error u is

Oy = E(@') = d,z2,d,2 = diag (o3, 0%, , 0%, (20)
This shows that % is heteroscedastic. Then the inverse of ()3 is

Qzl = da%—l = diag (01%1_1, GL—ZLZ_l, ---,0§n_1) (21)

Because the data matrix X instead of % is involved in the matrix form of the CRE1 model
in Equation (10), we consider the matrix form of the between regression in Equation (3) with Y
and X as follows.

Y=XBg+U (22)
where U = (iiye;, L Uzem,, , Uyey ). From Equations (17) and (18), the covariance matrix of
the random errors U is

Qp = E(UU) = diag(Qg,, Qg,, -, 07, (23)

g g

2

withQp =| 02 += ¢2+% = (02 +%)e, e, =m 02 J.,9=12,n
Ug 7| 7% "my % my S \® T my) Mg Mg 9%uglg g = L4

2 2
g g
/a§+—8 of +—+=

I

11



Qg = Dypo2] (24)
with D2 = diag(my03, Im,, M203, I, "+, My 0, I;n,,). Since the rank of Qg is 1, the rank of
Qg is n. Qg is not full rank and is singular. Q7" does not exist. However, we can define the

inverse of 7 as

Q' = D(ma%)_l J (25)

with D 1 = diag ((myo2 ) 'L, (mya2 ) 'L, (my02 ) I, ). Using the formulas
(mo2) g(( 1 u1) my 207, m, n0i, - g

of m; and m, in Equation (14), it gives

-mgog -0}

mgmig = o2(a? +mg‘7a) 0_2<0_2+U_%:) (26)
a mg
1 —0& N AN 2\71
Ty + mymtyg = oz +——= - oz + mg) (mgaﬁ) (27)

Then 951 can be rewritten as
951 = D7T2+m11'1]_ (28)
with Dy mr, = diag ((n2 + mymy1) Ly, (T + Mamy3) Ly, -, (3 + mnnln)lmn). This

alternative form of Q" is useful when examining different estimators under the CRE1 model.

2
For balanced panel data, my, = m, m;, = 7y, and al%g =02 =02+ % are constants. Then
Qy =02l and Q71 = 6271 (29)
Qg = moZ] and Q7' = (mo2)~Y = (m, + mmy)] (30)

Equation (29) shows the random errors i, in & are homoscedastic and serial uncorrelated.

However, the random errors %, in U are still serial correlated due to the repetition of U, in the
same group of U.

For the within regression in Equation (4), the variance and covariance of &; are

2
E(&:) = 02 — - (31)
2
E(,8,;) = —;—‘;,i * j (32)
E(8,6,;)=0,g#g (33)

The matrix form of the within regression is

12



where
51 ggl ggl - Sg
g, & E,9 — &,
~ 2 . ~ g2 _ g2 g _ — _
§=| 7 |, with &y = . = . =&~ €lmy g = 1,2,
€n Egmy Egmg ~ &g

From Equations (31) — (33), the covariance matrix of £ is

O = E(€8") = diag(Qz,, Qz,, -, Qz, ),

2 O¢ O¢
O ~ L. T m,
g g
2 2
. o¢ 2 o¢ 2 1 ’ 2
with Qx = -— - — =02l — e =0, —
Eg mg mg & mg mg mg mg & mg

Or,
O =0 —]) =M

(34)

(35)

(36)

The rank of Qz and M is N — n. M is singular and Qz* does not exist. Also, Qgg reflects that €

is heteroscedastic and serial correlated. However, we can define the inverse of () as

Ol=062"'M =m,M

It is still a singular matrix with a rank of N — n.

After we introduce the covariance matrices of the random errors of the three main

(37)

regressions, we check the relationship of these covariance matrices. Without using the above

derived covariance matrices, a simple way to check the relationship is to rewrite the composite

random errors U, in Equation (10) as

ug=ug—Ug+Ug=§g+Ug

(38)

Denote C(égi, ﬂg) as the covariance of €j; and uy. Then C(égl-,ﬁg) =FE ((egi - s_g)(ag +

e_g)) =F ((egi - e_g)(s_g)) = 0; the random errors of the within and between regressions are

uncorrelated. Hence, the variance of u in Equation (38) is

V(ug) = V(gg) +V(Uy)

(39)
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The variance of the random errors of the CRE1 model is the sum of the variances of the random
errors of the within and between regressions. This relationship can be verified with Equations
(11), (35), and (23), the covariance matrices £, Qgg, and QL—,g, respectively, as follows.

Qg = Qz, + Qg and @ = Qz + Qp (40)
The definitions of the inverses of {1z and Qg in Equations (37) and (28), respectively, give

Q' =l — ]

0" =] + Do J
Using Q71 in Equation (15) and the above equations, it shows

Q=01+ 05 (41)
Note that, instead of &, U is involved to derive Equations (39) — (41). This shows the need for the
between regression Y = X + U in describing the relationship among the three main regressions.

Now we discuss the properties of the four covariance matrices of random errors when

my — oo. Comparing these covariance matrices, the elements of () in Equation (11) does not
contain mg while other three matrices Qy, Qg and {; in Equations (20), (23), and (35),
respectively, involve m;. When mg — oo, both Q5 and Q; become diagonal matrices, and
random errors i, and €y; are homoscedastic and uncorrelated. But (2 and Qy are still

nondiagonal with serial correlated random errors. () stays nondiagonal since 17 is nondiagonal.

We note two issues with the inverse of these two nondiagonal matrices when my — co. The first
issue is related to Q7. When mgy = ©, 11, = 0 in Equation (14) and mym,, = —m, in Equation
(26). Consider the first part of Equation (13) for Q;l. Given 4 = 0,

0t = Talny + T1g€m,€m, = Malmg and Ol =m,l (42)
If Q™' = m,1I, then Q = ¢ZI. This is inconsistent with that  is nondiagonal and ug; are serial
correlated. Consider the second part of Equation (13) for Q;]l. Given mym, 4, = —T,,

Ot = oI, + MMy gfy = Malmg — ToJ 5 and Q71 = m,M (43)
The rank of Q™1 becomes N — n and is nonsingular. This is inconsistent with that Q and Q™1 are
nonsingular.

The second issue is related to 951. When m; — oo, 951 = D(mo_z)—lj_ = 0 in Equation
u

(25). It appears that the definition of 951 is problematic. These two issues are related to J in Q71

14



and QF". These issues will be explained and resolved when we discuss Q™! and Q7" in the GLS
estimation of the CRE1 model and the between regression.

We also need to pay special attention to the estimation of the variances of the random
errors when my — oo. Since 02 and 02 in the covariance matrices (0, Q, and Q; are unknown,
the estimation of these two parameters involves the use of regression residuals and sample sizes

m, and n. When we consider asymptotic properties of the estimators of 62 and o2, we should

g

separate m, — o from n — 0. The estimators of 7 and Q; become simple when my — o
since these covariance matrices are diagonal when my — co. In using consistent estimators, we
conveniently simplify heteroscedasticity and serial correlation issues by assuming my — co.
However, the inference of these estimators is more complicated when m; is finite. We will
address this issue when we discuss the estimation of (), {13, and Q3 in the next subsection.

We conclude this subsection with two observations. First, the serial correlations of ug; in
the CRE1 model, #, in the between regression Y = XBz + U, and €;; in the within regression
are caused by the repetition of the random errors @, and &4; in the same group, even though each
of these two key random errors are assumed to be uncorrelated, such that E (ag agr) =
E (egiegr j) = 0 for g # g'. The use of GLS estimation for CRE models is necessary, mainly

because of the repetition of &4; and @ in the same group. This implies that the GLS estimation

of CRE models can be replaced by the between and within estimations. Second, the above
analysis of random errors of the three main regressions under the CRE1 model can be applied to
the CRE2 model and classic panel models. The properties and fundamental structures of random

errors of the three main regressions are useful and important for panel data analysis as well.

3.2. The CRE1 Model: Five Different Estimators and Their Mean and Variances

Based on the above analysis of the between and within regressions and the random errors
of the three main regressions, we discuss five different estimators in estimating the parameters of
the CRE1 model in this subsection. We begin with two essential estimators: the between
estimator Sz and the within estimator f,,. Then we examine the rest three estimators — the GLS

estimator of the CRE1 model, the pooled OLS estimator of the pooled regression, By, and the

15



random effects estimator Brz. We show how these three estimators are related to the two

essential estimators under the CRE1 model.

3.2.1 The Between and Within Estimators

The between and within estimators are the two essential estimators in panel data analysis.
These estimators are derived from the between and within regressions. Two different matrix
forms of the between regression, Equations (19) and (22), give two forms of between estimators.
The OLS estimator of Sz in ¥y = xfp + u is denoted as 3310,1 and it is given as

Bgio, = (X'%)'x'y (44)
Substituting y = xfp + u into [?Blon, the mean and the variance of ﬁBlOn are

E(ﬁswn) =Bg=B+Y

V(Bsio,) = (F'D)'E'd 2 %(X'0) 7
Since x is exogenous, such that E(egi |x) = E(ag |x) =0, [?Blon is an unbiased estimator of 5.

Because of heteroscedasticity of i, ﬁABlOn is not an efficient estimator. Given Q3' = d (02)">
u

the efficient estimator of S5 is the GLS estimator or the weighted least squared estimator:

A 1
Bsig, = FOF' DX = (Fd %) Xd 7 (45)

Substituting ¥y = xfp + u into the above equation, the mean and variance of .[?an are
E (BABlGn) = Bs
2] —r0-1.\—1 =1 N\t
V(Bpig,) = (X' Q7 %)~ = (x da%—lx)
For the unbiasedness of [?Blan, we assume x is exogenous and the group size m, is uncorrelated
with x (Green, 2018, p. 305). It gives E(()?'lef)_lf’ﬂglﬁg) = 0 and E(ﬁBlGn) = fp.
With the data of group mean variables y, and X, it seems that there is no need to

consider the between regression Y = X5 + U empirically. However, the estimator of fz in Y =
XBg + U is involved with other estimators under the CRE1 model. The OLS estimator of 5 in
Y =Xpg +Uis

vIv\-1v/v —r = \"1 =1 =
Brioy = X'X)7IX'Y = (ngxgxg) YmyXy, (46)
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When my, my, -+, and m,, are not the same, i.e., my # mgy for some g # g, the between
estimators for two forms of between regressions are different, i.€., Bg10,, # Bp1o,- Since ug in U

are heteroscedastic and serial correlated as shown by QF = Dma% T, Bs1o v 1s not efficient.

Although Qg is singular, we apply 051 =D ( -1] to define the GLS estimator of Sz in ¥ =

mo2)
XBg + U as:

A = 1o v-lo) 15

Boicy = (X'Q7'X) X'037'Y (47)
We show the matrix equivalence of X'Q7'X = x'Qz'x as follows.

-1
vin-ly — y/ TY — 2 vy -1,.2 1 1B
X0 =X'D, oJK =5, (mgod))  XpXy = ymyoZ, ' my%y%,
= Y,02, %%, = ¥ 07'% (48)
Similarly, X' Q7'Y = %'Q3'y. Hence, Bp16, = Bsig,- This implies that the GLS estimators for

two different matrix forms of the between regression are the same. We denote S5 = Beic, =

Bs1cy as the GLS estimator of the between regression for the CRE1 model. We have

Beic = (X' Q7'0) 1% 07y (49)
E(BBlG) = Pg (50)
V(Beie) = (' Q7*%) 71 (51)

Bg1c is an MMSE estimator of Bg. It is important to consider the GLS between estimator when
cluster data is used.

In the previous subsection, we noted the issue with the definition of 951 =D (mo2)™ ],
u

where Q7" = 0 when m; — co. The above use of Q5" in the GLS between estimator shows that
this is not an issue. In the two matrix equivalences of X'Q;'X and X'Q7'¥, the term m* in Q7'
cancels out with the m, generated from the conversion from XXt} g MgXgXy or from X'JY
to Y. MyXgY, as shown in Equation (48). Hence, m, — oo has no impact in applying Ql_—,l to the
GLS between estimator, except that al%g_l - 62~ " when my — oo.

