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Abstract. It was shown by Chinburg and Reid that there exist closed hyperbolic
3-manifolds in which all closed geodesics are simple. Subsequently, Basmajian and

Wolpert showed that almost all quasi-Fuchsian 3-manifolds have all closed geodesics
simple and disjoint. The natural conjecture arose that the Chinburg-Reid examples

also had disjoint geodesics. Here we show that this conjecture is both almost true

(they have no geodesics that intersect except at right angles) and spectacularly false
(any pair of closed geodesics admits infinitely many closed geodesics which intersects

both geodesics of the pair perpendicularly). The latter statement is shown to be true
for all closed arithmetic hyperbolic 3-manifolds.

Section 0 - Introduction

By a hyperbolic n-manifold we shall mean a complete orientable n-dimensional
Riemannian manifold all of whose sectional curvatures are −1. If M is a hyperbolic
3-manifold, the universal cover of M can be identified with H3, the upper half-space
model of hyperbolic 3-space, andM is realized asH3/Γ for some Γ a discrete torsion-
free subgroup of Isom+(H3). Now Isom+(H3) can be identified with PSL(2,C) (
which in turn is isomorphic to PGL(2,C)), and Γ is called a Kleinian group. In the
sequel we will only be interested in the case when M is closed, in which case Γ is
referred to as cocompact.

Of interest to us is the structure of the set of closed geodesics in closed hyper-
bolic 3-manifolds. The motivation comes from the following. A closed geodesic in
a (closed) hyperbolic n-manifold is simple if it has no self-intersections, and non-
simple otherwise. In dimension 2 every closed hyperbolic manifold has a non-simple
closed geodesic. However in dimension 3 the situation is much more complex. Many
closed hyperbolic 3-manifolds contain immersions of totally geodesic surfaces and so
there are non-simple closed geodesics. In [JR] examples were given of closed hyper-
bolic 3-manifolds containing a non-simple closed geodesic but having no immersed
totally geodesic surface. However it was shown in [CR] that there exist closed hyper-
bolic 3-manifolds in which all closed geodesics are simple. Subsequently, Basmajian
and Wolpert [BW] showed that almost all 3-manifolds arising as the quotient of H3
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by a quasi-Fuchsian subgroup of PSL(2,C) have all closed geodesics simple and
disjoint. It was shown in [CR] that closed geodesics of the same complex length
(see Lemma 2.2 for the definition) were disjoint. The natural conjecture motivated
by this was that the examples constructed in [CR] had all closed geodesics disjoint.

The main results here show that this conjecture is both almost true (they have
no geodesics that intersect except at right angles) and spectacularly false (any pair
of closed geodesics admits infinitely many closed geodesics which intersects both
geodesics of the pair perpendicularly). The latter statement is shown to be true for
all closed arithmetic hyperbolic 3-manifolds. Like the methods of [CR] and [JR]
the methods here rely heavily on the arithmetic techniques.

In the final section of the paper we apply this same technology to arrive at a
partial answer to a question posed by Weeks: does every finite-volume hyperbolic
manifold have a complex length ` such that the collection of all closed geodesics of
that length form a link.

Section 1 - Arithmetic Preliminaries

Here we recall some salient points on arithmetic aspects of Kleinian groups.

1.1.
Let k be a field of characteristic different from 2. The standard notation for a

quaternion algebra over k is the following. Let a and b be non-zero elements of k.

Then
(
a,b
k

)
denotes the quaternion algebra over k with basis {1, i, j, ij} subject to

i2 = a, j2 = b and ij = −ji.
(
a,b
k

)
is called a Hilbert Symbol for the quaternion

algebra.
If now k is a number field, and ν is a valuation of k associated to a real embedding

of k, we say a quaternion algebra A over k is ramified at ν if A ⊗k kν ∼= H where
H is the Hamiltonian quaternions over R.

