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Estimators Under Correlated Random Effects Models with Cluster Data 

 

Abstract 

This paper provides a complete analysis on the properties of six basic estimators under correlated 

random effects models. We examine the relationships of these estimators as in panel data models 

and extend the results to models with group variables and cluster data. In our analysis, we 

consider the between and within regressions as two fundamental regressions and assume there 

are two partial effects of an explanatory variable. Our theoretic results demonstrate some 

different discussions and new findings. A noteworthy new finding is that the inference of the 

coefficients of group variables can be made directly with the between regression.  

 

JEL Subject Code: C18, C23, C40 

Keywords: Correlated Random Effects Models, Random Effects Model, Within Effects, Fixed 
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Estimators Under Correlated Random Effects Models with Cluster Data 

 

1.  Introduction 

Correlated random effects (CRE) models are extensions of the random effects model with 

additional group mean variables and other group variables in the regression (Wooldridge, 2010). 

One simplified version of CRE models is the well-known Mundlak model (Mundlak, 1978), 

where only group mean variables are added to the random effects model. In CRE models, there 

are three sets of key parameters: the coefficients of the explanatory variables, group means of the 

explanatory variables, and other group variables. To make inferences of these parameters, 

several estimators are commonly considered, and their relationships have been examined. For 

models with balanced panel data, two examples of the relationship are commonly known: (1) 

The pooled ordinary least squares (OLS) estimator of the pooled regression and the random 

effects estimator are matrix weighted averages of the between and within estimators (Maddala, 

1971), and (2) The generalized least squares (GLS) estimator of the coefficients of the 

explanatory variables in the Mundlak model is the same as the within estimator (Mundlak, 1978). 

Wooldridge (2019) extended Mundlak’s (1978) result to CRE models with unbalanced panel 

data. But his extension is only limited to the equivalence of the GLS estimator of the coefficients 

of the explanatory variables and the within estimator. Currently, it is still unknown how the GLS 

estimators of group mean variables and other group variables are related to the between and 

within estimators of CRE models.  

The choice between the fixed effects and random effects estimators has long been a 

debate in panel data analysis. Mundlak (1978) used a CRE model with balanced panel data to 

unify the fixed effects model and the random effects model. His extension of the random effects 

model to CRE models is an important step in understanding the relationship between the two 

estimators (Greene, 2018, p. 415; Wooldridge, 2010, p. 286). Furthermore, based on the 

Mundlak model and CRE models, an alternative to the Hausman test (Hausman, 1978) can be 

derived for determining between the fixed effects and random effects estimators (Baltagi, 2021; 

Wooldridge, 2010 & 2019; Greene, 2018). This paper follows Mundlak (1978) and provides a 

complete analysis on the properties of six estimators under CRE models with cluster data. The 

six estimators are: the between estimator, the within estimator, the pooled OLS estimator, the 

random effects estimator, the GLS estimator of CRE models, and the GLS estimator of panel 
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data regression with group variables (Moulton, 1986, 1990). Our analysis of these estimators 

begins and focuses on the between and within regressions derived from CRE models. Based on 

these two essential regressions, we use the variances of their random errors and estimators to 

analyze the properties of different estimators under CRE models. Then we examine the 

relationships of six estimators. Since classical panel data models are similar to restricted CRE 

models, our results can be applied to models with balanced and unbalanced panel data.  

We consider two types of CRE models. The first type of CRE models is the basic CRE 

model where the explanatory variables and their group means are included in the regression. This 

basic model with balanced panel data is the specification in Mundlak (1978). The second type of 

CRE models extends the basic CRE model with the inclusion of other group variables. The use 

of the basic CRE model allows us to reexamine the previous results derived from models with 

balanced panel data (Maddala, 1971; Mundlak, 1978). Mundlak’s (1978) main results on the 

relationships of different estimators are: the GLS estimator of the coefficients of the explanatory 

variables in the basic CRE model is the same as the within estimator, and the GLS estimator of 

the coefficients of group mean variables is equal to the difference of the between estimator and 

the within estimator. His analysis of the results focused on the single partial effect of an 

explanatory variable. For example, his comparison of the mean squared error (MSE) for different 

estimators is based on this single partial effect. In his modeling and interpretation, an additional 

parameter associated with the group mean of the explanatory variable is added only to reflect the 

statistical correlation between the explanatory variable and unobserved group characteristics, and 

this correlation is not considered as a partial effect. We, instead, argue that there are two partial 

effects of an explanatory variable. The first partial effect is the direct impact of the explanatory 

variable, and the second partial effect is the impact of the group mean of the explanatory 

variable. Treating the impact of the group mean variable of the explanatory variable as the 

second partial effect or as a “structural” parameter is well known in the literature of social 

interactions model (Manski, 1993, 2000; Blume, et al. 2015), where the second partial effect is a 

measure of network or peer effects. With this different interpretation, we examine the 

unbiasedness, efficiency, asymptotic and small sample properties of each estimator. We also 

compare our interpretation of minimum mean squared error (MMSE) estimators with those in 

Mundlak (1978). Our observations provide a different viewpoint in selecting a better estimator 

between the fixed effects estimator and other estimators.  
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For the extended CRE model, we expand the results on the relationship between two 

estimators (Wooldridge, 2019) to the relationships among six estimators. We check if Mundlak’s 

main results on the relationships of different estimators continue to hold when other group 

variables are included in the model. In addition, we show how the analysis of the extended CRE 

model is related to studies in Moulton (1986, 1990), Amemiya (1978), and Donald and Lang 

(2007). Moulton (1986, 1990) examined the biased issue of OLS standard errors when group 

variables are included in panel data models. Using a random coefficients model, Amemiya 

(1978) showed that the coefficients of group variables in a restricted CRE model can be 

estimated by a two-step procedure. Donald and Lang (2007) used this two-step procedure to 

address the degrees of freedom issue in inference with panel data models when the number of 

groups is small. Their study challenged some conclusions and policy implications derived from 

inference with difference-in-differences models. Using our result on the coefficients of group 

variables, we revisit Moulton’s concern, and the two-step procedure and its implications.  

The rest paper is organized as follows. Section 2 reviews basic data matrices for cluster 

data. Section 3 focuses on the basic CRE model with cluster data. We derive the properties of 

between and within estimators and examine how the GLS estimator of the basic CRE model, the 

pooled OLS estimator, and random effects estimator are related to the between and within 

estimators under the basic CRE model. Then, we compare these five estimators in terms of bias, 

efficiency, and MSE. We also address the issues in choosing between the fixed effects/within 

estimator and other estimators. In Section 4, we extend the basic CRE model in Section 3 with 

additional group variables. In addition to the five estimators under the basic CRE model, we 

consider an additional estimator: the GLS estimator of the Moulton model (Moulton, 1986, 

1990). We show the relationships among six different estimators and discuss the implications 

with additional group variables. The last section concludes our results and observations.  

 

2.  Review of Basic Data Matrices for CRE Models with Cluster Data 

Consider regressions with cluster data. Suppose there are 𝑛 groups and the 𝑔th group 

contains 𝑚  individuals, 𝑔 1,2,⋯ ,𝑛. The variables for the regression include 𝑦, 𝑥 and 𝑧, 

where 𝑦 is a scalar dependent variable, 𝑥 represents 𝑘 explanatory variables observable at both 

group and individual levels, and 𝑧 represents 𝑙 explanatory group variables observable only at the 

group level. Both 𝑥 and 𝑧 are exogenous variables in the model. With these variables, we 
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consider two types of CRE models. The CRE1 model includes 𝑥 and their group means; the 

CRE2 model extends the CRE1 model to include group variables 𝑧. The CRE1 model with 

balanced panel data is the model used in Mundlak (1978). Instead of using the term “the 

Mundlak model,” we use “the CRE1 model” for convenience and for the generalized Mundlak 

model with cluster data. The two models are 

CRE1:  𝑦 𝑥 𝛽 �̅� 𝛾 𝛼 𝜀        (1) 

CRE2:  𝑦 𝑥 𝛽 �̅� 𝛾 𝑧 𝜉 𝛼 𝜀       (2) 

where 𝛽 and 𝛾 are 𝑘 1 parameter vectors and 𝜉 is an 𝑙 1 parameter vector. Both 𝛼  and 𝜀  

are unobserved random errors and we denote 𝑢 𝛼 𝜀  as the composite random error. The 

subscript 𝑔𝑖 is the index for the 𝑖th individual in the 𝑔th group, where 𝑔 1,2,⋯ ,𝑛 and 𝑖

1,2,⋯ ,𝑚 . In Equations (1) and (2), 𝑦  is a scalar value of 𝑦, 𝑥  is a 1 𝑘 row vector of 𝑘 

explanatory variables, and 𝑧  is a 1 𝑙 row vector of explanatory variables observable only at 

the group level. The row vector of group mean variables of 𝑥 is �̅� 1/𝑚 ∑ 𝑥 . This model 

representation with cluster data is similar to models for panel data with 𝑔 as the index for the 

cross-sectional domain and 𝑖 as the index for the time domain. The CRE1 model with 𝛾 0 for 

panel data is the random effects model. For balanced panel data, 𝑚 𝑚 for all 𝑔 and 𝑚 is a 

constant.  

Before we examine the properties of different estimators under CRE1 and CRE2 models, 

this section reviews basic data matrices for analysis. These matrices for balanced panel data are 

introduced in Maddala (1978) and most econometrics textbooks (i.e., Hsiao, 2014, pp. 41 - 43; 

Baltagi, 2021, pp. 15 – 28; Greene, 2018, p. 391, 404 – 408). Here, we construct data matrices 

for cluster data. The data matrices are constructed by stacking the data of individuals in the same 

group together like panel data. For example, the data matrix of 𝑥  is  

𝑋

𝑋
𝑋
⋮
𝑋

∼ 𝑁 𝑘, with 𝑋

𝑥
𝑥
⋮

𝑥

~ 𝑚 𝑘,𝑔 1,2,⋯𝑛     

where 𝑁 is the total number of data values, i.e., 𝑁 ∑ 𝑚 . Based on the data matrix 𝑋, we 

introduce the cross-product matrices 𝑇 , 𝐵 , and 𝑊  for the total, between, and within 

variations of 𝑥, respectively. Let 𝐼 be an 𝑁-dimensional identity matrix and 𝑒  be an 𝑚 1 
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column vector of ones. We follow Mundlak (1978) to define the following two basic matrix 

operators, 𝐽 ̅and 𝑀. 

𝐽 ̅

⎝

⎛

𝐽̅ 0 ⋯ 0
0 𝐽 ̅ ⋯ 0
⋮ ⋱ ⋮
0 0 ⋯ 𝐽̅ ⎠

⎞ , 𝐽 ̅ 𝑒 𝑒 ,𝑔 1,2,⋯ ,𝑛     

𝑀 𝐼 𝐽 ̅           

Both 𝐽 ̅and 𝑀 are symmetric and idempotent matrices, and they satisfy 

𝐽 ̅ 𝐽,̅ 𝐽�̅� ̅ 𝐽,̅𝑀 𝑀,𝑀𝑀 𝑀, 𝐽�̅� 𝑀𝐽̅ 0      

The operator 𝐽 ̅is used to define group mean variables and 𝑀 is used to define variables deviated 

from their group means. Denote 𝑇  as the cross-product of 𝑥  for the total variation: 

𝑇 𝑋 𝑋 ∑ 𝑋 𝑋 ∑ ∑ 𝑥 𝑥        

For the between variation, we introduce two different data matrices for group mean variables �̅� : 

�̅�

�̅�
�̅�
⋮
�̅�

~𝑛 𝑘          

 𝑋 𝐽�̅�

𝑋
𝑋
⋮
𝑋

~𝑁 𝑘, with 𝑋

�̅�
�̅�
⋮
�̅�

~ 𝑚 𝑘,𝑔 1,2,⋯ ,𝑛   

The row elements of 𝑋  are the same; �̅� and 𝑋 have different row dimensions. These two data 

matrices give two different cross-product matrices of �̅�  for the between variation:  

𝑏 �̅� �̅� ∑ �̅� �̅�          

𝐵 𝑋 𝑋 𝑋 𝐽�̅� 𝑋 𝐽�̅� 𝑋 𝐽�̅� ∑ 𝑚 �̅� �̅�      

For balanced panel data, 𝑚 𝑚 for all 𝑔. Then 𝐵 𝑚𝑏 .  

 The deviation of 𝑥  from its group mean �̅�  is defined as 𝑥 𝑥 �̅� . The data 

matrix of 𝑥  is  

𝑋 𝑀𝑋 𝑋 𝑋; or

⎝

⎛

𝑋
𝑋
.
𝑋 ⎠

⎞

𝑋
𝑋
.
𝑋

𝑋
𝑋
.
𝑋

, with 𝑋 𝑋 𝑋 ,𝑔 1,2⋯𝑛   

Then the cross-product of 𝑥  for the within variation is  
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𝑊 𝑋 𝑋 𝑋 𝑀𝑋 ∑ 𝑋 𝑋 ∑ ∑ 𝑥 𝑥       

Using 𝑀 𝐼 𝐽,̅ 

𝑋 𝑀𝑋 𝑋 𝐼 𝐽̅ 𝑋 𝑋 𝑋 𝑋 𝐽�̅�        

Rearranging the terms in the equation, it gives the following relationship among 𝑇 , 𝑊  and 

𝐵 . 

𝑇 𝑊 𝐵 𝑊 ∑ 𝑚 �̅� �̅�        

For balanced panel data, 𝑇 𝑊 𝑚𝑏 . 

The cross-product matrices with 𝑦 and the decomposition of total variation of 𝑦 can be 

constructed and derived similarly. Denote 𝑦 1/𝑚 ∑ 𝑦  and 𝑦 𝑦 𝑦 . We define data 

matrices: 𝑌, 𝑦, 𝑌 and 𝑌, which have the same data structure as 𝑋, �̅�, 𝑋, and 𝑋, respectively. 

Then, 𝑌 𝐽�̅�, 𝑌 𝑀𝑌, 𝑇 𝑊 𝐵  and 𝑇 𝑊 𝐵 . More specifically, 𝑌 𝑌

𝑌 𝑌 𝑌 𝑌 𝑌 𝑌 ∑ 𝑚 𝑦 𝑦  and 𝑋 𝑌 𝑋 𝑌 𝑋 𝑌 𝑋 𝑌 ∑ 𝑚 �̅� 𝑦 . 

 The above introduced data matrices are similar to those in panel data analysis. However, 

we note two things. First, the individuals are not repeatedly observed in different groups in 

cluster samples. For panel data, the same individuals are observed in different time periods. This 

difference cannot be specified and addressed with above data matrices. Second, it is common to 

use balanced data for panel data analysis. For cluster data, it is common that sample size for each 

group varies across different groups. In the following sections, the data matrices are assumed to 

be for cluster data. These matrices can be applied to both balanced and unbalanced panel data.  

 

3.  The CRE1 Model with Cluster Data 

We focus on the CRE1 model in this section. Mundlak (1978) provided an important 

analysis on the properties of the GLS estimator and other estimators under the CRE1 model with 

balanced panel data. The analysis in this section follows Mundalk’s (1978). We generalize his 

analysis to cluster data, which can be applied to unbalanced panel data. In addition to the 

generalization, we adopt some different interpretations. One major difference is that we consider 

there are two partial effects of an explanatory variable 𝑥. One is the direct effect 𝛽 and the other 

is the effect from its group mean, 𝛾. Because of these two partial effects, there are two 

fundamental regressions to consider: the between and within regressions. We begin our analysis 

with these two regressions and explain why they are fundamental to analyze different estimators.  
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3.1 The CRE1 Model: Three Main Regressions and the Variances of Their Random Errors  

For the CRE1 model in Equation (1), we consider three main regressions and examine the 

variances of their random errors. The three main regressions are Equation (1) and the between 

and within regressions. Here, the fundamental assumption is that the between and within 

regressions are derived from Equation (1). Hence, our analysis begins with the relationship 

among these three regressions. Taking the average of the data in each group in Equation (1), it 

gives the between regression:  

𝑦  �̅� 𝛽 𝑢          (3) 

where 𝛽 𝛽 𝛾, 𝑢 𝛼 𝜀̅ , and 𝜀̅ 1/𝑚 ∑ 𝜀 . Subtracting Equation (3) from 

Equation (1), it gives the within regression: 

𝑦 𝑥 𝛽 𝜀̃          (4) 

where 𝜀̃ 𝜀 𝜀 ̅ . Note that the between and within regressions have different parameters 

such that 𝛽 𝛽 when 𝛾 0. Traditional analysis of partial effects of 𝑥 focuses only on 𝛽. 

However, we consider 𝛾 as the second partial effect of 𝑥 caused by group means of 𝑥. The 

recognition of the two partial effects 𝛽 and 𝛾 is important when we compare different estimators.  

The variance of the random errors in these three main regressions are essential to the 

properties of different estimators of the key parameters 𝛽 and 𝛾. We assume that the two basic 

unobserved random errors 𝜀  and 𝛼  have zero means and constant variances. Also, random 

errors for different individuals and groups are uncorrelated. We have  

𝐸 𝜀 𝜎 ;𝐸 𝛼 𝜎         (5) 

 𝐸 𝜀 𝛼 0 for any 𝑔,𝑔 , and 𝑖; 

𝐸 𝛼 𝛼 0, for 𝑔 𝑔 ;𝐸 𝜀 𝜀 0, for 𝑖 𝑗     (6) 

Then the variance and covariance of the composite random errors 𝑢 𝛼 𝜀  of Equation (1) 

are 

𝐸 𝑢  𝑢 𝜎  for 𝑖 𝑗        (7) 

𝐸 𝑢  𝜎 𝜎          (8) 

𝐸 𝑢  𝑢 0 for 𝑔 𝑔′        (9) 

Write Equation (1) in data matrix form as 
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𝑌 𝑋𝛽 𝑋γ 𝑢         (10) 

where  

𝑢

𝑢
𝑢
⋮
𝑢

, with 𝑢

𝑢
𝑢
⋮

𝑢

,𝑔 1,2,⋯ ,𝑛      

From Equations (7) – (9), the covariance of 𝑢 is a block diagonal matrix:  

Ω 𝐸 𝑢𝑢

Ω 0 ⋯ 0
0 Ω 0⋯ 0
⋅ ⋅ ⋅ ⋅
0 0 ⋯ Ω

𝑑𝑖𝑎𝑔 Ω ,Ω ,⋯ ,Ω , 

with Ω

𝜎 𝜎 𝜎 ⋅ ⋅
𝜎 𝜎 𝜎
⋅ ⋅
⋅ ⋅

𝜎 𝐼 𝜎  𝑒 𝑒 𝜎 𝐼 𝑚 𝜎  𝐽 ̅ ,  

𝑔 1,2,⋯𝑛     (11) 

where 𝐼  is an 𝑚 -dimensional identity matrix. We write Ω as 

Ω 𝜎 𝐼 𝐷 𝐽 ̅         (12)  

where 𝐷  is a diagonal matrix with block feature: 

 𝐷 𝑑𝑖𝑎𝑔 𝑚 𝜎 𝐼 ,𝑚 𝜎 𝐼 ,⋯ ,𝑚 𝜎 𝐼        

Note that any matrix denoted as 𝐷  in this paper is a diagonal matrix with a specific form. The 

diagonal elements form in blocks with the form of 𝑐 𝐼 , where 𝑐  is a constant on diagonals; the 

constant 𝑐  may vary from one block to another block. Also, 𝐷  satisfies 𝐷 𝐽̅ 𝐽�̅� 𝐽�̅� 𝐽.̅ When 

the covariance matrix of random errors is not equal to 𝑐𝐼, where 𝑐 is a constant, the inverse of the 

covariance matrix of random errors is usually used for the GLS estimator. Using the inverse of a 

partition matrix, the inverse of Ω  is (Graybill, 1983, p. 189) 

Ω 𝜎 𝐼 𝜎  𝑒 𝑒  

𝜋 𝐼 𝜋 𝑒 𝑒 𝜋 𝐼 𝑚 𝜋 𝐽̅     (13) 

where 

𝜋 , 𝜋 , 𝑔 1,2,⋯ ,𝑛      (14) 

Then 
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Ω 𝜋 𝐼 𝐷 𝐽 ̅         (15) 

with 𝐷 𝑑𝑖𝑎𝑔 𝑚 𝜋 𝐼 ,𝑚 𝜋 𝐼 ,⋯ ,𝑚 𝜋 𝐼 . For balanced panel data, 𝑚 𝑚 and 

𝜋 𝜋  are constants for all 𝑔. Then  

Ω 𝜋 𝐼 𝑚𝜋 𝐽 ̅         (16) 

This specification is given in Mundlak (1978).  

