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Section 0 - Introduction.
The purpose of this paper is to prove the following theorem and to describe the algorithm

in question:

Theorem 6.1. Let M be a branched cover of S3, branched over the figure eight knot,
such that all branching indices of M are ≥ 3. Then, there exists an effective algorithm for
deciding whether or not M admits any π1-injectively immersed tori, and for constructing
any that exist.

The importance of this result lies primarily in the fact [HLM] that the figure eight knot
is universal. That is, that all closed, orientable 3-manifolds are obtainable as branched
covers over S3, branched over the knot. We also obtain results about incompressible
(embedded) tori in some cases. Existence or nonexistence of injectively immersed tori is
critical to the understanding of a 3-manifold in light of the Jaco-Shalen and Johannson
torus decomposition [J-S,Jh] which plays such a pivotal role in Thurston’s geometrization
conjecture and the recent result of Gabai and Casson (independently, see [Ga]) which, when
combined with earlier results of Mess and Scott (see [M],[Sc]) shows that a 3-manifold which
admits an injectively immersed torus, but no incompressible surfaces, must be Seifert-
fibered.

Our approach to developing this algorithm will be partly geometric and partly combi-
natorial in nature. We will first describe a fixed geometric structure on S3 which lifts in a
particularly nice way to a geometric structure on any branched cover of S3, branched over
the figure eight knot, which has the required minimum branching index. We will then use
this geometric structure to gradually reduce the problem of finding injectively immersed
tori in this branched cover to a problem of finding paths in a certain graph which satisfy
certain easily verified conditions. We will also obtain an a priori upper bound on the
length of paths which must be considered, so that our algorithm can not only find tori
when they exist, but also ascertain when they do not.

The overall organization of this paper is as follows: the geometric structures that we will
need (Euclidean cone manifold structures) are described in Section 1. Section 2 discusses
the particular cone manifold structure on S3 which will be lifted to the branched covers
of S3. Section 3 describes the first dimensional reduction that we will need, reducing
questions about tori in 3-manifolds to questions about geodesics in 2-manifolds. Section 4
describes how to make the actual calculations needed in section 3 from combinatorial data

Typeset by AMS-TEX

1



2 KERRY N. JONES

about the particular branched cover on which we are working. In section 5, we discuss
the final dimensional reduction, to a particular kind of graph, and we describe the actual
algorithm for finding tori in section 6. Section 7 applies the algorithm to two different
examples of tenfold branched covers, one of which contains an incompressible torus and
one of which is atoroidal.

We will begin by fixing some notation: let M be a closed, orientable 3-manifold, K ⊂ S3

the figure eight knot, ρ : M → S3 a branched covering map of degree d with downstairs
branching locus K. Let L = ρ−1(K) have q components L1, L2, . . . Lq. Then, ρ | (M −
L) :→ (S3 − K) is a covering map. We associate to this covering map its monodromy,
defined as follows: let x0 be a base point in S3 − K and ρ−1(x0) = {x̂0, x̂1, . . . , x̂(d−1)}.
Then, the monodromy of the covering map is the homomorphism ϕ : π1(S3−K,x0)→ Sd
defined by (allowing permutations to act on the right) x̂iϕ(α) = terminal point of the lift of
a loop representing α with initial point x̂i. This gives a 1-1 correspondence between degree-
d covering maps with connected domain and conjugacy classes of transitive representations
of π1(S3−K) to Sd (note that ρ∗(π1(M−L, x̂i)) = ϕ−1(Stab(i))). The branching indices of
ρ are the integers n1, n2, . . . nq which are the the degrees of the branched covering restricted
to disks transverse to the components of L. We note that these are the cycle lengths of
ϕ(µ), where µ is a (fixed) meridional homotopy class of S3 − K, except that the cycles
will be duplicated precisely when a component of L covers K nontrivially (longitudinal
wrapping).

Section 1 - Cone Manifolds.
The process by which we find the tori in these manifolds is principally geometric in

nature and makes extensive use of cone manifold structures. These may be defined quite
generally for any constant-curvature model (and even more generally for variable curvature
models, see [Ho]), but for our purposes it will suffice to make the following

Definition. A Euclidean cone manifold is a metric space obtained as the quotient space
of a disjoint union of a collection of geodesic n-simplices in En by an isometric pairing
of codimension-one faces in such a combinatorial fashion that the underlying topological
space is a manifold.

Such a space possesses a flat Riemannian metric on the union of the top-dimensional
cells and the codimension-1 cells. On each codimension-2 cell, the structure is completely
described by an angle, which is the sum of the dihedral angles around all of the codimension-
2 simplicial faces which are identified to give the cell. The singular locus of a cone manifold
is the closure of all of the codimension-2 cells for which this angle is not 2π (the Riemannian
metric may be extended smoothly over all cells whose angle is 2π). We are principally
interested in the 3-dimensional case in which the singular locus is a link with constant
cone angle on each component and we make this assumption throughout the remainder of
this paper.

There is a strong relationship between cone manifolds on the one hand and branched
covers on the other. Specifically, if ρ : M → N is a branched covering map, branched
over L ⊂ N , then any cone manifold structure on N with the singular locus contained
in L lifts to a cone manifold structure on M with the cone locus contained in ρ−1(L).
This construction is accomplished by lifting the triangulation given by the cone manifold
structure, and the cone angles on M are the obvious ones: if K is a component of ρ−1(L)
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with branching index n and ρ(K) has a cone angle of θ (possibly 2π), then K has a cone
angle of nθ. Note, in particular, that a non-branched cover (all indices = 1) has a cone
manifold structure with the same cone angles as the base cone manifold. Note also that
some components of the singular locus of the branched covering may actually have cone
angle 2π and thus are not singular in the induced cone manifold structure. To avoid
confusion, we will refer to the singular locus of the branched covering as the “singular
locus” and to the subset of this that has cone angle 6= 2π as the “cone locus.”

Next, we consider the geodesics in a cone manifold. A geodesic is extendible until it hits
the cone locus. When a geodesic hits a component of the cone locus with cone locus less
than 2π, it admits no extension as a geodesic. When a geodesic hits a component of the
cone locus with cone locus greater than 2π, it has a pencil of possible geodesic extensions,
resulting in the impossibility of extending an exponential map (without allowing singular-
ities in the exponential map itself) past that point, even though geodesic extensions exist.
It is fairly easy to see that this does not result in any points of the manifold being inac-
cessible by uniquely extendible geodesics from any other point unless some cone angle is
greater than 2π. Thus, the exponential map is surjective when all cone angles are less than
2π (there are conjugate points even if the manifold is simply-connected, thus implying that
cone angles less than 2π “act like” positive curvature). Now, consider a simply-connected
Euclidean cone manifold in which all cone angles are greater than 2π. The exponential
map is no longer surjective, but it is one-to-one and is in fact a diffeomorphism onto its
image. It should be noted that in any case, the domain of the exponential map is E3 with
a collection of “generalized half-planes” deleted, where a “generalized half-plane” is deter-
mined by a line, ray or line segment L in E3 and consists of the union of rays originating at
points of L which emanate directly away from the origin (the generating segment of each
generalized half-plane corresponds to a portion of a component of the cone locus that is in
the domain of the exponential map). We note here also that the domain of the exponential
map is a subset of E3 only when the exponential map is based at a point which is not a
cone point. We may, nevertheless define the exponential map based at a cone point, but
its domain of definition is a subset, not of E3, but of the Euclidean cone manifold which is
homeomorphic to R3 and has a single line of cone locus with cone angle equal to the cone
angle at the base point. We will, in fact, need this construction subsequently.

It was observed above that cone angles less than 2π “act like” positive curvature. The
reverse is true in the following sense:

Lemma 1.1. If M is a Euclidean cone manifold with all cone angles > 2π, then M
admits a metric of nonpositive sectional curvature, which is flat on the complement of an
arbitrarily small neighborhood of the cone locus. Furthermore, any surface that intersects
the cone locus transversely has negative sectional curvature relative to this metric in a
neighborhood of the intersection.