For balanced panel data, m; = m for all g. The GLS between estimator is the same as
the OLS between estimator, i.e., 3310,1 = 3310,\, = f1c. Then 3310,1 is an unbiased and efficient

estimator of fz. We consider asymptotic properties of the variance of the between estimator

when m — oo and n — oo. The variance of the between estimator for balanced panel data is
17



A — =\ — 02 —7 =\ —
V(Bsi0,) = 2@ D = (02 +Z) (@D
When m — o, Var(Bp10,) = 02(x'%) 1. To consider n — oo, we rewrite the variance of 0,
as

_rn—1
O X X

V(,éBlOn) = 7% (_)

n
oZ . . _ x'x . . _
where —* is the variance of the sample mean of i, and — is the covariance of X. It shows that
n n

the variance of the OLS between estimator is the noise-to-signal ratio of regressing y on X,
where the noise is determined by o2 and the signal is from Xg4. The larger the noise, the larger the
22

. 5 . . . .. . ~ 1 S
variance of By, . Since the noise o2 is unknown, it is usually estimated by 62 = EZug,

A . . L _ x'x .
where U, is the residual term from the between regression y = Xfp + 4. Whenn — oo, —is

assumed to converge to a positive definite matrix and the Central Limit Theory (CLT) is applied

to the inference of S5 with ,5’310,1- For small samples, the inference of Sz depends on the sample

sizes m and n. When m is small, 62 = o2 + %g is affected by 62 more than the case when m is
large. The number of the degrees of freedom in inference of Sz is n — k and it is not related to
m; the CLT cannot be applied even if m — oo.

For the within regression ¥ = X + &, the OLS within estimator is

B = (XXX (52)
Substituting ¥ = XB + & into By, and using E (§¢") = 62M, the mean and variance of the within
estimator 3, are:

E(By) =B (53)

v(B,) = (') 'RE@EHX (X%)

= o2(X'%) X' MX (X'R)
= o2(X'%) (54)

Similar to the issue with Qg in analyzing the between regression Y = X + U, Q; is singular
and &j; are heteroscedastic and serial correlated. However, the variance of By shows that B, is

an efficient estimator of § despite heteroscedasticity and serial correlation of €. It is interesting to

2
examine the elements of .Q.gg in Equation (35). The term — :l—g is observed in all elements of Qgg.
g
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It seems that the negative correlation between &;; and &;; within the same group g, i.e.,
2
E (égiég j) = — 2 i # j, causes serial correlation issue. In fact, this negative correlation is
Mg

important since it ensures the existence of the M matrix in () and then ensures S, to be an
efficient estimator. Hence, 8 is an MMSE estimator of 8 for balanced and unbalanced panel

data, and for any finite or infinite values of m,,.
For asymptotic properties of the variance of f3,,, we consider mgy — o and n — oo,
Rewrite the variance of By as

V(,éw) = %2 (X,:,X)

-1

o? . . X'%. . = .
where 7‘2 is the variance of the sample mean of &g; and — s the covariance of X. This form of

variance is similar to that of the variance of the between estimator. The variance of the within

estimator is the noise-to-signal ratio of the within regression, where the noise is determined by

02 and the signal is from Xgi. The larger the noise, the larger the variance of By . The unknown

1

—n—

02 is estimated by 62 = ~——&'é, where & = Y — X (Greene, 2018, p. 395). When m,, —
oo, () is diagonal and the serial correlation issue disappears (Wooldridge, 2010, p. 305). If either

mg — o orn — oo, then N — oo and the CLT is applied to the inference of g with By Small

sample inferences of 8 with S, are applied only when both my and n are small, and the number

of the degrees of freedomis N —n — k.

We show that the covariance of the GLS between estimator and the within estimator is
zero, i.e., C(Bp1c, Pw) = 0. Using fpic = B + (F'Q710) 1%’ Q7 W and By, = B +
()?’)?)_1)?’5, the covariance of Bz, and By, is

2] ) -1\ -1=/a—-1-z P T o)L
C(:BBlG':BW) =E ((x Qalx) 1% Qﬂlus X(X X) )
= (T07'%) ' %'d_~E@)X(X'E) " =0 (55)

since E (Uy€,) = C (ﬁg, e“gi) = 0 as shown in Equation (39).

We summarize three conclusions about the two essential estimators. First, the between
and within estimators are unbiased estimators of two different parameters when y # 0. Both

GLS between estimator and within estimator are efficient estimators. Hence, these are two

different MMSE estimators. Second, each between and within estimator has its own noise-to-
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signal ratio. Third, the between and within estimators have different numbers of degrees of
freedom in small sample inferences. These differences in noise-to-signal ratios and degrees of
freedom affect the properties of the three remaining estimators under the CRE1 model since

these three estimators are related to the between and within estimators.

3.2.2 The GLS Estimator of the CRE1 Model

After introducing the two essential estimators — the between and within estimators — we
show how other estimators are related to these two estimators. We begin with the GLS estimator
of the CRE1 model. The relationship between this GLS estimator and (BBlOna By) has been
derived for balanced panel data in Mundlak (1978). This paper focuses on the relationship when
cluster data is used. The GLS estimator of (,y) in the CRE1 model Y = XB + Xy + u is
denoted as (:éCl' )761), and

,éc1) < X"\ ot - >_ X"\ 5-1

~1=1l% )X X =, ) QY (56
<YC1 ( X ) (X ) )
We show the following theorem for the relationship between this GLS estimator and two

essential estimators £, and Bz, of Equations (52) and (49), respectively.

Theorem 1. Let (ﬁa, ]751) be the GLS estimator of the parameters in the CRE1 model, and S,
and Sz, be the within estimator and the GLS between estimator of the CRE1 model,

respectively. Then

ﬁCl = ﬁw and ¥¢q = ﬁma - ﬁw (57)

Mundlak (1978) proved the above equalities for the CRE1 model with balanced panel
data using the inverse of a partition matrix while the proof by Baltagi (2006) used system
estimation with the between and within regressions. Chamberlian (1980, p. 234) and Wooldridge
(2019) proved the first equality B, = By using the Frisch-Waugh theorem (Frisch and Waugh,
1933); both Abrevaya (2013) and Wooldridge (2019) considered the equivalence of f; = Bu
for models with unbalanced panel data. We introduce an extended Frisch-Waugh theorem to
prove Bc; = By in Appendix A. The standard Frisch-Waugh theorem is for models with the

OLS estimator; the extended theorem we developed is for the GLS estimator as in the case of the
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CREI model. However, neither the standard nor extended Frisch-Waugh theorem can be used to
prove the second equality in Theorem 1. Using the typical process to solve a system of equations
and some matrix equivalences, such as Equation (48), the proof of both equalities is provided in
Appendix B.

The theorem shows that the numerical solutions of B¢, and 7, can be derived from the
between and within regressions, without estimating the CRE1 model. 7, is the estimator of the
partial effect of X,. The equation y¢; = Bric — Bw shows that this partial effect is equal to the
difference between the GLS between estimator and the within estimator.

We discuss a possible issue with the use 71 in the GLS estimator when mg — oo. In the
previous subsection, we showed that Q™1 = 7,1 or Q™! = m,M (Equations (42) and (43)) when
mg — 0. These results on Q™1 are inconsistent with the property of ( since the components of
do not include m, and the inverse of () should not be affected by m,. These inconsistent results
affect the use of the GLS estimator. If Q™! = 7,1, then there is no need to consider the GLS
estimator of the CRE1 model when my — co. This issue and puzzle can be solved since O 1is
always used with other data matrices in the GLS estimator. For example, consider X'Q 71X in
Equation (56). Using Q™" = m,1 + Dy, J, we show X'Q71X = m,X'X + x'Qz' % for any my,
even if my — oo (Equation (B.6) in Appendix B). This matrix equivalence includes two terms:
m,X'X = V(,BAW)_1 and X' Qzlx = V(BBlG)_l. Both terms are positive definite matrices, and
X'Q~1X do not converge to m,X'X nor m,X'X when mg — . Appendix B shows the same
results for other matrix equivalences of matrices with Q™' when m; — co. The discussion of this
issue with Q" is similar to the discussion of Q5" in XQ5'X in Equation (48), where m;* in Q7'
is cancelling with m, from XX, = mgyx'%. Hence, the use of Q™' = 1,/ + Dy, J in the GLS
estimator of the CRE1 model is still valid when mg — co. It is inappropriate to reduce Q1 into
QO l=m,]orQ! = 1,M when m - oo,

Based on the means, variances, and covariance of Bz, and By, (Equations (50), (51),
(53), (54), and (55), the means, variances, and covariance of S, and 7, are

E (ém) =p

E@c) =B —B=v

V(Ber) = V(Bw) = c2(X'X)"
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~ %) %) —rn—1=\— AN
V(ier) = V(Bsic) +V(Bw) = (&' Q7' 0 + 0Z(X'X)
A ~ ~ =5 -1
C(,Bcp)/m) = —V(,BW) = —Uez(X X)
With these variances, the inference of § and y can be made without the estimation of () and the

CRE1 model.

The above results can be applied to balanced panel data. For balanced panel data,
ﬁmon = Bp1c. Then we have 7., = ﬁBlOn — By, which is the result in in Mundlak (1987). To

check asymptotic and small sample properties of the GLS estimator, we rewrite the variances of

Pc1 and V¢4 as

V(e =5 (5)

V(i) = % (ﬂ) ' + o (ﬁ)

n n N N

-1

-1

The variance of B, is the same as the variance of the within estimator and it is related to the
noise-to-signal ratio of the within regression; the variance of ¥, is the sum of the variances of
the between and within estimators and it is related to the noise-to-signal ratios of the between
and within regressions. In a large sample inference of B and ¥ with ¢, and ¢, the CLT can be
applied. However, we need to separate my — oo from n — oo in applying the CLT. When n —
oo, the CLT can be applied to both the between and within estimators, and therefore the CLT can
be applied to the inference of § and y. When m; — o and n is finite, the inference is complicate
since the CLT cannot be applied to the between estimator.

In a small sample inference of f and y when both m and n are finite, the issue of
determining an appropriate number of degrees of freedom occurs. The number of degrees of
freedom in inference of B in the between regression is n — k, and it is N — n — k in inference
of £ in the within regression. The standard procedure in inference of all parameters in the CREI
model is to use the same number of degrees of freedom N — n — k. This can be incorrect in
estimating y since the variance of 7 is the sum of the variances of the between and within
estimators. With C (.éBlG: ,éw) = 0, a solution is to use the Welch—Satterthwaite equation to
determine the number of degrees of freedom in estimating y, which is similar to the inference of

the difference between two population means with independent samples.
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3.2.3 The Pooled OLS and Random Effects Estimators Under the CRE1 Model

Next, we examine the pooled OLS estimator 3, ¢ and the random effects estimator fSz.
It has been showed that ;¢ and Sy are matrix weighted averages of the between and within
estimators. While Maddala’s (1971) analysis is based on classical panel data models without
group mean variables and Mundlak (1978) extended the analysis to the CRE1 model with
balanced panel data, we demonstrate the relationships of these two estimators with the between
and within estimators under the CRE1 model with cluster data.

Consider the pooled regression Y = Xf + u*, where u* is the random error term with
elements of uy;. The pooled OLS estimator of f in this regression is

Bors = X'X)T'X'Y (58)
Using X'Y = X'V + X'Y, the decomposition of the pooled OLS estimator S, is (Maddala,
1971; Mundlak, 1978)

Bors = X' X)X Xy + (X'X)_l)?')?ﬁmo,v
Define A s = (X'X)71X'X. Then I — Ay, = (X'X)"1X'X and

Bois = AorsBrioy + U — Aors)Bw

= By + AOLS(,@BloN - ﬁw) (59)

The first equality shows that the pooled OLS estimator is a matrix weighed average of the
between and within estimators; A, s is the weighting matrix for the pooled OLS estimator. When
the between variation is relatively larger than the within variation (X'X > X'X), more weight is
on the between estimator; otherwise, more weight is on the within estimator. Under the CRE1
model, substituting Y = X8 + Xy + u into s, the mean and the variance of the OLS estimator
BOLS arc

E(Bos) = B + Aorsy

V(Bors) = X' X)) X'E@w)X(X'X)™?

=X'X)"X'ax(x'x)t

This shows that ¢ is an unbiased estimator of 8 + A,.sy. However, it is not an efficient

estimator. Using ) = Qz + Q5 = o.M + Dmaé ] from Equations (24), (36), and (40), we have
X'0X = X' (0.M + D, ,2]) X

= ZX'X +X'D 2 2% (60)
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The variance of B, can be written as
V(Bos) = X' X)7 (G2X'% + %'D,p2,2%) (X'X)
To consider the asymptotic properties of the variance, we rewrite the variance as
—/ —
A x'x\ Y o2x'%  *Pm2s2%\ /x'x
V('BOLS):(T) (WN-F NT (N)
- () )™ ) e 'y
N N N \N N N? N

This form is complex. It can be simplified for balanced panel data. For balanced panel data,

-1

-1

using BBlOn = Pg1c and 3310,1 — Bw = ¥¢1, Equation (59) becomes

Bors = Bw + AorsPe (61)
This is the result in Mundlak (1978), which can only be specified under the CRE1 model. The
variance of fy is simplified as

V(Bors) = X' X)"Y(a2X'X + m?a2x'%)(X'X) ™
Using N = n - m, rewrite the variance of o5 as

N N N n n N
R CORRCORE R

This shows that the signal x; is affected by the noises from &g; and u,. Hence, there are two

-1

-1 , -1 -1

! ! 2 AR I
noise-to-signal ratios: (ﬁ) % and (ﬁ) %4 which are weighted by XX (ﬁ) and
N N N n N \N
/ -1 ol ] -1
xn—x (XNX) = XNX (XNX) , respectively. These weighting matrices correspond to the ratios of the

within and between variations to the total variation of x. Note that the weighting matrix Ay
does not include any noise-to-signal ratios.