For the between and within regressions, we derive the variances of their random errors 

based on the assumptions on the random errors of the CRE1 model. The variance and covariance 

of the random errors 𝑢  of the between regression in Equation (3) are 

𝐸 𝑢 𝑢 𝜎 ,𝜎 𝜎        (17) 

𝐸 𝑢 𝑢 0, for 𝑔 𝑔         (18) 

The matrix form of Equation (3) with 𝑦 and �̅� is 

𝑦  �̅�𝛽 𝑢          (19) 

where 𝑢 𝑢 ,𝑢 ,⋯ ,𝑢 . The covariance matrix of the random error 𝑢 is 

Ω 𝐸 𝑢𝑢 𝑑 ,𝑑 𝑑𝑖𝑎𝑔 𝜎 ,𝜎 ,⋯ ,𝜎      (20) 

This shows that 𝑢 is heteroscedastic. Then the inverse of Ω  is 

Ω 𝑑 𝑑𝑖𝑎𝑔 𝜎 ,𝜎 ,⋯ ,𝜎      (21) 

Because the data matrix 𝑋 instead of �̅� is involved in the matrix form of the CRE1 model 

in Equation (10), we consider the matrix form of the between regression in Equation (3) with 𝑌 

and 𝑋 as follows.  

𝑌 𝑋𝛽 𝑈          (22) 

where 𝑈 𝑢 𝑒 ,𝑢 𝑒 ,⋯ ,𝑢 𝑒 ′. From Equations (17) and (18), the covariance matrix of 

the random errors 𝑈 is 

Ω 𝐸 𝑈𝑈 𝑑𝑖𝑎𝑔 Ω ,Ω ,⋯ ,Ω ,       (23) 

with Ω

⎝

⎜⎜
⎛
𝜎 𝜎 . .

𝜎 𝜎

. .

. . ⎠

⎟⎟
⎞

𝜎 𝑒 𝑒 𝑚 𝜎 𝐽̅ ,𝑔 1,2,⋯𝑛  

Or 
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Ω 𝐷 𝐽 ̅          (24) 

with 𝐷 𝑑𝑖𝑎𝑔 𝑚 𝜎 𝐼 ,𝑚 𝜎 𝐼 ,⋯ ,𝑚 𝜎 𝐼 . Since the rank of Ω  is 1, the rank of 

Ω  is 𝑛. Ω  is not full rank and is singular. Ω  does not exist. However, we can define the 

inverse of Ω  as  

Ω 𝐷 𝐽 ̅         (25) 

with 𝐷 𝑑𝑖𝑎𝑔 𝑚 𝜎 𝐼 , 𝑚 𝜎 𝐼 ,⋯ , 𝑚 𝜎 𝐼 . Using the formulas 

of 𝜋  and 𝜋  in Equation (14), it gives 

𝑚 𝜋        (26) 

𝜋 𝑚 𝜋 𝜎 𝑚 𝜎    (27) 

Then Ω  can be rewritten as  

Ω 𝐷 𝐽 ̅         (28) 

with 𝐷 𝑑𝑖𝑎𝑔 𝜋 𝑚 𝜋 𝐼 , 𝜋 𝑚 𝜋 𝐼 ,⋯ , 𝜋 𝑚 𝜋 𝐼 . This 

alternative form of Ω  is useful when examining different estimators under the CRE1 model.  

For balanced panel data, 𝑚 𝑚, 𝜋 𝜋 , and 𝜎 𝜎 𝜎  are constants. Then 

 Ω 𝜎 𝐼 and Ω 𝜎 𝐼         (29) 

Ω 𝑚𝜎 𝐽 ̅and Ω 𝑚𝜎 𝐽̅ 𝜋 𝑚𝜋 𝐽 ̅     (30) 

Equation (29) shows the random errors 𝑢  in 𝑢 are homoscedastic and serial uncorrelated. 

However, the random errors 𝑢  in 𝑈 are still serial correlated due to the repetition of 𝑢  in the 

same group of 𝑈.  

For the within regression in Equation (4), the variance and covariance of 𝜀̃  are 

𝐸 𝜀̃ 𝜎          (31) 

𝐸 𝜀̃ 𝜀̃ , 𝑖 𝑗        (32) 

𝐸 𝜀̃ 𝜀̃ 0,𝑔 𝑔         (33) 

The matrix form of the within regression is  
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𝑌 𝑋𝛽 𝜀̃          (34) 

where 

𝜀̃

𝜀̃
𝜀̃
⋮
𝜀̃

, with 𝜀̃

⎝

⎜
⎛
𝜀̃
𝜀̃
⋮

𝜀̃
⎠

⎟
⎞

⎝

⎛

𝜀 𝜀̅
𝜀 𝜀̅

⋮
𝜀 𝜀̅ ⎠

⎞ 𝜀 𝜀̅ 𝑒 ,𝑔 1,2,⋯ ,𝑛   

From Equations (31) – (33), the covariance matrix of 𝜀̃ is  

Ω 𝐸 𝜀̃𝜀̃ 𝑑𝑖𝑎𝑔 Ω ,Ω ,⋯ ,Ω ,  

with Ω

⎝

⎜⎜
⎛
𝜎 . .

𝜎

. .

. . ⎠

⎟⎟
⎞

𝜎 𝐼 𝑒 𝑒 𝜎 𝐼 𝐽 ̅ ,  

𝑔 1,2,⋯𝑛     (35) 

Or, 

Ω 𝜎 𝐼 𝐽 ̅ 𝜎 𝑀        (36) 

The rank of Ω  and 𝑀 is 𝑁 𝑛. 𝑀 is singular and Ω  does not exist. Also, Ω  reflects that 𝜀̃  

is heteroscedastic and serial correlated. However, we can define the inverse of Ω  as 

Ω 𝜎 𝑀 𝜋 𝑀        (37) 

It is still a singular matrix with a rank of 𝑁 𝑛.  

After we introduce the covariance matrices of the random errors of the three main 

regressions, we check the relationship of these covariance matrices. Without using the above 

derived covariance matrices, a simple way to check the relationship is to rewrite the composite 

random errors 𝑢  in Equation (10) as  

𝑢 𝑢 𝑈 𝑈 𝜀̃ 𝑈        (38) 

Denote 𝐶 𝜀̃ ,𝑢  as the covariance of 𝜀̃  and 𝑢 . Then 𝐶 𝜀̃ ,𝑢 𝐸 𝜀 𝜀̅ 𝛼

𝜀̅ 𝐸 𝜀 𝜀̅ 𝜀 ̅ 0; the random errors of the within and between regressions are 

uncorrelated. Hence, the variance of 𝑢  in Equation (38) is  

𝑉 𝑢 𝑉 𝜀̃ 𝑉 𝑈         (39) 
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The variance of the random errors of the CRE1 model is the sum of the variances of the random 

errors of the within and between regressions. This relationship can be verified with Equations 

(11), (35), and (23), the covariance matrices Ω , Ω , and Ω , respectively, as follows.  

Ω Ω Ω  and Ω Ω Ω        (40) 

The definitions of the inverses of Ω  and Ω  in Equations (37) and (28), respectively, give 

Ω 𝜋 𝐼 𝜋 𝐽 ̅          

Ω 𝜋 𝐽̅ 𝐷 𝐽 ̅          

Using Ω  in Equation (15) and the above equations, it shows  

Ω Ω Ω          (41) 

Note that, instead of 𝑢, 𝑈 is involved to derive Equations (39) – (41). This shows the need for the 

between regression 𝑌 𝑋𝛽 𝑈 in describing the relationship among the three main regressions.  

Now we discuss the properties of the four covariance matrices of random errors when 

𝑚 → ∞. Comparing these covariance matrices, the elements of Ω in Equation (11) does not 

contain 𝑚  while other three matrices Ω , Ω  and Ω  in Equations (20), (23), and (35), 

respectively, involve 𝑚 . When 𝑚 → ∞, both Ω  and Ω  become diagonal matrices, and 

random errors 𝑢  and 𝜀̃  are homoscedastic and uncorrelated. But Ω and Ω  are still 

nondiagonal with serial correlated random errors. Ω stays nondiagonal since Ω  is nondiagonal. 

We note two issues with the inverse of these two nondiagonal matrices when 𝑚 → ∞. The first 

issue is related to Ω . When 𝑚 → ∞, 𝜋 0 in Equation (14) and 𝑚 𝜋 𝜋  in Equation 

(26). Consider the first part of Equation (13) for Ω . Given 𝜋 0,  

Ω 𝜋 𝐼 𝜋 𝑒 𝑒 𝜋 𝐼  and Ω 𝜋 𝐼     (42) 

If Ω 𝜋 𝐼, then Ω 𝜎 𝐼. This is inconsistent with that Ω is nondiagonal and 𝑢  are serial 

correlated. Consider the second part of Equation (13) for Ω . Given 𝑚 𝜋 𝜋 ,  

Ω 𝜋 𝐼 𝑚 𝜋 𝐽̅ 𝜋 𝐼 𝜋 𝐽 ̅  and Ω 𝜋 𝑀   (43) 

The rank of Ω  becomes 𝑁 𝑛 and is nonsingular. This is inconsistent with that Ω and Ω  are 

nonsingular.  

The second issue is related to Ω . When 𝑚 → ∞, Ω 𝐷 𝐽̅ 0 in Equation 

(25). It appears that the definition of Ω  is problematic. These two issues are related to 𝐽 ̅in Ω  
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and Ω . These issues will be explained and resolved when we discuss Ω  and Ω  in the GLS 

estimation of the CRE1 model and the between regression.  

We also need to pay special attention to the estimation of the variances of the random 

errors when 𝑚 → ∞. Since 𝜎  and 𝜎  in the covariance matrices Ω, Ω , and Ω  are unknown, 

the estimation of these two parameters involves the use of regression residuals and sample sizes 

𝑚  and 𝑛. When we consider asymptotic properties of the estimators of 𝜎  and 𝜎 , we should 

separate 𝑚 → ∞ from 𝑛 → ∞. The estimators of Ω  and Ω  become simple when 𝑚 → ∞ 

since these covariance matrices are diagonal when 𝑚 → ∞. In using consistent estimators, we 

conveniently simplify heteroscedasticity and serial correlation issues by assuming 𝑚 → ∞. 

However, the inference of these estimators is more complicated when 𝑚  is finite. We will 

address this issue when we discuss the estimation of Ω, Ω , and Ω  in the next subsection.  

We conclude this subsection with two observations. First, the serial correlations of 𝑢  in 

the CRE1 model, 𝑢  in the between regression 𝑌 𝑋𝛽 𝑈, and 𝜀̃  in the within regression 

are caused by the repetition of the random errors 𝛼  and 𝜀  in the same group, even though each 

of these two key random errors are assumed to be uncorrelated, such that 𝐸 𝛼 𝛼

𝐸 𝜀 𝜀 0 for 𝑔 𝑔 . The use of GLS estimation for CRE models is necessary, mainly 

because of the repetition of 𝜀  and 𝛼  in the same group. This implies that the GLS estimation 

of CRE models can be replaced by the between and within estimations. Second, the above 

analysis of random errors of the three main regressions under the CRE1 model can be applied to 

the CRE2 model and classic panel models. The properties and fundamental structures of random 

errors of the three main regressions are useful and important for panel data analysis as well. 

 

3.2.  The CRE1 Model: Five Different Estimators and Their Mean and Variances 

Based on the above analysis of the between and within regressions and the random errors 

of the three main regressions, we discuss five different estimators in estimating the parameters of 

the CRE1 model in this subsection. We begin with two essential estimators: the between 

estimator 𝛽  and the within estimator 𝛽 . Then we examine the rest three estimators – the GLS 

estimator of the CRE1 model, the pooled OLS estimator of the pooled regression, 𝛽 , and the 
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random effects estimator 𝛽 . We show how these three estimators are related to the two 

essential estimators under the CRE1 model.  

 

3.2.1 The Between and Within Estimators 

The between and within estimators are the two essential estimators in panel data analysis. 

These estimators are derived from the between and within regressions. Two different matrix 

forms of the between regression, Equations (19) and (22), give two forms of between estimators. 

The OLS estimator of 𝛽  in 𝑦 �̅�𝛽 𝑢 is denoted as 𝛽  and it is given as 

𝛽 �̅� �̅� �̅� 𝑦         (44) 

Substituting 𝑦 �̅�𝛽 𝑢 into 𝛽 , the mean and the variance of 𝛽  are 

𝐸 𝛽 𝛽 𝛽 𝛾         

𝑉 𝛽 �̅� �̅� �̅� 𝑑 �̅� �̅� �̅�         

Since 𝑥 is exogenous, such that 𝐸 𝜀 𝑥 𝐸 𝛼 𝑥 0, 𝛽  is an unbiased estimator of 𝛽 . 

Because of heteroscedasticity of 𝑢 , 𝛽  is not an efficient estimator. Given Ω 𝑑
 
, 

the efficient estimator of 𝛽  is the GLS estimator or the weighted least squared estimator: 

𝛽 �̅� Ω �̅� �̅� Ω 𝑦 �̅� 𝑑 �̅� �̅� 𝑑 𝑦    (45) 

Substituting 𝑦 �̅�𝛽 𝑢 into the above equation, the mean and variance of 𝛽  are  

𝐸 𝛽 𝛽           

𝑉 𝛽 �̅� Ω �̅� �̅� 𝑑 �̅�        

For the unbiasedness of 𝛽 , we assume 𝑥 is exogenous and the group size 𝑚  is uncorrelated 

with 𝑥 (Green, 2018, p. 305). It gives 𝐸 �̅� Ω �̅� �̅� Ω 𝑢 0 and 𝐸 𝛽 𝛽 .  

 With the data of group mean variables 𝑦  and �̅� , it seems that there is no need to 

consider the between regression 𝑌 𝑋𝛽 𝑈 empirically. However, the estimator of 𝛽  in 𝑌

𝑋𝛽 𝑈 is involved with other estimators under the CRE1 model. The OLS estimator of 𝛽  in 

𝑌 𝑋𝛽 𝑈 is 

𝛽 𝑋 𝑋 𝑋 𝑌 ∑𝑚 �̅� �̅� ∑𝑚 �̅� 𝑦      (46) 
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When 𝑚 , 𝑚 , ⋯, and 𝑚  are not the same, i.e., 𝑚 𝑚  for some 𝑔 𝑔 , the between 

estimators for two forms of between regressions are different, i.e., 𝛽 𝛽 . Since 𝑢  in 𝑈 

are heteroscedastic and serial correlated as shown by Ω 𝐷 𝐽,̅ 𝛽  is not efficient. 

Although Ω  is singular, we apply Ω 𝐷
 
𝐽 ̅to define the GLS estimator of 𝛽  in 𝑌

𝑋𝛽 𝑈 as: 

𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌       (47) 

We show the matrix equivalence of 𝑋 Ω 𝑋 �̅� Ω �̅� as follows.  

 𝑋 Ω 𝑋 𝑋 𝐷 𝐽�̅� ∑ 𝑚 𝜎 𝑋 𝑋 ∑ 𝑚 𝜎 𝑚 �̅� �̅�  

∑ 𝜎 �̅� �̅� �̅� Ω �̅�       (48) 

Similarly, 𝑋 Ω 𝑌 �̅� Ω 𝑦. Hence, 𝛽 𝛽 . This implies that the GLS estimators for 

two different matrix forms of the between regression are the same. We denote 𝛽 𝛽

𝛽  as the GLS estimator of the between regression for the CRE1 model. We have 

𝛽 �̅� Ω �̅� �̅� Ω 𝑦        (49) 

𝐸 𝛽 𝛽           (50) 

𝑉 𝛽 �̅� Ω �̅�         (51) 

𝛽  is an MMSE estimator of 𝛽 . It is important to consider the GLS between estimator when 

cluster data is used.  

In the previous subsection, we noted the issue with the definition of Ω 𝐷 𝐽,̅ 

where Ω 0 when 𝑚 → ∞. The above use of Ω  in the GLS between estimator shows that 

this is not an issue. In the two matrix equivalences of 𝑋 Ω 𝑋 and 𝑋 Ω 𝑌, the term 𝑚  in Ω  

cancels out with the 𝑚  generated from the conversion from 𝑋 𝐽�̅� to ∑ 𝑚 �̅� �̅�  or from 𝑋 𝐽�̅� 

to ∑ 𝑚 �̅� 𝑦  as shown in Equation (48). Hence, 𝑚 → ∞ has no impact in applying Ω  to the 

GLS between estimator, except that 𝜎 → 𝜎  when 𝑚 → ∞.  

For balanced panel data, 𝑚 𝑚 for all 𝑔. The GLS between estimator is the same as 

the OLS between estimator, i.e., 𝛽 𝛽 𝛽 . Then 𝛽  is an unbiased and efficient 

estimator of 𝛽 . We consider asymptotic properties of the variance of the between estimator 

when 𝑚 → ∞ and 𝑛 → ∞. The variance of the between estimator for balanced panel data is  
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𝑉 𝛽 𝜎 �̅� �̅� 𝜎 �̅� �̅�       

When 𝑚 → ∞, 𝑉𝑎𝑟 𝛽 𝜎 �̅� �̅� . To consider 𝑛 → ∞, we rewrite the variance of 𝛽  

as  

𝑉 𝛽
̅ ̅

         

where  is the variance of the sample mean of 𝑢  and 
̅ ̅

 is the covariance of �̅�. It shows that 

the variance of the OLS between estimator is the noise-to-signal ratio of regressing 𝑦 on �̅�, 

where the noise is determined by 𝜎  and the signal is from �̅� . The larger the noise, the larger the 

variance of 𝛽 . Since the noise 𝜎  is unknown, it is usually estimated by 𝜎 ∑𝑢 , 

where 𝑢  is the residual term from the between regression 𝑦 �̅�𝛽 𝑢. When 𝑛 → ∞, 
̅ ̅

 is 

assumed to converge to a positive definite matrix and the Central Limit Theory (CLT) is applied 

to the inference of 𝛽  with 𝛽 . For small samples, the inference of 𝛽  depends on the sample 

sizes 𝑚 and 𝑛. When 𝑚 is small, 𝜎 𝜎  is affected by 𝜎  more than the case when 𝑚 is 

large. The number of the degrees of freedom in inference of 𝛽  is 𝑛 𝑘 and it is not related to 

𝑚; the CLT cannot be applied even if 𝑚 → ∞.  