1.2.
Let Γ be a Kleinian group and let Q(tr Γ) denote the trace-field of Γ. When

Γ has finite co-volume Q(tr Γ) is a finite extension of Q. Following [R1] and [NR]
we define the invariant trace-field kΓ and invariant quaternion algebra AΓ of Γ as
follows. Let Γ(2) = gp{γ2 : γ ∈ Γ}. Then kΓ = Q(tr Γ(2)) and AΓ is the quaternion
algebra over kΓ defined by (see [B]):

A Γ = {Σaiγi : ai ∈ kΓ, γi ∈ Γ(2)},

where all sums are finite, is a quaternion algebra over kΓ. kΓ and A Γ are invariants
of the commensurability class of Γ. Now A Γ can be explicitly determined from Γ,
see [HLM]:

Lemma 1.1. Let Γ be a cocompact Kleinian group for which kΓ = Q(tr Γ), and
let γ and δ be a pair of non-commuting elements of Γ. Then,

A Γ ∼=
(

(tr2(γ)− 4), (tr([γ, δ])− 2)
kΓ

)
.

�
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1.3.
Recall the definition of arithmetic Kleinian groups, see [Bo], or [V] for details.
Let k be a number field having exactly one complex place. Let B be a quaternion

algebra over k which ramifies at all real places of k. Let O be an order of B and
let O1 be the group of elements of reduced norm 1 in O. Over an embedding
k ↪→ C inducing the complex place of k one may choose an algebra embedding
ρ : B ↪→ M(2,C) which restricts to an injection ρ : O1 ↪→ SL(2,C). Let P :
SL(2,C)→ PSL(2,C) be the natural projection. Then P ρ(O1) is a Kleinian group
of finite covolume. An arithmetic Kleinian group Γ is a subgroup of PSL(2,C)
commensurable with a group of the type P ρ(O1). We say Γ is derived from a
quaternion algebra if Γ is actually a subgroup of some P ρ(O1). We call Q = H

3/Γ
arithmetic or derived from a quaternion algebra if Γ is arithmetic or derived from
a quaternion algebra.

It is shown in [MR] that a Kleinian group of finite co-volume is arithmetic if and
only if the group Γ(2) is derived from a quaternion algebra.

Section 2 - Nonperpendicular Geodesic Intersections

We begin by recalling some relevant facts about traces in SL(2,C) and their
relationship to hyperbolic geometry. Note that we will be working in SL(2,C)
rather than in PSL(2,C). When we say that an isometry of H3 is represented by a
matrix in SL(2,C), we assume a fixed representation from Isom+(H3) to PSL(2,C)
and a fixed, consistent lifting of the image group to SL(2,C).

The first three lemmas allow us to detect intersection of axes of two isometries
from their traces and the trace of their commutator.

Lemma 2.1. Let a, b ∈ SL(2,C) have trace different from ±2 and axes x and y,
respectively, in H3. Let ϕ ∈ SL(2,C) represent the unique isometry which takes x
to y whose axis intersects both x and y perpendicularly.

Then,

trϕ = ±

√√√√2± 2

√
1 + 4

tr[a, b]− 2
(tr2 a− 4)(tr2 b− 4)

Proof. First, conjugate a and b so that the fixed points of a are ±1 and the fixed
points of b are ±ω for some ω ∈ C. After this conjugation, ϕ has the z-axis as its
axis and has trace

trϕ =
√
ω +

1√
ω

More explicitly,

a =

(
tr a
2

√
tr2 a−4

2√
tr2 a−4

2
tr a
2

)

b =

(
tr b
2

ω
√

tr2 b−4
2√

tr2 b−4
2ω

tr b
2

)

ϕ =
(√

ω 0
0 1√

ω

)
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A direct calculation then shows that

tr[a, b]− 2 =
(tr2 a− 4)(tr2 b− 4)(ω2 − 1)2

16ω2

and thus,

(ω − 1
ω

)2 = 16
tr[a, b]− 2

(tr2 a− 4)(tr2 b− 4)
so that

(tr2 ϕ− 2)2 = (ω +
1
ω

)2 = 4 + (ω − 1
ω

)2

= 4 + 16
tr[a, b]− 2

(tr2 a− 4)(tr2 b− 4)
The conclusion follows upon solving for trϕ. �

Lemma 2.2. Let a ∈ SL(2,C) represent a loxodromic or elliptic isometry α ∈
Isom+(H3). Denote the translation distance of α by ρ and the rotation angle (tor-
sion) by θ. Then, the complex length ρ+ iθ of α, is given by:

ρ+ iθ = 2 cosh−1(
tr a
2

)

Proof. Conjugate so that a is diagonal, and use the fact that cosh−1(z) = ln(z +√
z2 − 1). �

Lemma 2.3. Let a, b ∈ SL(2,C) represent loxodromic or elliptic isometries of H3

whose axes intersect at an angle θ. Then,

sin2 θ = −4
tr[a, b]− 2

(tr2 a− 4)(tr2 b− 4)

In particular, the right-hand side of the above equation is real and positive.

Proof. Combining Lemmas 2.1 and 2.2 (note that since the axes intersect, the
isometry ϕ in Lemma 2.1 is elliptic with axis equal to the common perpendicular
to the axes of a and b at their point of intersection), we see that

cos(
θ

2
) =
±
√

2± 2
√

1 + 4 tr[a,b]−2
(tr2 a−4)(tr2 b−4)

2
.

Using the standard double-angle formula for cosine yields

cos θ = ±

√
1 + 4

tr[a, b]− 2
(tr2 a− 4)(tr2 b− 4)

or, on converting from cosine to sine,

sin2 θ = −4
tr[a, b]− 2

(tr2 a− 4)(tr2 b− 4)
.

�

The next two lemmas, combined with the previous lemma, allow us to deduce
number-theoretic conditions on the traces of two isometries which are necessary for
them to have intersecting axes.
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Lemma 2.4. Let a, b ∈ SL(2,C). Then,

tr[a, b]− 2 = tr2 a+ tr2 b+ tr2 ab− tr a tr b tr ab− 4

Proof. This is a standard trace identity, valid in SL(2, R) for any commutative ring
R. �

Lemma 2.5. Let a, b ∈ SL(2,C) represent loxodromic or elliptic isometries of H3

whose axes intersect at an angle θ. Then,

tr ab =
tr a tr b± cos θ

√
(tr2 a− 4)(tr2 b− 4)
2

In particular, (tr2 a−4)(tr2 b−4) cos2 θ is a perfect square in the trace field of 〈a, b〉.

Proof. Use Lemma 2.3 to write tr[a, b]− 2 in terms of tr a, tr b, and θ. Use Lemma
2.4 to write tr[a, b]− 2 in terms of tr a, tr b, and tr ab. Set these two equal to obtain
an equation involving tr a, tr b, tr ab, and θ which is quadratic in tr ab. Solve this
equation for tr ab to obtain the desired result. �

Using Lemmas 2.5 and 2.3, together with the explicit determination of a Hilbert
symbol given in Lemma 1.1 allows us to derive a condition on the invariant quater-
nion algebra (in Lemma 2.7 below) which is necessary for the existence of non-
perpendicular intersecting geodesics in any of the corresponding Kleinian groups
(arithmetic or not).

We will require the following elementary geometric lemma.

Lemma 2.6. Let G be a Kleinian group of finite co-volume, g ∈ G be an elliptic
element and ` the axis of g in H3. Then the stabilizer of ` in G, {h ∈ G | h` = `}
is infinite.

Proof. Let G` = {h ∈ G | h` = `}. The axis ` admits a collar neighbourhood C(`)
which is precisely invariant under G` and with C(`) having infinite volume. C(`)
projects into H3/G, and since G has finite co-volume, we deduce that G` must be
infinite. �

Lemma 2.7. Let Γ be a cocompact Kleinian group containing two elements a and
b which represent loxodromic or elliptic isometries having axes which intersect at
an angle θ where 0 < θ < π/2. Then, A Γ admits a Hilbert symbol having one entry
equal to − tan2 θ. In particular, A Γ admits a Hilbert symbol having a real entry.

Proof.
By Lemma 2.6, and cocompactness we can assume that a and b are loxodromic

(an elliptic element in Γ will necessarily have a loxodromic element with the same
axis). We will pass to Γ(2) for this will not change the angle of intersection of the
geodesics. Let x = a2 and y = b2.