The random effects estimator S is the GLS estimator of 8 in the regression Y = XS +
u*, and

Bre = (X'Q71 X)X (62)
where Q, = E(u*u*’) is the covariance matrix of the random errors u;l-. Note that u* # u and
Q, # Q. If the CREI model is the true model, the random effects model is the restricted CREI

model without including group mean variables X,;. This implies that omitted variables X should
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be included in u;i. For the random effects model, there is no fixed effects, and we can assume
that X, is a row vector of random variables with a mean vector of pz and a variance matrix of
*

_ . . . _ =
V(xg). To ensure that the random errors ug; have a zero mean, we can write ug; as ug; = X5y —

ey + ug; given that the CRE1 model is the true model. Then the variance and covariance of uy;

are
E(uju; ;) =v'V(Zg)y + 02 = of_fori #j (63)
E(u;iugi) = y’V(fg)y + o0 +0f =04 +07 (64)
E(u;]iu;,j) =0forg+g' (65)

For the last equation, we assume that E (fgfgr) =0, for g # g',i.e., X, is selected from random
sampling. Since agr > g2, the covariance matrix of Ug; in the random effect models is different
from the covariance matrix of ug; in the CRE1 model. Hence, €, derived from Equations (63) —
(65) is different from () in Equation (11). With Q,. # Q, it is difficult to establish the relationship
between S5 and other estimators. This issue can be solved in the empirical estimation when the
feasible GLS estimator is used. The feasible GLS estimators of  in the random effects model
and (B, y) in the CRE1 mdoel require the estimation of (), and Q). The estimators of oﬁr, g2 and
02 in Q, and ( are usually derived from the between and within regressions. The between and
within regressions derived from the random effects model yg; = xg;8 + uy; are

Vg = XgBp + Ug

Vgi = XgiB + &
which are the same as Equations (3) and (4) from the CRE1 model. Since the estimation of (),
and () are derived from the same between and within regressions, it gives Q. = Q, where ., and
Q are the estimators of Q, and Q, respectively. With {0, = Q and the estimators of 62 and o2
derived from the same between and within regressions, the matrix equivalences of X'271X =
m,X'X + x'Qz % and X'07'Y = m,X'Y + x'Qg'y shown in Equation (B.6) in Appendix B can
be applied to Brg. Then, we can show how the random effects estimator is related to the between
and within estimators without introducing additional notations by simplifying O, = Q into Q, =

Q. It gives
Bre = (X'Q71X)71X'Q7 Y
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= (X' X +205'%) X7 + (m,X'% + ¥ 05'%) ®07'y
= (X' X +205'%) 1R Xy + (m,X' % + 2 05'%) 05 %fgrc
Define the following weighting matrices.
Age = (X% + 07'%) %07 %
(I —Agg) = (X' +207'%) 1,8 %
Then
ﬁRE = AREﬁABlG +U - ARE)BW (66)
This shows that the random effects estimator is a matrix weighted average of the GLS between
estimator and the within estimator. Using §¢; = 16 — fw from Theorem 2,
Bre = Bw + ArePci (67)
Substituting ¥ = XB + Xy + u into By in Equation (62), the mean and the variance of Bz are
E(Bre) = B + Aggy
V(Brp) = X'Q71X)" X' QT E(Ww)Q X (X'Q71X) !
=X'Qx)1
The random effects estimator is an unbiased and efficient estimator of § + Aggy. It is an MMSE

estimator. Using X'Q™1X = m,X'X + x'Qz1x and the variances of the between and within

estimators, we can rewrite the variance of the random effects estimator as

~ ~ -1 ~ -1 -1
V(Bre) = (V(ﬁw) +V(Bpic) )
This implies that we can derive the estimate of the variance of the random effects estimator using

the estimates of the variances of the between and within estimators. There is no need to estimate

() for the inference of £ in the random effects regression.
Now we consider the asymptotic properties of the variance of g for balanced panel data

with my = m and 71, ;, = 7y for all g. Rewrite the variance of BrE as

V(Bre) = (X'Q71X)71
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1 xx o2\ 'z . o
~ and (7”) — which are from the within and

2
It contains two signal-to-noise ratios: (%S)

between regressions, respectively. These two ratios are related to N and n, separately. The CLT
can be applied to the inference of B + Azgy with Sz when n — oo. For m — oo and finite n, the
CLT cannot be applied to the estimation of the between estimator, and small sample inferences
of B + Aggy with Bz may be complicate.

The weighting matrices of the random effects estimator are also based on X'Q~1X. The

weights can be rewritten as
A -1 A -1\l . -1
Arg = (V(ﬁw) +V(Bric) ) V(Baic)
A = R PR B
I —Agg = (V(:BW) "+ V(Bsic) 1) V(hw) '

The weights are related to the inverses of the variances of the between and within estimator or
the signal-to-noise ratios of the between and within regressions. The random effects estimator is
related to the signal-to-noise ratios of the between and within regressions. If the signal-to-noise

. (o\" ! ®'% - N . . . (o2\ ez
ratio (WE) -~ of the within regression is bigger than the signal-to-noise ratio (7") — of the

between regression, then more weight is placed on the within estimator. Otherwise, more weight

is on the between estimator.

3.2.4 Comments on the Analyses of the Random Effects Estimator in Maddala and Mundlak

For models with balanced panel data, Maddala (1971) and Mundlak (1978) showed B
is the matrix weighted average of the between and within estimators. Assuming 0 = (.,
Mundlak (1978) showed further that Bz is a linear function of B, and 7 under the CREI model.
Our results for cluster data should be the same as their results if we apply our results to balanced
panel data. Our results show that the weighting matrix Az in Equation (66) under the CRE1
model is the same as the weighting matrix under the standard random effects model in Maddala
(1971) using O, = 0. However, we observe two differences between our results on Az and
those found in Mundlak (1978) and Maddala (1971). To show the differences, we rewrite Agzg for
balanced panel data. For balanced panel data, m; = m and m,;, = 7, are constants for all g.
Using Q71 = Q;* + Q7' = m,M + (7, + mm,)] = m,M + (mo2) ™1 from Equations (25),
(28), (37), and (41), and X'X = mx'x, rewrite Agy = (X'271X)71X'071X as
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Arg = (M X'X + (m, + mnl))?’)?)_l(nz +mm)X'X (68.1)

1~ ~ _ 1 _

- (ag SO (mal—f)‘lX’X) (ma2)"1X'X (68.2)
1~ ~ _ -1 _

= (27X X+ 02 '¥%) of %% (68.3)

First, we note that our specification of Az is different from that in Mundlak (1978, Equation

(3.5), p.73). His Az based on Chamberlain (1975) is shown as
(mX'X + (m, + nl))?')?)_l(nz +m)X'X
— = -1 ~ \"1_ _
= (XX + 02 (m, +m) ' X'R) XX
Comparing this formula with Az in Equation (68.1), his formula of Az is missing an “m” in

(mr, + mm,) and he did not show V (Bgrg) = (X'Q~1X)~! under the Mundlak model. With the

correct formula, A is the same under both Mundlak model and random effects model. Bz is an
unbiased and efficient estimator of f + AzgY; it is the MMSE estimator for 8 + AzgYy.
Second, Maddala (1971) notes that, from Equation (68.2),

Jae = (027 K'% + (moD)H'R) (mo2) XX =0 (69)
when m — oo, He concluded that the random effects estimator is equal to the within estimator
when the sample size in each group is infinite. Mundlak (1978, p. 79), Ahn and Moon (2014),
and some econometrics textbooks (i.e., Hsiao, 2014, p. 43; Baltagi, 2021, p. 27; Wooldridge,
2010, p. 327) follow this conclusion. This conclusion is incorrect since Maddala (1971) did not
consider X'X = mxx. Using X'X = mx'%, we can rewrite (moZ)"1X'X in Equation (69) as
(mo2) 'mx'x = (62) 'x'x. Then Agg in Equation (69) becomes Equation (68.3). When m —
o, g2 = o2 and Agp = (082_1)?’)? + 00%_192’32)_1 02 ' %'%. Agg is nonzero. The incorrect
conclusion of Az — 0 is the same issue as the conclusion of X'Q~1X = g2~ ' X'X based on
Q1 = m,M in the earlier discussion of Q™1 in the GLS estimator of the CRE1 model, and the
conclusion of X'Q5'X = 0 based on Q5" = 0 in the discussion of the GLS between estimator
when m; — oo. Hence, the random effects estimator is always a matrix weighted average of the

between and within estimators for any group size, even if the group size m is infinite.
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33 The CRE1 Model: Comparison of Five Estimators

After examining the properties of five different estimators and deriving their relationships
in the above subsection, we compare these estimators and discuss which estimator is the “best”
in this subsection. Based on the result of B, = Sy, Mundlak (1978, pp. 69-70) concluded that
there is only one estimator to estimate f and any matrix combination of the within and between
estimates is generally biased. His conclusion is derived by assuming that there is only one partial
effect of the explanatory variables, . This paper opts for a different interpretation. Instead of
focusing on a single partial effect 8, we consider two partial effects of x and each estimator is to
estimate a linear combination of these two partial effects. The first partial effect is the direct
impact of x and it is measured by f; the second partial effect is the impact of group mean
variables and it is measured by y. Based on the within regression, the direct effect of x or the
within estimator of f only measures the within effect. We list five estimators of the parameters f3
and y as follows to explain our different interpretation from Mundlak (1978).

(i) GLS between estimator: 5, with E(,@Bla) =L +y

(i) Within estimator: By, with E(By) = B

(iii) GLS estimator of the CRE1 model: B, and 9¢;, with E (,@Cl) =B and E(Jc1) =V

(iv) Pooled OLS estimator: s = Bw + AoLsPc1, With E(BOLS) = + AoLsY

(v) Random effects estimator: frg = By + ArsPe1, With E(ﬁRE) =L + AggY
Table 1 summarizes the weighting matrices, means, and variances of these five estimators. We
compare these estimators in terms of unbiasedness, efficiency, and modeling structure with
respect to § and y. First, we discuss unbiasedness. Traditionally, the pooled OLS estimator and
the random effects estimator are considered as matrix weighted averages of the between and
within estimators, B and B,. The CRE1 model shows that 85 estimate 8 + ¥ and S, estimate
. A linear combination of Bz and By, assigns the weight to 8 twice. Hence, we consider each
estimator as a linear function of £, and 7, instead of Bz and 3. The between estimator in (i)
estimates 8 + y, which assign a full weight of one to y; the within estimator in (ii) only estimates
p and assigns a zero weight to y. The GLS estimator of the CRE1 model in (iii) estimates § and
v, separately. The pooled OLS estimator in (iv) and the random effects estimator in (v) estimate
the sum of B and a different weight of y. These specifications of estimators in terms of 3y, and 7

show that a key difference between the within estimator and other four estimators is the role of y.
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When y = 0, all estimators, except 7.4, are unbiased estimators for . Wheny # 0, By, and B¢,
are still unbiased estimators for f; the rest three estimators are biased. However, if we consider
both 8 and y as partial effects of x, each of the five estimators is an unbiased estimator of the
linear combination of f and y. The unbiasedness issue is related to whether y is zero or not and
whether we treat y as a partial effect of x or not.

Second, we compare the efficiency of these five estimators by examining the variances of
these estimators shown in Table 1. We note that the between and within regressions are two
different regressions with different dependent and independent variables. Furthermore, these two
regressions estimate different parameters if y # 0. Therefore, we cannot compare the variances
of the between and within estimators for efficiency and significance. For example, the
significance (insignificance) of B, does not imply the significance (insignificance) of g, and
vice versa. For these two estimators, there is no dominance of one estimator over the other in
terms of efficiency. The GLS estimator of the CRE1 model estimates each partial effect
individually. The estimator is unbiased and efficient. When y = 0, both pooled OLS estimator
and random effects estimator are unbiased but less efficient than B, in estimating 8. The
Hausman test (1978) is based on inefficiency of the random effects estimator. If y # 0 and we
consider the parameter estimation of a linear combination of 8 and y, then the pooled OLS
estimator is unbiased but inefficient in estimating 8 + A,y while the random effects estimator
is unbiased and efficient in estimating § + Agzgy. In addition, the GLS between estimator is
unbiased and efficient in estimating § + y. Hence, there are multiple MMSE estimators.