Proof. Working in Fermi coordinates in a solid torus neighborhood of a given component
of the cone locus, we see that the metric is of the form

ds2 = dt2 + dr2 + g2(r)dθ2. where 0 < r < r0

Where g(r) = rψ/2π, and ψ is the cone angle at the given component of the cone locus
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Considering all metrics of the given form (allowing g to vary), we observe that such a
metric is smooth at the core geodesic if and only if g(0) = 0 and g′(0) = 1. A straightfor-
ward but tedious calculation shows that the principal curvatures are 0,0, and −g′′(r)/g(r).
Our method of smoothing the cone metrics will be to remove a (metrically) regular neigh-
borhood of each component of the cone locus and replace each of these solid tori by another
(smooth) solid torus whose boundary metric and second fundamental form agree with the
original solid torus. Let us choose the smooth metric to also be of the given symmetric
form, say ds2 = dt2 + dr2 + ĝ2(r)dθ2 for 0 < r < r̂0. Then, the two metrics may be glued
together smoothly whenever the values and derivatives of g at r0 agree with the values and
derivatives of ĝ at r̂0 to whatever degree of smoothness is desired.

Now, referring to the sectional curvature computation made earlier, it is apparent that if
ĝ is non-concave and positive, the resulting metric will have nonpositive sectional curvature.
Thus, it suffices to construct a non-concave function function ĝ such that ĝ(0) = 0, ĝ′(0) =
1, ĝ(r̂0) = g(r0), and ĝ′(r̂0) = g′(r0) for some r̂0 > 0. But, this can be done precisely when
g′(r0) > 1 ⇔ ψ > 2π. The second claim is clear from the fact that it is the (r, θ) plane
that picks up the negative sectional curvature in this construction. It should be noted that
the resulting metric is the product of a negatively curved disk and a circle. �

Next, we make a few observations about injectively immersed tori in Euclidean cone
manifolds with all cone angles > 2π. The main results we will need involve the relationship
between totally geodesic tori in the cone metric and totally geodesic tori in the smooth
metrics approximating the cone metric.

Lemma 1.2. If M is a Euclidean cone manifold with all cone angles > 2π then in any
of the above smoothings of that metric, any injectively immersed torus is homotopic to a
totally geodesic torus. Furthermore, M is irreducible.

Proof. First, we smooth the cone metric to a metric of nonpositive sectional curvature via
Lemma 1.1. We now note that the 2-plane that actually picks up negative curvature in
the construction is the 2-plane spanned by dr and dθ. Thus, by the Gauss equation, any
minimal surface intersecting the old cone locus transversely will inherit negative curvature
in a neighborhood of the intersection. Since there is no place in the manifold to pick up
canceling positive curvature, a minimal torus must not intersect the cone locus transversely.
A similar Gauss equation argument shows that any minimal torus in a 3-manifold of
nonpositive sectional curvature must be totally geodesic.

To complete the proof of the first part of the lemma, we appeal to the standard result
that injectively immersed surfaces in 3-manifolds are homotopic to minimal surfaces [SY].

To show irreducibility, we use a similar argument to show that there are no essential
2-spheres, and use the Cartan-Hadamard theorem [Sp] to assert that the universal cover
of M is R3 and thus that there are no fake 3-cells in M . �

The next result is not needed in this paper, but illustrates clearly the structure of totally
geodesic tori (cone metric and smooth metric) as well as the techniques we will be using
subsequently and so is included here as an intuition-building exercise for the reader.

Lemma 1.3. If M is a Euclidean cone manifold with all cone angles > 2π and S is a
totally geodesic (cone metric) immersed torus, then there is a smooth metric (as in Lemma
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1.1) in which S is homotopic to a totally geodesic torus which has the same intersection
pattern with the smoothing neighborhood that S does with the cone locus.

Proof. If S may be homotoped off of the cone locus, then we’re done (take a sufficiently
tight smoothing so that S is disjoint from the smoothing neighborhood, then S itself is
totally geodesic), so assume that S intersects the cone locus. In order to be totally geodesic
in the cone metric, it must contain any component of the cone locus that it intersects and
the dihedral angles on each side of the intersection with the cone locus must be ≥ π. By
our blanket assumption of “no vertices,” the intersections of S with the cone locus must
cut S up into immersed annuli of uniform width.

Let w be the minimum width of one of these annuli and ε be the maximum distance
such that the uniform neighborhood of S of radius ε is a regular neighborhood. Take a
smoothing of radius r = min(w/4, ε/2). Now, let U be the uniform neighborhood of S
of radius 2r (in the cone metric). U is the image of an immersion of T = S1 × S1 × I
into M (by regularity). Call this immersion φ : T → M . Thus, we may pull back both
metrics (cone and smooth) from M to T , yielding a smooth and a cone metric on T . S
being totally geodesic implies that T is convex in the cone metric and hence convex in the
smooth metric (they are the same in a neighborhood of ∂T ). Furthermore, the action of
S1 on T by translation in the direction of the components of the cone locus is an isometric
action with respect to both metrics. Thus, we have induced cone and smooth metrics on
R = S1 × I (quotient of T by this action - the projection, which we denote by ψ, is a
fibration. In fact, it is a fiber bundle projection map with structure group S1). R is also
convex in both of these metrics. In particular, there is a closed geodesic, λ, (with respect
to the smooth metric) in the homotopy class of a generator of π1(R). Note that λ cannot
“back up” (that is, its pattern of intersections with the smoothing neighborhood is the
same as the intersection pattern of ψ(φ−1(S)) with the smoothing neighborhood) since the
smooth metric on R has nonpositive curvature.
ψ−1(λ) is a totally geodesic (smooth metric) torus homotopic to φ−1(S) and thus

φ(ψ−1(λ)) is a totally geodesic (smooth metric) torus homotopic to S via a homotopy
in U . Clearly the intersection pattern did not change (by the remark at the end of the
preceding paragraph). �

Using similar techniques, we obtain the following lemma, which we will need.

Lemma 1.4. If M is a Euclidean cone manifold with all cone angles > 2π and S is
an injectively immersed torus, then S is homotopic to a totally geodesic (cone metric)
immersed torus.

Proof. First, some preliminary remarks about our method of proof: Lemma 1.2 allows
us to construct totally geodesic tori homotopic to S in any smoothing of the cone metric.
Once we have such a torus, we may “straighten it out” to a piecewise totally geodesic torus
in the cone metric by essentially reversing the procedure of Lemma 1.3. However, it need
not be the case that all of the dihedral angles at intersections along components of the
cone locus are ≥ π. Our game plan is to show that if we take a sufficiently tight smoothing
to begin with, this construction does yield a totally geodesic (cone metric) torus.

To begin, we take any smoothing of the cone metric. By Lemma 1.2, S is homotopic
to a totally geodesic torus in this metric. If this torus can be taken to be disjoint from



6 KERRY N. JONES

the smoothing neighborhood, then we’re done. So, assume that this totally geodesic torus
cannot be homotoped off of the smoothing neighborhood (and stay totally geodesic). Then,
by the symmetry and structure of the smooth metric in the smoothing neighborhood we
must have the torus divided up into annuli that are alternately contained in and disjoint
from the smoothing neighborhood. Let λ be a curve in this torus intersecting each of the
boundary curves of these annuli exactly once. Let λ̂ be a closed geodesic (cone metric) in M
freely homotopic to λ. It is easy to see that λ̂ must intersect the cone locus (otherwise the
torus could be homotoped off of the cone locus). Let r be the maximum radius such that
the uniform neighborhood of the union of λ̂ and the cone locus is a regular neighborhood
and consider now the smoothing of radius r/2.