Lemma 2.5 implies that

cos2 θ(tr2 x− 4)(tr2 y − 4)
4

= (trxy − trx tr y
2

)2.

Specifically, we note that the left-hand side of this equation is therefore a square in
kΓ. Lemma 2.3 and Lemma 1.1 imply A Γ admits a Hilbert symbol with one entry
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being − sin2 θ(tr2 x− 4)(tr2 y − 4)
4 . Since entries of Hilbert symbols may be freely

divided by non-zero squares in kΓ, we may divide by cos2 θ(tr2 x− 4)(tr2 y − 4)
4 to

obtain a Hilbert symbol entry equal to − tan2 θ. �

We remark here that the restriction to cocompact does not lose any real infor-
mation, since the invariant quaternion algebra of a non-cocompact Kleinian group
of finite covolume is always the matrix algebra over the invariant trace-field. This
always has a Hilbert symbol with a real entry.

In [CR] it was shown that there exist infinitely many commensurability classes
of co-compact Kleinian groups all of whose closed geodesics were simple. The key
point in [CR] was to exhibt Kleinian groups whose invariant quaternion algebras
could not have a Hilbert symbol with one of the entries being real. This was used
there to deduce the simplicity of all closed geodesics. All the manifolds constructed
were arithmetic. With this we note,

Theorem 2.8. There are infinitely many commensurability classes of closed hy-
perbolic 3-manifolds each of which has all closed geodesics simple and no two closed
geodesics intersect, except possibly perpendicularly.

Remark. Note that we shall find subsequently that there are many perpendicular
intersections in these manifolds.

Proof. As noted above there are infinitely many commensurability classes of arith-
metic hyperbolic 3-manifolds whose invariant quaternion algebra does not admit a
Hilbert symbol with a real entry, and so all closed geodesics are simple. However,
Lemma 2.7 shows that such manifolds can only have perpendicular intersections
between closed geodesics. �

Section 3 - Perpendicular Geodesic Intersections

When we consider the problem of perpendicular intersections of closed geodesics
in arithmetic manifolds, a very different picture emerges. Here, instead of being
able to construct special manifolds which have no such intersecting geodesics, we
find that any pair of closed geodesics admits an infinite collection of distinct closed
geodesics, each of which intersects both members of the pair perpendicularly.

More precisely, we have the following theorem:

Theorem 3.1. Let M be a closed arithmetic hyperbolic 3-manifold and let x and
y be two closed geodesics in M . Let z be a geodesic arc between x and y which is
perpendicular to both (there is one such in each free homotopy class of arcs between
x and y). Then, there exists a closed geodesic z′ which contains z.

The proof will require the following lemma. For a proof of the lemma, see for
example [GMMR] Lemma 7.1.

Lemma 3.2. Let Γ be a Kleinian group with trace-field k, all of whose traces lie
in Rk the ring of algebraic integers of k. Let a and b be a pair of non-commuting
elements of Γ, and let O = Rk[1, a, b, a.b]. Then O is an order of {Σaiγi : ai ∈
k, γi ∈ Γ}. �

Proof of Theorem 3.1. Since the angle of intersection is unchanged on passing to the
finite cover of M determined by π1(M)(2) we will assume for convenience that M is
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derived from a quaternion algebra. Let Γ denote the image of π1(M) in PSL(2,C)
under the faithful discrete representation.

Passing to H3 the universal cover of M , we take x̃ to be any geodesic which
covers x, then let z̃ to be any lift of z which starts at a point of x̃, then take ỹ to
be the geodesic covering y which intersects the terminal point of z̃.

Now, let A,B ∈ Γ with axes x̃ and ỹ, respectively and let a and b be matrix
representatives for A and B in SL(2,C). Note that ab−ba is an element of GL(2,C)
which has trace 0 and whose image in PGL(2,C) has the geodesic containing z̃ as
its axis (it is elliptic of order two and conjugates a to a−1 and b to b−1). We note
here Jørgensen’s observation ([T] Corollary 5.4.2) that ab−ba defines an involution
on H3/〈a, b〉.