With multiple MMSE estimators, it raises two issues: how to compare different multiple
MMSE estimators and are there more MMSE estimators? For the first issue, note that we only
compare MSE of different estimators that estimate the same parameter. One of the results in
Mundlak (1978) is driving the best MMSE estimator among different linear combinations of the
between and within estimators. The target parameter for his comparison of different MMSE
estimators is the single key parameter 8. Our analysis of different estimators gives multiple
MMSE estimators since we consider the linear function of two partial effects of x, 8 and y. By,
and f;, are the MMSE estimators of 8; 7, is the MMSE estimator of y; Bg1¢ is the MMSE
estimator of 8 + y; and S is the MMSE estimator of 8 + Az Different linear functions of 8

and y represent different characteristics of the aggregates of the two partial effects. Hence, we
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don’t compare MMSE estimators of different parameters with different characteristics, and we
cannot conclude which MMSE estimator is the best. However, we can compare the
characteristics of different aggregates of two partial effects based on their weighting matrices.
The random effects estimator considers both signal-to-noise ratios of the between and within
regressions in its weighting matrix Az, and it can be better than the GLS between estimator,
which ignores signal-to-noise ratios in its weighting matrices. For the second issue, we examine
if there are other MMSE estimators. Suppose 3, is an estimator of a linear combination of 8 and
¥, and it is a matrix weighted average of the between and within estimators. We can define 8, as
Br = (A+B) '4Bg1c + (A + B)~Bp,,, where A and B are symmetric positive definite
matrices derived from the model and data. The weighting matrices assigned to the between and
within estimators are A = (A + B)"*Aand I — 1 = (A + B) 1B, respectively. Then the mean

and variance of [5; are

E(ﬁz) = E(Aﬁma +U - A),E’W) =B+ 1y (70)
V(f1) = (4+B)"' (A Qz'D) 1A + Bo? ()?’X’)_lB) (A+B)! (71)

This shows that 8 is an unbiased estimator of 8 + Ay as long as A and I — A are the weighting
matrices assigned to the between and within estimators. This implies that we can derive different
unbiased estimator of linear combination of 5 and y with different A. For example, four
estimators discussed in this subsection have different As and weighting matrices (See Table 1).
For efficiency, B is efficient and it is an MMSE estimator of 8 + Ay if

Vi) =@A+B)™
This implies that the condition of efficiency is

A 0F'%) A+ Bo(X'%) B=A+B (72)
This condition includes both signals and noises of the between and within regressions. One
obvious solution of A and B that satisfy this condition is A = #'Q;'¥ and B = 02 ' X'X =
m,X'X, with A + B = X'Q~1X. This solution gives A = Az and the random effects estimator.
Note that the pooled OLS estimator is inefficient since A = X'X, B = X'X,and A + B = X'X for
the pooled OLS estimator, and these A and B do not satisfy Equation (72). If there is another
MMSE estimator with a different 4, then the weighting matrices, A and B, should satisfy
Equation (72).
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Third, we discuss modeling structures and strategies of these five estimators. In our
previous discussion of unbiasedness and efficiency, we show that a major difference between the
within estimator and other four estimators is related to y. The specification of y in modeling is
related to an underlying assumption of the model: whether the unobserved group component a,
is fixed or random. Although the within regression can be derived from the random effects model
and CRE models, the within regression is identical to the fixed effects model in terms of
modeling structure. Both fixed effect model and within regression assume a is fixed. The fixed
effect model explicitly assumes that a, is a fixed parameter; the within regression implicitly
assumes that a4 is fixed by eliminating all random group components in its estimation when the
data of deviations from group means are used. All four other estimators explicitly or implicitly
assume that a; is random. In estimating the GLS estimator of the CRE1 model, a, is assumed to
be random such that both x; and @, can be included in the model. The estimations of the three
remaining estimators implicitly assume that @, is random as in the CRE1 model. Hence, the
comparison of modeling structures of these five estimators is related to an important debate in
studies of panel data models: whether we should use the fixed effects model or the random
effects model? Suppose a is fixed, the estimation of y is irrelevant and there is no need to
consider the random effects model or the CRE1 model; then the fixed effects model is sufficient.
However, whether y is relevant or not should be based on empirical evidence. If y # 0, all
estimators, except the within estimator, capture the second partial effect y by considering a linear
function of the two partial effects. In an extreme case, f = 0 and y # 0, then the within
estimator cannot detect any partial effects and four other estimators are able to estimate the
partial effect y. Although these four estimators consider both partial effects f and y, a significant
cost in this flexibility is that these estimators may suffer from the omitted variable bias, which
occurs if group mean variables are correlated to omitted group variables. The advantage of the
fixed effects model and the within regression is avoiding this omitted variable bias by either
controlling all group characteristics in the fixed parameter a, or eliminating @, in formulating
the model. The cost of using the fixed effects/within estimator is the omission of y.

The fixed effects model and the within regression focus solely on single partial effect 3,
and ignores the second partial effect y, which may be important. The presumption of a fixed
effects parameter may suggest that the fixed effects model is a “restricted” model. We note that it
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is not a restricted version of the CRE1 model by restricting y = 0. In general, a restricted model
has a larger prediction error. We demonstrate the impacts of presuming a fixed effects parameter
by comparing predictions and prediction errors from the fixed effects model and the CRE1

model. Instead of treating a, as random as in CRE models, suppose a is a fixed parameter for
the g-th group. Then the fixed effects model is

Vgi = Xgif + ag + sgi. (73)
where @ is a parameter and £; are homoscedastic and serial uncorrelated random errors. Note

that x; and z; are excluded from the model to avoid the multicollinearity issue. The estimation

of the parameters in the fixed effects model is based on the least squares dummy variable
(LSDV) regression:

Y=Ga+ X[+ (74)
where a is an X 1 parameter vector and G is a N X n matrix of dummy variables such that G =

(G1, Gy, ,Gy) and G is a N X 1 column vector of the dummy variable for the g-th group with

Gy = (Gg1,Ggzr -+ Ggn

in the LSDV regression is the fixed effects estimator and denoted as @5 and frg. Using

G(G'G)G¢'=],1-G(G'G)"*G' =1—] = M, it can be shown that (Greene, 2018, p. 393)
@rg = (G'G)*G'(Y — XPw) = ¥ — %pw

Bre = X'MX)TX'MY = (') X'V = fy

!

)I, Ggi = Oep,, fori # g and Gy = €my- The OLS estimator of a and

Using Gapy = Y — Xy, the fitted equation of the fixed effects model is

Ve = Gapg + XPw = (Y = XPw) + XBw =Y + XBy (75)
The prediction of y,; contains two components. The first component is directly measured by the
group mean y, and the second is related to within deviations. Note that the fitted equation of the
within regression is Y= XBy. Let V=7 —7.Then? -7 = XBy and ¥ =Y + XpBy,, which is
the same as Equation (75). The fixed effects model and the within regression have the same

fitted equation and prediction interpretation.

The fitted equation of the CRE1 model is
Yer = XBw + XPc1 = XPw + X(Boic — Bw) = XBric + XPw (76)
This shows the prediction of y,; also contains two components. The within deviation component

X By is the same as that in the fitted equation of the fixed effects model. However, the group
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mean component is predicted by v=X Bg1c, which is fitted equation of the between regression
Y = XBg + U. The comparison of the two prediction equations Yz and Y, in Equations (75)
and (76) shows that the fixed effects model ignores the predictivity of y; and it assumes that the
population group mean of y in the g-th group is estimated by a fixed value ;. We explain why
the predictivity of y, is omitted in the fixed effects model. Pre-multiplying the LSDV regression
in Equation (74) by (G'G)~1G gives the between regression of the fixed effects model:
y=a+xf+¢&
where £ = (G'G)"1G&*. The parameters a and f8 in this between regression cannot be identified
since both ¥ and a have the same row dimension. Once we use the fixed effects model, we
cannot predict y. The prediction of y must be omitted. This omission of the predictivity of ¥, is
not an issue if the main purpose of the estimation is to estimate the partial effect f or when y =
0. The lack of predictivity of ¥ implied by the presumption of the fixed effects parameter in the
fixed effects model is usually overlooked in the empirical analysis.

Different modeling strategies give different prediction powers. We compare the
prediction powers of the fixed effects model and the CRE1 model. From Equation (75), the fitted
error equation of the LSDV regression is

Y—Vep=Y -V -XBy, =V —XBy, =6
which is the same as the residual term in the within regression. This again shows that the fixed
effects model and the within regression are fundamentally the same and they only capture the
impact and the prediction of within variations. The fitted error equation of the CRE1 model is

Y =Vo1 =Y = XPpig— KBy =Y -V +V = XPpy —Kpyw=U +¢
where U = ¥ — Xfip1¢ is the residual term of the between regression. The sum of squared
prediction errors from the CRE1 model is U'U + &'é. This is larger than the sum of squared
prediction errors from the fixed effects model, é'é. However, we cannot conclude that the
“restricted” fixed effects model is better than the CRE1 model since it has a smaller sum of
squared prediction errors. The fixed effects model has a better prediction power simply because
this model is a prediction model only focusing on the partial effect § due to within deviations X.

It does not consider the predictivity of y,, group means of y. The CRE1 model is a prediction

model focusing on two partial effects due to both X, and within deviations. Another simple way
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to demonstrate the difference is to use the equation Y = ¥ + Y. The fixed effect model and the
within regression only concern the estimation and prediction of ¥ while the CRE1 model
estimates Y and concerns both ¥ and ¥. In summary, the choice between the fixed effects/within
estimator and other estimators depends on the importance of the partial effect y. If we are
concerned with both § and y and it is possible that y # 0, then other estimators, such as the GLS
estimator of the CRE1 model and the random effects estimator, are worth considering and may

provide additional information on the partial effects of x.

4. The CRE2 Models with Cluster Data

When group variables z; are added to the CRE1 model, we have the CRE2 model, y,; =
Xgiff + XgV + 24§ + ug;. Similar to X, zg is a 1 X [ row vector and has only one value for each
z variable in each group. Since z; are only observable at the group level, z variables are not
included in x variables. We denote two data matrices of z, as Z and Z, with the data structures
similar to X and X, respectively. The matrix form of the CRE2 model is

Y=XB+Xy+ZE+u (77)
where u is the column vector contains elements of composite random errors ug; = ag + &g;.
Assume the random errors a4 and €g; have the same properties as the random errors of the CREI1
model as shown in Equations (5) and (6). Then Var(u) = Q as in Equation (11). We use the
same notation () for the covariance matrix of the random errors in both CRE1 model and CRE2
model. If the CRE2 model is true, the CRE1 model is a misspecified model. The CRE1 and
CRE2 models should have different covariance matrices of the random errors. This implies the
CRE2 model requires a different set of notations related to (1. To avoid creating excessive
notations in differentiating between the CRE2 and CRE1 model, we keep the same notations,

such as ug, Uy, Q, and Qg, used in the CRE1 model for the CRE2 model; but we use these

notations with caution.

4.1 The Between and Within Estimators and the GLS Estimator of the CRE2 Model
To analyze the CRE2 model, we begin with the between and within regressions derived
from the CRE2 model. The between regression is
y=xfg+ZE+u (78)
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The covariance of @ is V (i1) = Qy as in Equation (20). The inverse of Q is Q7' as in Equation
(21). Because of heteroscedasticity of iy, we consider the following GLS estimator of fz and ¢
in the between regression.

R B -1
(@BZC"):((’Z‘_,)le(f z)) (’Z‘_,)Q—ly (79)

SBZG

Substituting ¥y = x5 + Z& + u into the above equation, the mean and variance of the GLS

between estimator are

BBZG _ ﬁB

g <$Bza> - (s‘ ) (80)
Beag\ _ (X'07'%x %077 -

V(SsBzc;) - (5'121—:19? Z'ﬂ?i) (81)

The unbiasedness is derived from the exogeneity of x and z, and they are uncorrelated with

group size my. This shows that the GLS between estimator is an unbiased and efficient estimator

of (85, ).
The within regression from the CRE2 model is ¥ = XS + &. All properties associated

with the within regression in the CRE2 model are the same those in the CRE1 model. The
covariance of the random errors is V(&) = Q; as in Equation (35); the within estimator is By, =
(X'X )_1)? 'Y; the mean and variance of the within estimator are Equations (53) and (54),
respectively; the between and within estimators are uncorrelated, i.e., C (BW, ﬁBZG) =
C (,[?W, 3 BZG) = 0, which can be derived from E (ﬂgégi) = 0 as in Equation (55).

The GLS estimator of the CRE2 model Y = X + Xy + Z& + u is

Bea X' ~ X

?CZ = X’ .Q_I(X X Z) }?, .Q_lY (82)
$c2 z' z'

We show the following theorem for the relationship between the GLS estimator of the CRE2

model and the within and between estimators of the CRE2 model.

