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Abstract. A number of recent results are presented which bear on the question of what geo-

metric information can be gleaned from the representation of a three-manifold as a branched
cover over a fixed universal link. Results about Seifert-fibered manifolds, graph manifolds

and hyperbolic manifolds are discussed.

Section 0 - Introduction.
Closed, orientable three-manifolds admit a variety of universal constructions, that is,

constructions by which all manifolds of that class are obtainable, e.g., Heegaard diagrams,
surgery diagrams, etc. One of the difficulties faced in three-manifold topology is the
decision as to which of the universal constructions is most likely to yield a solution to a
particular problem. In this paper, we present several recent results which come from the
use of universal links to work on the Thurston Geometrization Conjecture.

More specifically, we present a structure theorem for nonpositively curved Euclidean
cone manifolds without vertices, which allows us to deduce which geometries are possible
for the pieces of the torus decomposition of certain branched covers, and, in fact, to
construct the characteristic submanifold for such covers (in this context, “curvature” refers
to a combinatorial condition on the branching indices of a branched cover). We also obtain
results concerning hyperbolic structures on negatively curved hyperbolic cone manifolds.
Cone manifolds are the natural geometric structure to consider in connection with branched
covers, since a cone metric on the base space of a branched covering map may be lifted to
the cover.

We also present the negative result that, at least for some universal links, a geometric
structure on the cover is not always reflected in the branched covering map itself. More
specifically, there exist hyperbolic manifolds, all of whose cone manifold structures arising
from branched covering maps over a fixed universal link (the Borromean rings) have some
positive curvature.

Section 1 - Universal Links.
We begin by defining branched covers as well as fixing the notation we will use subse-

quently
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Definition. a branched covering map is a continuous map of pairs ρ : (M̂, L̂) → (M,L)
where M̂,M are n-manifolds and L̂, L are (n−2)-subcomplexes of M̂,M , respectively, such
that ρ( − 1)(L) = L̂ and ρ is a covering map when restricted to both L̂ and M̂ − L̂. We
say that M̂ is a branched cover of M , branched over L.

For the purposes of this paper, we are interested in the case in which n = 3 and L̂, L are
links. In this case, we may associate to each component L̂0 of L̂ its branching index, which
is the ratio of the degree of ρ, restricted to the boundary of a regular neighborhood of L̂0

to the degree of ρ, restricted to L̂0 itself. Equivalently, this is the degree of ρ restricted
to a disk in the regular neighborhood of L̂0 transverse to L̂0. We also note that the
branched cover is completely determined by the associated covering map, the restriction
of ρ to M̂ − L̂. We will also use the fact that covering maps of degree d over M − L, and
thus branched covering maps over (M,L) are in 1-1 correspondence with conjugacy classes
of transitive representations of π1(M − L) into Sd (that is, representations whose image
acts transitively on the set {0, 1, . . . , d − 1}). This monodromy representation associated
to a branched covering map is a convenient tool for working with a branched cover. In
particular, the branching indices of preimages of a component L0 of L are the cycle lengths
of the monodromy evaluated on a meridian of L0.

Concerning universal links, we make the following formal

Definition. A universal link is a link in S3 with the property that all closed, orientable
3-manifolds are representable as branched covers over that link.

It is, of course, by no means obvious that universal links exist at all, but the following
theorem tells us that they in fact exist in abundance.

Theorem 1.1 [HLM] and [HLM2]. Any hyperbolic 2-bridge link is universal as are the
Borromean rings, the Whitehead link and the knot 946.

In fact, at the present time, no hyperbolic links are known to be not universal. The
only known obstruction to universality is that a universal link cannot be the connected
sum of iterated torus knots or links (see [HLM3]). The problem here is that any branched
covering of such a link either contains an essential 2-sphere or is Seifert-fibered.

Y. Uchida has recently shown (see [U]) that hyperbolicity implies universality for another
class of links called chains (a chain is a (ε, ε, . . . , ε, 2, 2, . . . , 2) pretzel link where ε = ±1).

Section 2 - Cone Manifolds and Branched Covers.