For the within regression 𝑌 𝑋𝛽 𝜀̃, the OLS within estimator is 

𝛽 𝑋 𝑋 𝑋 𝑌         (52) 

Substituting 𝑌 𝑋𝛽 𝜀̃ into 𝛽 , and using 𝐸 𝜀̃𝜀̃ 𝜎 𝑀, the mean and variance of the within 

estimator 𝛽  are:  

𝐸 𝛽 𝛽          (53) 

𝑉 𝛽 𝑋 𝑋 𝑋 𝐸 𝜀̃𝜀̃ 𝑋 𝑋 𝑋  

𝜎 𝑋 𝑋 𝑋 𝑀𝑋 𝑋 𝑋  

𝜎 𝑋 𝑋         (54) 

Similar to the issue with Ω  in analyzing the between regression 𝑌 𝑋𝛽 𝑈, Ω  is singular 

and 𝜀̃  are heteroscedastic and serial correlated. However, the variance of 𝛽  shows that 𝛽  is 

an efficient estimator of 𝛽 despite heteroscedasticity and serial correlation of 𝜀̃. It is interesting to 

examine the elements of Ω  in Equation (35). The term  is observed in all elements of Ω . 
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It seems that the negative correlation between 𝜀̃  and 𝜀̃  within the same group 𝑔, i.e., 

𝐸 𝜀̃ 𝜀̃ , 𝑖 𝑗, causes serial correlation issue. In fact, this negative correlation is 

important since it ensures the existence of the 𝑀 matrix in Ω  and then ensures 𝛽  to be an 

efficient estimator. Hence, 𝛽  is an MMSE estimator of 𝛽 for balanced and unbalanced panel 

data, and for any finite or infinite values of 𝑚 .  

For asymptotic properties of the variance of 𝛽 , we consider 𝑚 → ∞ and 𝑛 → ∞. 

Rewrite the variance of 𝛽  as 

𝑉 𝛽           

where  is the variance of the sample mean of 𝜀  and  is the covariance of 𝑋. This form of 

variance is similar to that of the variance of the between estimator. The variance of the within 

estimator is the noise-to-signal ratio of the within regression, where the noise is determined by 

𝜎  and the signal is from 𝑥 . The larger the noise, the larger the variance of 𝛽 . The unknown 

𝜎  is estimated by 𝜎 �̃� �̃�, where �̃� 𝑌 𝑋𝛽  (Greene, 2018, p. 395). When 𝑚 →

∞, Ω  is diagonal and the serial correlation issue disappears (Wooldridge, 2010, p. 305). If either 

𝑚 → ∞ or 𝑛 → ∞, then 𝑁 → ∞ and the CLT is applied to the inference of 𝛽 with 𝛽 . Small 

sample inferences of 𝛽 with 𝛽  are applied only when both 𝑚  and 𝑛 are small, and the number 

of the degrees of freedom is 𝑁 𝑛 𝑘.  

 We show that the covariance of the GLS between estimator and the within estimator is 

zero, i.e., 𝐶 𝛽 ,𝛽 0. Using 𝛽 𝛽 �̅� Ω �̅� �̅� Ω 𝑢 and 𝛽 𝛽

𝑋 𝑋 𝑋 𝜀̃, the covariance of 𝛽  and 𝛽  is 

𝐶 𝛽 ,𝛽 𝐸 �̅� Ω �̅� �̅� Ω 𝑢𝜀̃ 𝑋 𝑋 𝑋  

�̅� Ω �̅� �̅� 𝑑 𝐸 𝑢𝜀̃ 𝑋 𝑋 𝑋 0  (55) 

since 𝐸 𝑢 𝜀̃ 𝐶 𝑢 , 𝜀̃ 0 as shown in Equation (39). 

 We summarize three conclusions about the two essential estimators. First, the between 

and within estimators are unbiased estimators of two different parameters when 𝛾 0. Both 

GLS between estimator and within estimator are efficient estimators. Hence, these are two 

different MMSE estimators. Second, each between and within estimator has its own noise-to-
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signal ratio. Third, the between and within estimators have different numbers of degrees of 

freedom in small sample inferences. These differences in noise-to-signal ratios and degrees of 

freedom affect the properties of the three remaining estimators under the CRE1 model since 

these three estimators are related to the between and within estimators.  

 

3.2.2 The GLS Estimator of the CRE1 Model 

After introducing the two essential estimators – the between and within estimators – we 

show how other estimators are related to these two estimators. We begin with the GLS estimator 

of the CRE1 model. The relationship between this GLS estimator and (𝛽 , 𝛽 ) has been 

derived for balanced panel data in Mundlak (1978). This paper focuses on the relationship when 

cluster data is used. The GLS estimator of 𝛽, 𝛾  in the CRE1 model 𝑌 𝑋𝛽 𝑋𝛾 𝑢 is 

denoted as 𝛽 , 𝛾 , and 

𝛽
γ

𝑋′ 
𝑋′

Ω 1 𝑋 𝑋

1
𝑋′
𝑋′

Ω 1𝑌      (56) 

We show the following theorem for the relationship between this GLS estimator and two 

essential estimators 𝛽  and 𝛽  of Equations (52) and (49), respectively.  

 

Theorem 1.  Let 𝛽 , 𝛾  be the GLS estimator of the parameters in the CRE1 model, and 𝛽  

and 𝛽  be the within estimator and the GLS between estimator of the CRE1 model, 

respectively. Then 

𝛽 𝛽  and 𝛾 𝛽 𝛽         (57) 

 

Mundlak (1978) proved the above equalities for the CRE1 model with balanced panel 

data using the inverse of a partition matrix while the proof by Baltagi (2006) used system 

estimation with the between and within regressions. Chamberlian (1980, p. 234) and Wooldridge 

(2019) proved the first equality 𝛽 𝛽  using the Frisch-Waugh theorem (Frisch and Waugh, 

1933); both Abrevaya (2013) and Wooldridge (2019) considered the equivalence of 𝛽 𝛽  

for models with unbalanced panel data. We introduce an extended Frisch-Waugh theorem to 

prove 𝛽 𝛽  in Appendix A. The standard Frisch-Waugh theorem is for models with the 

OLS estimator; the extended theorem we developed is for the GLS estimator as in the case of the 
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CRE1 model. However, neither the standard nor extended Frisch-Waugh theorem can be used to 

prove the second equality in Theorem 1. Using the typical process to solve a system of equations 

and some matrix equivalences, such as Equation (48), the proof of both equalities is provided in 

Appendix B.  

The theorem shows that the numerical solutions of 𝛽  and 𝛾  can be derived from the 

between and within regressions, without estimating the CRE1 model. 𝛾  is the estimator of the 

partial effect of �̅� . The equation 𝛾 𝛽 𝛽  shows that this partial effect is equal to the 

difference between the GLS between estimator and the within estimator.  

We discuss a possible issue with the use Ω  in the GLS estimator when 𝑚 → ∞. In the 

previous subsection, we showed that Ω 𝜋 𝐼 or Ω 𝜋 𝑀 (Equations (42) and (43)) when 

𝑚 → ∞. These results on Ω  are inconsistent with the property of Ω since the components of Ω 

do not include 𝑚  and the inverse of Ω should not be affected by 𝑚 . These inconsistent results 

affect the use of the GLS estimator. If Ω 𝜋 𝐼, then there is no need to consider the GLS 

estimator of the CRE1 model when 𝑚 → ∞. This issue and puzzle can be solved since Ω  is 

always used with other data matrices in the GLS estimator. For example, consider 𝑋 Ω 𝑋 in 

Equation (56). Using Ω  𝜋 𝐼 𝐷 𝐽,̅ we show 𝑋 Ω 𝑋 𝜋 𝑋 𝑋 �̅� Ω �̅� for any 𝑚 , 

even if 𝑚 → ∞ (Equation (B.6) in Appendix B). This matrix equivalence includes two terms: 

𝜋 𝑋 𝑋 𝑉 𝛽  and �̅� Ω �̅� 𝑉 𝛽 . Both terms are positive definite matrices, and 

𝑋 Ω 𝑋 do not converge to 𝜋 𝑋′𝑋 nor 𝜋 𝑋 𝑋 when 𝑚 → ∞. Appendix B shows the same 

results for other matrix equivalences of matrices with Ω  when 𝑚 → ∞. The discussion of this 

issue with Ω  is similar to the discussion of Ω  in 𝑋Ω 𝑋 in Equation (48), where 𝑚  in Ω  

is cancelling with 𝑚  from 𝑋 𝑋 𝑚 �̅� �̅�. Hence, the use of Ω 𝜋 𝐼 𝐷 𝐽 ̅in the GLS 

estimator of the CRE1 model is still valid when 𝑚 → ∞. It is inappropriate to reduce Ω  into 

Ω 𝜋 𝐼 or Ω 𝜋 𝑀 when 𝑚 → ∞.  

Based on the means, variances, and covariance of 𝛽  and 𝛽  (Equations (50), (51), 

(53), (54), and (55), the means, variances, and covariance of 𝛽  and 𝛾  are 

 𝐸 𝛽 𝛽           

𝐸 𝛾 𝛽 𝛽 𝛾          

𝑉 𝛽 𝑉 𝛽 𝜎 𝑋 𝑋         
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𝑉 𝛾 𝑉 𝛽 𝑉 𝛽 �̅� Ω �̅� 𝜎 𝑋 𝑋      

𝐶 𝛽 , 𝛾 𝑉 𝛽 𝜎 𝑋 𝑋        

With these variances, the inference of 𝛽 and 𝛾 can be made without the estimation of Ω and the 

CRE1 model.  

 The above results can be applied to balanced panel data. For balanced panel data, 

𝛽 𝛽 . Then we have 𝛾 𝛽 𝛽 , which is the result in in Mundlak (1987). To 

check asymptotic and small sample properties of the GLS estimator, we rewrite the variances of 

𝛽  and 𝛾  as  

𝑉 𝛽           

𝑉 𝛾
̅ ̅

        

The variance of 𝛽  is the same as the variance of the within estimator and it is related to the 

noise-to-signal ratio of the within regression; the variance of 𝛾  is the sum of the variances of 

the between and within estimators and it is related to the noise-to-signal ratios of the between 

and within regressions. In a large sample inference of 𝛽 and 𝛾 with 𝛽  and 𝛾 , the CLT can be 

applied. However, we need to separate 𝑚 → ∞ from 𝑛 → ∞ in applying the CLT. When 𝑛 →

∞, the CLT can be applied to both the between and within estimators, and therefore the CLT can 

be applied to the inference of 𝛽 and 𝛾. When 𝑚 → ∞ and 𝑛 is finite, the inference is complicate 

since the CLT cannot be applied to the between estimator.  

In a small sample inference of 𝛽 and 𝛾 when both 𝑚  and 𝑛 are finite, the issue of 

determining an appropriate number of degrees of freedom occurs. The number of degrees of 

freedom in inference of 𝛽  in the between regression is 𝑛 𝑘, and it is 𝑁 𝑛 𝑘 in inference 

of 𝛽 in the within regression. The standard procedure in inference of all parameters in the CRE1 

model is to use the same number of degrees of freedom 𝑁 𝑛 𝑘. This can be incorrect in 

estimating 𝛾 since the variance of 𝛾 is the sum of the variances of the between and within 

estimators. With 𝐶 𝛽 ,𝛽 0, a solution is to use the Welch–Satterthwaite equation to 

determine the number of degrees of freedom in estimating 𝛾, which is similar to the inference of 

the difference between two population means with independent samples.  
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3.2.3  The Pooled OLS and Random Effects Estimators Under the CRE1 Model  

 Next, we examine the pooled OLS estimator 𝛽  and the random effects estimator 𝛽 . 

It has been showed that 𝛽  and 𝛽  are matrix weighted averages of the between and within 

estimators. While Maddala’s (1971) analysis is based on classical panel data models without 

group mean variables and Mundlak (1978) extended the analysis to the CRE1 model with 

balanced panel data, we demonstrate the relationships of these two estimators with the between 

and within estimators under the CRE1 model with cluster data.  

Consider the pooled regression 𝑌 𝑋𝛽 𝑢∗, where 𝑢∗ is the random error term with 

elements of 𝑢∗ . The pooled OLS estimator of 𝛽 in this regression is  

𝛽 𝑋 𝑋 𝑋′𝑌         (58) 

Using 𝑋 𝑌 𝑋 𝑌 𝑋 𝑌, the decomposition of the pooled OLS estimator 𝛽  is (Maddala, 

1971; Mundlak, 1978) 

𝛽 𝑋 𝑋 𝑋 𝑋𝛽 𝑋 𝑋 𝑋 𝑋𝛽        

Define 𝜆 𝑋 𝑋 𝑋 𝑋. Then 𝐼 𝜆 𝑋 𝑋 𝑋 𝑋 and  

𝛽 𝜆 𝛽 𝐼 𝜆 𝛽  

𝛽 𝜆 𝛽 𝛽        (59) 

The first equality shows that the pooled OLS estimator is a matrix weighed average of the 

between and within estimators; 𝜆  is the weighting matrix for the pooled OLS estimator. When 

the between variation is relatively larger than the within variation (𝑋 𝑋 𝑋 𝑋), more weight is 

on the between estimator; otherwise, more weight is on the within estimator. Under the CRE1 

model, substituting 𝑌 𝑋𝛽 𝑋𝛾 𝑢 into 𝛽 , the mean and the variance of the OLS estimator 

𝛽  are 

𝐸 𝛽 𝛽 𝜆 𝛾          

𝑉 𝛽 𝑋 𝑋 𝑋 𝐸 𝑢 𝑢 𝑋 𝑋 𝑋  

𝑋 𝑋 𝑋 Ω𝑋 𝑋 𝑋         

This shows that 𝛽  is an unbiased estimator of 𝛽 𝜆 𝛾. However, it is not an efficient 

estimator. Using Ω Ω Ω 𝜎 𝑀 𝐷 𝐽 ̅from Equations (24), (36), and (40), we have  

𝑋 Ω𝑋 𝑋 𝜎 𝑀 𝐷 𝐽̅ 𝑋 

𝜎 𝑋 𝑋 �̅� 𝐷 �̅�       (60) 
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The variance of 𝛽  can be written as  

𝑉 𝛽 𝑋 𝑋 𝜎 𝑋 𝑋 �̅� 𝐷 �̅� 𝑋 𝑋       

To consider the asymptotic properties of the variance, we rewrite the variance as  

𝑉 𝛽
̅ ̅

  

̅ ̅
   

This form is complex. It can be simplified for balanced panel data. For balanced panel data, 

using 𝛽 𝛽  and 𝛽 𝛽 𝛾 , Equation (59) becomes   

𝛽 𝛽 𝜆 𝛾          (61) 

This is the result in Mundlak (1978), which can only be specified under the CRE1 model. The 

variance of 𝛽  is simplified as  

𝑉 𝛽 𝑋 𝑋 𝜎 𝑋 𝑋 𝑚 𝜎 �̅� �̅� 𝑋 𝑋       

Using 𝑁 𝑛 ⋅ 𝑚, rewrite the variance of 𝛽  as  

𝑉 𝛽
𝑋 𝑋
𝑁

𝜎
𝑁
𝑋 𝑋
𝑁

𝜎
𝑛
�̅� �̅�
𝑛

𝑋 𝑋
𝑁

 

⋅ ⋅
̅ ̅

    

This shows that the signal 𝑥  is affected by the noises from 𝜀  and 𝑢 . Hence, there are two 

noise-to-signal ratios:  and , which are weighted by  and 

̅ ̅
, respectively. These weighting matrices correspond to the ratios of the 

within and between variations to the total variation of 𝑥. Note that the weighting matrix 𝜆  

does not include any noise-to-signal ratios.  

The random effects estimator 𝛽  is the GLS estimator of 𝛽 in the regression 𝑌 𝑋𝛽

𝑢∗, and  

𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌        (62) 

where Ω 𝐸 𝑢∗𝑢∗  is the covariance matrix of the random errors 𝑢∗ . Note that 𝑢∗ 𝑢 and 

Ω Ω. If the CRE1 model is the true model, the random effects model is the restricted CRE1 

model without including group mean variables �̅� . This implies that omitted variables �̅� should 
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be included in 𝑢∗ . For the random effects model, there is no fixed effects, and we can assume 

that �̅�  is a row vector of random variables with a mean vector of 𝜇 ̅  and a variance matrix of 

𝑉 �̅� . To ensure that the random errors 𝑢∗  have a zero mean, we can write 𝑢∗  as 𝑢∗ �̅� 𝛾

𝜇 ̅𝛾 𝑢  given that the CRE1 model is the true model. Then the variance and covariance of 𝑢∗  

are 

𝐸 𝑢∗ 𝑢∗ 𝛾 𝑉 �̅� 𝛾 𝜎 𝜎  for 𝑖 𝑗     (63) 

𝐸 𝑢∗ 𝑢∗ 𝛾 𝑉 �̅� 𝛾 𝜎 𝜎 𝜎 𝜎      (64) 

𝐸 𝑢∗ 𝑢∗ 0 for 𝑔 𝑔         (65) 

For the last equation, we assume that 𝐸 �̅� �̅� 0, for 𝑔 𝑔 , i.e., �̅�  is selected from random 

sampling. Since 𝜎 𝜎 , the covariance matrix of 𝑢∗  in the random effect models is different 

from the covariance matrix of 𝑢  in the CRE1 model. Hence, Ω  derived from Equations (63) – 

(65) is different from Ω in Equation (11). With Ω Ω, it is difficult to establish the relationship 

between 𝛽  and other estimators. This issue can be solved in the empirical estimation when the 

feasible GLS estimator is used. The feasible GLS estimators of 𝛽 in the random effects model 

and 𝛽, 𝛾  in the CRE1 mdoel require the estimation of Ω  and Ω. The estimators of 𝜎 , 𝜎  and 

𝜎  in Ω  and Ω are usually derived from the between and within regressions. The between and 

within regressions derived from the random effects model 𝑦 𝑥 𝛽 𝑢∗  are  

𝑦 �̅� 𝛽 𝑢           

𝑦 𝑥 𝛽 𝜀̃           

which are the same as Equations (3) and (4) from the CRE1 model. Since the estimation of Ω  

and Ω are derived from the same between and within regressions, it gives Ω Ω, where Ω  and 

Ω are the estimators of Ω  and Ω, respectively. With Ω Ω and the estimators of 𝜎  and 𝜎  

derived from the same between and within regressions, the matrix equivalences of 𝑋 𝛺 𝑋

𝜋 𝑋 𝑋 �̅� Ω �̅� and 𝑋 𝛺 𝑌 𝜋 𝑋 𝑌 �̅� Ω 𝑦 shown in Equation (B.6) in Appendix B can 

be applied to 𝛽 . Then, we can show how the random effects estimator is related to the between 

and within estimators without introducing additional notations by simplifying Ω Ω into Ω

Ω. It gives  

𝛽 𝑋 𝛺 𝑋 𝑋 𝛺 𝑌 
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𝜋 𝑋 𝑋 �̅� Ω �̅� 𝜋 𝑋 𝑌 𝜋 𝑋 𝑋 �̅� Ω �̅� �̅� 𝛺 𝑦 

𝜋 𝑋 𝑋 �̅� Ω �̅� 𝜋 𝑋 𝑋𝛽 𝜋 𝑋 𝑋 �̅� Ω �̅� �̅� Ω �̅�𝛽   

Define the following weighting matrices. 