Theorem 2. Let (ﬁcz, Ve fcz) be the GLS estimator of the CRE2 model, and S, and
(,[?326, 3 BZG) be the within estimator and the GLS between estimator of the CRE2 model,
respectively. Then
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Bcz = Bwa Ve2 = .éBZG - ,éW: and fccz = SngG (83)

Wooldridge (2019) proved the first equality 8¢, = By for the CRE2 model with
unbalanced panel data. Appendix A demonstrates an alternative proof of this equality using the
extended Frisch-Waugh theorem. We show all equalities for cluster data in Appendix B. The
equalities B¢, = By and Pc; = Pgac — Pw are basically the same as Theorem 1 for the CRE1
model. The equality ., = &z, shows that the GLS estimator of the coefficients of group
variables for the CRE2 model is numerically the same as its GLS between estimator of the
between regression.

Using equalities in Equation (83) in Theorem 2 and the means, variances, and
covariances of [?W, ,@BZG, and & s2¢ (Equations (53), (54), (80), and (81)), the means, variances,
and covariances of the GLS estimator of the CRE2 model can be derived as shown in Appendix
C. This implies that the inference of 3, y, and & can be made using the results from the between
and within regressions; the GLS estimation of the CRE2 model is not necessary. Appendix C
also shows the derivation of the means, variances, and covariances of the GLS estimator without
using Theorem 2. This provides additional evidence of Theorem 2.

There are three implications from &., = ég,.. These three implications are related to the
studies in Moulton (1986, 1990), Amemiya’s (1978), and Donald and Long (2007). First, the use
of the between regression based on the result of £, = &5, implies that the impact of z on y is
only related to the data at the group level, not at the individual level. The estimation of ¢ is
important for panel data analysis when time-invariant variables are included in the regression
(Moulton, 1986). Group variables z; in the CRE2 model are time-invariant variables in the panel

data regression. With z; included in the regression, Moulton (1986, 1990) argued that the GLS

standard errors, instead of the OLS standard errors, should be used. The results of ., = &g,
and V({ccz) = V(€pyc) show that the GLS estimation of € in the CRE2 model with the data at
the individual level is not necessary and it can be replaced by the GLS estimation of the between
regression. The need for robust standard errors due to cluster data in the Moulton’s model is
reflected on the use of the GLS between estimator. The between regression is sufficient if the
main concern of inference is on the impact of z,. In addition, the number of degrees of freedom

in inference of ¢ in this regression is n — [ instead of N — k — [.
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Second, based on Amemiya’s (1978) random coefficient model, &, can be derived using
a two-step procedure. The first step is to derive &, the fixed effects estimate of « in the LSDV
regression, Equation (74); the second step is to regress & on z. The estimated coefficient of z in
the second step regression is the same as &.,. Our result of ., = &5, provides a new procedure
to replace the two-step procedure. A direct estimation with the between regression gives the
same numerical estimate of &-,. The variance of &, for inferences is also directly available from
the between regression.

Third, the use of group variables z; in the between regression implies that (zy, z5, ***, Z¢)
is a random sample from G groups. This random sample of z; may help us to explain the
conclusions in Donald and Lang (2007). Donald and Lang (2007) used Amemiya’s (1978) two-
step procedure to address an issue in inference with difference-in-differences models. When
time-invariant policy changes are considered, the second step regression in the two-step
procedure can be used to estimate . Because the number of degrees of freedom in the second
step regression is n — [, they argued that policy implications derived from the inference of & with
the degrees of freedom of N — k — [ can be misleading. They reexamined some studies on the
impact of policy changes using difference-in-differences models. In these studies, data is
classified into different groups due to policy changes. In this case, the number of groups created
by policy changes is usually limited. In Donald and Lang’s (2007) example of the two-by-two
case, there are two groups: control and treatment groups. With only two groups, they concluded
that the degrees of freedom in inference of ¢ in the two-step procedure can be zero.

In using the two-step procedure, it is unclear if z; has to be a random sample of groups
from G groups in the second step’s regression. For the between regression, the observations of z,
are considered a random sample from G groups. If a policy change can be randomly observed
multiple times, i.e., n times, or it randomly affects n different groups, then the between group
regression can be applied. In this case, the number of degrees of freedom is n — [. In Donald and
Lang’s example of the two-by-two case, the policy change only happened once and there is only
one pair of control and treatment groups. Hence, the number of degrees of freedom issue occurs.
If we consider a policy change as an experimental design and we can treat different individuals
as random observations in an experimental design as in ANOVA such that there are many

random observations in the designed groups, then the number of the degrees of freedom is not
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limited to n — . Hence, the number of degrees of freedom issue is related to whether we should
treat a policy change as a random event or an experimental design with many random
observations in control and treatment groups. If we treat policy changes as experimental designs,
then it is inappropriate to apply the between regression. The remaining issues are whether we
should treat a policy change as an experimental design and what appropriate econometric
methods to use if a policy change is considered as an experimental design. There are many

discussions on these issues in the treatment effects literature (Imbens & Wooldridge, 2009).

4.2 Other Three Estimators Under the CRE2 Model

We continue to examine the properties of the pooled OLS estimator f,; s and the random
effects estimator S, and derive their relationship with the between and within estimators under
the CRE2 model. Both ;5 and S are the estimators of 8 assuming no group mean variables
and other group variables in the model. If the CRE2 model is the true model, these two
estimators are derived from a misspecified model. Both estimators may involve the omitted
variable bias issue. After we show how these estimators are related to the between and within

estimators, we derive the sizes of their biases under the CRE2 model.

Consider the pooled OLS estimator S,¢ = /10Ls,[§310,\, + (I = Ao1s) By in Equation (59).
Note that ﬁBlON = (X'X)71X'Y is the OLS estimator of S for the regression of ¥ on X. Under
the CRE2 model, the OLS estimator of Sz and € in the between regression Y = Xz + Z& + U is

<€320N> _ ()?’)z )?’Z)_1 ()?'):’)

En20y) 2R 27/ \2'7

The matrix system equations can be rewritten as

Gx 20() -G

B20y

We rewrite the first normal equation as

BBZON = XXXy - (X'X)_IX'ZéBzoN

= 3310,\, - (X'X)_l)?’ZéBzoN

3310N = ,éBzoN + (X'X)_l)?lzsfszo,\, (84)

Substituting the above equation into S, s in Equation (59),

Bos = AOLS(BABZON + ()?’)?)_1)?'253201\,) + (I = Aors)Pw
39



This shows that ¢ is a weighted average of the within and between estimators from the CRE2
model, where the between estimators include Bz, y and Ep20 v+ Substituting Y = X + Xy +
Z& +uinto ByLs = (X'X)"1X'Y, the mean and the variance of B, are

E(Bors) = B+ dorsy + (X'X)'X'Z¢

V(Bors) = X' X)X E@wX(X'X)™

= (X'X) N 02X'X + X'DyzymozX) (X' X)7

Because the mean of [?0 Ls involves &, :éOLS is a biased estimator of 8 + A¢ sy if X4 and z, are
correlated. The size of the bias is (X'X)~1X'Z¢&. As in the CRE1 model, B, is inefficient. Note
that V([?O LS) under the CRE2 model is different from V(ﬁo LS) under the CRE1 model since the

covariance of the random errors in the CRE2 model is different from the covariance of the
random errors in the CRE1 model given that the CRE2 model is true.

For balanced panel data, we can simplify the weighting function of .. Since the GLS
between estimator is the same as the OLS between estimator for balanced panel data and using
Theorem 2, we have 5’3201\, = .BABZG’ sngoN = éBZG = Sscz and .éBzoN - .éw = 5’320 - BW = Yc2-
Then

Bors = Bw + AorsPer + (X' X)X ZE,

This shows B is a linear function of the GLS estimator of the CRE2 model. B, is still biased
and inefficient estimator of f + Ao sy when X and z; are correlated.

Next, we discuss the properties of the random effects estimator under the CRE2 model.
Let Q, be the variance matrix of the random errors uy; in the random effects model Y = X +
u*. The random effects estimator is frz = (X'Q;1X)"1X'Q;1Y. When the CRE2 model is true,
we can write Ug; as Ug; = XgY + 2§ — gy — ;§ + Ug;. Assume that the variance matrix of z is
V(2). Then the variance and covariance of ug; are

E(ujuy;) =v'V(%)y + E'V(2)E + 0f fori # j

E(ugiug:) = v'V(%g)y + V(2§ + 0g + of

E(ugiu;,j) =0forg#g'

As in the CRE1 model, 0, # Q. We then check if O, = Q, where 0, is the estimator of Q. under
the CRE2 model. Both random effects model and CRE2 model have the same within regression
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Vgi = XgiB + &g, but have different between regressions. The between regression for the CRE2
model is Equation (78); the between regression for the random effects model is

Vg = %Bs + U
where U, = z,¢ — p,¢ + U,. Since the estimators of (1, and  are derived from two different
between regressions with @i, # U, it gives Q, # 0. With Q, # Q and O, # Q, it is difficult to
find the relationship between the random effects estimator and other estimators under the CRE2
model. We can still find the bias of Sz under the CRE2 model. Substituting Y = Xf + Xy +
Z& +uinto frr = (X'Q71X)~1X'Q;1Y, the mean and the variance of the random effects
estimator are

E(Bre) = B + Arsy + (X'Q71X) 71X Z¢

V(Bre) = (X'O" X)X O EUw) Q7 X (X' Q71 X)

= X'Q'X)7X'Q 100X (X' )
Pri is a biased estimator of 8 + Agzy when % and z are correlated. The size of the bias under the
CRE2 model is (X'Q;1X)~1Z'0;1Z¢. The variance of g cannot be simplified into V(S ) =
X'Q;:1X) "L since Q, # Q.

Suppose the random effects model uses the same between and within regressions
(Equations (78) and (34)) for the CRE2 model to estimate Q.. Then , = ., and we can
examine the relationship between Bz and other estimators under the CRE2 model by
simplifying (. = Q into Q,. = Q. Using the first normal equation for the GLS estimator of the
CRE2 model in Equation (B.12) in Appendix B,

Pre = Pez + X' Q7O TR0 X o + (X' QT TR QG 2y
Let Agp = (X'271X)"1x'05 %, It gives

Bre = Bz + ArePca + Are (X' 07 0) 15071 2, (85)
This shows that the random effects estimator is a linear function of the GLS estimator of the

CRE2 model. Using Theorem 2,

Bre = Are(Br2c + (07 0) %' 07 2Ep6) + (I — Aze)Bw
The random effects estimator is a matrix weighted average of the GLS between and the within
estimators of the CRE2 model. Given Q1 = Q~1, the variance of Sz becomes

V(Brg) = X'Q7 X)X’ QT Ew)Q X (X'Q71X) !
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=X'Q )1
With X'Q"1X = m,X'X + %' Q7' %, the variance of S is related to the variances of the within
estimator and the GLS between estimator for the CRE2 model as in the CRE1 model.
For balanced panel data, the relationship between Sgg and other estimators under the
CRE2 model can be simplified and easily derived with 0, = . In this case, fz10 N = Bgic and
BBZON = PBiac- Substituting 3310,\, = Bgac + (X'X)71X'Z€p,¢ (Equation (84)) into fry =
ARE,BABlON + (I = Agg)Bw in Equation (66),
Bre = ARE([?BZG + (X'X)_l)?'zsfsza) + (I — Age)Bw
= Pw + ArgPez + Arg (X' X) X' ZE gy
which is similar to Equation (85).
The random effects estimator is defined as the GLS estimator of the regression model
Ygi = Xgi + ug;, which is a restricted CRE2 model by excluding group mean variables X, and
group variables z;. We consider another restricted CRE2 model where only group mean
variables X, are excluded. This model is the standard Moulton model (Moulton, 1986, 1990):
Vgi = Xgif + 24§ + ag + &g
If the CRE2 model is the true model, then the Moulton model is a misspecified model because of
the omission of X,;. Since the omitted X, should be included in a4, let ag = Xgy — pgy + ay.

Denote the composite error as u’; = a + &,;. The variance and covariance of u’* are
gl ) gl gl

E(uius) =v'V(x%,)y + o2 fori # j

E(ujiuy) =v'V(%,)y + 02 + o

E(u;iu;,j) =0forg#g'

which are the same as Equations (63) — (65) for the random effects model under the CRE1 model.
This shows (),,, the covariance matrix of ug;, is different from () for the CRE2 model. However,
the between regressions for the Moulton model and the CRE2 model are the same since the omitted
variables X, in the Moulton model are automatically included in the estimation of its between
regression. With the same between and within regressions for both Moulton model and CRE2
model, the estimators of Q,, and  are the same, i.c., Q,, = Q, where {,, is the estimator of Q0.,.