Definition. A Euclidean cone manifold is a metric space obtained as the quotient space
of a disjoint union of a collection of geodesic n-simplices in En by an isometric pairing
of codimension-one faces in such a combinatorial fashion that the underlying topological
space is a manifold. Hyperbolic and spherical cone manifolds are defined similarly.

One may define cone manifolds in more generality than this (see [Ho], for example),
but this definition will suffice for our purposes. Such a space possesses a Riemannian
metric of constant sectional curvature on the union of the top-dimensional cells and the
codimension-1 cells. On each codimension-2 cell, the structure is completely described by
an angle, which is the sum of the dihedral angles around all of the codimension-2 simplicial
faces which are identified to give the cell. The cone locus of a cone manifold is the closure
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of all the codimension-2 cells for which this angle is not 2π (the Riemannian metric may
be extended smoothly over all cells whose angle is 2π). In this paper, we are principally
interested in the case where n = 3 and the cone locus is a link (which must have constant
cone angle on each component). We will refer to such cone manifolds as cone manifolds
without vertices, meaning no vertices in the cone locus graph with valence other than 2.
The structure at points of lower-dimension cells is not quite so easily described, but we
will content ourselves with the observation that some neighborhood of any point in any
cone manifold of dimension n is a metric cone on a spherical cone manifold of dimension
n − 1. Thus, each point in a cone manifold determines a spherical cone metric on Sn−1,
after normalization so that the smooth portions of this sphere have curvature +1. We will
refer to this metric on Sn−1 as the normalized link metric of a point. In the “no vertices”
case, this metric is always either the usual smooth metric on S2 or a cone metric with two
diametrically opposed cone points with equal cone angles.

We should note here that there is a strong connection between cone manifolds and
orbifolds (see [Th]), namely that orbifolds are cone manifolds with all cone angles of the
form 2π/k for some integer k (k is the order of the isotropy of a non-vertex cone point).
Orbifolds are (generally) the quotient of a simply-connected manifold by a properly dis-
continuous, but not necessarily free group action. Note, however, that there need not be
such a group action lurking in the background for cone manifolds in general.

One of the principal reasons we are interested in cone manifold structures in connection
with universal links is that cone metrics may be lifted to branched covers. More partic-
ularly, if (M̂, L̂) is a branched cover over (M,L) and M admits a cone metric in which
the cone locus is contained in L, then we may lift this cone metric to a cone metric on M̂
in which the cone locus is contained in L̂. The cone angles on the components of L̂ are
the cone angles on the corresponding components of L, multiplied by the corresponding
branching indices of the branched covering.

We now have the machinery to make the following

Definition. Let M be a 3-dimensional orbifold with singular set Σ a link in M and let L
be a link containing Σ. Then, a branched cover (M̂, L̂) over (M,L) is said to be sufficiently
branched if all of the branching indices over each component of L are greater than or equal
to the order of the isotropy group of that component of L. Similarly, a branched cover is
said to be totally insufficiently branched if all of the branching indices over each component
of L are less than or equal to the order of the isotropy group of that component.

Note that if we lift the orbifold structure to a sufficiently branched cover, all cone angles
are > 2π and if we lift to a totally insufficiently branched cover, all cone angles are < 2π.

Geodesics in a cone manifold are piecewise geodesics (with respect to the underlying
constant curvature model) which join at points of the cone locus in such a way as to have an
angle of at least π between them. Angles between geodesics at a cone point are measured
by considering the points of intersection between the two geodesics and the spherical link
mentioned earlier. The angle is the distance in the normalized link metric between the
two points of intersection. The upshot of this in the “no vertices” case is that if a geodesic
encounters a component of the cone locus with cone angle < 2π, there is no way to continue
this geodesic and if a geodesic encounters a component of the cone locus with cone angle
> 2π, there are an infinite number of distinct ways to continue that geodesic. In the “no
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vertices” case, there is also an alternate way of measuring the angle between geodesics,
namely by projecting to a totally geodesic disk perpendicular to the component of cone
locus at the intersection and measuring the angle in this 2-dimensional cone manifold. As
an intuition-building exercise, show that these methods do in fact differ and that in the
“no vertices” case, the former method always yields an angle of at most π, so that geodesic
continuation can be recognized by continuation along an angle of exactly π.