𝜆 𝜋 𝑋 𝑋 �̅� Ω �̅� �̅� 𝛺 �̅�        

𝐼 𝜆 𝜋 𝑋 𝑋 �̅� Ω �̅� 𝜋 𝑋 𝑋       

Then  

𝛽 𝜆 𝛽 𝐼 𝜆 𝛽        (66) 

This shows that the random effects estimator is a matrix weighted average of the GLS between 

estimator and the within estimator. Using 𝛾 𝛽 𝛽  from Theorem 2,  

𝛽 𝛽 𝜆 𝛾          (67) 

Substituting 𝑌 𝑋𝛽 𝑋γ 𝑢 into 𝛽  in Equation (62), the mean and the variance of 𝛽  are  

𝐸 𝛽 𝛽 𝜆 𝛾          

𝑉 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝐸 𝑢 𝑢 Ω 𝑋 𝑋 Ω 𝑋  

𝑋 Ω 𝑋          

The random effects estimator is an unbiased and efficient estimator of 𝛽 𝜆 𝛾. It is an MMSE 

estimator. Using 𝑋 Ω 𝑋 𝜋 𝑋 𝑋 �̅� Ω �̅� and the variances of the between and within 

estimators, we can rewrite the variance of the random effects estimator as  

𝑉 𝛽 𝑉 𝛽 𝑉 𝛽        

This implies that we can derive the estimate of the variance of the random effects estimator using 

the estimates of the variances of the between and within estimators. There is no need to estimate 

Ω for the inference of 𝛽 in the random effects regression.  

Now we consider the asymptotic properties of the variance of 𝛽  for balanced panel data 

with 𝑚 𝑚 and 𝜋 𝜋  for all 𝑔. Rewrite the variance of 𝛽  as  

𝑉 𝛽 𝑋 Ω 𝑋  

𝜎 𝑋 𝑋 𝜎 �̅��̅�  

 ̅ ̅
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It contains two signal-to-noise ratios: 
 

 and 
̅ ̅

, which are from the within and 

between regressions, respectively. These two ratios are related to 𝑁 and 𝑛, separately. The CLT 

can be applied to the inference of 𝛽 𝜆 𝛾 with 𝛽  when 𝑛 → ∞. For 𝑚 → ∞ and finite 𝑛, the 

CLT cannot be applied to the estimation of the between estimator, and small sample inferences 

of 𝛽 𝜆 𝛾 with 𝛽  may be complicate.  

The weighting matrices of the random effects estimator are also based on 𝑋 Ω 𝑋. The 

weights can be rewritten as  

𝜆 𝑉 𝛽 𝑉 𝛽 𝑉 𝛽       

𝐼 𝜆 𝑉 𝛽 𝑉 𝛽 𝑉 𝛽       

The weights are related to the inverses of the variances of the between and within estimator or 

the signal-to-noise ratios of the between and within regressions. The random effects estimator is 

related to the signal-to-noise ratios of the between and within regressions. If the signal-to-noise 

ratio 
 

  of the within regression is bigger than the signal-to-noise ratio 
̅ ̅

 of the 

between regression, then more weight is placed on the within estimator. Otherwise, more weight 

is on the between estimator.  

 

3.2.4 Comments on the Analyses of the Random Effects Estimator in Maddala and Mundlak 

For models with balanced panel data, Maddala (1971) and Mundlak (1978) showed 𝛽  

is the matrix weighted average of the between and within estimators. Assuming Ω Ω , 

Mundlak (1978) showed further that 𝛽  is a linear function of 𝛽  and 𝛾 under the CRE1 model. 

Our results for cluster data should be the same as their results if we apply our results to balanced 

panel data. Our results show that the weighting matrix 𝜆  in Equation (66) under the CRE1 

model is the same as the weighting matrix under the standard random effects model in Maddala 

(1971) using Ω Ω. However, we observe two differences between our results on 𝜆  and 

those found in Mundlak (1978) and Maddala (1971). To show the differences, we rewrite 𝜆  for 

balanced panel data. For balanced panel data, 𝑚 𝑚 and 𝜋 𝜋  are constants for all 𝑔. 

Using Ω Ω  Ω 𝜋 𝑀 𝜋 𝑚𝜋 𝚥̅ 𝜋 𝑀 𝑚𝜎 𝚥 ̅from Equations (25), 

(28), (37), and (41), and 𝑋 𝑋 𝑚�̅� �̅�, rewrite 𝜆 𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 as 
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𝜆 𝜋 𝑋 𝑋 𝜋 𝑚𝜋 𝑋 𝑋 𝜋 𝑚𝜋 𝑋 𝑋    (68.1) 

𝜎 𝑋 𝑋 𝑚𝜎 𝑋 𝑋 𝑚𝜎 𝑋 𝑋    (68.2) 

𝜎 𝑋 𝑋 𝜎 �̅� �̅� 𝜎 �̅� �̅�     (68.3) 

First, we note that our specification of 𝜆  is different from that in Mundlak (1978, Equation 

(3.5), p.73). His 𝜆  based on Chamberlain (1975) is shown as  

𝜋 𝑋 𝑋 𝜋 𝜋 𝑋 𝑋 𝜋 𝜋 𝑋 𝑋 

𝑋 𝑋 𝜎 𝜋 𝜋 𝑋 𝑋 𝑋 𝑋     

Comparing this formula with 𝜆  in Equation (68.1), his formula of 𝜆  is missing an “𝑚” in 

𝜋 𝑚𝜋  and he did not show 𝑉 𝛽 𝑋 Ω 𝑋  under the Mundlak model. With the 

correct formula, 𝜆  is the same under both Mundlak model and random effects model. 𝛽  is an 

unbiased and efficient estimator of 𝛽 𝜆 𝛾; it is the MMSE estimator for 𝛽 𝜆 𝛾.  

Second, Maddala (1971) notes that, from Equation (68.2),  

𝜆 𝜎 𝑋 𝑋 𝑚𝜎 𝑋 𝑋 𝑚𝜎 𝑋 𝑋 0     (69) 

when 𝑚 → ∞. He concluded that the random effects estimator is equal to the within estimator 

when the sample size in each group is infinite. Mundlak (1978, p. 79), Ahn and Moon (2014), 

and some econometrics textbooks (i.e., Hsiao, 2014, p. 43; Baltagi, 2021, p. 27; Wooldridge, 

2010, p. 327) follow this conclusion. This conclusion is incorrect since Maddala (1971) did not 

consider 𝑋 𝑋  𝑚�̅��̅�. Using 𝑋 𝑋 𝑚�̅� �̅�, we can rewrite 𝑚𝜎 𝑋 𝑋 in Equation (69) as 

𝑚𝜎 𝑚�̅� �̅� 𝜎 �̅� �̅�. Then 𝜆  in Equation (69) becomes Equation (68.3). When 𝑚 →

∞, 𝜎 𝜎  and 𝜆 𝜎 𝑋 𝑋 𝜎 �̅� �̅� 𝜎 �̅� �̅�. 𝜆  is nonzero. The incorrect 

conclusion of 𝜆 → 0 is the same issue as the conclusion of 𝑋 Ω 𝑋 𝜎 𝑋 𝑋 based on 

Ω 𝜋 𝑀 in the earlier discussion of Ω  in the GLS estimator of the CRE1 model, and the 

conclusion of 𝑋 Ω 𝑋 0 based on Ω 0 in the discussion of the GLS between estimator 

when 𝑚 → ∞. Hence, the random effects estimator is always a matrix weighted average of the 

between and within estimators for any group size, even if the group size 𝑚 is infinite. 
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3.3 The CRE1 Model: Comparison of Five Estimators 

After examining the properties of five different estimators and deriving their relationships 

in the above subsection, we compare these estimators and discuss which estimator is the “best” 

in this subsection. Based on the result of 𝛽 𝛽 , Mundlak (1978, pp. 69-70) concluded that 

there is only one estimator to estimate 𝛽 and any matrix combination of the within and between 

estimates is generally biased. His conclusion is derived by assuming that there is only one partial 

effect of the explanatory variables, 𝛽. This paper opts for a different interpretation. Instead of 

focusing on a single partial effect 𝛽, we consider two partial effects of 𝑥 and each estimator is to 

estimate a linear combination of these two partial effects. The first partial effect is the direct 

impact of 𝑥 and it is measured by 𝛽; the second partial effect is the impact of group mean 

variables and it is measured by 𝛾. Based on the within regression, the direct effect of 𝑥 or the 

within estimator of 𝛽 only measures the within effect. We list five estimators of the parameters 𝛽 

and 𝛾 as follows to explain our different interpretation from Mundlak (1978).  

(i) GLS between estimator: 𝛽 , with 𝐸 𝛽 𝛽 𝛾 

(ii) Within estimator: 𝛽 , with 𝐸 𝛽 𝛽 

(iii) GLS estimator of the CRE1 model: 𝛽  and 𝛾 , with 𝐸 𝛽 𝛽 and 𝐸 𝛾 𝛾  

(iv) Pooled OLS estimator: 𝛽 𝛽 𝜆 𝛾 , with 𝐸 𝛽 𝛽 𝜆 𝛾 

(v) Random effects estimator: 𝛽 𝛽 𝜆 𝛾 , with 𝐸 𝛽 𝛽 𝜆 𝛾 

Table 1 summarizes the weighting matrices, means, and variances of these five estimators. We 

compare these estimators in terms of unbiasedness, efficiency, and modeling structure with 

respect to 𝛽 and 𝛾. First, we discuss unbiasedness. Traditionally, the pooled OLS estimator and 

the random effects estimator are considered as matrix weighted averages of the between and 

within estimators, 𝛽  and 𝛽 . The CRE1 model shows that 𝛽  estimate 𝛽 𝛾 and 𝛽  estimate 

𝛽. A linear combination of 𝛽  and 𝛽  assigns the weight to 𝛽 twice. Hence, we consider each 

estimator as a linear function of 𝛽  and 𝛾, instead of 𝛽  and 𝛽 . The between estimator in (i) 

estimates 𝛽 𝛾, which assign a full weight of one to 𝛾; the within estimator in (ii) only estimates 

𝛽 and assigns a zero weight to 𝛾. The GLS estimator of the CRE1 model in (iii) estimates 𝛽 and 

𝛾, separately. The pooled OLS estimator in (iv) and the random effects estimator in (v) estimate 

the sum of 𝛽 and a different weight of 𝛾. These specifications of estimators in terms of 𝛽  and 𝛾 

show that a key difference between the within estimator and other four estimators is the role of 𝛾. 
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When 𝛾 0, all estimators, except 𝛾 , are unbiased estimators for 𝛽. When 𝛾 0, 𝛽  and 𝛽  

are still unbiased estimators for 𝛽; the rest three estimators are biased. However, if we consider 

both 𝛽 and 𝛾 as partial effects of 𝑥, each of the five estimators is an unbiased estimator of the 

linear combination of 𝛽 and 𝛾. The unbiasedness issue is related to whether 𝛾 is zero or not and 

whether we treat 𝛾 as a partial effect of 𝑥 or not.  

Second, we compare the efficiency of these five estimators by examining the variances of 

these estimators shown in Table 1. We note that the between and within regressions are two 

different regressions with different dependent and independent variables. Furthermore, these two 

regressions estimate different parameters if 𝛾 0. Therefore, we cannot compare the variances 

of the between and within estimators for efficiency and significance. For example, the 

significance (insignificance) of 𝛽  does not imply the significance (insignificance) of 𝛽 , and 

vice versa. For these two estimators, there is no dominance of one estimator over the other in 

terms of efficiency. The GLS estimator of the CRE1 model estimates each partial effect 

individually. The estimator is unbiased and efficient. When 𝛾 0, both pooled OLS estimator 

and random effects estimator are unbiased but less efficient than 𝛽  in estimating 𝛽. The 

Hausman test (1978) is based on inefficiency of the random effects estimator. If 𝛾 0 and we 

consider the parameter estimation of a linear combination of 𝛽 and 𝛾, then the pooled OLS 

estimator is unbiased but inefficient in estimating 𝛽 𝜆 𝛾 while the random effects estimator 

is unbiased and efficient in estimating 𝛽 𝜆 𝛾. In addition, the GLS between estimator is 

unbiased and efficient in estimating 𝛽 𝛾. Hence, there are multiple MMSE estimators.  

With multiple MMSE estimators, it raises two issues: how to compare different multiple 

MMSE estimators and are there more MMSE estimators? For the first issue, note that we only 

compare MSE of different estimators that estimate the same parameter. One of the results in 

Mundlak (1978) is driving the best MMSE estimator among different linear combinations of the 

between and within estimators. The target parameter for his comparison of different MMSE 

estimators is the single key parameter 𝛽. Our analysis of different estimators gives multiple 

MMSE estimators since we consider the linear function of two partial effects of 𝑥, 𝛽 and 𝛾. 𝛽  

and 𝛽  are the MMSE estimators of 𝛽; 𝛾  is the MMSE estimator of 𝛾; 𝛽  is the MMSE 

estimator of 𝛽 𝛾; and 𝛽  is the MMSE estimator of 𝛽 𝜆 𝛾. Different linear functions of 𝛽 

and 𝛾 represent different characteristics of the aggregates of the two partial effects. Hence, we 
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don’t compare MMSE estimators of different parameters with different characteristics, and we 

cannot conclude which MMSE estimator is the best. However, we can compare the 

characteristics of different aggregates of two partial effects based on their weighting matrices. 

The random effects estimator considers both signal-to-noise ratios of the between and within 

regressions in its weighting matrix 𝜆 , and it can be better than the GLS between estimator, 

which ignores signal-to-noise ratios in its weighting matrices. For the second issue, we examine 

if there are other MMSE estimators. Suppose 𝛽  is an estimator of a linear combination of 𝛽 and 

𝛾, and it is a matrix weighted average of the between and within estimators. We can define 𝛽  as 

𝛽 𝐴 𝐵 𝐴𝛽 𝐴 𝐵 𝐵𝛽 , where 𝐴 and 𝐵 are symmetric positive definite 

matrices derived from the model and data. The weighting matrices assigned to the between and 

within estimators are 𝜆 𝐴 𝐵 𝐴 and 𝐼 𝜆 𝐴 𝐵 𝐵, respectively. Then the mean 

and variance of 𝛽  are 

𝐸 𝛽 𝐸 𝜆𝛽 𝐼 𝜆 𝛽 𝛽 𝜆𝛾      (70) 

𝑉 𝛽 𝐴 𝐵 𝐴 �̅� Ω �̅� 𝐴 𝐵𝜎 𝑋 𝑋 𝐵 𝐴 𝐵   (71) 

This shows that 𝛽  is an unbiased estimator of 𝛽 𝜆𝛾 as long as 𝜆 and 𝐼 𝜆 are the weighting 

matrices assigned to the between and within estimators. This implies that we can derive different 

unbiased estimator of linear combination of 𝛽 and 𝛾 with different 𝜆. For example, four 

estimators discussed in this subsection have different 𝜆s and weighting matrices (See Table 1). 

For efficiency, 𝛽  is efficient and it is an MMSE estimator of 𝛽 𝜆𝛾 if  

𝑉 𝛽 𝐴 𝐵           

This implies that the condition of efficiency is  

𝐴 �̅� Ω �̅� 𝐴 𝐵𝜎 𝑋 𝑋 𝐵 𝐴 𝐵      (72) 

This condition includes both signals and noises of the between and within regressions. One 

obvious solution of 𝐴 and 𝐵 that satisfy this condition is 𝐴 �̅� Ω �̅� and 𝐵 𝜎 𝑋 𝑋

𝜋 𝑋 𝑋, with 𝐴 𝐵 𝑋 Ω 𝑋. This solution gives 𝜆 𝜆  and the random effects estimator. 

Note that the pooled OLS estimator is inefficient since 𝐴 𝑋 𝑋, 𝐵 𝑋 𝑋, and 𝐴 𝐵 𝑋 𝑋 for 

the pooled OLS estimator, and these 𝐴 and 𝐵 do not satisfy Equation (72). If there is another 

MMSE estimator with a different 𝜆, then the weighting matrices, 𝐴 and 𝐵, should satisfy 

Equation (72).  
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Third, we discuss modeling structures and strategies of these five estimators. In our 

previous discussion of unbiasedness and efficiency, we show that a major difference between the 

within estimator and other four estimators is related to 𝛾. The specification of 𝛾 in modeling is 

related to an underlying assumption of the model: whether the unobserved group component 𝛼  

is fixed or random. Although the within regression can be derived from the random effects model 

and CRE models, the within regression is identical to the fixed effects model in terms of 

modeling structure. Both fixed effect model and within regression assume 𝛼  is fixed. The fixed 

effect model explicitly assumes that 𝛼  is a fixed parameter; the within regression implicitly 

assumes that 𝛼  is fixed by eliminating all random group components in its estimation when the 

data of deviations from group means are used. All four other estimators explicitly or implicitly 

assume that 𝛼  is random. In estimating the GLS estimator of the CRE1 model, 𝛼  is assumed to 

be random such that both �̅�  and 𝛼  can be included in the model. The estimations of the three 

remaining estimators implicitly assume that 𝛼  is random as in the CRE1 model. Hence, the 

comparison of modeling structures of these five estimators is related to an important debate in 

studies of panel data models: whether we should use the fixed effects model or the random 

effects model? Suppose 𝛼  is fixed, the estimation of 𝛾 is irrelevant and there is no need to 

consider the random effects model or the CRE1 model; then the fixed effects model is sufficient. 

However, whether 𝛾 is relevant or not should be based on empirical evidence. If 𝛾 0, all 

estimators, except the within estimator, capture the second partial effect 𝛾 by considering a linear 

function of the two partial effects. In an extreme case, 𝛽 0 and 𝛾 0, then the within 

estimator cannot detect any partial effects and four other estimators are able to estimate the 

partial effect 𝛾. Although these four estimators consider both partial effects 𝛽 and 𝛾, a significant 

cost in this flexibility is that these estimators may suffer from the omitted variable bias, which 

occurs if group mean variables are correlated to omitted group variables. The advantage of the 

fixed effects model and the within regression is avoiding this omitted variable bias by either 

controlling all group characteristics in the fixed parameter 𝛼  or eliminating 𝛼  in formulating 

the model. The cost of using the fixed effects/within estimator is the omission of 𝛾. 