In this smoothing, any geodesic freely homotopic to λ̂ must have the same intersection
pattern with the smoothing neighborhood that λ̂ has with the cone locus. This follows
from a convexity argument similar to the one used in the proof of Lemma 1.3. One obtains
a regular neighborhood of λ̂ which is an immersion of a convex (in either metric) solid
torus.

Thus, the totally geodesic (smooth metric) torus homotopic to S has an intersection
pattern around its longitude that is the same intersection pattern possessed by the cone
geodesic λ̂. In particular, if we “straighten out” this torus, the dihedral angles at each
intersection of two annuli are ≥ π on both sides. Thus, the straightened torus is in fact
totally geodesic in the cone metric. �

Section 2 - the Figure Eight Knot.
The relevance of Euclidean cone manifolds to the figure eight knot becomes clear when

we observe that

Lemma 2.1. S3 admits a Euclidean cone manifold structure with cone locus the figure
eight knot and cone angle 2π/3.

Proof. Consider the tesselation of E3 by rhombic dodecahedra (see Fig. 2.1).

Figure 2.1
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To see that these do indeed tesselate E3, observe that a rhombic dodecahedron may be
constructed from two cubes of equal size by cutting one cube into six isometric pyramids
with apex at the center of the cube, and then gluing these pyramids onto the faces of the
other cube. The tesselation is then clear - take the usual tesselation of E3 by cubes, color
them red and blue alternately, and dissect all the blue cubes, attaching the pyramids to
the adjacent red cubes. Next, consider the Euclidean 3-manifold whose gluing diagram is
given by Fig. 2.2 (all identifications are isometric since all faces of a rhombic dodecahedron
are congruent).

Figure 2.2

We assert that this manifold is the 3-fold cyclic branched cover of S3 branched over
the figure eight knot. To see this, observe that the edges labeled 3 and 6, together with
an arc from the vertex at the center of the diagram to the vertex at infinity are identified
into a closed loop. Furthermore, observe that rotation through 2π/3 about the arc gives a
Z3 action on the manifold with fixed-point set equal to the loop just described (one needs
merely to check that this rotation commutes with the identifications on the polyhedron).
Also note that, due to the identifications on the polyhedron, this rotation is in fact the
same as a rotation about edge 3 or edge 6 (which is as it should be since they are in
the same component of the fixed point set as the axis of rotation). The quotient of
the Euclidean manifold by this group action gives a Euclidean cone manifold (actually a
Euclidean orbifold) whose fundamental domain and identifications are given, along with
some fundamental group calculations, in Fig. 2.3.

To see that this manifold is topologically S3 and that the cone locus is the figure eight
knot, observe the topological realization of this diagram in Fig. 2.4. �

Section 3 - the Associated 2-manifold.
By combining the results of the previous two sections, we see that any branched cover of

S3, branched over the figure eight knot, with minimum branching index 3, has a Euclidean
cone manifold structure with all cone angles greater than 2π, and thus Lemma 1.4 tells
us that all of the injectively immersed tori are in fact homotopic to totally geodesic tori.
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‖= cone locus

a = loop through A,
back through A′.
Similarly for b, c, d.

π1(M − cone locus)

= 〈a, b, c, d : d−1b−1c,
b−1aba−1c, a−1d−1c〉

Figure 2.3

all identifications
are on ∂B3.
Heavy solid arcs are
in the interior.

glue C,C ′

to yield S3.

Figure 2.4

In particular, if we base the exponential map at a point on the lift of such a torus to the
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universal cover of M (which we denote by M̂), we have that the lift of the torus is in the
image of the exponential map (being totally geodesic) and that such a torus corresponds
to a 2-plane in E3 which

(a) misses (at least with regard to transverse intersections) all of the “bad” line segments
(that map to the cone locus of M̂) and

(b) has compact image in M (via the composition of the exponential map with the
covering map).

At this point, we have two distinct cases to consider, depending on whether or not
there is any cone locus in our branched cover M . If there is no cone locus, then any
plane satisfying (b) will automatically satisfy (a). In the case of branched covers over the
figure eight knot with all branching indices equal to 3, (b) is always satisfied by any plane
having a normal with rational coordinates relative to the coordinatization given above
(since translation by 2 in the principal directions is an orbifold deck transformation of
the figure eight knot orbifold structure, any such plane has compact image in S3. Since
the branched covering is a proper map, this plane must have compact image in M , also).
Thus, when all branching indices are equal to 3, there are always injectively immersed tori
in M .

Now, consider the case in which the cone locus of M is nonempty (the remainder of
this paper will be occupied with this case). The following lemma allows us to restrict our
search to tori that contain a component of the singular locus.

Lemma 3.1. Let M be a Euclidean cone manifold with nonempty, compact cone locus
which has all cone angles > 2π and let S be an injectively immersed torus in M . Then, S
is homotopic to a torus T which contains some component of the cone locus of M .

Proof. First, by Lemma 1.4 we may assume that S is totally geodesic and flat, and thus
contains any component of the cone locus that it intersects. So, if S actually intersects the
cone locus of M , we’re done. Therefore, assume that S is disjoint from the cone locus of
M . Let r be the minimum distance between S and the cone locus of M . Lift S to a plane P
in M̂ , the universal cover of M . Then, the uniform r-neighborhood of P contains no cone
locus and hence is a flat “slice” of M̂ . Clearly, S is homotopic to the image in M of either
boundary component of this neighborhood. Furthermore, these contain a component of
the cone locus of M̂ (if they intersect transversely, the cone locus would penetrate the
r-neighborhood, in violation of the definition of r). Let T be the image in M of either of
these boundary components. �

Thus, to find a “canonical form” for injectively immersed tori in M (where M is a
branched cover over the figure eight knot with minimum branching index 3) we will ho-
motope the torus to a totally geodesic torus containing some component of the cone locus,
which will cut the torus up into totally geodesic annuli. We should note that such a
“canonical form” is not, strictly speaking, canonical. When we have a totally geodesic
torus which is disjoint from the cone locus, there are two possible directions in which it
may be translated, and these give rise to distinct (but homotopic) tori which are cut up
into totally geodesic annuli by intersections with the cone locus. We will discuss the res-
olution of this ambiguity in Section 6. Our next question, however, is when such annuli
exist, or equivalently, when two components of the cone locus in the universal cover of
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M may be joined by an infinite flat strip (the universal cover of an annulus). To answer
this question, we will work in E3, or rather, the domain of the exponential map of M̂ , the
universal cover of M .

Suppose that we are given a component C0 of the cone locus of M̂ , and we wish to
determine which other components of the cone locus cobound, together with C0, an infinite
flat strip which does not intersect the cone locus except at its boundary (we will call this
a simple strip). Let us base the exponential map at a point on C0. Recall that the domain
of definition of the exponential map based at a cone point is a subset of the cone manifold
homeomorphic to R3 with a single line of cone locus. Let us call this manifold N . Note
that, generally speaking, N is no more difficult to work with than E3, because there is no
interaction between various components of the cone locus. Working in N , we see that any
component of the singular locus which cobounds a simple strip with C0 has a preimage in N
parallel to C0. Consider now the projection of N to a plane P orthogonal to the preimage
of C0 (and to the other component, as well). Note that this plane will be Euclidean with a
single cone point. Let this projection be denoted η : N → P . Recall that the complement
of the domain of the exponential map consists of a number of generalized half-planes.
Denote by S the subset of P consisting of the projected images of the generating segments
of these generalized half-planes. S consists of line segments (corresponding to portions of
the cone locus not parallel to C0) and isolated points (corresponding to components of the
cone locus parallel to C0) and is a subset of the set consisting of the edges and centers of
the hexagons in the tesselation of P by equilateral hexagons and triangles (there is also
one equilateral 2n-gon, where 2πn/3 is the cone angle at C0 – see Figure 3.1). Let S0

denote the union of the isolated points of S. Then, the other components of the singular
locus of M̂ which cobound a simple strip with C0 are the preimages under η of the points
of S0 such that the interior of the geodesic segment from ψ(C0) is disjoint from S. Two
simple strips with a common boundary component can be combined into a geodesic strip
precisely when the projection at this common component of the cone locus consists of
geodesic segments which meet with angles ≥ π on each side (measured in the normal cone
2-manifold).