As might be conjectured by considering the Gauss-Bonnet theorem, there is a very strong
analogy between cone angle and curvature, with cone angles greater than 2π behaving like
negative curvature and cone angles less than 2π behaving like positive curvature. As an
example of this behavior, consider two parallel geodesics in a Euclidean cone manifold that
pass on either side of a component of cone locus perpendicular to their common (local)
plane. If the cone angle is less than 2π, the geodesics intersect after passing by the cone
geodesic and if the cone angle is greater than 2π, they diverge after passing by the cone
geodesic. This analogy is made precise by the following

Theorem 2.1. Let M be a 3-dimensional cone manifold with no vertices. Then,

(1) if M is spherical and all cone angles are less than 2π, M admits a Riemannian
metric of positive sectional curvature.

(2) if M is Euclidean and all cone angles are less than 2π, M admits a Riemannian
metric of nonnegative sectional curvature.

(3) if M is Euclidean and all cone angles are greater than 2π, M admits a Riemannian
metric of nonpositive sectional curvature.

(4) if M is hyperbolic and all cone angles are greater than 2π, M admits a Riemannian
metric of negative sectional curvature.

Proof. In each case, one constructs explicitly a smooth metric by altering the cone metric
in a tubular neighborhood of the cone locus and verifies the sectional curvature bounds. See
[Jo1] for details. Note that this immediately translates into a statement about sufficiently
branched and totally insufficiently branched covers over various flavors of orbifolds. �

This smoothing technique will be very useful for us in using the machinery of differential
geometry to assist in some of our proofs (although direct cone manifold proofs could
probably be constructed). Gromov and Thurston in [GT] use this technique in higher
dimensions to deduce the existence of negatively curved manifolds which are not hyperbolic.
The theorem is probably true even allowing vertices, but it is not clear how to go about
explicitly constructing a metric for which the curvature bounds can be verified.

We conclude this section by mentioning the work of Aitchison and Rubinstein (see [AR])
on polyhedral metrics (which are essentially Euclidean cone metrics). The focus of their
work is on cone manifolds that do have vertices, but which are built up from pieces of very
restricted shapes such as Euclidean cubes and “flying saucers” (generalized cubes which
have a cone geodesic with cone angle 2πk/3 between diagonally opposed vertices and have
2k square faces). They deduce some very strong results about such cone manifolds when
they are nonpositively curved (i.e., when there are no geodesics of length < 2π in the
normalized metric of any vertex). However, as we will see, it is likely that the manifolds
to which their methods and ours both apply are generally Haken manifolds, so there does
not appear to be a great deal of useful interplay between the two approaches.
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Section 3 - Surfaces in Branched Covers.
In this section, we investigate the π1-injectively immersed surfaces (especially tori)

in sufficiently branched covers over Euclidean orbifolds (or, equivalently, Euclidean cone
manifolds with all cone angles > 2π).

For the smoothing results of the last section to be truly useful, we must know how
that the geometry of the singular metric is in fact closely related to the geometry of the
smoothed metric. The next few results tell us that, at least for torus submanifolds, this is
indeed the case. Details of these are found in [Jo2]. Most of these results are probably valid
for surfaces in general, but the proofs in [Jo2] need tori, and we won’t need the additional
generality here.

Proposition 3.1. If M is a Euclidean cone manifold with all cone angles > 2π and S
is a totally geodesic (cone metric) immersed torus, then there is a smooth metric (as in
Theorem 2.1) in which S is homotopic to a totally geodesic torus which has the same
intersection pattern with the smoothing neighborhood that S does with the cone locus.

Proof. See [Jo2], Lemma 1.3. �

Proposition 3.2. If M is a Euclidean cone manifold with all cone angles > 2π and S
is a π1-injectively immersed torus in M , then S is homotopic to a totally geodesic (cone
metric) immersed torus.