The fixed effects model and the within regression focus solely on single partial effect 𝛽, 

and ignores the second partial effect 𝛾, which may be important. The presumption of a fixed 

effects parameter may suggest that the fixed effects model is a “restricted” model. We note that it 
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is not a restricted version of the CRE1 model by restricting 𝛾 0. In general, a restricted model 

has a larger prediction error. We demonstrate the impacts of presuming a fixed effects parameter 

by comparing predictions and prediction errors from the fixed effects model and the CRE1 

model. Instead of treating 𝛼  as random as in CRE models, suppose 𝛼  is a fixed parameter for 

the 𝑔-th group. Then the fixed effects model is  

𝑦 𝑥 𝛽 𝛼 𝜀∗ .         (73) 

where 𝛼  is a parameter and 𝜀∗  are homoscedastic and serial uncorrelated random errors. Note 

that �̅�  and 𝑧  are excluded from the model to avoid the multicollinearity issue. The estimation 

of the parameters in the fixed effects model is based on the least squares dummy variable 

(LSDV) regression: 

𝑌 𝐺𝛼 𝑋𝛽 𝜀∗         (74) 

where 𝛼 is a 𝑛 1 parameter vector and 𝐺 is a 𝑁 𝑛 matrix of dummy variables such that 𝐺

𝐺 ,𝐺 ,⋯ ,𝐺  and 𝐺  is a 𝑁 1 column vector of the dummy variable for the 𝑔-th group with 

𝐺 𝐺 ,𝐺 ,⋯ ,𝐺 ,𝐺 0𝑒  for 𝑖 𝑔 and 𝐺 𝑒 . The OLS estimator of 𝛼 and 𝛽 

in the LSDV regression is the fixed effects estimator and denoted as 𝛼  and 𝛽 . Using 

𝐺 𝐺 𝐺 𝐺 𝐽,̅ 𝐼 𝐺 𝐺 𝐺 𝐺 𝐼 𝐽 ̅ 𝑀, it can be shown that (Greene, 2018, p. 393) 

𝛼 𝐺 𝐺 𝐺 𝑌 𝑋𝛽 𝑦 �̅�𝛽        

𝛽 𝑋 𝑀𝑋 𝑋 𝑀𝑌 𝑋 𝑋 𝑋 𝑌 𝛽       

Using 𝐺𝛼 𝑌 𝑋𝛽 , the fitted equation of the fixed effects model is  

𝑌 𝐺𝛼 𝑋𝛽 𝑌 𝑋𝛽 𝑋𝛽 𝑌 𝑋𝛽     (75) 

The prediction of 𝑦  contains two components. The first component is directly measured by the 

group mean 𝑦  and the second is related to within deviations. Note that the fitted equation of the 

within regression is 𝑌 𝑋𝛽 . Let 𝑌 𝑌 𝑌. Then 𝑌 𝑌 𝑋𝛽  and 𝑌 𝑌 𝑋𝛽 , which is 

the same as Equation (75). The fixed effects model and the within regression have the same 

fitted equation and prediction interpretation.  

The fitted equation of the CRE1 model is 

𝑌 𝑋𝛽 𝑋𝛾 𝑋𝛽 𝑋 𝛽 𝛽 𝑋𝛽 𝑋𝛽    (76) 

This shows the prediction of 𝑦  also contains two components. The within deviation component 

𝑋𝛽  is the same as that in the fitted equation of the fixed effects model. However, the group 
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mean component is predicted by 𝑌 𝑋𝛽 , which is fitted equation of the between regression 

𝑌 𝑋𝛽 𝑈. The comparison of the two prediction equations 𝑌  and 𝑌  in Equations (75) 

and (76) shows that the fixed effects model ignores the predictivity of 𝑦  and it assumes that the 

population group mean of 𝑦 in the g-th group is estimated by a fixed value 𝑦 . We explain why 

the predictivity of 𝑦  is omitted in the fixed effects model. Pre-multiplying the LSDV regression 

in Equation (74) by 𝐺 𝐺 𝐺 gives the between regression of the fixed effects model:  

𝑦 𝛼 �̅�𝛽 𝜀̅∗          

where 𝜀∗̅ 𝐺 𝐺 𝐺𝜀∗. The parameters 𝛼 and 𝛽 in this between regression cannot be identified 

since both 𝑦 and 𝛼 have the same row dimension. Once we use the fixed effects model, we 

cannot predict 𝑦. The prediction of 𝑦 must be omitted. This omission of the predictivity of 𝑦  is 

not an issue if the main purpose of the estimation is to estimate the partial effect 𝛽 or when 𝛾

0. The lack of predictivity of 𝑦 implied by the presumption of the fixed effects parameter in the 

fixed effects model is usually overlooked in the empirical analysis.  

Different modeling strategies give different prediction powers. We compare the 

prediction powers of the fixed effects model and the CRE1 model. From Equation (75), the fitted 

error equation of the LSDV regression is 

𝑌 𝑌 𝑌 𝑌 𝑋𝛽 𝑌 𝑋𝛽 �̃�       

which is the same as the residual term in the within regression. This again shows that the fixed 

effects model and the within regression are fundamentally the same and they only capture the 

impact and the prediction of within variations. The fitted error equation of the CRE1 model is  

𝑌 𝑌 𝑌 𝑋𝛽 𝑋𝛽 𝑌 𝑌 𝑌 𝑋𝛽 𝑋𝛽 𝑈 �̃�   

where 𝑈 𝑌 𝑋𝛽  is the residual term of the between regression. The sum of squared 

prediction errors from the CRE1 model is 𝑈 𝑈 �̃� �̃�. This is larger than the sum of squared 

prediction errors from the fixed effects model, �̃� �̃�. However, we cannot conclude that the 

“restricted” fixed effects model is better than the CRE1 model since it has a smaller sum of 

squared prediction errors. The fixed effects model has a better prediction power simply because 

this model is a prediction model only focusing on the partial effect 𝛽 due to within deviations 𝑥. 

It does not consider the predictivity of 𝑦 , group means of 𝑦. The CRE1 model is a prediction 

model focusing on two partial effects due to both �̅�  and within deviations. Another simple way 
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to demonstrate the difference is to use the equation 𝑌 𝑌 𝑌. The fixed effect model and the 

within regression only concern the estimation and prediction of 𝑌 while the CRE1 model 

estimates 𝑌 and concerns both 𝑌 and 𝑌. In summary, the choice between the fixed effects/within 

estimator and other estimators depends on the importance of the partial effect 𝛾. If we are 

concerned with both 𝛽 and 𝛾 and it is possible that 𝛾 0, then other estimators, such as the GLS 

estimator of the CRE1 model and the random effects estimator, are worth considering and may 

provide additional information on the partial effects of 𝑥. 

 

4.  The CRE2 Models with Cluster Data 

When group variables 𝑧  are added to the CRE1 model, we have the CRE2 model, 𝑦

𝑥 𝛽 �̅� 𝛾 𝑧 𝜉 𝑢 . Similar to �̅� , 𝑧  is a 1 𝑙 row vector and has only one value for each 

𝑧 variable in each group. Since 𝑧  are only observable at the group level, 𝑧 variables are not 

included in 𝑥 variables. We denote two data matrices of 𝑧  as 𝑧 and 𝑍, with the data structures 

similar to �̅� and 𝑋, respectively. The matrix form of the CRE2 model is  

𝑌 𝑋𝛽 𝑋𝛾 𝑍𝜉 𝑢         (77) 

where 𝑢 is the column vector contains elements of composite random errors 𝑢 𝛼 𝜀 . 

Assume the random errors 𝛼  and 𝜀  have the same properties as the random errors of the CRE1 

model as shown in Equations (5) and (6). Then 𝑉𝑎𝑟 𝑢 Ω as in Equation (11). We use the 

same notation Ω for the covariance matrix of the random errors in both CRE1 model and CRE2 

model. If the CRE2 model is true, the CRE1 model is a misspecified model. The CRE1 and 

CRE2 models should have different covariance matrices of the random errors. This implies the 

CRE2 model requires a different set of notations related to Ω. To avoid creating excessive 

notations in differentiating between the CRE2 and CRE1 model, we keep the same notations, 

such as 𝑢 , 𝑢 , Ω, and Ω , used in the CRE1 model for the CRE2 model; but we use these 

notations with caution.  

 

4.1 The Between and Within Estimators and the GLS Estimator of the CRE2 Model  

To analyze the CRE2 model, we begin with the between and within regressions derived 

from the CRE2 model. The between regression is  

𝑦 �̅�𝛽 𝑧𝜉 𝑢         (78) 
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The covariance of 𝑢 is 𝑉 𝑢 Ω  as in Equation (20). The inverse of Ω  is Ω  as in Equation 

(21). Because of heteroscedasticity of 𝑢 , we consider the following GLS estimator of 𝛽  and 𝜉 

in the between regression.  

𝛽
𝜉

�̅�
𝑧

𝛺 �̅� 𝑧 �̅�
𝑧

𝛺 𝑦      (79) 

Substituting 𝑦 �̅�𝛽 𝑧𝜉 𝑢 into the above equation, the mean and variance of the GLS 

between estimator are  

𝐸
𝛽
𝜉

𝛽
𝜉          (80) 

𝑉
𝛽
𝜉

𝑥 ′𝛺 �̅� �̅�′𝛺 𝑧
𝑧 𝛺 �̅� 𝑧 𝛺 𝑧

       (81) 

The unbiasedness is derived from the exogeneity of 𝑥 and 𝑧, and they are uncorrelated with 

group size 𝑚 . This shows that the GLS between estimator is an unbiased and efficient estimator 

of 𝛽 , 𝜉 .  

The within regression from the CRE2 model is 𝑌 𝑋𝛽 𝜀̃. All properties associated 

with the within regression in the CRE2 model are the same those in the CRE1 model. The 

covariance of the random errors is 𝑉 𝜀̃ Ω  as in Equation (35); the within estimator is 𝛽

𝑋 𝑋 𝑋 𝑌; the mean and variance of the within estimator are Equations (53) and (54), 

respectively; the between and within estimators are uncorrelated, i.e., 𝐶 𝛽 ,𝛽

𝐶 𝛽 , 𝜉 0, which can be derived from 𝐸 𝑢 𝜀̃ 0 as in Equation (55). 

The GLS estimator of the CRE2 model 𝑌 𝑋𝛽 𝑋𝛾 𝑍𝜉 𝑢 is  

𝛽
𝛾
𝜉

𝑋
𝑋′
𝑍

𝛺 𝑋 𝑋 𝑍
𝑋
𝑋′
𝑍

𝛺 𝑌     (82) 

We show the following theorem for the relationship between the GLS estimator of the CRE2 

model and the within and between estimators of the CRE2 model. 

  

Theorem 2. Let 𝛽 , 𝛾 , 𝜉  be the GLS estimator of the CRE2 model, and 𝛽  and 

𝛽 , 𝜉  be the within estimator and the GLS between estimator of the CRE2 model, 

respectively. Then  
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𝛽 𝛽 , 𝛾 𝛽 𝛽 , and 𝜉 𝜉       (83) 

 

Wooldridge (2019) proved the first equality 𝛽 𝛽  for the CRE2 model with 

unbalanced panel data. Appendix A demonstrates an alternative proof of this equality using the 

extended Frisch-Waugh theorem. We show all equalities for cluster data in Appendix B. The 

equalities 𝛽 𝛽  and 𝛾 𝛽 𝛽  are basically the same as Theorem 1 for the CRE1 

model. The equality 𝜉 𝜉  shows that the GLS estimator of the coefficients of group 

variables for the CRE2 model is numerically the same as its GLS between estimator of the 

between regression.  

Using equalities in Equation (83) in Theorem 2 and the means, variances, and 

covariances of 𝛽 , 𝛽 , and 𝜉  (Equations (53), (54), (80), and (81)), the means, variances, 

and covariances of the GLS estimator of the CRE2 model can be derived as shown in Appendix 

C. This implies that the inference of 𝛽, 𝛾, and 𝜉 can be made using the results from the between 

and within regressions; the GLS estimation of the CRE2 model is not necessary. Appendix C 

also shows the derivation of the means, variances, and covariances of the GLS estimator without 

using Theorem 2. This provides additional evidence of Theorem 2.  

There are three implications from 𝜉 𝜉 . These three implications are related to the 

studies in Moulton (1986, 1990), Amemiya’s (1978), and Donald and Long (2007). First, the use 

of the between regression based on the result of 𝜉 𝜉  implies that the impact of 𝑧 on 𝑦 is 

only related to the data at the group level, not at the individual level. The estimation of 𝜉 is 

important for panel data analysis when time-invariant variables are included in the regression 

(Moulton, 1986). Group variables 𝑧  in the CRE2 model are time-invariant variables in the panel 

data regression. With 𝑧  included in the regression, Moulton (1986, 1990) argued that the GLS 

standard errors, instead of the OLS standard errors, should be used. The results of 𝜉 𝜉  

and 𝑉 𝜉 𝑉 𝜉  show that the GLS estimation of 𝜉 in the CRE2 model with the data at 

the individual level is not necessary and it can be replaced by the GLS estimation of the between 

regression. The need for robust standard errors due to cluster data in the Moulton’s model is 

reflected on the use of the GLS between estimator. The between regression is sufficient if the 

main concern of inference is on the impact of 𝑧 . In addition, the number of degrees of freedom 

in inference of 𝜉 in this regression is 𝑛 𝑙 instead of 𝑁 𝑘 𝑙.  
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Second, based on Amemiya’s (1978) random coefficient model, 𝜉  can be derived using 

a two-step procedure. The first step is to derive 𝛼, the fixed effects estimate of 𝛼 in the LSDV 

regression, Equation (74); the second step is to regress 𝛼 on 𝑧. The estimated coefficient of 𝑧 in 

the second step regression is the same as 𝜉 . Our result of 𝜉 𝜉  provides a new procedure 

to replace the two-step procedure. A direct estimation with the between regression gives the 

same numerical estimate of 𝜉 . The variance of 𝜉  for inferences is also directly available from 

the between regression.  

Third, the use of group variables 𝑧  in the between regression implies that 𝑧 , 𝑧 ,⋯ , 𝑧  

is a random sample from G groups. This random sample of 𝑧  may help us to explain the 

conclusions in Donald and Lang (2007). Donald and Lang (2007) used Amemiya’s (1978) two-

step procedure to address an issue in inference with difference-in-differences models. When 

time-invariant policy changes are considered, the second step regression in the two-step 

procedure can be used to estimate 𝜉. Because the number of degrees of freedom in the second 

step regression is 𝑛 𝑙, they argued that policy implications derived from the inference of 𝜉 with 

the degrees of freedom of 𝑁 𝑘 𝑙 can be misleading. They reexamined some studies on the 

impact of policy changes using difference-in-differences models. In these studies, data is 

classified into different groups due to policy changes. In this case, the number of groups created 

by policy changes is usually limited. In Donald and Lang’s (2007) example of the two-by-two 

case, there are two groups: control and treatment groups. With only two groups, they concluded 

that the degrees of freedom in inference of 𝜉 in the two-step procedure can be zero.  

In using the two-step procedure, it is unclear if 𝑧  has to be a random sample of groups 

from G groups in the second step’s regression. For the between regression, the observations of 𝑧  

are considered a random sample from G groups. If a policy change can be randomly observed 

multiple times, i.e., 𝑛 times, or it randomly affects 𝑛 different groups, then the between group 

regression can be applied. In this case, the number of degrees of freedom is 𝑛 𝑙. In Donald and 

Lang’s example of the two-by-two case, the policy change only happened once and there is only 

one pair of control and treatment groups. Hence, the number of degrees of freedom issue occurs. 

If we consider a policy change as an experimental design and we can treat different individuals 

as random observations in an experimental design as in ANOVA such that there are many 

random observations in the designed groups, then the number of the degrees of freedom is not 
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limited to 𝑛 𝑙. Hence, the number of degrees of freedom issue is related to whether we should 

treat a policy change as a random event or an experimental design with many random 

observations in control and treatment groups. If we treat policy changes as experimental designs, 

then it is inappropriate to apply the between regression. The remaining issues are whether we 

should treat a policy change as an experimental design and what appropriate econometric 

methods to use if a policy change is considered as an experimental design. There are many 

discussions on these issues in the treatment effects literature (Imbens & Wooldridge, 2009).  

 

4.2 Other Three Estimators Under the CRE2 Model  

We continue to examine the properties of the pooled OLS estimator 𝛽  and the random 

effects estimator 𝛽 , and derive their relationship with the between and within estimators under 

the CRE2 model. Both 𝛽  and 𝛽  are the estimators of 𝛽 assuming no group mean variables 

and other group variables in the model. If the CRE2 model is the true model, these two 

estimators are derived from a misspecified model. Both estimators may involve the omitted 

variable bias issue. After we show how these estimators are related to the between and within 

estimators, we derive the sizes of their biases under the CRE2 model.  

Consider the pooled OLS estimator 𝛽 𝜆 𝛽 𝐼 𝜆 𝛽  in Equation (59). 

Note that 𝛽 𝑋 𝑋 𝑋 𝑌 is the OLS estimator of 𝛽  for the regression of 𝑌 on 𝑋. Under 

the CRE2 model, the OLS estimator of 𝛽  and 𝜉 in the between regression 𝑌 𝑋𝛽 𝑍𝜉 𝑈 is 

𝛽

𝜉
𝑋 𝑋 𝑋′𝑍
𝑍 𝑋 𝑍 𝑍

𝑋 𝑌
𝑍 𝑌

        

The matrix system equations can be rewritten as  

 𝑋 𝑋 𝑋′𝑍
𝑍 𝑋 𝑍 𝑍

𝛽

𝜉
𝑋 𝑌
𝑍 𝑌

 

We rewrite the first normal equation as  

𝛽 𝑋 𝑋 𝑋 𝑌 𝑋 𝑋 𝑋 𝑍𝜉  

  𝛽 𝑋 𝑋 𝑋 𝑍𝜉        

𝛽 𝛽 𝑋 𝑋 𝑋 𝑍𝜉        (84) 

Substituting the above equation into 𝛽  in Equation (59),  

𝛽 𝜆 𝛽 𝑋 𝑋 𝑋 𝑍𝜉  𝐼 𝜆 𝛽      
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This shows that 𝛽  is a weighted average of the within and between estimators from the CRE2 

model, where the between estimators include 𝛽  and 𝜉 . Substituting 𝑌 𝑋𝛽 𝑋𝛾

𝑍𝜉 𝑢 into 𝛽 𝑋 𝑋 𝑋 𝑌,  the mean and the variance of 𝛽  are 

𝐸 𝛽 𝛽 𝜆 𝛾 𝑋 𝑋 𝑋 𝑍𝜉       

𝑉 𝛽 𝑋 𝑋 𝑋 𝐸 𝑢 𝑢 𝑋 𝑋 𝑋  

𝑋 𝑋 𝜎 𝑋 𝑋 𝑋 𝐷 𝑋 𝑋 𝑋     

Because the mean of 𝛽  involves 𝜉, 𝛽  is a biased estimator of 𝛽 𝜆 𝛾 if �̅�  and 𝑧  are 

correlated. The size of the bias is 𝑋 𝑋 𝑋 𝑍𝜉. As in the CRE1 model, 𝛽  is inefficient. Note 

that 𝑉 𝛽  under the CRE2 model is different from 𝑉 𝛽  under the CRE1 model since the 

covariance of the random errors in the CRE2 model is different from the covariance of the 

random errors in the CRE1 model given that the CRE2 model is true.  

For balanced panel data, we can simplify the weighting function of 𝛽 . Since the GLS 

between estimator is the same as the OLS between estimator for balanced panel data and using 

Theorem 2, we have 𝛽 𝛽 , 𝜉 𝜉 𝜉  and 𝛽 𝛽 𝛽 𝛽 𝛾 . 