It is convenient at this point to introduce the notion of an elemental strip. An elemental
strip is an infinite flat totally geodesic strip in M̂ cobounded by two adjacent components
of the preimage in M̂ of the figure eight knot (that is, the lifts to M̂ of the singular locus
of M). By adjacent, we mean that the distance between them is the minimum distance
possible for parallel components of the preimage of the figure eight knot. An elemental
strip corresponds to a segment from the center of a hexagon to the center of an adjacent
hexagon in Fig. 3.1.

Next, we observe that we may construct a (disconnected) 2-dimensional Euclidean cone
manifold with boundary that encapsulates all the information necessary to decide whether
or not there exists a geodesic strip cobounded by any two given components of the cone
locus of M̂ . We will refer to this as the associated 2-manifold of M and construct it as
follows: For each component C of the preimage in M̂ of the figure-eight knot, take an
equilateral polygon with 2n sides, where 2πn/3 is the cone angle at C (may be 2π). This
equilateral polygon will be metrically a Euclidean cone manifold with (at most) a single
cone point with cone angle 2πn/3 at the center, and corresponds to the central polygon
of the normal cone manifold in the domain of the exponential map, based at some point
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Note: only the left picture is conformally correct
Figure 3.1

on C. We then glue together (at their vertices, not their edges) polygons corresponding
to components of the figure eight knot which cobound elemental strips, in a fashion which
respects the obvious ordering of the elemental strips around a component of the cone locus
and respects the orientation of each polygon by the normal direction it inherits by lifting
an orientation of the figure eight knot. At this stage, we have the “hexagons” in our
tesselation taken care of, and just need to add the triangles (which are really triangles
since there is no cone point in the interior of a triangle in Fig. 3.1). We do this by gluing
in an equilateral triangle on “both sides” of any vertex along which two polygons are glued.
That is, at any vertex where two polygons are glued, the ordering of the elemental strips
and the orientation of the polygons fixes two pairs of edges (one edge from each polygon
in each pair) which are on the same side of the vertex, and we will glue in a triangle at
each such pair of edges. We will identify any two such triangles that share a common edge.
This construction produces a Euclidean cone 2-manifold with boundary. The boundary
consists of edges of the polygons, neither of whose endpoints correspond to an elemental
strip, together with the free edges of any triangles which are incident on only two polygons.

By construction and our remarks above, two components of the cone locus of M̂ cobound
a geodesic strip if and only if there is a geodesic in the associated 2-manifold joining the
centers of their corresponding polygons. In fact, as the following lemma will show, they
cobound a geodesic strip if and only if their polygons are in the same component of the
associated 2-manifold.

Lemma 3.2. The associated 2-manifold of M , a branched cover over the figure eight knot
with all branching indices > 3 is convex and each component is simply-connected.

Proof. Convexity first: Since the boundary of the associated 2-manifold is piecewise geo-
desic, it suffices to verify that, when measured from “inside” the associated 2-manifold, all
corners have angle ≤ π. Since the boundary consists of two distinct kinds of edges (free
edges of polygons and free edges of triangles), we have three kinds of corners to consider.
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For the moment, let us assume that polygons share a vertex only when there is an elemen-
tal strip between them (by construction, if there is an elemental strip then they share a
vertex, but we have not shown the converse yet).

Polygonal-polygonal corners: any two polygonal boundary edges that meet at a corner
must be consecutive edges of the same polygon, since, if they belonged to different polygons,
two triangles would have been glued in at that vertex and neither of the edges in question
would have been on the boundary. Consecutive edges of the same polygon meet at an
angle of 2π/3 when measured from the center of that polygon.

Polygonal-triangular corners: inspection of Fig. 3.1 shows that these corners all meet
at an angle of π.

Triangular-triangular corners: this is the only nontrivial case. It suffices to show that if
a polygon, P0, is joined to two other polygons, P1 and P2, at vertices which are separated
by only one vertex, then P0 is also joined to a polygon P3 at the intervening vertex. This
will show that there are no triangular-triangular corners, since any such corner would
necessarily involve two different triangles (by construction, a triangle has at most one free
edge). So, suppose that P0, P1, and P2 are configured in this way and there is no elemental
strip from the center of P0 through the vertex between the two vertices where P0 is joined to
the other two polygons. Consider the exponential map based at a point on the component
of the singular locus of M̂ corresponding to the center of P0. The domain of this map
contains an infinite prism isometric to P0×R. The fact that there is no elemental strip in
the direction of the vertex in question (call it v3), implies that there is some component of
the cone locus of M̂ which intersects the corresponding line v3 ×R. Now, a component of
cone locus remains “visible” (in the domain of the exponential map) at least until it passes
“behind” another component of the cone locus. In particular, any components of the cone
locus that intersect v3×R traverse one or the other (depending on their slope) of the faces
of P0 × R that is incident on v3 × R. So, one of the adjacent vi × R intersects this same
component of cone locus. But there are elemental strips containing each of these lines, so
they can’t intersect the cone locus at all. Thus, there must be an elemental strip through
v3 × R as well.

Now, this argument also shows that no two vertices of polygons are “accidentally”
identified. That is, if any two vertices of polygons are identified because they are identified
to the same vertex of a triangle, then they are also identified because there is an elemental
strip through that vertex. This is because the nonexistence of an elemental strip implies
the existence of some cone locus which would be positioned so as to necessarily rule out the
existence of one or the other of the identifications at the other two vertices of the triangle
(which are both necessary to force such an “accidental” identification).

With convexity proven, it is an easy matter to show simple connectivity, since we need
only show that there are no geodesic loops in the 2-manifold. But this is clear, since a
geodesic loop in the 2-manifold would imply the existence of a geodesic segment in M̂
whose endpoints are on the same component of the cone locus, but its interior is disjoint
from that component of the cone locus. This would imply, in a suitably tight smoothing of
M̂ , the existence of two distinct geodesic segments with the same endpoints, contradicting
the Cartan-Hadamard theorem. �

The connection between tori in M and geodesics in the associated 2-manifold is as
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follows: to each polygon of the associated 2-manifold there corresponds a component of
the singular locus of M̂ . Each component of the singular locus of M̂ covers a component
of the singular locus of M . Label the polygons of the associated 2-manifold with numbers
from 1 to k, where k is the number of components of the singular locus of M , using
this correspondence. Then an injectively immersed torus in M corresponds to an infinite
geodesic in the associated 2-manifold of M which “repeats” in the sense that the pattern
of labels of the polygons which are intersected by the geodesic repeats.

It should be noted here that most totally geodesic tori can be homotoped to one of their
canonical forms (the tori containing components of the cone locus) simply by parallel trans-
lating the corresponding geodesics in the associated 2-manifold. This is not universally
true, however: it is possible to encounter a geodesic boundary component of the 2-manifold
before encountering any cone points in the 2-manifold. In such a case, the boundary ge-
odesic corresponds to a geodesic in another component of the 2-manifold that does pass
through a cone point. If we wanted to be able to realize any homotopies of totally geodesic
tori inside the 2-manifold, we would need to identify these boundary components to the
corresponding geodesic in the other component of the 2-manifold, creating a 2-complex.
We will not take this approach, but we will have more to say about this subject near the
end of Section 5.

Thus, we have succeeded in reducing questions about tori in 3-manifolds to questions
about geodesics in 2-manifolds. Our next task is to answer the 2-dimensional questions
from the monodromy of M .