Proof. See [Jo2], Lemma 1.4. Here we are using the fact that π1-injectively immersed
surfaces in Riemannian 3-manifolds are homotopic to minimal surfaces [SY] as well as the
fact that minimal tori in a 3-manifold of nonpositive sectional curvature must be totally
geodesic (a straightforward Gauss equation argument). �

Proposition 3.3. If M is a Euclidean cone manifold with all cone angles > 2π and S is
a totally geodesic surface in M , then S is a π1-injective immersed surface in M .

Proof. One simply uses the fact that geodesics in the universal cover of M diverge at least
linearly to show that there can be no homotopically trivial closed geodesics in M . �

We will use these results in the next section, but first we will use Proposition 3.3 to
deduce the following rather unfortunate

Theorem 3.4. Let M be a branched cover over S3, branched over the Borromean rings
with no branching indices equal to one. Then, M is Haken.

Proof. S3 admits a Euclidean orbifold structure with singular locus the Borromean rings
and all cone angles π that arises from “folding” up the faces of a cube as in Figure 3.1.
Consider the horizontal plane that cuts through the lines between the faces labelled A
and A’ (and D and D’) one quarter of the distance up the cube. Developing this plane
one finds that in all directions the “next” plane is either this same plane or a parallel
plane three-quarters of the distance up the cube. These two planes close up to yield an
imbedded totally geodesic sphere in S3 that only intersects one component of the singular
locus (four times). Lifting this sphere to M , we find an imbedded totally geodesic surface,
which, by Prop. 3.3, must be π1-injective. It is clearly 2-sided, and hence incompressible.
Since M admits a metric of nonpositive sectional curvature, it must be irreducible by the
Cartan-Hadamard Theorem, and thus, M is Haken. �
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Figure 3.1

It may seem a bit curious to have labelled this theorem “unfortunate,” since, normally,
proving that manifolds are Haken is a cause for rejoicing. However, in this case we have
shattered any illusion that geometric structures on manifolds might be always “realizable”
by some branched cover representation over any given universal link. More specifically, we
have

Corollary 3.5. There exist infinitely many hyperbolic 3-manifolds M for which every
representation as a branched cover over the Borromean rings has some branching index
equal to 1 (and thus positive curvature in every lifted cone manifold structure).

Proof. Let M be any non-Haken hyperbolic 3-manifold and use Theorem 3.4. �

We do, however, also obtain the following two more agreeable corollaries:

Corollary 3.6. Let M be a closed, orientable 3-manifold. Then M is double-branch-
covered by a Haken manifold.

Proof. Represent M as a branched cover over the Borromean rings (possible since they are
universal) and let L be the index-1 branching locus of M relative to this branched covering.
Then, the 2-fold cyclic branched cover of M , branched over L is Haken, by Theorem 3.4.
This is not a new result, but is a much simpler proof than any of the earlier proofs of this
result. �

Corollary 3.7. Let M be a branched cover of S3, branched over the Borromean rings,
with no branching indices equal to 1 or 2. Then, M is hyperbolic.

Proof. By Theorem 2.1 (and the fact that there is a hyperbolic orbifold structure on
the Borromean rings with all cone angles 2π/3), M admits a metric of negative sectional
curvature. By Theorem 3.4 and Thurston’s Hyperbolization Theorem for Haken manifolds,
M is hyperbolic. �
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Section 4 - Torus Decomposition of Branched Covers.
In this section, we will consider the torus decomposition of a sufficiently branched

cover over a Euclidean orbifold and investigate the possible geometries that may arise.
The reader is referred to [Sc] for a thorough and beautiful discussion of the eight three-
dimensional homogeneous geometries. It is quite easy to see that if there is a proper
decomposition, the Seifert-fibered components must have H2 × R or E3 geometry, since a
Seifert-fibered manifold with boundary must have one of the three product geometries and
the only S2 ×R manifold with boundary is a solid torus, in which case the splitting torus
would be compressible. It is also fairly easy to distinguish these two cases geometrically
in the following manner: first, homotope the splitting tori to totally geodesic tori (or
possibly Klein bottles) using standard minimal surface techniques and the theorems of the
previous section. Then, if a Seifert-fibered component of the torus decomposition contains
a component of the cone locus, it must have H2×R geometry, else it must have E3 geometry
(see [Jo1], essentially this is a corollary of a fact, proven there, that a closed Euclidean
3-manifold cannot admit a Euclidean cone manifold structure with all cone angles greater
than 2π). Also in [Jo1], a straightforward growth of groups argument is used to show that
a closed Seifert-fibered Euclidean cone manifold with cone angles > 2π must have H2×R,
Nil, or S̃L2R geometry.