Let O = RkΓ[1, a, b, a.b] be as in Lemma 3.2, and Norm(O) = {x ∈ A Γ∗ |
xOx−1 = O}. The image Γ(O) of Norm(O) in PGL(2,C) is an arithmetic Kleinian
group ([Bo]). To see this note that Norm(O) contains O1, and any element of
Norm(O) normalizes O1. Therefore Γ(O) is a subgroup of the normalizer of PO1

in PGL(2,C), which is an arithmetic Kleinian group. Thus H3/Γ(O) is a closed
orbifold commensurable with M . In fact Γ(O) coincides with the normalizer of
PO1 in PGL(2,C). Note that our discussion above shows that Γ(O) contains the
images of a, b and ab− ba.

By Lemma 2.6, there is some loxodromic element c ∈ Γ(O) whose axis is equal to
the axis of ab−ba. Using the commensurability of Γ(O) and Γ, we get a loxodromic
element c′ ∈ Γ whose axis is equal to the axis of ab − ba. Thus, the image of the
axis of ab− ba in M is the desired closed geodesic z′. �

A similar idea proves the following.

Theorem 3.3. Let M be a closed hyperbolic 3-manifold such that π1(M) is 2-
generator. Then M contains perpendicularly intersecting geodesics.

Proof. Let a and b be generators for π1(M). Using the observation of Jørgensen
mentioned in the proof of Theorem 3.1, we see that a, b and ab − ba generate the
fundamental group of a closed hyperbolic orbifold O, commensurable with M . The
argument is completed as in the proof of Theorem 3.1. �

In view of the results of Basmajian and Wolpert mentioned in the Introduction
the Theorems of §2 and 3 yield:

Corollary 3.4. If M = H
3/Γ is a closed hyperbolic 3-manifold all of whose closed

geodesics are simple and disjoint, then M is non-arithmetic and if N is commen-
surable with M then π1(N) is not 2-generator. �

We now briefly indicate a construction of manifolds which satisfy the conclusion
of Corollary 3.4. First recall a version of Margulis’ characterization of arithmeticity
([Mar]); a Kleinian group Γ is non-arithmetic if and only if the group

Comm(Γ) = {g ∈ PSL(2,C) : gΓg−1 is commensurable with Γ}

is discrete. Furthermore Comm(Γ) is the unique maximal element in the commen-
surability class of Γ.

With this and the previous observation of Jørgensen about 2-generator groups
we deduce.
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Lemma 3.5. Let M = H
3/Γ be a closed non-arithmetic hyperbolic 3-manifold. If

Comm(Γ) is torsion-free then Γ is not commensurable with a 2-generator group. �

Examples.
Some of the discussion here is taken from [R2] §3. Let K be the knot 932 of

[Ro]. S3 \K admits a complete hyperbolic structure of finite volume with trivial
symmetry group ([Ri]). Let S3 \ K = H

3/ΓK . It is also shown in [Ri] that the
invariant trace-field of ΓK has degree 29 and so cannot contain Q(i) or Q(

√
−3).

Then [NR] Proposition 9.1 implies Comm(ΓK) = ΓK . Now Thurston’s theory of
hyperbolic Dehn surgery [T], and Borel’s result ([Bo]) that the set of volumes of
arithmetic manifolds is discrete in R taken together with Lemma 3.5 and the above
discussion on K implies that large Dehn surgeries on K satisfy the conclusion of
Corollary 3.4.

Section 4 - Application

Jeff Weeks has asked if every closed hyperbolic manifold has a complex length `
such that the collection of closed geodesics of length ` forms a link. Let us say that
such a complex length (or equivalently the corresponding trace, a = 2 cosh(`/2)) has
the disjoint axis property. Complex lengths with the disjoint axis property would be
useful in calculating the symmetry group of closed hyperbolic manifolds since they
provide a “geometrically canonical link” which could be removed, yielding a cusped
manifold. The symmetry group of this cusped manifold could then be calculated
using existing methods and one could then pass to the subgroup which preserves
the meridional system which surgers the cusped manifold back to the original closed
manifold.