Then  

𝛽 𝛽 𝜆 𝛾 𝑋 𝑋 𝑋 𝑍𝜉         

This shows 𝛽  is a linear function of the GLS estimator of the CRE2 model. 𝛽  is still biased 

and inefficient estimator of 𝛽 𝜆 𝛾 when �̅�  and 𝑧  are correlated. 

Next, we discuss the properties of the random effects estimator under the CRE2 model. 

Let Ω  be the variance matrix of the random errors 𝑢∗  in the random effects model 𝑌 𝑋𝛽

𝑢∗. The random effects estimator is 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌. When the CRE2 model is true, 

we can write 𝑢∗  as 𝑢∗ �̅� 𝛾 𝑧𝜉 𝜇 ̅𝛾 𝜇 𝜉 𝑢 . Assume that the variance matrix of 𝑧 is 

𝑉 𝑧 . Then the variance and covariance of 𝑢∗  are 

𝐸 𝑢∗ 𝑢∗ 𝛾 𝑉 �̅� 𝛾 𝜉 𝑉 𝑧 𝜉 𝜎  for 𝑖 𝑗      

𝐸 𝑢∗ 𝑢∗ 𝛾 𝑉 �̅� 𝛾 𝜉 𝑉 𝑧 𝜉 𝜎 𝜎       

𝐸 𝑢∗ 𝑢∗ 0 for 𝑔 𝑔          

As in the CRE1 model, Ω Ω. We then check if Ω Ω, where Ω  is the estimator of Ω  under 

the CRE2 model. Both random effects model and CRE2 model have the same within regression 
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𝑦 𝑥 𝛽 𝜀̃ , but have different between regressions. The between regression for the CRE2 

model is Equation (78); the between regression for the random effects model is  

𝑦 �̅�𝛽 𝑢∗           

where 𝑢∗ 𝑧 𝜉 𝜇 𝜉 𝑢 . Since the estimators of Ω  and Ω are derived from two different 

between regressions with 𝑢∗ 𝑢 , it gives Ω Ω. With Ω Ω and Ω Ω, it is difficult to 

find the relationship between the random effects estimator and other estimators under the CRE2 

model. We can still find the bias of 𝛽  under the CRE2 model. Substituting 𝑌 𝑋𝛽 𝑋γ

𝑍𝜉 𝑢 into 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌, the mean and the variance of the random effects 

estimator are  

𝐸 𝛽 𝛽 𝜆 γ 𝑋 Ω 𝑋 𝑋 Ω 𝑍𝜉 

𝑉 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝐸 𝑢 𝑢 Ω 𝑋 𝑋 Ω 𝑋  

𝑋 Ω 𝑋 𝑋 Ω Ω Ω 𝑋 𝑋 Ω 𝑋       

𝛽  is a biased estimator of 𝛽 𝜆 𝛾 when �̅� and 𝑧 are correlated. The size of the bias under the 

CRE2 model is 𝑋 Ω 𝑋 �̅� 𝛺 𝑍𝜉. The variance of 𝛽  cannot be simplified into 𝑉 𝛽

𝑋 Ω 𝑋  since Ω Ω. 

Suppose the random effects model uses the same between and within regressions 

(Equations (78) and (34)) for the CRE2 model to estimate Ω . Then Ω Ω, and we can 

examine the relationship between 𝛽  and other estimators under the CRE2 model by 

simplifying Ω Ω into Ω Ω. Using the first normal equation for the GLS estimator of the 

CRE2 model in Equation (B.12) in Appendix B,  

𝛽 𝛽 𝑋 𝛺 𝑋 �̅� 𝛺 �̅�𝛾 𝑋 𝛺 𝑋 �̅� 𝛺 𝑧𝜉     

Let 𝜆 𝑋 𝛺 𝑋 �̅� 𝛺 �̅�. It gives  

𝛽 𝛽 𝜆 𝛾 𝜆 �̅� 𝛺 �̅� �̅� 𝛺 𝑧𝜉      (85) 

This shows that the random effects estimator is a linear function of the GLS estimator of the 

CRE2 model. Using Theorem 2,  

𝛽 𝜆 𝛽 �̅� 𝛺 �̅� �̅� 𝛺 𝑧𝜉 𝐼 𝜆 𝛽     

The random effects estimator is a matrix weighted average of the GLS between and the within 

estimators of the CRE2 model. Given Ω Ω , the variance of 𝛽  becomes  

𝑉 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝐸 𝑢 𝑢 Ω 𝑋 𝑋 Ω 𝑋  
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𝑋 Ω 𝑋          

With 𝑋 Ω 𝑋 𝜋 𝑋 𝑋 �̅� Ω �̅�, the variance of 𝛽  is related to the variances of the within 

estimator and the GLS between estimator for the CRE2 model as in the CRE1 model. 

 For balanced panel data, the relationship between 𝛽  and other estimators under the 

CRE2 model can be simplified and easily derived with Ω Ω. In this case, 𝛽 𝛽  and 

𝛽 𝛽 . Substituting 𝛽 𝛽 𝑋 𝑋 𝑋 𝑍𝜉  (Equation (84)) into 𝛽

𝜆 𝛽 𝐼 𝜆 𝛽  in Equation (66),  

𝛽 𝜆 𝛽 𝑋 𝑋 𝑋 𝑍𝜉 𝐼 𝜆 𝛽  

𝛽 𝜆 𝛾 𝜆 𝑋 𝑋 𝑋 𝑍𝜉       

which is similar to Equation (85).  

The random effects estimator is defined as the GLS estimator of the regression model 

𝑦 𝑥 𝛽 𝑢∗ , which is a restricted CRE2 model by excluding group mean variables �̅�  and 

group variables 𝑧 . We consider another restricted CRE2 model where only group mean 

variables �̅�  are excluded. This model is the standard Moulton model (Moulton, 1986, 1990):  

𝑦 𝑥 𝛽 𝑧 𝜉 𝛼∗ 𝜀          

If the CRE2 model is the true model, then the Moulton model is a misspecified model because of 

the omission of �̅� . Since the omitted �̅�  should be included in 𝛼∗ , let 𝛼∗ �̅� 𝛾 𝜇 ̅𝛾 𝛼 . 

Denote the composite error as 𝑢∗∗ 𝛼∗ 𝜀 . The variance and covariance of 𝑢∗∗ are 

𝐸 𝑢∗∗𝑢∗∗ 𝛾 𝑉 �̅� 𝛾 𝜎  for 𝑖 𝑗       

𝐸 𝑢∗∗𝑢∗∗ 𝛾 𝑉 �̅� 𝛾 𝜎 𝜎         

𝐸 𝑢∗ 𝑢∗ 0 for 𝑔 𝑔          

which are the same as Equations (63) – (65) for the random effects model under the CRE1 model. 

This shows Ω , the covariance matrix of 𝑢∗∗, is different from Ω for the CRE2 model. However, 

the between regressions for the Moulton model and the CRE2 model are the same since the omitted 

variables �̅�  in the Moulton model are automatically included in the estimation of its between 

regression. With the same between and within regressions for both Moulton model and CRE2 

model, the estimators of Ω  and Ω are the same, i.e., Ω Ω, where Ω  is the estimator of Ω . 

Because of Ω Ω, we simplify it into Ω Ω in examining the properties of the GLS estimator 
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of 𝛽, 𝜉  in the Moulton model, which is the estimator considered by Kloek (1981) and Moulton 

(1986), when the CRE2 model is true. The data matrix form of the Moulton model is   

𝑌 𝑋𝛽 𝑍𝜉 𝑢∗∗          

Since the Moulton model is the random effects model with the added group variables 𝑧, we denote 

the GLS estimator of the Moulton model as 𝛽  and 𝜉 , and  

𝛽
𝜉

𝑋
𝑍

𝛺 𝑋 𝑍 𝑋
𝑍

𝛺 𝑌      

When 𝛾 0, the CRE2 is reduced to the Moulton model. Then 𝛽 𝛽  and 𝜉 𝜉  from  

Theorem 2 and other results from the CRE2 model can be applied to the Moulton model. When 

𝛾 0, 𝛽  and 𝛾  can be represented in terms of 𝛽 , 𝛾 , and 𝜉  as follows (See the proof 

in Appendix D).  

 𝛽 𝛽 𝜆 𝛾         (86) 

𝜉 𝜉 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝐼 𝜆 𝛾      (87) 

where 

𝜆 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗        

𝐼 𝜆 𝜋 𝑋∗ Ω 𝑋∗ 𝑋 𝑋        

𝑋∗ 𝑋 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋        

𝑋∗ 𝑋 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋        

Using Theorem 2, rewrite Equation (86) as  

𝛽 𝜆 𝛽 𝐼 𝜆 𝛽       

𝛽  is a linear function of 𝛽  and 𝛾 , and it is a matrix weighted average of 𝛽  and 𝛽 . 

Based on Equations (70) and (71), 𝛽  is the unbiased estimator of 𝛽 𝜆 𝛾, but 𝛽  is not 

efficient and not a MMSE estimator of 𝛽 𝜆 𝛾.  

Both 𝛽  and 𝜉  in Equations (86) and (87) include the component of 𝛾 , which is 

the estimate of the second partial effect of 𝑥. When �̅� and 𝑧 are uncorrelated, 𝜆  is reduced to 

𝜆  and the second term of 𝜉  is reduced to zero in expectation. Then 𝐸 𝛽 𝐸 𝛽  and 

𝐸 𝜉 𝐸 𝜉 𝜉. When �̅� and 𝑧 are correlated, 𝐸 𝛽 𝐸 𝛽  and 𝐸 𝜉 𝜉. The 

second term of 𝜉  in Equation (87) is the size of bias caused by the correlation between �̅� and 

𝑧. Hence, the use of the Mouton model may lead to an incorrect conclusion on the coefficient of 

𝜉 when 𝛾 0 and �̅� and 𝑧 are correlated.  
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 Based on the results on the six estimators under the CRE2 model, we derive the same 

main conclusion as those from the CRE1 model; we conclude that the key difference between the 

within estimator and other estimators is whether we should treat 𝛼  as a fixed parameter or a 

random component. The estimation of the within estimator assumes 𝛼  to be fixed while the 

estimations of all other estimators assume 𝛼  to be random. The advantage of assuming 𝛼  to be 

random is to estimate 𝛾 and 𝜉, the partial effects associated with group mean variables and other 

group variables. If the main concern of the estimation is 𝜉, the partial effect of group variables, 

we only need the between regression. There is no need for the CRE2 model or the Moulton 

model since the GLS estimator of 𝜉 in the CRE2 model is the same as its GLS between 

estimator. If the concern of the study is about both 𝑥 and 𝑧, the explanatory variables observed at 

individual and group levels, then the issue is whether 𝛾 or the second partial effect is zero or not. 

When 𝛾 0, we use the within regression to estimate 𝛽 and the between regression to estimate 

𝜉. When 𝛾 0, we should consider the CRE2 model or its between and within regressions. Note 

that both pooled OLS and random effects estimators are biased for 𝛽 𝜆𝛾 and the GLS 

estimator of 𝜉 in the Moulton model is biased for 𝜉 when �̅� is correlated to 𝑧. In addition, the 

estimation of any model considering 𝛼  as random rather than a fixed parameter may suffer from 

omitted variable bias since the included variables �̅� and 𝑧 may be correlated with the unobserved 

group random component 𝛼 .  

 

5.  Conclusion 

 Correlated random effects models extend classical panel data regressions with group 

mean variables and other group variables. Both correlated random effects models and panel data 

regressions involve some basic estimators. This paper provides a complete analysis on the 

properties of six basic estimators and examines the relationships among these estimators under 

correlated random effects models with cluster data. Our study follows Maddala (1971) and 

Mundlak (1978) to explore the properties of the estimators such as the pooled OLS, within, 

between, random effects, and GLS estimators. These estimators are linked by the assumptions of 

random errors of the models.  

Our methodology in analyzing different estimators differs from the literature in three 

aspects. Firstly, we consider the between and within regressions as fundamental to the analysis of 
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the relationships among different estimators. Previous studies primarily consider the between and 

within estimators as given, without examining the detailed properties of the two regressions 

generating these two estimators. Instead, by recognizing two matrix forms of the between 

regression, we establish the relationships of different estimators based on the variances of the 

random errors and the estimators of two different forms of the between regression and the within 

regression. Secondly, we adopt a new and simple approach to derive the theoretic relationship 

among different estimators. This approach involves matrix equivalences and the typical process 

in solving a system of equations as in the Frisch-Waugh theorem. It is worth noting that the 

derivation of matrix equivalences is based on the two forms of between regression and the within 

regression. Thirdly, in exploring the properties of the different estimators, we emphasize that 

there are two different partial effects of an explanatory variable. The first partial effect is the 

direct impact of the explanatory variable, and second partial effect is the impact from the group 

mean of the explanatory variable. The first partial effect is the main concern in most theoretic 

and empirical studies since the direct impact of the explanatory variable is equal to the fixed 

effect or the within effect of CRE models. Empirically, one interpretation of the second partial 

effect is the network or peer effect in social interactions models (Manski, 1993, 2000; Blume, et 

al. 2015). Theoretically, the second partial effect plays an important role in explaining the 

differences among different estimators once we accept the existence of the second partial effect.  

 Our two theoretic contributions are 1) We extend Mundlak’s (1978) results to CRE 

models with cluster data. Mundlak’s main results with balanced panel data show the 

relationships of the GLS estimator with the between and within estimators. Most balanced panel 

data analysis can be applied trivially to models with cluster data. It is still necessary to derive a 

formal theorem if Mundlak’s results can be extended to models with cluster data. Wooldridge 

(2019) provided a partial extension of Mundlak’s results. Our theorems complete the extension 

and verify that the relationships under CRE models with cluster data are the same as those under 

the Mundlak model. The only adjustment is the OLS between estimator is replaced by the GLS 

between estimator in the relationships. We show that the relationships continue to hold for 

models with the addition of other group variables, i.e., additional group variables do not affect 

how the GLS estimator relates to the two fundamental estimators. Furthermore, we found that the 

coefficients of group variables can be estimated by the between regression. 2) We show the 
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properties of six different estimators, including their means and variances. These results help us 

to compare different estimators.  

Based on our theoretical analysis, we summarize the results and empirical implications as 

follows. First, the analysis of CRE models allows us to revisit related previous studies. When we 

apply our analysis of the basic CRE model to balanced panel data, we derive some different 

conclusions from Maddala (1971) and Mundlak (1978). For the extended CRE model, our results 

on the GLS estimator of the coefficients of group variables are related to the studies in Moulton 

(1986, 1990), Amemiya (1978), and Donald and Lang (2007). One of the two methods in 

proving our theorems is related to Lovell (1963). The following is a summary of our discussions 

and results in these revisits.  

a. We found that Maddala (1971) has an error in interpreting the random effects 

estimator. We show that the random effects estimator is not equal to the within 

estimator when the number of time periods is infinite.  

b. We found that the weighting matrices of the random effects estimator under the 

Mundlak model (Mundlak, 1978) and the standard random effects regression 

(Maddala, 1971) are the same. Hence, the random effects estimator has the same 

properties under two different modeling approaches. This result is not observed in 

Mundlak (1978).  

c. Mundlak (1978) used his model to show that there is only one estimator to estimate 

partial effects of explanatory variables. Instead, we argue that there are multiple 

MMSE estimators if the second partial effect is taken into the consideration.  

d. Moulton’s (1986) concern on the robust estimation of the coefficients of group 

variables in a panel data model can be resolved using the between regression. In this 

case, the number of degrees of freedom in inferences is related to the number of 

cross-sectional units, instead of the total number of data values in the sample.  

e. Amemiya’s (1978) two-step procedure to estimate the coefficients of group variables 

can be replaced by the between regression. The statistical inferences of these 

coefficients are directly applicable with the between regression.   

f. Donald and Lang’s (2007) critique on the use of difference-in-differences models is 

related to how we treat a policy change in modelling; is it an experimental design 

with control and treated groups or an experiment generating a random sample of 
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groups? If a policy change is associated with a random sample of groups, then the 

between regression can be applied.  

g. Instead of using the standard Frisch-Waugh Theorem as described in Lovell (1963), 

we introduce an extended version of Frisch-Waugh Theorem for models with the 

GLS estimator. We show an application of this extended theorem.  

The above summary of our discussions and results can be divided into three categories: new 

results (items d, e, g), different results (items a, b), and different interpretations of the same 

results (items c and f). 

Second, we summarize the implications from different modeling and estimation strategies 

used by different estimators. In our comparison of different estimators, we found that the main 

difference between the within estimator and other estimators is the role of the second partial 

effect of an explanatory variable, and the main difference in modelling strategies for different 

estimators is the presumption of a fixed effects parameter. If the sole concern of the regression is 

the first partial effect or the within effect of the explanatory variables, then the use of the within 

estimator is sufficient, and there is no need for other estimators and no need for CRE models nor 

the random effects model. If the second partial effect is not zero, CRE models may provide 

additional information about the partial effects of explanatory variables. Furthermore, CRE 

models provide the prediction based on both group means and within group deviations of the 

dependent variable. The random effects estimator and the GLS estimator of the Moulton model 

are biased if the group mean variables are correlated to observed group variables. For the 

inference of the coefficients of group variables, the use of between regression is sufficient.  

Although our analysis and results are for cluster data, the same can be applied to balanced 

and unbalanced panel data models with one-way fixed effects in the cross-sectional or time 

domain. Two improvements on this study can be considered in future research. First, our analysis 

assumes that basic random errors are homoscedastic and uncorrelated. This assumption can be 

relaxed. Second, the analysis with cluster data focuses only on the cross-sectional domain of 

panel data. A future study can analyze different estimators for two-way fixed effects models such 

that group characteristics for both cross-sectional and time domains are considered.  
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Table 1. The Means and Variances of the Estimators Under the CRE1 Model 

 Estimator 

𝛽 𝜆𝛽 𝐼 𝜆 𝛽  

𝛽 𝜆𝛾  

Weights 

𝜆 𝐴 𝐵 𝐴 

𝐼 𝜆 𝐴 𝐵 𝐵 

Mean Variance 

 𝛽 �̅� �̅� �̅� 𝑦 (NA) 𝛽 𝛾 �̅� �̅� �̅� 𝑑 �̅� �̅� �̅�  

 𝛽 𝑋 𝑋 𝑋 𝑌 (NA) 𝛽 𝛾 𝑋 𝑋 𝑋 Ω 𝑋 𝑋 𝑋  

(i) 𝛽 �̅� Ω �̅� �̅� Ω 𝑦 𝜆 𝐼 𝛽 𝛾 �̅� Ω �̅�  

(ii) 𝛽 𝑋 𝑋 𝑋′𝑌 𝜆 0 𝛽 𝜎 𝑋 𝑋  

(iii) 
𝛽 𝛽  

γ 𝛽 𝛽  
(NA) 

𝛽 

𝛾 

𝜎 𝑋 𝑋  

�̅� Ω �̅� 𝜎 𝑋 𝑋  

(vi) 
𝛽 𝑋 𝑋 𝑋′𝑌 

𝛽 λ γ  

𝐴 𝑋 𝑋 

𝐵 𝑋 𝑋 

𝐴 𝐵 𝑋 𝑋 

𝛽 𝜆 𝛾 𝑋 𝑋 𝑋 Ω𝑋 𝑋 𝑋  

(v) 
𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌 

𝛽 λ γ  

𝐴 �̅� Ω �̅� 

𝐵 𝜎 𝑋 𝑋 

𝐴 𝐵 𝑋 Ω 𝑋 

𝛽 𝜆 𝛾 
𝑋 Ω 𝑋  

�̅� Ω �̅� 𝜎 𝑋 𝑋  

 
Notes: There are three different between estimators under the CRE1 model with cluster data. 
Both 𝛽  and 𝛽  are the OLS estimators, where 𝛽 is based on 𝑦 and �̅� and 𝛽 is 

based on 𝑌 and 𝑋. 𝛽  is the GLS between estimator. 𝛽  and 𝛽  in (i) and (ii) are two 
fundamental estimators. The remaining three estimators are related to these two estimators. The 
𝛽  and 𝛾  in (iii) are the GLS estimator of 𝛽 and 𝛾 in the CRE1 model. 𝜆 is the weight 
assigned to 𝛾, the second partial effect of 𝑥.  
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Appendices 

 

Appendix A.  The Extended Frisch-Waugh Theorem and An Application 

Appendix A is organized as follows: First, we introduce an extended version of the 

Frisch-Waugh theorem (Frisch & Waugh, 1933). The standard theorem is for the OLS estimator 

while the extended theorem is for the GLS estimator. Second, we use the extended theorem to 

prove the GLS estimator of 𝛽 for CRE models with cluster data is the same as the within 

estimator.  