Section 4 - the Elemental Strip Condition.
In this section, we will derive a condition for determining, from the monodromy of M ,

whether or not an elemental strip exists at any point in M̂ .
Consider first E3 in its tiling by fundamental domains of the orbifold structure on the

figure eight knot. It is clear that a plane containing an elemental strip must either contain
face A (of some fundamental domain) or bisect the angle between face A and face A′. So,
let us consider all the ways such a plane can intersect other fundamental domains of the
tiling. Note that an elemental strip only intersects the cone locus on its boundary, so if an
elemental strip exists, its intersection pattern with these fundamental domains is in fact
exactly like the intersections in E3 where there is no cone locus.

There are eight combinatorially distinct ways that a plane containing face A or bisecting
faces A and A′ can intersect other fundamental domains. These are pictured in Fig. 4.1.

To see that these are, in fact, all of them, we observe that these regions glue together
as described in Fig. 4.2 to give a four-punctured annulus in S3−K. Thus, we may extend
our plane in any direction without leaving this set of intersection patterns (note, however,
that we have suppressed one of each pair of patterns which are faces of the fundamental
domain, e.g., face A is listed, but not face A′).

Perhaps a few words of explanation are in order about Fig. 4.2: this graph is the dual
graph to the tiling of the annulus by the regions given in Fig. 4.1. The reason why this
is the object of interest is that the monodromy can be used, together with this diagram,
to calculate which fundamental domains in M contain each piece of the tiling of a given
strip, and thus what the cone angles are at each intersection with the singular locus.

Since each of the eight planes occurs exactly once in our four-punctured annulus, we
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1 2 3 4

5 6 7 8

Figure 4.1

bold lines denote non-transverse intersection with the singular locus
* denotes a transverse intersection with the singular locus

dashed lines indicate homotopic reference paths
Figure 4.2

may take any one of them as our reference point in stating our conditions for existence of
elemental strips. We will consider plane 1 (see Fig. 4.1) as the reference point. Let us fix
as our basepoint in S3−K a point x0 on plane 1 which is not in any of the other 7 planes.
Then, if we denote by x̂0, x̂1, . . . , x̂d−1 the d points of M in the pre-image of x0, we can
consider the problem of whether or not our annulus in S3 can be lifted to an annulus in
M at any of these d points. This is equivalent to deciding which elemental strips exist in
M̂ .

Let us say that a lift of plane 1 at x̂k is an acceptable lift if the interior of the entire par-
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allelogram region depicted in Fig. 4.2 can be lifted at that basepoint without intersecting
the cone locus (in other words, the four punctures all correspond to the locus of threefold
branching). By examining Fig. 4.2, we see that there is an acceptable lift at x̂k if and only
if (recall that ϕ is the monodromy of M and that we are writing permutation actions on
the right)

k ∈ F (M) = fix(ϕ(d3))ϕ(a−1cab−1) ∩ fix(ϕ(d3))ϕ(b−1)
∩ fix(ϕ(a3))ϕ(b−1) ∩ fix(ϕ(a3))ϕ(cab−1)

Now, we consider the problem of whether or not a sequence of such acceptable lifts will
actually close up into an annulus. This will happen for a lift at xk if and only if

k ∈ G(M) = {j | orbit( 〈ϕ(ba−1c−1ad)〉, j ) ⊂ F (M)}

Furthermore, the set of “other boundary components” (taking plane 5 as the reference
point for the other side) of such annuli is G(M)ϕ(bd−1).

We will summarize the results of this section in a lemma, for which we need the following

Definition. a potential elemental strip is an ordered pair (C, V ) where C is a component
of the singular locus of M̂ , and V is a normal vector to C in one of the 2k possible directions
for an elemental strip (where 2kπ/3 is the cone angle at C). Each potential elemental strip
is either a primary or secondary potential elemental strip depending on whether the vector
V lies on or bisects (respectively) the A,A′ faces in the tesselation of M̂ by fundamental
domains for S3 − K. Note that an elemental strip always has one side corresponding to
a primary potential elemental strip and the other corresponding to a secondary elemental
strip and that each potential elemental strip can be labelled with a subset of {0, 1, . . . , d−1}
by taking the labels of the set of “plane 1” (primary) or “plane 5” (secondary) planar pieces
in M which are covered by the potential elemental strip.

With this definition, we can state the following

Lemma 4.1. If M̂ is the universal cover of M , a branched cover of S3, branched over
the figure eight knot, with all branching indices ≥ 3, then a potential elemental strip in M̂
corresponds to an actual elemental strip if and only if its label set is a subset of G(M) in
the case of primary potential elemental strips or G(M)ϕ(bd−1) in the case of secondary
elemental strips.

Section 5 - Flat Graphs.
So, we now have a condition, in terms of the monodromy, for deciding on the existence of

an elemental strip. Let us now consider the problem of finding the “repeating” geodesics in
the associated 2-manifold that correspond to tori in M . Our plan of attack on this problem
will again be a dimensional reduction. We will define a graph and a map taking paths
in the associated 2-manifold to paths in the graph such that geodesics in the associated
2-manifold are taken into an algorithmically recognizable class of paths in the graph.
Furthermore, “repeatable” geodesic segments (i.e. segments that are the basic period for
a repeating geodesic) are readily recognizable in the graph and there is a universal upper
bound to the length of a nonrepeatable geodesic image segment in the graph. This enables
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us to obtain a terminating algorithm for finding any tori that are present by enumerating
all paths in the graph of length less than this upper bound and checking whether there
are any that are repeatable, thus corresponding to repeating geodesics in the associated
2-manifold and to tori in M . In fact, we can do better than this in terms of efficiency: the
class of paths that are possible images of geodesics in the associated 2-manifold is not only
algorithmically recognizable, it is algorithmically enumerable, so we can limit our search
significantly by simply enumerating all of the paths of this class which have length less
than the upper bound.

We will begin by making the following

Definition. a flat graph is a graph whose vertices are oriented polygons and whose edges
are line segments joining two polygonal faces (see Fig. 5.1) such that each face of a vertex
is incident on at most one edge.

Figure 5.1

Note that a flat graph is much like a “fat graph” except that there are “stumps” in a
flat graph, that is, unattached edges of the polygonal vertices. It will be clear momentarily
why we need to know not only in what order the edges occur around a vertex (which would
be encoded in a fat graph) but also how many “stumps” occur between edges.

Now, in addition to the 2-manifold associated to M (and closely related to it), we will
construct an associated flat graph, which will be compact, and which will also, as we will
see, encode all of the information necessary to find tori in M or to determine atoroidality.

To construct the associated flat graph of M , take one polygon with 2k sides for each k-
cycle in ϕ(a). If this cycle is (a1 a2 . . . ak) then label the sides of this 2k-gon −a1,+a1,−a2,
+a2, . . . ,−ak,+ak in clockwise order around the polygon. Take the disjoint union of these
polygons over all cycles in ϕ(a). Then, for every edge labelled +i where i ∈ G(M) (see
section 4), join +i to −iϕ(bd−1).

Now, there appears to be an obvious mapping from paths in the associated 2-manifold
to paths in the flat graph (although some care must be taken in making this well-defined



INJECTIVELY IMMERSED TORI IN BRANCHED COVERS 17

for nongeneric paths that intersect some polygon only in one of its vertices – we will make
the convention that we perturb such paths slightly to the right before mapping it to the
flat graph). That is almost true, but not quite! In fact, it is a one-to-many mapping,
since there may be more than one cycle in ϕ(a) for each component of the singular locus
in M̂ . This is because of the possibility of “longitudinal wrapping” in which a component
of the singular locus of M nontrivially covers the figure eight knot in S3. However, all of
the properties in which we are interested are equivalently true for any of these mappings,
so if we allow this “mapping” to be a multi-valued function, it will in fact cause us no
difficulties. Let us denote this mapping by η. Denote by G the set of geodesic segments
in the 2-manifold with endpoints at centers of the polygons in the 2-manifold. We would
like to be able to recognize η(G) algorithmically. We will not, however, do exactly that.
Instead, we will describe an algorithmically recognizable class, F, of paths in the flat graph
which contains η(G). Furthermore, we will show that paths in F give rise to paths in G.