Because of 0,, = 0, we simplify it into ,, = Q in examining the properties of the GLS estimator
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of (B, &) in the Moulton model, which is the estimator considered by Kloek (1981) and Moulton
(1986), when the CRE2 model is true. The data matrix form of the Moulton model is

Y=Xp+ZE+u™
Since the Moulton model is the random effects model with the added group variables z, we denote
the GLS estimator of the Moulton model as g5z and égg5, and

A ) -1

(6)=(Gaeor ) Ga
When y = 0, the CRE2 is reduced to the Moulton model. Then frg; = Bc; and &gz, = &, from
Theorem 2 and other results from the CRE2 model can be applied to the Moulton model. When

¥ # 0, Brgz and gz can be represented in terms of B¢y, P¢o, and &, as follows (See the proof

in Appendix D).
Brez = Bez + ArezVca (86)
érez =€ + (2’07207 X — Apgr)Pen (87)
where

Arez = (X7 Q7' X)X Q7K

I = Aggz = 1, (X5 Q71X XX

X;=X-Z(Z'012) 17’07

X=X —-Z(Z'0712) 17707
Using Theorem 2, rewrite Equation (86) as

ﬁREZ = AREZBBZG +U - AREZ)BW
BrEz is a linear function of By, and 7, and it is a matrix weighted average of Bg,¢ and By .
Based on Equations (70) and (71), Brgz is the unbiased estimator of 8 + Aggz¥, but Brg, is not
efficient and not a MMSE estimator of § + AzgzY.

Both frgz and &z, in Equations (86) and (87) include the component of 7, which is
the estimate of the second partial effect of x. When x and z are uncorrelated, Az is reduced to
Agg and the second term of &, is reduced to zero in expectation. Then E (BREZ) =F (BRE) and
E(EREZ) = E(écz) = ¢. When x and z are correlated, E(ﬁREZ) * E(ERE) and E(éREZ) # . The
second term of &, in Equation (87) is the size of bias caused by the correlation between ¥ and
z. Hence, the use of the Mouton model may lead to an incorrect conclusion on the coefficient of

¢ when y # 0 and x and z are correlated.
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Based on the results on the six estimators under the CRE2 model, we derive the same
main conclusion as those from the CRE1 model; we conclude that the key difference between the
within estimator and other estimators is whether we should treat @ as a fixed parameter or a
random component. The estimation of the within estimator assumes a to be fixed while the
estimations of all other estimators assume @ to be random. The advantage of assuming a, to be

random is to estimate y and &, the partial effects associated with group mean variables and other
group variables. If the main concern of the estimation is ¢, the partial effect of group variables,
we only need the between regression. There is no need for the CRE2 model or the Moulton
model since the GLS estimator of ¢ in the CRE2 model is the same as its GLS between
estimator. If the concern of the study is about both x and z, the explanatory variables observed at
individual and group levels, then the issue is whether y or the second partial effect is zero or not.
When y = 0, we use the within regression to estimate § and the between regression to estimate
&. When y # 0, we should consider the CRE2 model or its between and within regressions. Note
that both pooled OLS and random effects estimators are biased for f + Ay and the GLS
estimator of ¢ in the Moulton model is biased for £ when X is correlated to z. In addition, the

estimation of any model considering a, as random rather than a fixed parameter may suffer from

omitted variable bias since the included variables x and z may be correlated with the unobserved

group random component a.

5. Conclusion

Correlated random effects models extend classical panel data regressions with group
mean variables and other group variables. Both correlated random effects models and panel data
regressions involve some basic estimators. This paper provides a complete analysis on the
properties of six basic estimators and examines the relationships among these estimators under
correlated random effects models with cluster data. Our study follows Maddala (1971) and
Mundlak (1978) to explore the properties of the estimators such as the pooled OLS, within,
between, random effects, and GLS estimators. These estimators are linked by the assumptions of
random errors of the models.

Our methodology in analyzing different estimators differs from the literature in three

aspects. Firstly, we consider the between and within regressions as fundamental to the analysis of
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the relationships among different estimators. Previous studies primarily consider the between and
within estimators as given, without examining the detailed properties of the two regressions
generating these two estimators. Instead, by recognizing two matrix forms of the between
regression, we establish the relationships of different estimators based on the variances of the
random errors and the estimators of two different forms of the between regression and the within
regression. Secondly, we adopt a new and simple approach to derive the theoretic relationship
among different estimators. This approach involves matrix equivalences and the typical process
in solving a system of equations as in the Frisch-Waugh theorem. It is worth noting that the
derivation of matrix equivalences is based on the two forms of between regression and the within
regression. Thirdly, in exploring the properties of the different estimators, we emphasize that
there are two different partial effects of an explanatory variable. The first partial effect is the
direct impact of the explanatory variable, and second partial effect is the impact from the group
mean of the explanatory variable. The first partial effect is the main concern in most theoretic
and empirical studies since the direct impact of the explanatory variable is equal to the fixed
effect or the within effect of CRE models. Empirically, one interpretation of the second partial
effect is the network or peer effect in social interactions models (Manski, 1993, 2000; Blume, et
al. 2015). Theoretically, the second partial effect plays an important role in explaining the
differences among different estimators once we accept the existence of the second partial effect.
Our two theoretic contributions are 1) We extend Mundlak’s (1978) results to CRE
models with cluster data. Mundlak’s main results with balanced panel data show the
relationships of the GLS estimator with the between and within estimators. Most balanced panel
data analysis can be applied trivially to models with cluster data. It is still necessary to derive a
formal theorem if Mundlak’s results can be extended to models with cluster data. Wooldridge
(2019) provided a partial extension of Mundlak’s results. Our theorems complete the extension
and verify that the relationships under CRE models with cluster data are the same as those under
the Mundlak model. The only adjustment is the OLS between estimator is replaced by the GLS
between estimator in the relationships. We show that the relationships continue to hold for
models with the addition of other group variables, i.e., additional group variables do not affect
how the GLS estimator relates to the two fundamental estimators. Furthermore, we found that the

coefficients of group variables can be estimated by the between regression. 2) We show the
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properties of six different estimators, including their means and variances. These results help us

to compare different estimators.

Based on our theoretical analysis, we summarize the results and empirical implications as

follows. First, the analysis of CRE models allows us to revisit related previous studies. When we

apply our analysis of the basic CRE model to balanced panel data, we derive some different

conclusions from Maddala (1971) and Mundlak (1978). For the extended CRE model, our results

on the GLS estimator of the coefficients of group variables are related to the studies in Moulton

(1986, 1990), Amemiya (1978), and Donald and Lang (2007). One of the two methods in

proving our theorems is related to Lovell (1963). The following is a summary of our discussions

and results in these revisits.

a.

We found that Maddala (1971) has an error in interpreting the random effects
estimator. We show that the random effects estimator is not equal to the within
estimator when the number of time periods is infinite.

We found that the weighting matrices of the random effects estimator under the
Mundlak model (Mundlak, 1978) and the standard random effects regression
(Maddala, 1971) are the same. Hence, the random effects estimator has the same
properties under two different modeling approaches. This result is not observed in
Mundlak (1978).

Mundlak (1978) used his model to show that there is only one estimator to estimate
partial effects of explanatory variables. Instead, we argue that there are multiple
MMSE estimators if the second partial effect is taken into the consideration.
Moulton’s (1986) concern on the robust estimation of the coefficients of group
variables in a panel data model can be resolved using the between regression. In this
case, the number of degrees of freedom in inferences is related to the number of
cross-sectional units, instead of the total number of data values in the sample.
Amemiya’s (1978) two-step procedure to estimate the coefficients of group variables
can be replaced by the between regression. The statistical inferences of these
coefficients are directly applicable with the between regression.

Donald and Lang’s (2007) critique on the use of difference-in-differences models is
related to how we treat a policy change in modelling; is it an experimental design
with control and treated groups or an experiment generating a random sample of
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groups? If a policy change is associated with a random sample of groups, then the
between regression can be applied.

g. Instead of using the standard Frisch-Waugh Theorem as described in Lovell (1963),

we introduce an extended version of Frisch-Waugh Theorem for models with the
GLS estimator. We show an application of this extended theorem.
The above summary of our discussions and results can be divided into three categories: new
results (items d, e, g), different results (items a, b), and different interpretations of the same
results (items c and f).

Second, we summarize the implications from different modeling and estimation strategies
used by different estimators. In our comparison of different estimators, we found that the main
difference between the within estimator and other estimators is the role of the second partial
effect of an explanatory variable, and the main difference in modelling strategies for different
estimators is the presumption of a fixed effects parameter. If the sole concern of the regression is
the first partial effect or the within effect of the explanatory variables, then the use of the within
estimator is sufficient, and there is no need for other estimators and no need for CRE models nor
the random effects model. If the second partial effect is not zero, CRE models may provide
additional information about the partial effects of explanatory variables. Furthermore, CRE
models provide the prediction based on both group means and within group deviations of the
dependent variable. The random effects estimator and the GLS estimator of the Moulton model
are biased if the group mean variables are correlated to observed group variables. For the
inference of the coefficients of group variables, the use of between regression is sufficient.

Although our analysis and results are for cluster data, the same can be applied to balanced
and unbalanced panel data models with one-way fixed effects in the cross-sectional or time
domain. Two improvements on this study can be considered in future research. First, our analysis
assumes that basic random errors are homoscedastic and uncorrelated. This assumption can be
relaxed. Second, the analysis with cluster data focuses only on the cross-sectional domain of
panel data. A future study can analyze different estimators for two-way fixed effects models such

that group characteristics for both cross-sectional and time domains are considered.
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Table 1. The Means and Variances of the Estimators Under the CRE1 Model

Estimator Weights
By = ABgic + (I — DBy A=({A+B)14 Mean Variance
= B + ey I-A=(A+B)'B
Beio, = (F'D) X'y (NA) B+y | @D % dy x(x D)
,5’310,\, = X'X)7X'Y (NA) B+y X'X) X' QX (X'X)™1
@) | Boie = @ 0z' D)Xy A=1I B+y | @az'n)™
(i) | f = (X'%) X7 A=0 B | a(X'X)
5 5 o1
Ber = B o2(%'X)
(i) c1 AW ) (NA) 5 N
Ye1 = Bsic — Bw (x'Q7'%)~t + 02(X'X)
Boss = (X3 A
= (X'X)X'Y -
(vi) oL . B=X'X B+ Aosy | X'X)TI(X'QX)(X'X)!
= By + AoLsY
Bw + AorsVca A+B=X'YX
5 A=x'07'% -1y V-1 —
Pre = X'Q71X)"1Xx'Q" Y _1u~ ~ X'Q7Xx)" =
(v) ) R B=oc? X'X B + AreY R
= Pw + AreVc1 ) (x Q7' % + of XX)
A+B=X'Q7'X

Notes: There are three different between estimators under the CRE1 model with cluster data.
Both BBlOn and BBlOn are the OLS estimators, where BBlOnis based on ¥ and x and BBloNis
based on ¥ and X. Bz, is the GLS between estimator. Sz, and By in (i) and (ii) are two
fundamental estimators. The remaining three estimators are related to these two estimators. The
Py and 74 in (iii) are the GLS estimator of 8 and y in the CREI model. A is the weight
assigned to y, the second partial effect of x.
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Appendices

Appendix A. The Extended Frisch-Waugh Theorem and An Application

Appendix A is organized as follows: First, we introduce an extended version of the
Frisch-Waugh theorem (Frisch & Waugh, 1933). The standard theorem is for the OLS estimator
while the extended theorem is for the GLS estimator. Second, we use the extended theorem to
prove the GLS estimator of § for CRE models with cluster data is the same as the within

estimator.

Part I. The Extended Frisch-Waugh Theorem

The standard Frisch-Waugh theorem is introduced in some econometrics textbooks
(Lovell, 2008); Greene (2018, pp. 35 — 37) provides a good review of the theorem. Consider the
following regression with two sets of variables X; and X, and parameters [5; and f3,.

Y=Xp1+X,06,+¢ (A.1)
Let [?1’0 s and ,[?2,0 Ls be the OLS estimators of §; and f,, respectively. The theorem shows that

BroLs = (XIXI)_le’Y;Z

BaoLs = (X;Xé‘)‘lX;'Y;l
where X;" are the residuals from the regression of X; on Xj, and Yy, are the residuals from the
regression of Y on X;, with i, j = 1,2 and i # j. One constraint of the theorem is that it is
designed for models with the OLS estimator. When the random errors ¢ are heteroscedastic and
serial correlated, the OLS estimator is inefficient, and the process of applying the theorem needs
to be modified. Suppose the covariance matrix of the random errors ¢ is

V(e) =Q
A method in applying the theorem with any Q is to convert the random errors and the covariance
matrix of € as

V(Q¢) = a?1
where o2 is a constant and Q is a conversion matrix, such that QQQ’ = ¢?I and Q'Q = Q1. We
can then use Q to convert the variables Y, X; and X, and apply the standard Frisch-Waugh
theorem (Lovell, 1963; Chamberlian, 1980, p. 234; Fiebig et al., 1996; Wooldridge, 2019). This

appendix extends this standard theorem to general models where the GLS estimator is used for
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heteroscedastic and serial correlated random errors. With this extended theorem, there is no need

for transformation of variables. Denote the GLS estimator of (f;, ;) in Equation (A.1) as

(,[?1, ,[?2) Then

-1
m) ((X{) Q-1 X1\ -1
x)) () A2
<ﬁ2 XZ 142 Xz ( )
Or,
AN (X{.Q‘le X{.Q‘le)_l (X{!)‘lY) o
B,)  \X;07'X, X,07'X,) \X;0°'y '
The extended Frisch-Waugh theorem is that the partial coefficients £; and f3, are
b= (XTQ7XDTIX QT (A4)
By = X07X)TIXG ATy, (A.5)

where X; are the residuals from the GLS estimation of the regression of X; on Xj, Yy, are the
residuals from the GLS estimation of the regression of Y on X;, with i,j = 1,2 and i # j. For
example,

X=X —X,(X;071X,)" X, 071X, , with BX1X2 = (X;Q71X,)"1X071X,

Yy, =Y — X,(X071X,) 71 X3Q7tY, with By, = (Q71X,) X507
The following is the proof of this extended theorem.