 

Part I.  The Extended Frisch-Waugh Theorem  

The standard Frisch-Waugh theorem is introduced in some econometrics textbooks 

(Lovell, 2008); Greene (2018, pp. 35 – 37) provides a good review of the theorem. Consider the 

following regression with two sets of variables 𝑋  and 𝑋  and parameters 𝛽  and 𝛽 .  

𝑌 𝑋 𝛽 𝑋 𝛽 ε         (A.1) 

Let 𝛽 ,  and 𝛽 ,  be the OLS estimators of 𝛽  and 𝛽 , respectively. The theorem shows that 

 𝛽 , 𝑋∗𝑋∗ 𝑋∗ 𝑌∗          

 𝛽 , 𝑋∗𝑋∗ 𝑋∗ 𝑌∗          

where 𝑋∗ are the residuals from the regression of 𝑋  on 𝑋 , and 𝑌∗  are the residuals from the 

regression of 𝑌 on 𝑋 , with 𝑖, 𝑗 1,2 and 𝑖 𝑗. One constraint of the theorem is that it is 

designed for models with the OLS estimator. When the random errors 𝜀 are heteroscedastic and 

serial correlated, the OLS estimator is inefficient, and the process of applying the theorem needs 

to be modified. Suppose the covariance matrix of the random errors 𝜀 is  

𝑉 ε Ω           

A method in applying the theorem with any Ω is to convert the random errors and the covariance 

matrix of 𝜀 as 

𝑉 𝑄𝜀 𝜎 𝐼           

where 𝜎  is a constant and 𝑄 is a conversion matrix, such that 𝑄Ω𝑄 𝜎 𝐼 and 𝑄 𝑄 Ω . We 

can then use 𝑄 to convert the variables 𝑌, 𝑋  and 𝑋  and apply the standard Frisch-Waugh 

theorem (Lovell, 1963; Chamberlian, 1980, p. 234; Fiebig et al., 1996; Wooldridge, 2019). This 

appendix extends this standard theorem to general models where the GLS estimator is used for 
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heteroscedastic and serial correlated random errors. With this extended theorem, there is no need 

for transformation of variables. Denote the GLS estimator of 𝛽 ,𝛽 ) in Equation (A.1) as 

𝛽 ,𝛽 . Then 

𝛽
𝛽

𝑋
𝑋

Ω 𝑋  𝑋
𝑋
𝑋

Ω 𝑌      (A.2) 

Or, 

𝛽
𝛽

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋

𝑋 𝛺 𝑌
𝑋 𝛺 𝑌

     (A.3) 

The extended Frisch-Waugh theorem is that the partial coefficients 𝛽  and 𝛽  are 

 𝛽 𝑋∗Ω 𝑋∗ 𝑋∗ Ω 𝑌∗        (A.4) 

 𝛽 𝑋∗Ω 𝑋∗ 𝑋∗ Ω 𝑌∗        (A.5) 

where 𝑋∗ are the residuals from the GLS estimation of the regression of 𝑋  on 𝑋 , 𝑌∗  are the 

residuals from the GLS estimation of the regression of 𝑌 on 𝑋 , with 𝑖, 𝑗 1,2 and 𝑖 𝑗. For 

example, 

𝑋∗ 𝑋 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋 , with 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑋   

 𝑌∗ 𝑌 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌, with 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌   

The following is the proof of this extended theorem.  

Rewrite the system of equations of the GLS estimator, Equation (A.3), as  

𝑋 Ω 𝑋 𝑋 Ω 𝑋
𝑋 Ω 𝑋 𝑋 Ω 𝑋

𝛽
𝛽

𝑋 Ω 𝑌
𝑋 Ω 𝑌

       

The normal equations are  

 (𝑋 Ω 𝑋 𝛽 𝑋 Ω 𝑋 𝛽 𝑋 Ω 𝑌      (A.6) 

𝑋 Ω 𝑋 𝛽 𝑋 Ω 𝑋 𝛽 𝑋 Ω 𝑌      (A.7) 

Rewrite Equation (A.7) as 

𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝛽     (A.8) 

Substituting Equation (A.8) into Equation (A.6) and rearranging terms,  

𝑋 Ω 𝐼 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝛽        

  𝑋 Ω 𝐼 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌     (A.9) 

Let 𝑀 𝐼 𝑋 𝑋 Ω 𝑋 𝑋 Ω . Then 𝑋∗ 𝑀 𝑋 , and 𝑌∗ 𝑀 𝑌. Equation (A.9) can 

be written as 
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𝛽 𝑋 Ω 𝑋∗ 𝑋 Ω 𝑌∗         (A.10) 

Note 𝑋 Ω 𝑋∗ 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋  is nonsingular since 

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋

 in Equation (A.3) is nonsingular (Graybill, 1983, p. 184). Using 𝑀

𝑀 𝑀 , rewrite 𝑋 Ω 𝑋∗ and 𝑋 Ω 𝑌∗  in Equation (A.10) as 

𝑋 Ω 𝑋∗ 𝑋 Ω 𝑀 𝑋∗ and 𝑋 Ω 𝑌∗ 𝑋 Ω 𝑀 𝑌∗     (A.11) 

Consider 𝑋 Ω 𝑀  in the above equations.  

𝑋 Ω 𝑀 𝑋 Ω 𝐼 𝑋 𝑋 Ω 𝑋 𝑋 Ω       

   𝑋 Ω 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑋 Ω  

𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑋 Ω  

𝑋 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋 Ω  

𝑋∗ Ω         (A.12) 

Substituting Equation (A.12) into Equation (A.11),  

𝑋 Ω 𝑋∗ 𝑋∗ Ω 𝑋∗ and 𝑋 Ω 𝑌∗ 𝑋∗ Ω 𝑌∗      (A.13) 

Substituting the equations in (A.13) into Equation (A.10), Equation (A.10) becomes Equation 

(A.4). This proves the partial coefficient 𝛽 . The partial coefficient 𝛽  in Equation (A.5) can be 

derived similarly, and the extended theorem is proved.  

There is a limitation in using this theorem empirically. Note that Ω is the covariance 

matrix of the random errors in 𝑌 𝑋 𝛽 𝑋 𝛽 ε. The partial regression of 𝑌 on 𝑋  and the 

regression of 𝑋  on 𝑋  are considered misspecified model under 𝑌 𝑋 𝛽 𝑋 𝛽 ε. The 

estimator of Ω from partial regressions can be biased. Hence, Ω cannot be estimated by partial 

regressions. The extended theorem can still be applied to the models using the feasible GLS 

estimator if Ω is appropriately estimated by Ω and Ω is used in partial regressions.  

 

Part II.  Proof of 𝜷𝑪𝟏 𝜷𝑾 and 𝜷𝑪𝟐 𝜷𝑾 

In part II, we apply the extended Frisch-Waugh theorem to prove that the GLS estimator 

of 𝛽 for CRE models with cluster data is the same as the within estimator (the first equality in 

Theorem 1, Equation (57), and the first equality in Theorem 2, Equation (83)). The proof 

provided here is similar to the proof of Proposition 2.1 in Wooldridge (2019). While the proof by 

Wooldridge (2019) used the standard Frisch-Waugh theorem, we apply the extended Frisch-
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Waugh theorem and matrix equivalences, and show the proof with details in the matrix algebra. 

In the following, matrix equivalences of 𝑋 Ω 𝑋 𝑋 Ω 𝑋, 𝑋 Ω 𝑋 𝜋 𝑋 𝑋, and 𝑋 Ω 𝑌

𝑋 Ω 𝑌 𝜋 𝑋 𝑌 are used in the derivation of some equations. Using Ω 𝜋 𝐼 𝐷 𝐽,̅ 

𝑋 𝑋 𝑋 𝐽�̅� 𝑋 𝑋, and 𝐽�̅� 0, we derive the following matrix equivalences.  

𝑋 Ω 𝑋 𝑋 𝜋 𝐼 𝐷 𝐽̅ 𝑋 𝑋 𝜋 𝐼 𝐷 𝐽̅ 𝑋 𝑋 Ω 𝑋   (A.14) 

𝑋 Ω 𝑋 𝑋 𝜋 𝐼 𝐷 𝐽̅ 𝑋 𝜋 𝑋 𝑋 𝑋 𝐷 𝐽�̅� 𝜋 𝑋 𝑋   (A.15) 

Similarly, 𝑋 Ω 𝑌 𝜋 𝑋 𝑌 using 𝑋 𝑌 𝑋 𝑀𝑌 𝑋 𝑌.   

Consider the CRE1 model 𝑌 𝑋𝛽 𝑋γ 𝑢 with 𝑉 𝑢 Ω. Based on the extended 

Frisch-Waugh theorem, the GLS estimator of 𝛽 is  

 𝛽 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑌∗       (A.16) 

where  

 𝑋∗ 𝑋 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋       (A.17) 

𝑌∗ 𝑌 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌       (A.18) 

Using 𝑋 Ω 𝑋 𝑋 Ω 𝑋, Equation (A.17) is simplified as 𝑋∗ 𝑋 𝑋 𝑋. Substituting 𝑋∗

𝑋 into Equation (A.16),   

𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌∗        (A.19) 

Using 𝑌∗ defined in Equation (A.18), rewrite 𝑋 Ω 𝑌∗ in the above equation as 

𝑋 Ω 𝑌∗ 𝑋 Ω 𝑌 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌       

   𝑋 Ω 𝑌 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌 

   𝑋 Ω 𝑌        (A.20) 

To derive the last equation, we use 𝑋 Ω 𝑋 0 since 𝑋 𝐽̅ 0 and 𝑋 𝑋 𝑋 𝐽𝑋 0. 

Substituting Equation (A.20) into Equation (A.19) and using the matrix equivalences as in 

Equation (A.15),  

𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌 𝜋 𝑋 𝑋 𝜋 𝑋 𝑌 𝛽      (A.21) 

This proves the first equality of Theorem 1.  

However, we cannot use the extended theorem to prove the second equality of Theorem 

1. Based on the extended theorem,  

𝛾 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑌∗        

where  
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𝑋∗ 𝑋 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋        

 𝑌∗ 𝑌 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌        

With this definition of the partial coefficient of 𝛾, we cannot derive 𝛾 𝛽 𝛽  because 

𝑋 Ω 𝑋  in 𝑋∗  and 𝑌∗ cannot be simplified.  

 For the CRE2 model 𝑌 𝑋𝛽 𝑋γ 𝑍𝜉 𝑢 with 𝑉 𝑢 Ω and 𝛽  as the GLS 

estimator of 𝛽, we also use the extended theorem to prove 𝛽 𝛽 . Define 𝑋 𝑋 𝑍  and 

𝛽 𝛾  𝜉 . Then we apply the extended theorem to 𝛽 in 𝑌 𝑋𝛽 𝑋 𝛽 𝑢. The GLS 

estimator of 𝛽 is 

𝛽 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑌∗        (A.22) 

where  

 𝑋∗ 𝑋 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋       (A.23) 

𝑌∗ 𝑌 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌       (A.24) 

Equation (A.23) is the residual equation for the GLS estimation of the partial regression of 𝑋 on 

𝑋 . We can apply the extended theorem again to this partial regression. Consider the regression 

of 𝑋 on 𝑋 𝑋 𝑍  as 

 𝑋 𝑋 𝑎  𝑏 𝑢 𝑋𝑎 𝑍𝑏 𝑢       (A.25) 

where 𝑎 and 𝑏 are parameters. In applying the extended theorem, we let 𝑉 𝑢 Ω. The GLS 

estimator of 𝑎, 𝑏  is 𝑋 Ω 𝑋 𝑋 Ω 𝑋, which can also be derived from the extended 

theorem as:  

 𝑎 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗        (A.26) 

 𝑏 𝑍∗ Ω 𝑍∗ 𝑍∗ Ω 𝑋∗         (A.27) 

where 

𝑋∗ 𝑋 𝑍 𝑍 Ω 𝑍 𝑍 Ω 𝑋       (A.28) 

𝑋∗ 𝑋 𝑍 𝑍 Ω 𝑍 𝑍 Ω 𝑋       (A.29) 

𝑍∗ 𝑍 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑍       (A.30) 

𝑋∗ 𝑋 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋       (A.31) 

We show that 𝑎 𝐼 and 𝑏 0. Consider 𝑋∗ Ω 𝑋∗ in 𝑎 (Equation (A.26)). Using 𝑋∗ Ω 𝑋∗

𝑋 Ω 𝑋∗ from Equation (A.13) and substituting 𝑋∗ in Equation (A.29) into 𝑋 Ω 𝑋∗,  

𝑋∗ Ω 𝑋∗ 𝑋 Ω 𝑋∗         
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𝑋 Ω 𝑋 𝑋 Ω 𝑍 Ω 𝑍 𝑍 Ω 𝑋 

𝑋 Ω 𝑋 𝑋 Ω 𝑍 Ω 𝑍 𝑍 Ω 𝑋 

𝑋 Ω 𝑋∗ 𝑋∗ Ω 𝑋∗      (A.32) 

To derive the above equation, we use the matrix equivalence of 𝑍 Ω 𝑋 𝑍 Ω 𝑋 as in 

Equation (A.14). Hence, 𝑎 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗ 𝐼. Using Equation (A.13), 𝑋∗ 𝑋

𝑋 𝑋 from Equation (A.31), and 𝑍 𝑋 𝑍 𝐽�̅� 0, rewrite 𝑍∗ Ω 𝑋∗  in 𝑏 (Equation (A.27)) as 

𝑍∗ Ω 𝑋∗ 𝑍 Ω 𝑋 0         

Hence, 𝑏 0. The fitted equation of 𝑋 𝑋𝑎 𝑍𝑏 𝑢  is 𝑋𝑎 𝑍𝑏, and the residual equation 

is 

𝑋∗ 𝑋 𝑋𝑎 𝑍𝑏 𝑋 𝑋 𝑋       (A.33) 

Substituting 𝑋∗ 𝑋 into 𝛽  in Equation (A.22),  

𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌∗         (A.34) 

Using 𝑌∗  defined in Equation (A.24), rewrite 𝑋 Ω 𝑌∗  in the above equation as 

 𝑋 Ω 𝑌∗ 𝑋 Ω 𝑌 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌       

𝑋 Ω 𝑌 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑌 

𝑋 Ω 𝑌         

To derive the last equation, we use 𝑋 Ω 𝑋 0 since 𝑋 Ω 𝑋 0 and 𝑋 Ω 𝑍 0. Using the 

matrix equivalence as in Equation (A.15), Equation (A.34) becomes 

𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑌 𝜋 𝑋 𝑋 𝜋 𝑋 𝑌 𝛽     (A.35) 

Q.E.D.  

 

Appendix B.  Proof of the Theorems 

This appendix provides the proof of Theorems 1 and 2 without using the matrix inversion 

nor the Frisch-Waugh theorem. The method is based on the typical process in solving a system 

of equations and matrix equivalences.  

 

Proof of Theorem 1: 

Consider the CRE1 model  

𝑌 𝑋𝛽 𝑋γ 𝑢, 𝑉 𝑢 Ω        (B.1) 
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Let 𝛽 , 𝛾  be the GLS estimator of the parameters in the CRE1 model, and 𝛽  and 𝛽  be 

the within estimator and the GLS between estimator of the CRE1 model, respectively. Theorem 

1 states that  

𝛽 𝛽  and 𝛾 𝛽 𝛽         (B.2) 

The following is the proof of this theorem.  

The GLS estimator of 𝛽, 𝛾  in the CRE1 model, Equation (B.1), is 

𝛽
γ

𝑋 Ω 𝑋 𝑋 Ω 𝑋
𝑋 Ω 𝑋 𝑋Ω 𝑋

𝑋 Ω 𝑌
𝑋 Ω 𝑌

       

Rewrite this matrix system of equations as 

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋

𝛽
𝛾

𝑋 𝛺 𝑌
𝑋 𝛺 𝑌

       

The normal equations are 

 𝑋 𝛺 𝑋 𝛽 𝑋 𝛺 𝑋 𝛾 𝑋 𝛺 𝑌      (B.3) 

 𝑋 𝛺 𝑋 𝛽 𝑋 𝛺 𝑋 𝛾 𝑋 𝛺 𝑌      (B.4) 

Consider the matrix equivalences of all six matrix triplets with Ω  in the normal equations. 

Using Ω 𝜋 𝐼 𝐷 𝐽,̅ 𝑋 𝐽�̅� 𝐽�̅�, 𝜋 𝑚𝜋 𝑚𝜎  (Equation (27)), and 

𝑋 Ω 𝑋 �̅� Ω �̅� (Equation (48)), 𝑋 Ω 𝑋 is equivalent to  

𝑋 Ω 𝑋 𝑋 𝜋 𝐼 𝐷 𝐽̅ 𝑋 𝑋 𝐷 𝑋 𝑋 𝐷 𝑋 𝑋 Ω 𝑋 �̅� Ω �̅� 

(B.5) 

Similarly, from Equations (A.14) and (B.5), we have 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑋 Ω 𝑋 �̅� Ω �̅� 

and 𝑋 Ω 𝑌 𝑋 Ω 𝑌 �̅� Ω 𝑦. For the matrix equivalence of 𝑋 Ω 𝑋, we have  

𝑋 Ω 𝑋 𝑋 𝜋 𝐼 𝐷 𝐽̅ 𝑋 

𝜋 𝑋 𝑋 𝑋′𝐷 𝐽�̅� 

𝜋 𝑋 𝑋 𝑋 𝑋 𝑋 𝐷 𝑋 

𝜋 𝑋 𝑋 𝑋 𝐷 𝑋 

𝜋 𝑋 𝑋 �̅� Ω �̅�        (B.6) 

Similarly, 𝑋 Ω 𝑌 𝜋 𝑋 𝑌 �̅� Ω 𝑦. Subtracting (B.5) from Equation (B.6), we have 

𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝜋 𝑋 𝑋        (B.7) 

Similarly, 𝑋 Ω 𝑌 𝑋 Ω 𝑌 𝜋 𝑋 𝑌.   
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Consider the normal equations, Equations (B.3) and (B.4). Subtract Equation (B.4) from 

Equation (B.3) and using the matrix equivalencies, such as Equations (A.14) and (B.7),  

𝑋𝛺 𝑋 𝑋 𝛺 𝑋 𝛽 𝑋 𝛺 𝑌 𝑋 𝛺 𝑌      

𝜋 𝑋 𝑋 𝛽 𝜋 𝑋 𝑌          

𝛽 𝑋 𝑋 𝑋 𝑌 𝛽         (B.8) 

Using the matrix equivalencies, such as Equations (A.14) and (B.5), rewrite the second normal 

equation (Equation (B.4)) as  

𝛾 𝑋′𝛺 𝑋 𝑋 𝛺 𝑌 𝑋′𝛺 𝑋 𝑋′𝛺 𝑋𝛽  

�̅� 𝛺 �̅� �̅� 𝛺 𝑦 𝛽  

𝛽 𝛽          (B.9) 

           Q.E.D.  