To describe F, we first observe that, in a flat graph, a path may be described completely
by specifying an initial (oriented) edge and a sequence of “turns” where each turn specifies
how many faces apart the entering and exiting edges are at each intermediate vertex. Each
turn may be measured in either the positive (clockwise with respect to the orientation of the
vertices) or negative direction (see Fig. 5.2). If the particular vertex under consideration
has k faces, then +j is the same turn as −(k − j).

Figure 5.2

To describe the class of paths F, we will describe a finite-state automaton, which, when
presented with paths in the form just described (initial edge, followed by a sequence of
turns) “accepts” some paths and “rejects” others. The class of paths accepted by this
finite-state automaton will be defined to be F.

The finite-state automaton has 6r states where r is the number of edges in the flat graph.
Each state consists of an ordered pair (e,m) where e is an oriented edge in the flat graph
and m ∈ {−1, 0,+1}. If the initial oriented edge of the path is e0, then the initial state
of the automaton is (e0, 0). Thereafter, the following rules determine the state transitions
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from state (ek,mk) to (ek+1,mk+1) under a turn tk where tk is an integer modulo nk, the
number of edges at the terminal vertex of ek:

(1) ek+1 is the obvious edge obtained by making the required turn. If this edge does
not exist in the graph, then REJECT.

(2) if tk = 0,±1, then REJECT.
(3) if mk = 0 and tk = ±2, then mk+1 = ±1.
(4) if mk = ±1 and tk = ±2 (same sign), then REJECT.
(5) if mk = ±1 and tk = ∓2, then mk+1 = ∓1.
(6) if mk = ±1 and tk = ±3 (same sign), then mk+1 = ±1.
(7) if none of (2) - (6) apply, then mk+1 = 0.

If the end of the path is reached without a rejection, then the path has been accepted
by the finite-state automaton and is in F.

Hereafter, we will, by a slight abuse of terminology, also refer to the second coordinate
of the state pair as the state of a path at a vertex. It will be clear from the context whether
we mean for “state” to include both coordinates or just the second.

Lemma 5.1. η(G) ⊂ F

Proof. First, note that η of any path in the associated 2-manifold will never be rejected
on account of rule 1 above – that rule is just for rejecting turn sequences that don’t even
correspond to paths, much less geodesics. Now, a geodesic segment in G has the following
structure: it consists of a number of Euclidean geodesic segments between cone points
(that is, segments that have a neighborhood in which there are no cone points except for
the cone points at the ends) which meet in such a way that the angle on each side is ≥ π.
Now, each Euclidean geodesic segment has the property that η maps it to a path in the flat
graph that is identical to the path of a line segment in the “no cone point” tiling on the left
in Fig. 5.1. These segments are all accepted by our finite-state automaton since each turn
in these segments is either a ±3 (whichever it takes to remain on the proper side of the
cone point centers of the polygons) or a ±2, where the +2 and −2 turns alternate (possibly
with some intervening ±3 turns). The state variable thus has the geometric significance
of remembering the sense of the last change of direction.

Now, when our path goes through a cone point, the last edge and the state determine
(together) a π/3 sector in which the initial point of this Euclidean segment might lie (to
an observer at the terminal cone point). If this cone point has cone angle 2kπ/3, then
the next polygon along a geodesic can be any one of 2k − 4 polygons. All of these but
2 are completely unconstrained, that is, any Euclidean segment that starts out into that
polygon will necessarily make an angle of π or more on each side of the cone point. This
corresponds to “state 0.” The other two polygons are such that only Euclidean segments
that lie to one side or the other of their center correspond to geodesic continuations of
the previous Euclidean segment, and these are precisely what will be enforced by the
finite-state automaton. See Figure 5.3 for an example of this where k = 4. In this figure,
the shaded areas are the sectors in which the previous cone points must lie, which are
determined by the state: state +1 has the shaded sector to the left of the edge, and state
-1 has the shaded sector to the right of the edge. In state 0, all previous cone points
are accessible only by first retracing the last edge (they are all “hidden” behind the most
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Figure 5.3

recent cone point). In state 0, there are 2k − 3 possible continuations of the path which
lie in F.

Thus, we see that any path in G is mapped by η into F. Further, it does not matter
which “value” of η we use in this argument (since the graph is defined in a manner which is
equivariant with respect to longitudinal translation), and we get our first confirmation of
the assertion made earlier that the fact that η is multi-valued will cause us no problems. �

It is tempting to hope that our finite-state automaton is a “geodesic recognition” au-
tomaton, but this is not the case: there are many paths in F that are not the images under
η of any geodesic in G. To see this, consider Figure 5.4

Figure 5.4

The heavy path in Fig. 5.4 is in η(G). However, the light paths also map under η to F.
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This is a situation that happens quite generally, as the following lemma suggests:

Lemma 5.2. In the flat graph associated to a branched cover over the figure eight knot,
if S1 and S2 are any sequences of turns, then, with any initial edge whatsoever,

〈S1, j,−2, k, S2〉 ∈ F

if and only if
〈S1, j + 1,+2, k − 1, S2〉 ∈ F

Proof. The two paths are situated as pictured in Figure 5.5, where the “upper” path is
〈S1, j,−2, k, S2〉.

Figure 5.5

Now, it is clear from a routine case-by-case verification, based on the states before and
after the j (resp. j + 1) turn (the state after the ±2 is always ±1) that the only possible
problem would be that one path or the other would simply fail to exist in the flat graph,
i.e., only rule 1 is a problem. And, indeed, in a general flat graph, the existence of one
of the two paths does not imply the existence of the other. However, the flat graphs that
arise from our construction from a branched cover are special; the proof of Lemma 3.2
shows us that two special conditions are true in these flat graphs:

(1) At a vertex V0, if e1 and e2 are two adjacent edges with other vertices V1 and V2

respectively, then V1 and V2 are joined by an edge e3 which is mutually adjacent
to e1 and e2 at V1 and V2, respectively (this is equivalent to the observation that
no two polygons are “accidentally” identified in the 2-manifold).

(2) At a vertex V0, if e1 and e2 are two edges with only one possible intervening
edge, then there is an actual edge e3 between e1 and e2 (this is equivalent to the
observation that there are no triangular-triangular corners on the boundary of the
2-manifold).
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Thus, the existence of the edges of the upper path implies the existence of the edge that
bisects the parallelogram (condition 2) which then implies the existence of both edges of
the lower path (condition 1 used twice). Similarly, the existence of the edges of the lower
path implies the existence of the edges of the upper path. �

This lemma tells us that any path in F which contains a ±2 turn gives rise to a path
in F which is not in η(G) (since the two paths have the same endpoints and thus at most
one of them can be in η(G)). However, (as the following lemma will show) it is true
that repeatable paths in F give rise to repeatable geodesic segments in G. Our method
of proving this will be to alter an arbitrary repeatable path in F to a path in η(G) by
using moves of the type described in Lemma 5.2, then to show that this path “lifts” to
a repeatable geodesic segment in the 2-manifold. Let us first formalize the definition of
“repeatable”:

Definition. a subpath of a path in F is said to be repeatable if its initial and terminal
oriented edges are the same and are traversed in the same state. A geodesic segment g in
G is said to be repeatable if g passes through a cone point, η(g) is closed and there is a
geodesic segment h in G such that η(h) = η(g)η(g).

The reason for taking subpaths in F is that all paths begin in state 0, whereas this is not
true for subpaths of these paths. This enables us to have more control over where a subpath
is allowed to go (e.g., any lift of a subpath that starts in state +1 must stay “to the right”
of its initial edge) in a technically convenient way. The cone point condition for repeatable
segments in G only rules out the geodesics that do not correspond to “canonical” tori in
the sense of Lemma 3.1.