Some more recent results, however, give improvements on this by eliminating Nil from
the list and by giving an easy way to construct the torus decomposition of a Euclidean
cone manifold with all cone angles > 2π. Details for these results may be found in [Jo3].

First, a structure theorem for such manifolds:

Theorem 4.1. Let M be a closed, orientable 3-dimensional Euclidean cone manifold with
no vertices and all cone angles > 2π. Then there is a canonical compact 2-complex C in
M such that

(1) the components of the complement of C (denoted by M1, . . . ,Mn) are each the
interior of a compact Seifert-fibered manifold (possibly with boundary)

(2) each Mi may be given a convex Euclidean cone metric
(3) M is homotopically atoroidal if and only if each Mi is an open solid torus

This canonical 2-complex is easily constructed from the cone manifold by considering
product neighborhoods of cone geodesics and looking at the intersections of maximal such
neighborhoods. The Seifert-fibration on each of the Mi is such that any cone geodesics that
intersect the Mi are in fact fibers of the Seifert-fibration. This is another example of just
how “canonical” the notion of a Seifert-fibration seems to be: there are a number of results
now of the general form “If a Seifert-fibered manifold admits structure X, then it admits a
structure X which is nice with respect to the fibration.” Some of the known replacements
for “structure X” are “incompressible surface,” “essential lamination” and “Euclidean cone
metric with cone angles > 2π” (see [Br] for the essential lamination result).

One of the most useful aspects to this structure theorem, however, is that the bound-
ary tori of the Mi which are not solid tori (after pulling them in slightly along a collar
neighborhood) form a collection of tori which contains the characteristic tori of Jaco-
Shalen/Johannson. Furthermore, the only way in which “extra” tori arise is from the fact
that some Seifert-fibered spaces may be fibered in more than one way and thus the fiber-
ings that are constructed in the structure theorem might be incompatible across a given
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torus but there might be another way to fiber some component of the complement of this
collection of tori so that there would be compatibility across a torus, and so it could be
removed. However, the only spaces that actually arise in the decomposition that may be
fibered in multiple ways are I-bundles over the torus and Klein bottle (see [Sc] again) so
this situation is easily handled to compute the actual torus decomposition. Furthermore,
all the Seifert-fibered components of the complement of this collection of tori either have
negatively curved base orbifold or are actually Euclidean, so we have the elimination of
Nil as claimed above.

Another interesting corollary of this theorem is the following: suppose M is a Euclidean
cone manifold with all cone angles > 2π. Suppose further that M admits a π1-injective
immersed torus but no incompressible tori. We use the structure theorem to assert that
M must be Seifert-fibered, since if C is nonempty, any component of its complement
that isn’t a solid torus gives rise to a nontrivial torus decomposition as above, but all
of the components being solid tori forces M to be homotopically atoroidal. Thus, the
only possibility is that C is empty, forcing M to be Seifert-fibered. Thus, we recover the
recent result of Casson and Gabai (independently, see [Ga]) that irreducible non-Haken 3-
manifolds containing Z⊕Z subgroups in their fundamental groups must be Seifert-fibered.