Rewrite the system of equations of the GLS estimator, Equation (A.3), as

<X{Q‘1X1 X0 1X2) <ﬁ1> (X{Q‘lY)

X071 X071,/ \B, X071y

The normal equations are

X7 X))y + (X1Q7'X,)B; = X107 (A.6)

(X071 X)) By + (071 X,)B, = Xéﬂ‘ Y (A7)
Rewrite Equation (A.7) as

B, = (X3071X,)7IX07YY — (X071 X)) T (XG0T X)) By (A.8)
Substituting Equation (A.8) into Equation (A.6) and rearranging terms,

Q71 = X, (X071 X)X Q7D X By
=X, 0711 - X,(X, 071 X,)" X, )Y (A.9)

Let My, = I — X,(X;Q7'X;)7"X;Q7". Then X; = My, X;, and Yy, = My, Y. Equation (A.9) can

be written as
52



B = (X1Q7XD) X Q7Y (A.10)

Note X; Q71X = X;Q71X; — X;Q71X,(X;Q71X,)"1X,Q71X, is nonsingular since
(Xl’.()‘le XI071X,
X207X,  X,071X,
My, My,, rewrite X{ Q™' X and X{Q ™'Yy in Equation (A.10) as

) in Equation (A.3) is nonsingular (Graybill, 1983, p. 184). Using My, =

X107 X] = X107 My, X7 and X1 Q7' Yy, = X107 My, Yy, (A.11)
Consider X; Q™M x, n the above equations.
X107 My, = X107 - X, (X071 X,) 7T X,07)
= X071 - X107 1X,(X;071X,)"1x;071
= (X — X[ 07 X (X071 X,) 7T X)a !
= (X1 — X, (X;Q71X,) 7 X,071X,)'Q7!

=X;'07! (A.12)
Substituting Equation (A.12) into Equation (A.11),
X[Q71X; = X;'Q71X; and X{Q_lY)}“z = Xf’Q_lY)}; (A.13)

Substituting the equations in (A.13) into Equation (A.10), Equation (A.10) becomes Equation
(A.4). This proves the partial coefficient ;. The partial coefficient 8, in Equation (A.5) can be
derived similarly, and the extended theorem is proved.

There is a limitation in using this theorem empirically. Note that Q is the covariance
matrix of the random errors in Y = X; 81 + X, [, + €. The partial regression of Y on X; and the
regression of X; on X; are considered misspecified model under Y = X; 8, + X8, + €. The
estimator of () from partial regressions can be biased. Hence, (2 cannot be estimated by partial
regressions. The extended theorem can still be applied to the models using the feasible GLS

estimator if Q is appropriately estimated by { and Q is used in partial regressions.

Part I1. Proof of B-; = Bw and B, = Bw
In part II, we apply the extended Frisch-Waugh theorem to prove that the GLS estimator
of § for CRE models with cluster data is the same as the within estimator (the first equality in
Theorem 1, Equation (57), and the first equality in Theorem 2, Equation (83)). The proof
provided here is similar to the proof of Proposition 2.1 in Wooldridge (2019). While the proof by
Wooldridge (2019) used the standard Frisch-Waugh theorem, we apply the extended Frisch-
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Waugh theorem and matrix equivalences, and show the proof with details in the matrix algebra.
In the following, matrix equivalences of X'Q71X = X'Q7'X, X'Q"'X = n,X'X, and X'Q71Y =
X'Q7Y = m,X'Y are used in the derivation of some equations. Using Q™ = m,1 + D, L 7,
X'X=X'JX =X'X,and JX = 0, we derive the following matrix equivalences.

X'Q'X = X'(m,l + Do J)X = X' (1,0 + D )X = X' Q71X (A.14)

X'Q7'X = X'(my] + Do J)X = X' K + X' Dy JX = 1, X'X (A.15)
Similarly, X'Q~1Y = m,X'Y using X'Y = X'MY = X'Y.

Consider the CRE1 model Y = XB + Xy + u with V(u) = Q. Based on the extended
Frisch-Waugh theorem, the GLS estimator of § is

Bei = (X5 Q71X XF Q7Y (A.16)
where

X=X -XX'Q )X 1x (A.17)

Yy =Y —-XX'Q X)Xty (A.18)

Using X'Q71X = X'Q~1X, Equation (A.17) is simplified as Xz = X — X = X. Substituting X5 =
X into Equation (A.16),
fer = (X'Q71R) 'Ry (A.19)
Using Yy defined in Equation (A.18), rewrite X'Q~1Yy in the above equation as
X'Qlyy =X' 071y —X(X'Q71X)"1X'Q71y)
=X'Q7lY - X' Q' XX'Q X)X’y
=X'Q7Y (A.20)
To derive the last equation, we use X'Q"1X = 0 since X'’/ = 0and X'X = X'JX = 0.
Substituting Equation (A.20) into Equation (A.19) and using the matrix equivalences as in
Equation (A.15),
Ber = (RQ71R)7X'Q7Y = (X' %) mR'T = B (A21)
This proves the first equality of Theorem 1.
However, we cannot use the extended theorem to prove the second equality of Theorem
1. Based on the extended theorem,
Po1 = XX QX)X Q7 Yy
where
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Xy =X-XX'QXxX)"1x'Q" X

Yy =Y —XX'Q1X)"1x'Qty
With this definition of the partial coefficient of y, we cannot derive 7, = Bz — P because
(X'Q71X)~1 in X and Yy cannot be simplified.

For the CRE2 model Y = XB + Xy + Z& + u with V(u) = Q and B, as the GLS
estimator of 8, we also use the extended theorem to prove B¢, = fy. Define X, = (X Z) and
By = (y' &')'. Then we apply the extended theorem to f in Y = XB + X, 8, + u. The GLS

estimator of 8 is

= (Xp Qx5 ) X;;' Yy, (A.22)

where
Xz, =X - X,(X;071X,) "1 X071 (A.23)
Yy, =Y — X,(X;Q71x,) " 1X507 Y (A.24)

Equation (A.23) is the residual equation for the GLS estimation of the partial regression of X on
X,. We can apply the extended theorem again to this partial regression. Consider the regression
of XonX, = (X Z) as

X=X,(a'b") +uy, =Xa+Zb + uy, (A.25)
where a and b are parameters. In applying the extended theorem, we let V(uxz) = (). The GLS

estimator of (a, b) is (X;Q71X,)"1X;071X, which can also be derived from the extended

theorem as:
a= X0 X)) X07x; (A.26)
b=ya 'z 'z 1X; (A.27)
where
X;=X-2Z'Q'z)'2'07'X (A.28)
X;=X-22Z'Q'z) 'z’ 'X (A.29)
Z:=7Z-XX'Q X)Xz (A.30)
X;=X-XX'Q ) Xx'alx (A31)

We show that @ = I and b = 0. Consider X; Q~1X; in @ (Equation (A.26)). Using X; Q~1X; =
X'Q~1X; from Equation (A.13) and substituting X5 in Equation (A.29) into X'Q~1X,
X; QX = X0

55



=X X -X'Q 'z’ z) 172’0 X
=X X -X0Y(z'Q"1z) 1727071 X
=X'Q71X; = X3 Q71X; (A.32)
To derive the above equation, we use the matrix equivalence of Z'Q"1X = Z'Q71X as in
Equation (A.14). Hence, @ = (X;'Q7'X;)"1X;'Q71X; = I. Using Equation (A.13), Xz = X —
X = X from Equation (A.31),and Z'X = Z'JX = 0, rewrite Z}(’Q‘lX;( in b (Equation (A.27)) as
ZyQ7 X = 2’0718 = 0
Hence, b = 0. The fitted equation of X = Xa + Zb + Uy, 1S Xa + Zb, and the residual equation
is
Xy, =X—-(Xa+zb)=x-X=X (A.33)
Substituting Xy, = X into B, in Equation (A.22),
Ber = (X'Q71R) Xy, (A.34)
Using Yy, defined in Equation (A.24), rewrite X ’Q_lY)}“2 in the above equation as
X0y, = X7y - X,(071X,) 71 X,07tY)
=X'Q7lY - X071 X,(X,071 X)X 07ty
=X'Q1Y
To derive the last equation, we use X'Q~1X, = 0 since X'Q™1X = 0 and X'Q~1Z = 0. Using the
matrix equivalence as in Equation (A.15), Equation (A.34) becomes
Be, = (X'Q71X) 7 X'Q7Y = (m,X' %) m,X'7 = By (A.35)
Q.E.D.

Appendix B. Proof of the Theorems
This appendix provides the proof of Theorems 1 and 2 without using the matrix inversion
nor the Frisch-Waugh theorem. The method is based on the typical process in solving a system

of equations and matrix equivalences.

Proof of Theorem 1:
Consider the CRE1 model

Y=XB+Xy+u V) =Q (B.1)
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Let (,@Cl, ]7c1) be the GLS estimator of the parameters in the CRE1 model, and B, and Bg; be

the within estimator and the GLS between estimator of the CRE1 model, respectively. Theorem
1 states that

Ber = Bw and Pc1 = Bpig — Bw (B.2)
The following is the proof of this theorem.

The GLS estimator of (8, y) in the CRE1 model, Equation (B.1), is

<,éC1) _ (Xlﬂ—lx X’.Q_l)?)_l ()Slﬂ_ly)

Ye1 X'Q7x  XQ X X'Q "y

Rewrite this matrix system of equations as

(X'Q-lx X'n-l)?) (Bm) _ (X’.Q‘lY)

X'07X X' 07X \Peq X'y

The normal equations are
X0 X))o + X' X)Pe, = X' Q7Y (B.3)
X0 X))o+ X2 X)) =X'07YY (B.4)

Consider the matrix equivalences of all six matrix triplets with Q™1 in the normal equations.
Using Q7' = m,] + Dy J, X = JX = JX, m, + mm; = (maZ)~" (Equation (27)), and
X'Q7'X = x'Q3'x (Equation (48)), X'Q~1X is equivalent to

X' X =X'(ny] + Do )X = X'Dpppyomn X = X'D, X =X'Q7'X = x'03'%

(moz)
(B.5)
Similarly, from Equations (A.14) and (B.5), we have X'Q71X = X'Q71X = X'Q71X = x'Q;'x
and X'Q71Y = X'Q~1Y = x'Qg;'y. For the matrix equivalence of X'Q~1X, we have
X'Q7'X = X'(myl + Dy J)X
= 7,X'X + X' Dy JX
=m,(X'X+X'X) + X' Dy X
=, X' X + X'Dy, ymm, X
=m,X'X + x'Q5'% (B.6)
Similarly, X'Q'Y = m,X'Y + x'Qz'y. Subtracting (B.5) from Equation (B.6), we have
X'O X -X'01X =n,X'X (B.7)
Similarly, X'QY — X'Q7Y = m,X'Y.
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Consider the normal equations, Equations (B.3) and (B.4). Subtract Equation (B.4) from
Equation (B.3) and using the matrix equivalencies, such as Equations (A.14) and (B.7),

XOX —X'07'X)fe, = X' Q7Y —X'071Y

(nz)?’)?)ﬁm =m,X'Y

Bc1 = (}?’X)_l)?’? = BW (B.8)
Using the matrix equivalencies, such as Equations (A.14) and (B.5), rewrite the second normal
equation (Equation (B.4)) as

Vo1 = X'Q71X)X'07Y — (X'Q71X) X0 XB

= (X'07'%)7'%' 07"y — Bw

= ﬁma - ﬁw (B.9)
Q.E.D.
Proof of Theorem 2:
Consider the CRE2 model
Y=XB+Xy+ZE+uV(u) =Q (B.10)

Let (,écz; Ve {CCZ) be the GLS estimator of the parameters in the CRE2 model, f;, be the within

estimator, and B, and &z, be the GLS between estimator of § and & in the between regression
y = xPg + Z& + u. Theorem 2 states that

Bez = Bw. Pcz = Brze — Pw- and éc; = gy (B.11)
The proof of this theorem is similar to the proof of Theorem 1. The GLS estimator of 3, y, and &
in the CRE2 model is

Ve Xo'x X'0'X Xot'z| |(Xoly
£ Z’07'x 7’07 7’07z \z'a7Y

Rewrite this matrix system of equations as:

Be2 (X'n-lx X'01% X'n-lz)‘1 <X'Q-1y>

(X'Q—lx X0 X’!)‘12> Be2 <X’Q‘1Y>

X0x X0'X X0z || Ve X0y
707X 707X 7077/ \¢, Z'07y
The normal equations are
X' X)) + X' X)) + X'QDE, = X' Q7Y (B.12)
X' X)) ey + X' KD e + X'Q712)E, = X' 071Y (B.13)
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Z'07'X) ey + (207 X)) + (2’07120, = Z'027Y (B.14)
Similar to the proof of the matrix equivalences of X'271X = X'Q71X = X'07'X = x'Q7'x in
Equations (A14) and (B.5), we find matrix equivalences of all six matrix triplets with Z and Q1.
Wehave X'Q71Z =X'Q71Z =x'0712,7'07' X =72'07'X = ' 057'%, 2’07 Z = 7 05'Z, and
Z'07Yy =7'07Y = 7031y,

Consider the first two normal equations. Subtracting Equation (B.13) from Equation
(B.12) and using these matrix equivalences and those in Equations (A14) and (B.7),

XO X -X'0" X)), =X'07Y -X'07Y

(mX'X) By = M X'Y

ﬁcz = (X’X)

Next, we proceed to prove P, = Pgac — Bw and Eq, = &g, Using the derived matrix

2 =3, (B.15)

equivalences, rewrite the last two normal equations, Equations (B.13) and (B.14), as the

following matrix system of equations.