Lemma 5.3. There exists a repeatable subpath of a path in F if and only if there exists a
repeatable geodesic segment in G.

Proof. The “if” portion of this lemma is clear from Lemma 5.1 together with the following
observation: if g ∈ G is repeatable, then there is also a geodesic segment k ∈ G such that
η(k) = η(g)η(g)η(g). Then, the subpath of η(k) consisting of the middle η(g) together
with the initial edge of the last η(g) is a repeatable subpath in F.

For the “only if” part, we will first need a number of technical definitions and observa-
tions.

First, note that any path in F has the property that it is also in F when traversed
backwards (the automaton essentially only rules out paths that make 0 or ±1 turns or
consecutive ±2 turns of the same sign without an intervening turn larger than ±3 – in this
form it is clearly symmetric). Let us denote this path by p̄.

Now, given a path p in F, we will define its inflections to be the vertices at which either
p or p̄ re-enters state 0. A subpath between two inflections will be called an elementary
subpath. Note that an elementary subpath consists entirely of ±2 and ±3 turns. It will be
technically convenient to always include the endpoints of a path (or subpath) in the set of
inflections.

Given an elementary subpath q of a path p in F, we can define a turn sequence t(q) as
follows: in the flat tesselation (no cone points) given in Fig. 5.1, trace out a path given by
the turn sequence of q (using only ±2,±3 turns), then straighten it to a geodesic g. t(q)
is the turn sequence of this geodesic g (again using only ±2,±3 turns). Note that it is
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possible that the initial edge of g is different from the initial edge of the “lift” of q to the
flat tesselation. Because of this, we will prepend to this turn sequence a turn describing
the difference between these two edges (this turn will be a 0 or ±1 turn but will really be
a way of specifying the initial edge of the geodesic turn sequence). Note that t(q) need
not be in F simply because it need not correspond to a path in the 2-manifold – it is
simply an idealized geodesic turn sequence. We make here the observation (which we will
need subsequently) that if we consider both paths to start in the only nonzero state which
will allow the first ±2 turn to take place, then each turn sequence (q and t(q)) traverses
the same number of edges in each nonzero state (this is true of any two paths in the flat
tesselation which follow the rules of F and have the same endpoints).

Similarly, given an elementary subpath q, we can define its geodesic agreement number
n(q) to be the sum of the lengths of the maximal initial and terminal subpaths of q which
agree with t(q) (or its reversal). In the case where q agrees completely with t(q), however,
we will set n(q) = `(q) where `(q) is the length of q (note that the definition without this
proviso would have been 2`(q)). Note that for the purposes of determining “agreement”
we will consider the ±3 turns in t(q) to have whichever signs maximize the agreement.

Now, define the complexity of a subpath q of a path p in F to be c(q) = (s, t) where
s = the number of non-inflection vertices of q and t = the sum of `(q′) − n(q′) over all
elementary subpaths q′ of q. We will order complexities lexicographically.

Now, let q be a repeatable subpath of a path p ∈ F. Suppose that q 6= η(g) for g any
geodesic segment in G Then, the second coordinate of c(q) is nonzero. We will show that
we can alter the subpath q by a sequence of moves of the type described in Lemma 5.2 to
reduce c(q). Thus, there is some elementary subpath q′ of q and a vertex v0 of q′ where q′

departs from t(q′). There are four distinct cases to consider – let t1 be the turn in q′ at v0

and t2 be the turn in t(q′) at v0. Then, the cases are:
(1) t1 = ±3, t2 = −2
(2) t1 = ±3, t2 = +2
(3) t1 = −2, t2 = ±3
(4) t1 = +2, t2 = ±3

We will do case (1) in detail; the other cases are completely analogous. Since, as observed
earlier, q′ and t(q′) traverse the same number of edges in each state (and we must be in
state +1 for the t(q′) turn to be legal) that there must be some vertex v1 in q′, later than
v0, where q′ makes a −2 turn. All intervening turns between v0 and v1 must be ±3 since
q′ is an elementary subpath, so, before and at v1 we have the turn sequence ±3,−2 to
which we may apply the move described in Lemma 5.2 to obtain either −2,+2 or +4,+2.
In the former case, we can repeat the move, until we have either moved the −2 turn all
the way back to v0 or introduced an additional inflection into q. In the first case, we have
increased the geodesic agreement number of the subpath by at least 1 (note that we could
not have decreased the geodesic agreement of the other end of the subpath – this is easily
seen by tracing out both turn sequences in the flat tesselation and is left to the reader).
In the second case, the introduction of an additional inflection also lowers the complexity
(although in this case the total geodesic agreement will often be reduced – it is essential
that the coordinates of the complexity not be reversed from the order in which we have
defined it). Note that our new subpath is repeatable if and only if the old subpath was
(although we may have to alter the path in whice it is imbedded also – any moves that
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altered the initial or terminal edges or states could also have been done in the immediate
vicinity of the opposite end to maintain repeatability).

Thus, we have a new repeatable subpath q̂ which is η(g) for some geodesic segment
g between two singular points in the 2-manifold. Now, suppose that q̂ contains a real
inflection (i.e., not just an endpoint). Then, by taking a circular shift of q̂ (possible because
it is repeatable) to place the endpoints of q̂ on this inflection, and then repeating the
complexity reduction process just described, we see that ĝ ∈ η(G) and that the incidence
angles when we juxtapose two lifts of ĝ are both ≥ π (recall the definition of an inflection
and examine Fig. 5.3). Thus, in this case we have a repeatable geodesic segment in G.

Now, when q̂ contains no real inflections, the geodesic g only intersects cone points
incidentally, that is, in such a way that one of the two angles of incidence is π. For such
geodesics the angles between the geodesic and the incoming (resp. outgoing) edge at any
singular point it encounters are constant. Thus, the positioning within the π/3-width
described in the proof of Lemma 5.1 is fixed for these geodesics. Let us now consider the
situation when two lifts of q̂ are juxtaposed: clearly the incoming and outgoing angles
are such that the incidence angles are equal to 0 modulo π/3, and then the repeatability
condition on q̂ implies that one angle or the other is equal to π (since they are always
forced to be > 2π/3 by the conditions on F and if they were both greater than π then that
vertex would be a real inflection). Thus, we are done, if this geodesic passes through a
cone point. If not, we may translate this geodesic in a normal direction until we encounter
a cone point or the boundary of the 2-manifold. If we encounter a cone point, then we’re
done. If we encounter the boundary of the 2-manifold, then by convexity of the 2-manifold,
we must have a geodesic in the boundary of the 2-manifold. This corresponds to a torus in
M that is parallel to two distinct parallel families of singular locus (one family corresponds
to the component in which we have been translating our geodesic, the other corresponds
to the family of parallel components of cone locus which prevent the 2-manifold from
being extended past this component of boundary). This torus, like all the others, has a
canonical form in which it contains a component of the singular locus, but its canonical
form corresponds to a geodesic in another component of the 2-manifold! (see Fig. 5.6 –
the two components of the 2-manifold are depicted as locally embedded in M̂ normal to
the singular locus and tiled by hexagons. The plane corresponding to the geodesic g may
be homotoped to the plane corresponding to the geodesic h by the indicated translation).
This is the only case in which a torus cannot be homotoped to its canonical form by using
moves corresponding to the moves in Lemma 5.2. If we wanted to eliminate this source of
ambiguity, we would need to replace the 2-manifold by a 2-complex by joining the geodesic
boundary components to the geodesics in the other component to which they correspond
(this seems an unnecessary complication! we will discuss later several possible ways for
resolving this ambiguity and finding each homotopy class of tori exactly once). However,
none of this causes us any difficulties in constructing a repeatable geodesic segment in G
in the case where q̂ contains no real inflections.