For convenience, we collect these in the following

Corollary 4.2. If M is a Euclidean cone manifold satisfying the hypotheses of Theorem
4.1, then

(1) if M admits a π1-injective torus but no incompressible torus, M must be Seifert-
fibered

(2) the collection of boundary-parallel tori in each non-solid torus component of Mi

forms a collection of tori containing the Jaco-Shalen/ Johannson characteristic
tori

(3) if M is Seifert-fibered, it must have H2 × R or S̃L2R geometry

Section 5 - Hyperbolic Structures on Branched Covers.
Thus far, we have discussed primarily Euclidean cone manifolds. We will conclude

by turning briefly to hyperbolic cone manifolds. Here, one of the key questions is that of
deformability. That is, how far can one deform a hyperbolic cone manifold without running
into some degeneracy or other. Hyperbolic cone manifolds can always be deformed locally,
but there are several kinds of degeneracy that may eventually arise (see [Ho] for a more
detailed discussion). The possible kinds of degeneracy are

(1) volume tending to zero
(2) developing a cusp along a submanifold which is becoming Euclidean
(3) the cone locus “bumping into itself” (that is, changing its combinatorial type

It has long been conjectured that cone angles may always be decreased. One reason
for this conjecture (other than the fact that no counterexamples are known) is that when
the cone angles are being decreased, the first kind of degeneracy cannot happen – volume
always increases when all cone angles are decreasing. Furthermore, as the cone angles are
decreased, the existence of the submanifolds that are “becoming Euclidean” can often be
ruled out on other grounds. In particular, if we have a hyperbolic cone manifold with all
cone angles > 2π, neither of the first two kinds of degeneracy can take place as we deform
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all cone angles toward 2π since the manifold is known to be atoroidal and aspherical (all
of the submanifolds along which a cusp would develop must be essential spheres and tori).
The third kind of degeneracy has proven to be quite difficult to rule out a priori, and very
little progress in this direction has been made (although some recent progress has been
announced by Hodgson and Kerckhoff [unpublished]).

However, if one is seeking to show that hyperbolic cone manifolds with cone angles
> 2π are in fact hyperbolic, there are other means besides simply deforming the cone
metric. One may also try using the smoothing results above to obtain a metric of pinched
negative sectional curvature and attempt a deformation of this metric toward constant
sectional curvature. Of course, this is an extremely difficult problem as well, and is in fact
known to be impossible in dimensions higher than 3. However, there is a result of Tian
[Ti] on deformation of negatively curved metrics to Einstein metrics (which in dimension
3 have constant sectional curvature). That does enable us to at least deduce a sort of
asymptotic result. This theorem (details of which are found in [Jo4]) essentially says that
for a fixed hyperbolic orbifold, we can find a constant such that if the maximum and
minimum branching indices of a branched cover have a ratio less than this constant, the
branched cover must be hyperbolic. This is the essence of the theorem, although there
are some unfortunate details that complicate its statement – the “constant” is not quite
constant, but depends on the number of components of the branching locus that don’t
have the minimum branching index.

The actual statement of the theorem is

Theorem 5.1. Let (M,L) be a 3-manifold and a link such that M−L admits a hyperbolic
metric of finite volume. Let L1, . . . , Lq be the components of L. Let (M̂, L̂) be a branched
cover over (M,L) with minimum branching index ni over Li and maximum branching
index Ni over Li. Denote by Qi the number of components of branching locus over Li with
branching index not equal to ni (counted with the appropriate multiplicity in the case of
longitudinal wrapping). Then, there exist integers (m1, . . . ,mq) and functions (K1, . . . ,Kq)
with Kj : Z → R and Kj(i) > 1, only depending on (M,L), such that (M̂, L̂) admits a
hyperbolic metric if ni ≥ mi and Ni ≤ niKi(Qi) for all i = 1, . . . , q.

Proof. One takes a particular smoothing of the lifted cone metric on M̂ for which explicit
bounds on the sectional curvature may be computed, and then applies Tian’s theorem to
deduce the existence of a nearby Einstein metric (again, see [Jo4] and [Ti] for details). �

Although this result is far from ideal (we have no idea what order of magnitude the
m’s and K’s have, so we cannot use the result to show that any given cover is hyperbolic),
it is the first result giving combinatorial conditions on the branched covering map under
which irregular branched covers of hyperbolic links must be hyperbolic (regular branched
covers are dealt with by the Thurston Geometrization Theorem for Orbifolds and the case
in which all branching indices are equal is dealt with by the Hyperbolic Dehn Surgery
Theorem).
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