X'07'% X075\ (Ber + Ve _ (X07'Y (B.16)
Z07'%x 705z £ ) \2'07'F |

Consider the GLS estimator of fp and ¢ in the between regression ¥ = xfp + Z& + u as follows.

(z?m,-) _ (f'nalf f’nalz>‘1 (f'fzaly>
€2/ \Z'03'% 707'z) \Z03'y
Rewrite the above system of equations as

(rame v (e) = (0s) @
Compare the two sets of system of equations, Equations (B.16) and (B.17), which are the system
of equations for the GLS estimator of the CRE2 model and the GLS between estimator,
respectively. Both systems of equations have the same coefficients. It gives

ﬁcz + Ve = :éBZGa Ve2 = 5’320 - BW

fccz = éBZG

Q.E.D.
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Appendix C. The Means and Variances of the GLS Estimator of the CRE2 Model
There are two methods to derive the means and variance of the GLS estimator of the

CRE2 model. The first method is to use Theorem 2 and the means, variances, and covariances of
Bw, Bra2c, and E, from the within and between regressions. Using e, = Bw, Tz = Bs2c —

.éWa Sscz = SsBZG, Equations (53), (54), (80), (81), and C(éw: .éBza) = C(:[?W' EBZG) =0, we

derive the following means, variances, and covariances.

E(fc:) = E(Bw) = B (C.1)
E(Pc2) = E(Bszg —Bw) =B =B =71 (C2)
E(éc2) = E(8p2) = ¢ (C3)
V(Bez) =V(Bw) (C.4)
V(c2) = V(Boze — Bw) = V(Br2) + V(Bw) (C.5)
V(é:2) = V(€sac) (C.6)
C(Bez Vc2) = C(Bw, Bz — Bw) = =V (Bw) (C.7)
C(Bea éc2) = C(Bwr €pac) = 0 (C.8)
C(Pczr€cz) = C(Brag — Bwr Ep26) = CBrac Enac) (C.9)

The second method to derive the above equations is to follow the standard procedure
without using Theorem 2. Substituting Y = Xf + Xy + Z& + u into the GLS estimator of the
CRE2 estimator,

P2\ (B\ (x'07x x'07'% X'0z\'/x'o'u
Ve |=\V |+ X0 X'07'X X'07'z| (X0 'u
&, § 7’07 7'07'X 7'07'Z Z'07
Then E (Bcz) =B,E([Jc) =V, E (fc) = £. For the variances and covariances of the estimator,

we begin with the variance of the GLS between estimator,

o (Boae _ (707 ®ag'z\”
S;ABZG - 2’0519? 5'9515
Rewrite the variance matrix as:
(flﬂilf JZ'9515)( V(BBZG) C(BBZGJEBZG)) —
Z07'%  2'07'Z) \C(€pac, Brac) V(¢p26)
It gives four equations.

(flﬂﬁlf)v(ﬁszc) + (5'9512)6(5326'[?326) =1 (C.10)
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(X'07*%)C(Bpac €pe) + (X' 07 5V (Epy6) = 0
(Z' 07" 0V (Beag) + (G 07" D C (€p26) Brog) = 0

(Z'07'%)C(Boac Epac) + GO DV (Epag) =1
The variance of the GLS estimator of the CRE2 model is

b2\ (x'0x x'07% x'ottz\!
V| Ve |= (X0 X'07'X X'07'Z
€ca Z’07'X 707X Z7'07'Z

Rewrite the matrix as:

X'0'Xx X0'X X0z C(?cz’,@cz) V(¥c2) C(?cz’écz)

(X,.Q_]'X XI.Q_:[X X’_Q-lZ)( V(BACZ) C(ﬁCZ'?CZ) C(ﬁCZ’éCZ)
207X 207X 2’0720\ (8 Ben)  Céater) V()

It gives nine equations.
X'V (Ber) + X' Q)P Ber) + X' 2)C(Ecy Bez) = 1
X'QX)C(Bez Fez) + X'QTXWV (Fez) + (X' Q712)C(Eco Pez) = 0
X'QX)C(Bez éca) + X' QT K)C (P écz) + XQ 2V (Ec2) = 0
X' X)WV (Ber) + XX Bes) + X Q12)C(Ecs fez) = 0
X' X)C(Bea Pez) + X' QW (Per) + X'Q22)C(¢co Pez) =1
X'QX)C(Ber bc2) + X' XC(Peziécn) + X2V (éc;) =0
Z' 27XV (Ber) + Z' 07X C(Per Bez) + 2 0722)C(Ecy ez) = 0
(2’27 X)C(Beas Pez) + (Z'27 XV (Fe) + (Z'2712)C(€x¢,Pc2) = 0
@' Q7 X)C(ea écs) + @' K)C (P éca) + @07 DV () = 1

(C.14) — (C.17):

X' X)W () — X' QX)W (Bey) =1
V(fe) = X'Q7IX — X071 = (1,8 %) =V (By)

(C.15) - (C.18):

X' X)C(Bea Vez) — X'QKC(Bea Pez) = —1

C(Bertcz) = —X'QX =X X))t =-V(fy)
(C.16) - (C.19):

X' X)C(Ber écr) = XQX)C(Ber cz) = 0

(C.11)
(C.12)
(C.13)

(C.14)
(C.15)
(C.16)
(C.17)
(C.18)
(C.19)
(C.20)
(C.21)
(C.22)

(C.23)

(C.24)
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(X' X)) - X' QX)) C(Bez éc2) = 0
V(/?W)C(ﬁczmgcz) =0

C(Bczréc2) = 0 (C.25)
Using C (,[?Cz, éc) = 0 and the matrix equivalences, rewrite Equations (C.19) and (C.22) as

(@' 07' DC(Pez,éc2) + @07 DV (§c2) = 0 (C.26)

(F 07 0 C(Pea éc2) + @07 DV (écz) = 1 (C.27)

Comparing the above system of equations (C.26) and (C.27) with the system of equations (C.11)

and (C.13) from the between regression, both systems have the same coefficients. Therefore,

V(écz) = V(EBZG) (C.28)

C(]?cz'sscz) = C(.éBZG:éBzG) (C.29)
Using the last equation and matrix equivalences, rewrite Equation (C.10) from the between
regression as

X' QX (Bee) =1 — X' Q7*2)C(¢p26, Prac)

(XIQ_lX)V(BBZG) =1- (X'Q_lz)c(sscz’?cz)
Using C (,écz; ch) = —V(ﬁw) from Equation (C.24) and the above equation, rewrite Equation
(C.18) as

(X'Q_lx)c(ﬁcz']?cz) + X'QOXWV () =1 - ()?’Q_lZ)C(écz,?cz)

~X XV (bw) + XAV (Fez) = (X'Q7 XV (Bpag)

V(Pc2) = V(Brac) + V(Bw) (C.30)
In summary, the above equations show: (C.23) = (C.4), (C.24) = (C.7), (C.25) = (C.8), (C.28) =
(C.6), (C.29) =(C.9), and (C.30) = (C.5). The second method gives the same results as those
from the first method, but it does not use Theorem 2, C (BBZG, BW) =0,and C ({c B2G) ,éw) = 0.

Appendix D. The GLS Estimators of the Moulton Model and the CRE2 Model

In appendix D, we derive the relationship between the GLS estimator of the Moulton model
(Moulton, 1986, 1990) and the GLS estimator of the CRE2 model. The Moulton model is

Vi = XgiB + 24 +uli, V(uji) = Qp, (D.1)
Assume 2,, = . The GLS estimator is
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Prez _ (X'Q—lx X'Q-lz)‘1 (X'Q-1Y) 0.2)
Erez AAVRED QA VA Z'Q7 1y '
Rewrite the system of equations as:
(X'Q-lx X'n-lz) Prez _ (X'Q-1Y)
72’07 72’0717/ \ &g, Z'0y
The normal equations are
X' 07 X) Brez + (X' 07 2)épp, = X'07Y (D.3)
(Z'Q7X)frez + (Z'07 D)érez = Z'07'Y (D4)

Consider the differences of the two normal equations from the CRE2 model and the above
normal equations. Subtracting Equation (B.12) from Equation (D.3) and subtracting Equation

(B.14) from Equation (D.4),

(Xax x'a'z) Prez — B2\ _ (X' 07 X)Fc,
707% 72’077\ gy — Ecy (Z' 27 X)Pcy

We solve Brgz — Bcy and gy — &, in terms of 7¢,. Rewrite the above system of equations as

(X'-Q_IX)([;'REZ - BCZ) = _X,-Q_lz(éREZ - sgcz) +X'27 )7, (D.5)
pez — €z = _(Z'-Q_lz)_lzlﬂ_lx(ﬁAREZ - Bcz) + 'O D)2 2 )
= _(Z,Q_lz)_IZ’Q_IX(BREZ — Bz — ?cz) (D.6)

Substituting Equation (D.6) into (D.5),
(XIQ_lX)(,éREZ - Bcz) = X,Q_lz(zlﬂ_lz)_1ZI~Q_1X(BREZ - Bcz)
(X'0X - X'07Z(Z' 072N Z'07X) )iz

Rearrange the terms in this equation, with (X'Q271X — X'071Z(Z'Q71Z)"1Z'071X) asa
X'nx X0z
7’07 7’07z
Brez = Poz + X'Q7X —X'Q71Z(Z'07 7)1 2’071 x) !

X'0 X -X'0"1Z(Z'0712) 1707 X)) P, (D.7)

nonsingular matrix since ( ) in Equation (D.2) is nonsingular.

We can simplify the above equation using the notations in the extended Frisch-Waugh Theorem
in Appendix A. Let M, =1 — Z(Z'071Z)71Z'0~! and M;X = X, which are the residuals from
the GLS estimation of the regression of X on Z. Then, as in Equation (A.13),
X'0X-X'0"12Z@Z'02) 127707 = X' Q" IM, X
= X;'071X; (D.8)
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Similarly, as in Equation (A.32),
X' X -X'012Z'012) 127707 X =X' QM X

=X;’071X; (D.9)
Using Equations (D.8) and (D.9), Brz in Equation (D.7) can be rewritten as
) ) *! ~— * _1_*1 —1v*xa
Brez = Bez + (Xz Q 1Xz) X707 X50c, (D.10)
Define

Argz = (X;Q_le)_l)??ﬂ_lig
Subtracting Equation (D.9) from (D.8) and using matrix equivalences of X'271Z = X'271Z and
Equation (B.7),
X Q1x; - X3 Q71K
=X'Q X -X'01Z2(Z'07 7)1 Z2'071X)
- X'0X-X'0"1Z(Z'0712)7172'071X)
=X'NX-X'0X=m,X'X
Then
I Aper = (X3 Q71X3) 7 X5 0715 — (X5 07'x3) X5 071K
=m,(X;’ 071X 1X'X
Equation (D.10) can be written as
Brez = Bez + ArezPca- (D.11)
Rewrite the above equation as
ﬁREZ - ,écz — V2 == = Aggz)¥c2
Substituting the above equation into Equation (D.6),
€rez = Eco + (Z'07 )71 207X (I — Arez)Pca (D.12)
Equations (D.11) and (D.12) show the relationship between the GLS estimator of the Moulton

model and the GLS estimator of the CRE2 model.
Q.E.D.
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