Thus, whether q̂ contains real inflections or not, we have a repeatable geodesic segment
in G. �

At this point it is clear what our algorithm must do: it must find all the repeatable
subpaths of paths in F. Note that to find such subpaths, it suffices to examine paths in F
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Figure 5.6

of length less than 6k + 1 where k is the number of edges in the flat graph, since that is
the number of distinct states of the automaton. If our automaton ever repeats a state, it
has found an injectively immersed torus in M . In particular, we have an a priori upper
bound on the number of paths in F that we need to consider, which is a crucial part of
Theorem 6.1, which we have now proven and will proceed to discuss.

Section 6 - Description of the Algorithm.
At this point, we have proven

Theorem 6.1. Let M be a branched cover of S3, branched over the figure eight knot,
such that all branching indices of M are ≥ 3. Then, there exists an effective algorithm for
deciding whether or not M admits any π1-injectively immersed tori, and for constructing
any that exist.

A few words of summary are in order here to describe precisely how the algorithm
is implemented. The algorithm is presented with the branched cover in the form of a
monodromy representations from π1(S3 −K)→ Sd (specifically, two permutations corre-
sponding to the two fundamental group generators a and c in the presentation derived in
Fig. 2.3). From these two permutations, the set G(M) is calculated using the elemental
strip condition derived in section 4. The flat graph is then constructed from G(M) and
the monodromy and the path length bound is calculated. Then, the paths in F of length
less than the bound are enumerated and the repeatable subpaths are listed. Each one of
these corresponds to an injectively immersed torus in M and all such tori correspond to
some repeatable subpath (if we allow these “short” subpaths to be combined in the obvious
way into “long” repeatable subpaths which exceed the path length bound). If there are no
repeatable subpaths in F, then M is atoroidal.

It is of course of interest to decide which of these tori are actually embedded (although
this is of somewhat reduced importance in light of the results of Gabai and Casson men-
tioned in section 0). It is known that a smooth minimal torus homotopic to an embedded
torus is either embedded or double covers an embedded one-sided surface [FHS], so that
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the “embeddedness” of a given homotopy class of tori can be checked from its minimal
representative. We will show an example of this in section 7. Note, however, that we must
be allowed to adjust our totally geodesic maps in the vicinity of the cone locus (essen-
tially we just take a smoothing and use the lemmas of section 3) since these tori are only
piecewise smooth. We remark that whether or not a given repeatable path corresponds to
an embedded torus is also algorithmically decidable - one first decomposes the torus into
pieces of the form detailed in Fig. 4.1, then checks to see that any that intersect do so
only along their edges, and finally that these edges may be “pulled apart” by checking the
types of turns involved at an edge.

The algorithm as we have described it so far is not perhaps as sharp as one might
like, since the correspondence between tori and repeatable subpaths is many-to-many.
However, the ambiguities are readily resolvable in the sense that the algorithm may be
“post-processed” to obtain a unique torus in each homotopy class. We may do this by
declaring two repeatable subpaths to be equivalent if they differ by a “Lemma 5.2 move”,
a circular shift, the action of ϕ(ba−1c−1ad) or a translation (where this includes the jump
between components illustrated in Fig. 5.6). Then, each homotopy class of tori corresponds
to an equivalence class of repeatable subpaths under this equivalence relation.

It should be mentioned that in [Jo2], another algorithm was described for finding these
tori when they exist, but that algorithm did not terminate when the branched cover was
atoroidal. The present algorithm not only terminates for any branched cover, but is much
more efficient than the other algorithm in any event – this algorithm can frequently be
applied “by hand” as we will see in the next section, whereas the other algorithm was
really only suitable for machines and gave no real insight as to the overall structure of M
in the way that the associated 2-manifold and flat graph do.

Section 7 - Examples.
We will conclude with two examples of covers to which this method is applicable, taken

from the list (exhaustive up to degree ten) in [He]. Hempel’s presentation of the figure
eight knot group, 〈µ, x, y : µxµ−1 = xy−1, µyµ−1 = y2x−1 〉, is quite similar to the one
obtained in Fig. 2.3, the isomorphism being given by

a 7→ µ

b 7→ xµx−1

c 7→ x

d 7→ xµ−1

Our two examples are numbers 43 and 37 in [He] which have branching indices (3,3,4) and
(3,7) respectively (call them M1 and M2). The monodromy homomorphisms are as follows
(the group is generated by x and µ):

ϕ1 : x 7→ (0 5 2 4 9 7)(1)(3)(6 8) µ 7→ (0 2 1)(3 4 7)(5 6 9 8)
ϕ2 : x 7→ (0 3 5 6)(1)(2 4 8 7)(9) µ 7→ (0 2 1)(3 7 5 8 4 9 6)

Using our criteria, we compute that M1 has an injectively immersed torus, while M2 is
atoroidal. Doing these examples explicitly will help clarify the torus-finding algorithm.
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First, we must find determine which elemental strips exist. For the first example, we
compute that F (M1) = {6, 8}, so that acceptable lifts of the parallelogram in Fig. 4.2
exist at x̂6 and x̂8. Now, ϕ(ba−1c−1ad) = (0 1 2)(3 7 4)(5 9)(6 8) and so G(M1) = F (M1).
Therefore, our graph will have two edges, with heads marked 6 and 8 and tails marked
6ϕ(bd−1) = 5 and 8ϕ(bd−1) = 9. Examining ϕ(a) tells us how to label the polygons
(vertices) and the resulting flat graph in given in Fig. 7.1. Traversing either edge repeatedly
in state 0 gives a repeating geodesic and both of these correspond to the same torus (since
ϕ(bd−1) interchanges these two edges). Furthermore, these repeating geodesics may be
pushed off the cone locus to be disjoint from each other as described in section 6, and thus
the self-intersection along the cone locus is not essential.

Figure 7.1

In the second example, atoroidality is clear, since F (M2) = ∅, so the graph has no edges
(and hence no closed geodesics!).

By doing a bit more work with Fig. 4.2, one can show that M1 is a Haken manifold – the
torus found consists of two pieces of each type in Fig. 4.1, and they occur in the following
fundamental domains: domain 0 contains pieces 2, 3, and 6; domain 1 contains pieces 4 and
8; domain 2 contains piece 7; domain 3 contains pieces 4 and 8; domain 4 contains pieces
2, 3, and 6; domain 5 contains piece 5; domain 6 contains piece 1; domain 7 contains piece
7; domain 8 contains piece 1; domain 9 contains piece 9. In particular, no domain contains
intersecting pieces (except for intersections along the cone locus which we have observed are
inessential), thus the torus is homotopic to an incompressible surface. So, this manifold
is Haken (irreducibility comes from Lemma 1.2). Hempel asserts that its fundamental
group is isomorphic to that of the union of a trefoil complement and the twisted I-bundle
over the Klein bottle glued along their boundary, thus (since Haken manifolds of the same
homotopy type are homeomorphic [Wa]) this manifold is homeomorphic to the union of
two Seifert-fibered spaces glued along an incompressible torus. In [Jo2], conditions are
derived which predict that if this manifold decomposes into two Seifert-fibered spaces that
they must have E3 geometry and H2 × R geometry and this is indeed the case for these
two.
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The second manifold, M2 is atoroidal and irreducible, and thus is believed (but not
asserted) to be hyperbolic.

Note also that these methods apply to any link in S3 which is the singular set of a
Euclidean orbifold, the only real differences being in the details of the construction of the
associated 2-manifold and flat graph as well as differences in the elemental strip condition.
There are 9 such links [Du] (not counting the figure eight knot) and these will be treated
in a subsequent paper [Jo1]. In some sense, the results obtained for the other links are
stronger than for the figure eight knot since most of the other links have 2-fold branching
rather than 3-fold branching in their orbifold structure (thus, the requirements on the
branching indices are less restrictive).
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