Proof of Theorem 2: 

Consider the CRE2 model  

𝑌 𝑋𝛽 𝑋𝛾 𝑍𝜉 𝑢,𝑉 𝑢 Ω        (B.10) 

Let 𝛽 , 𝛾 , 𝜉  be the GLS estimator of the parameters in the CRE2 model, 𝛽  be the within 

estimator, and 𝛽  and 𝜉  be the GLS between estimator of 𝛽 and 𝜉 in the between regression 

𝑦 �̅�𝛽 𝑧𝜉 𝑢. Theorem 2 states that  

𝛽 𝛽 , 𝛾 𝛽 𝛽 , and 𝜉 𝜉      (B.11) 

The proof of this theorem is similar to the proof of Theorem 1. The GLS estimator of 𝛽, 𝛾, and 𝜉 

in the CRE2 model is  

 
𝛽
𝛾
𝜉

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

𝑋 𝛺 𝑌
𝑋′𝛺 𝑌
𝑍 𝛺 𝑌

     

Rewrite this matrix system of equations as: 

 
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

𝛽
𝛾
𝜉

𝑋 𝛺 𝑌
𝑋′𝛺 𝑌
𝑍 𝛺 𝑌

      

The normal equations are 

 𝑋 𝛺 𝑋 𝛽 𝑋 𝛺 𝑋 𝛾 𝑋 𝛺 𝑍 𝜉 𝑋 𝛺 𝑌    (B.12) 

 𝑋 𝛺 𝑋 𝛽 𝑋 𝛺 𝑋 𝛾 𝑋 𝛺 𝑍 𝜉 𝑋 𝛺 𝑌    (B.13) 



59 

 

 𝑍 𝛺 𝑋 𝛽 𝑍 𝛺 𝑋 𝛾 𝑍 𝛺 𝑍 𝜉 𝑍 𝛺 𝑌    (B.14) 

Similar to the proof of the matrix equivalences of 𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 �̅� 𝛺 �̅� in 

Equations (A14) and (B.5), we find matrix equivalences of all six matrix triplets with 𝑍 and Ω . 

We have 𝑋 𝛺 𝑍 𝑋 𝛺 𝑍 �̅�′𝛺 𝑧, 𝑍 𝛺 𝑋 𝑍 𝛺 𝑋 𝑧 𝛺 �̅�, 𝑍 𝛺 𝑍 𝑧 𝛺 𝑧, and 

𝑍 𝛺 𝑌 𝑍 𝛺 𝑌 𝑧 𝛺 𝑦.  

Consider the first two normal equations. Subtracting Equation (B.13) from Equation 

(B.12) and using these matrix equivalences and those in Equations (A14) and (B.7),  

𝑋𝛺 𝑋 𝑋 𝛺 𝑋 𝛽 𝑋 𝛺 𝑌 𝑋 𝛺 𝑌      

𝜋 𝑋 𝑋 𝛽 𝜋 𝑋 𝑌          

𝛽 𝑋 𝑋 𝑋 𝑌 𝛽         (B.15) 

Next, we proceed to prove 𝛾 𝛽 𝛽  and 𝜉 𝜉 . Using the derived matrix 

equivalences, rewrite the last two normal equations, Equations (B.13) and (B.14), as the 

following matrix system of equations.  

𝑥 ′𝛺 �̅� �̅�′𝛺 𝑧
𝑧 𝛺 �̅� 𝑧 𝛺 𝑧

𝛽 𝛾
𝜉

�̅�𝛺 𝑦
𝑧 𝛺 𝑦

     (B.16) 

Consider the GLS estimator of 𝛽  and 𝜉 in the between regression 𝑦 �̅�𝛽 𝑧𝜉 𝑢 as follows.  

𝛽
𝜉

𝑥 ′𝛺 �̅� �̅�′𝛺 𝑧
𝑧 𝛺 �̅� 𝑧 𝛺 𝑧

�̅� 𝛺 𝑦
𝑧 𝛺 𝑦

      

Rewrite the above system of equations as  

𝑥 ′𝛺 �̅� �̅�′𝛺 𝑧
𝑧 𝛺 �̅� 𝑧 𝛺 𝑧

𝛽
𝜉

�̅�𝛺 𝑦
𝑧 𝛺 𝑦

      (B.17) 

Compare the two sets of system of equations, Equations (B.16) and (B.17), which are the system 

of equations for the GLS estimator of the CRE2 model and the GLS between estimator, 

respectively. Both systems of equations have the same coefficients. It gives 

𝛽 𝛾 𝛽 , 𝛾 𝛽 𝛽         

𝜉 𝜉            

           Q.E.D.  
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Appendix C. The Means and Variances of the GLS Estimator of the CRE2 Model 

There are two methods to derive the means and variance of the GLS estimator of the 

CRE2 model. The first method is to use Theorem 2 and the means, variances, and covariances of 

𝛽 , 𝛽 , and 𝜉  from the within and between regressions. Using 𝛽 𝛽 , 𝛾 𝛽

𝛽 , 𝜉 𝜉 , Equations (53), (54), (80), (81), and 𝐶 𝛽 ,𝛽 𝐶 𝛽 , 𝜉 0, we 

derive the following means, variances, and covariances.  

𝐸 𝛽 𝐸 𝛽 𝛽        (C.1) 

𝐸 𝛾 𝐸 𝛽 𝛽 𝛽 𝛽 𝛾      (C.2) 

𝐸 𝜉 𝐸 𝜉 𝜉        (C.3) 

𝑉 𝛽 𝑉 𝛽          (C.4) 

𝑉 𝛾 𝑉 𝛽 𝛽 𝑉 𝛽 𝑉 𝛽      (C.5) 

𝑉 𝜉 𝑉 𝜉           (C.6) 

𝐶 𝛽 , 𝛾 𝐶 𝛽 ,𝛽 𝛽 𝑉 𝛽      (C.7) 

𝐶 𝛽 , 𝜉 𝐶 𝛽 , 𝜉 0       (C.8) 

𝐶 𝛾 , 𝜉 𝐶 𝛽 𝛽 , 𝜉 𝐶 𝛽 , 𝜉      (C.9) 

The second method to derive the above equations is to follow the standard procedure 

without using Theorem 2. Substituting 𝑌 𝑋𝛽 𝑋𝛾 𝑍𝜉 𝑢 into the GLS estimator of the 

CRE2 estimator,  

𝛽
𝛾
𝜉

𝛽
𝛾
𝜉

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

𝑋 𝛺 𝑢
𝑋′𝛺 𝑢
𝑍 𝛺 𝑢

 

Then 𝐸 𝛽 𝛽,𝐸 𝛾 𝛾,𝐸 𝜉 𝜉. For the variances and covariances of the estimator, 

we begin with the variance of the GLS between estimator,  

 𝑉
𝛽
𝜉

𝑥 ′𝛺 �̅� �̅�′𝛺 𝑧
𝑧 𝛺 �̅� 𝑧 𝛺 𝑧

 

Rewrite the variance matrix as:  

 
𝑥 ′𝛺 �̅� �̅�′𝛺 𝑧
𝑧 𝛺 �̅� 𝑧 𝛺 𝑧

𝑉 𝛽 𝐶 𝛽 , 𝜉
𝐶 𝜉 ,𝛽 𝑉 𝜉

𝐼 

It gives four equations. 

𝑥 ′𝛺 �̅� 𝑉 𝛽 �̅�′𝛺 𝑧 𝐶 𝜉 ,𝛽 𝐼     (C.10) 
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𝑥 ′𝛺 �̅� 𝐶 𝛽 , 𝜉 �̅�′𝛺 𝑧 𝑉 𝜉 0     (C.11) 

𝑧 𝛺 �̅� 𝑉 𝛽 𝑧 𝛺 𝑧 𝐶 𝜉 ,𝛽 0     (C.12) 

𝑧 𝛺 �̅� 𝐶 𝛽 , 𝜉 𝑧 𝛺 𝑧 𝑉 𝜉 𝐼     (C.13) 

The variance of the GLS estimator of the CRE2 model is  

𝑉
𝛽
𝛾
𝜉

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

 

Rewrite the matrix as:  

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

𝑉 𝛽 𝐶 𝛽 , 𝛾 𝐶 𝛽 , 𝜉

𝐶 𝛾 ,𝛽 𝑉 𝛾 𝐶 𝛾 , 𝜉

𝐶 𝜉 ,𝛽 𝐶 𝜉 , 𝛾 𝑉 𝜉

𝐼 

It gives nine equations. 

𝑋 Ω 𝑋 𝑉 𝛽 𝑋 Ω 𝑋 𝐶 𝛾 ,𝛽 𝑋 Ω 𝑍 𝐶 𝜉 ,𝛽 𝐼  (C.14) 

𝑋 Ω 𝑋 𝐶 𝛽 , 𝛾 𝑋 Ω 𝑋 𝑉 𝛾 𝑋 Ω 𝑍 𝐶 𝜉 , 𝛾 0  (C.15) 

𝑋 Ω 𝑋 𝐶 𝛽 , 𝜉 𝑋 Ω 𝑋 𝐶 𝛾 , 𝜉 𝑋̅ Ω 𝑍 𝑉 𝜉 0  (C.16) 

𝑋 Ω 𝑋 𝑉 𝛽 𝑋 Ω 𝑋 𝐶 𝛾 ,𝛽 𝑋 Ω 𝑍 𝐶 𝜉 ,𝛽 0  (C.17) 

𝑋 Ω 𝑋 𝐶 𝛽 , 𝛾 𝑋 Ω 𝑋 𝑉 𝛾 𝑋 Ω 𝑍 𝐶 𝜉 , 𝛾 𝐼  (C.18) 

𝑋 Ω 𝑋 𝐶 𝛽 , 𝜉 𝑋 Ω 𝑋 𝐶 𝛾 , 𝜉 𝑋 Ω 𝑍 𝑉 𝜉 0  (C.19) 

𝑍 𝛺 𝑋 𝑉 𝛽 𝑍 𝛺 𝑋 𝐶 𝛾 ,𝛽 𝑍 𝛺 𝑍 𝐶 𝜉 ,𝛽 0  (C.20) 

𝑍 𝛺 𝑋 𝐶 𝛽 , 𝛾 𝑍 𝛺 𝑋 𝑉 𝛾 𝑍 𝛺 𝑍 𝐶 𝜉 , 𝛾 0  (C.21) 

𝑍 𝛺 𝑋 𝐶 𝛽 , 𝜉 𝑍 𝛺 𝑋 𝐶 𝛾 , 𝜉 𝑍 𝛺 𝑍 𝑉 𝜉 𝐼  (C.22) 

(C.14) – (C.17): 

𝑋 Ω 𝑋 𝑉 𝛽 𝑋 Ω 𝑋 𝑉 𝛽 𝐼 

𝑉 𝛽 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝜋 𝑋 𝑋 𝑉 𝛽     (C.23) 

(C.15) – (C.18):  

𝑋 Ω 𝑋 𝐶 𝛽 , 𝛾 𝑋 Ω 𝑋 𝐶 𝛽 , 𝛾 𝐼 

𝐶 𝛽 , 𝛾 𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝑉 𝛽     (C.24) 

(C.16) – (C.19):  

𝑋 Ω 𝑋 𝐶 𝛽 , 𝜉 𝑋 Ω 𝑋 𝐶 𝛽 , 𝜉 0 
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𝑋 Ω 𝑋 𝑋 Ω 𝑋 𝐶 𝛽 , 𝜉 0 

𝑉 𝛽 𝐶 𝛽 , 𝜉 0 

𝐶 𝛽 , 𝜉 0         (C.25) 

Using 𝐶 𝛽 , 𝜉 0 and the matrix equivalences, rewrite Equations (C.19) and (C.22) as  

𝑥 ′𝛺 �̅� 𝐶 𝛾 , 𝜉 �̅�′𝛺 𝑧 𝑉 𝜉 0     (C.26) 

𝑧 𝛺 �̅� 𝐶 𝛾 , 𝜉 𝑧 𝛺 𝑧 𝑉 𝜉 𝐼     (C.27) 

Comparing the above system of equations (C.26) and (C.27) with the system of equations (C.11) 

and (C.13) from the between regression, both systems have the same coefficients. Therefore,  

 𝑉 𝜉 𝑉 𝜉          (C.28) 

𝐶 𝛾 , 𝜉 𝐶 𝛽 , 𝜉         (C.29) 

Using the last equation and matrix equivalences, rewrite Equation (C.10) from the between 

regression as 

 𝑋 Ω 𝑋 𝑉 𝛽 𝐼 𝑋 Ω 𝑍 𝐶 𝜉 ,𝛽  

 𝑋 Ω 𝑋 𝑉 𝛽 𝐼 𝑋 Ω 𝑍 𝐶 𝜉 , 𝛾  

Using 𝐶 𝛽 , 𝛾 𝑉 𝛽  from Equation (C.24) and the above equation, rewrite Equation 

(C.18) as  

𝑋 Ω 𝑋 𝐶 𝛽 , 𝛾 𝑋 Ω 𝑋 𝑉 𝛾 𝐼 𝑋 Ω 𝑍 𝐶 𝜉 , 𝛾  

𝑋 Ω 𝑋 𝑉 𝛽 𝑋 Ω 𝑋 𝑉 𝛾 𝑋 Ω 𝑋 𝑉 𝛽  

𝑉 𝛾 𝑉 𝛽 𝑉 𝛽         (C.30) 

In summary, the above equations show: (C.23) = (C.4), (C.24) = (C.7), (C.25) = (C.8), (C.28) = 

(C.6), (C.29) = (C.9), and (C.30) = (C.5). The second method gives the same results as those 

from the first method, but it does not use Theorem 2, 𝐶 𝛽 ,𝛽 0, and 𝐶 𝜉 ,𝛽 0.  

 

Appendix D. The GLS Estimators of the Moulton Model and the CRE2 Model  

In appendix D, we derive the relationship between the GLS estimator of the Moulton model 

(Moulton, 1986, 1990) and the GLS estimator of the CRE2 model. The Moulton model is 

𝑦 𝑥 𝛽 𝑧 𝜉 𝑢∗∗, 𝑉 𝑢∗∗ Ω       (D.1) 

Assume Ω Ω. The GLS estimator is 
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𝛽
𝜉

𝑋 Ω 𝑋 𝑋 Ω 𝑍
𝑍 Ω 𝑋 𝑍 Ω 𝑍

𝑋 Ω 𝑌
𝑍 Ω 𝑌

     (D.2) 

Rewrite the system of equations as:  

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

𝛽
𝜉

𝑋 𝛺 𝑌
𝑍 𝛺 𝑌

       

The normal equations are 

 𝑋 𝛺 𝑋 𝛽 𝑋 𝛺 𝑍 𝜉 𝑋 𝛺 𝑌      (D.3) 

𝑍 𝛺 𝑋 𝛽 𝑍 𝛺 𝑍 𝜉 𝑍 𝛺 𝑌      (D.4) 

Consider the differences of the two normal equations from the CRE2 model and the above 

normal equations. Subtracting Equation (B.12) from Equation (D.3) and subtracting Equation 

(B.14) from Equation (D.4),  

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

𝛽 𝛽
𝜉 𝜉

𝑋 𝛺 𝑋 𝛾
𝑍 𝛺 𝑋 𝛾

     

We solve 𝛽 𝛽  and 𝜉 𝜉  in terms of 𝛾 . Rewrite the above system of equations as  

𝑋 𝛺 𝑋 𝛽 𝛽 𝑋 𝛺 𝑍 𝜉 𝜉 𝑋 𝛺 𝑋 𝛾    (D.5) 

𝜉 𝜉 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝛽 𝛽 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝛾   

𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝛽 𝛽 𝛾   (D.6) 

Substituting Equation (D.6) into (D.5), 

𝑋 𝛺 𝑋 𝛽 𝛽 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝛽 𝛽  

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝛾   

Rearrange the terms in this equation, with 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋  as a 

nonsingular matrix since 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍
𝑍 𝛺 𝑋 𝑍 𝛺 𝑍

 in Equation (D.2) is nonsingular.  

 𝛽 𝛽 𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋  

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝛾   (D.7) 

We can simplify the above equation using the notations in the extended Frisch-Waugh Theorem 

in Appendix A. Let 𝑀 𝐼 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺  and 𝑀 𝑋 𝑋∗, which are the residuals from 

the GLS estimation of the regression of 𝑋 on 𝑍. Then, as in Equation (A.13),  

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝑋 Ω 𝑀 𝑋 

𝑋∗ Ω 𝑋∗     (D.8) 
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Similarly, as in Equation (A.32), 

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝑋 Ω 𝑀 𝑋 

𝑋∗ 𝛺 𝑋∗     (D.9) 

Using Equations (D.8) and (D.9), 𝛽  in Equation (D.7) can be rewritten as  

 𝛽 𝛽 𝑋∗ Ω 𝑋∗ 𝑋∗ 𝛺 𝑋∗𝛾       (D.10) 

Define  

𝜆 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗         

Subtracting Equation (D.9) from (D.8) and using matrix equivalences of 𝑋 𝛺 𝑍 𝑋 𝛺 𝑍 and 

Equation (B.7),  

𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗ 

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋

𝑋 𝛺 𝑋 𝑋 𝛺 𝑍 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋  

𝑋 𝛺 𝑋 𝑋 𝛺 𝑋 𝜋 𝑋 𝑋       

Then  

𝐼 𝜆 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗ 𝑋∗ Ω 𝑋∗  

𝜋 𝑋∗ Ω 𝑋∗ 𝑋 𝑋       

Equation (D.10) can be written as  

𝛽 𝛽 𝜆 𝛾 .         (D.11) 

Rewrite the above equation as  

𝛽 𝛽 𝛾 𝐼 𝜆 𝛾         

Substituting the above equation into Equation (D.6), 

𝜉 𝜉 𝑍 𝛺 𝑍 𝑍 𝛺 𝑋 𝐼 𝜆 𝛾      (D.12) 

Equations (D.11) and (D.12) show the relationship between the GLS estimator of the Moulton 

model and the GLS estimator of the CRE2 model.  

           Q.E.D.  

 

 