Implicit in [CR] (and explicit above) is the fact that for the commensurability
classes constructed in [CR], every complex length which is represented in the man-
ifold has the disjoint axis property. To show that a given trace a has the disjoint
axis property, it suffices to show that the algebra does not admit a Hilbert symbol
(a2− 4, r) where r is a real element of kΓ. The algebras constructed in [CR] do not
admit any real Hilbert symbol entries at all, and hence every trace has the disjoint
axis property. However, here we show that under certain other conditions one can
find a trace a with the disjoint axis property even in cases where every trace does
not.

To state the theorem we make a definition. Let Γ be a Kleinian group. For any
a in Q(tr Γ), let Γ(a) denote the union (in H3/Γ) of the axes of all of the elements
of Γ that have trace a.

Theorem 4.1. Let Γ be an arithmetic Kleinian group. Let ν and ν′ be a pair of
distinct complex conjugate finite places of kΓ. Then, if A Γ is ramified at ν and
unramified at ν′, there exists a ∈ kΓ such that Γ(a) is a link.

Proof. Given Γ, we will actually find a ∈ kΓ such that any group Γ′ commensurable
with Γ will have Γ′(a′) a (possibly empty) link for any a′ which is the trace of a
rational power of an element of trace a. This, together with the construction of a
Γ′ for which Γ′(a) is nonempty, clearly suffices to prove the theorem. Let k = kΓ
denote the invariant trace-field of Γ and let P = {ν, ν1, ν2, . . . , νn} be the set of
finite places at which A Γ is ramified. Let P ′ = P ∪ {ν′} and let P ′′ denote the
union of P ′ and the set of real places of k. For each µ ∈ P ′′ denote by kµ the
completion of k at µ and by | · |µ the canonical absolute value at µ. For µ ∈ P ′, let
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πµ denote a (fixed) uniformizer for kµ and assume without loss of generality that
πν′ is the complex conjugate of πν .

Next, for each µ ∈ P ′ define aµ to be an element of kµ such that a2
µ = 4 + 16πµ.

Note that, by the Local Square Theorem ([O, p. 159]), 4 + 16πµ is always a square
in kµ, whether kµ is dyadic or not. Note that a2

µ − 4 is not a square in kµ for any
µ ∈ P ′. Define aµ to be equal to 1 for all real places µ. Let ε > 0 be the smallest
of the numbers |a2

µ− 4‖µ/2 for all µ ∈ P ′′. Now, using continuity of multiplication,
let ε′ > 0 be such that |x− aµ|µ < ε′ implies that |x2 − a2

µ|µ < ε for all µ ∈ P ′′.
Then the Very Strong Approximation Theorem ([O], p. 77) implies that we can

find an algebraic integer a ∈ k such that |a−aµ|µ < ε′ for all µ ∈ P ′′. Denote a2−4
by β. Then, β is a nonsquare at all places of P ′′. In particular, it is a nonsquare
at all places which ramify A Γ, so there is a Hilbert symbol (α, β) for A Γ, see for
example [O], p 203. We claim that α cannot be real (under the complex place of
k).

Thus suppose that α is real. Then, since A Γ is unramified at ν′ and ramified at
ν, there exist x, y ∈ kν′ such that αx2 +βy2 = 1 but there exist no such solutions in
kν . Now the local square theorem implies that this quadratic equation has solutions
in a local field if and only if it has solutions modulo 4π (after first dividing α and
β by even powers of π to insure that the equation remains quadratic modulo 4π).
Recall also that β is congruent to zero modulo 4πν and 4πν′ . Thus, α (again after
dividing out any even powers of πν or πν′) must be a square modulo 4πν′ but a
nonsquare modulo 4πν . But this is clearly impossible, since α is invariant under
complex conjugation which takes πν to πν′ .

Our earlier work now shows that no two axes of elements of trace a can intersect.
We note here that if a = trx and c = trxn then (c2 − 4)/(a2 − 4) is a square in

k. Thus, c2 − 4 is in the same square coset of k as β. To see this, conjugate x so
that it is diagonal, with λ and λ−1 on the diagonal. Then, a2− 4 = (λ−λ−1)2 and
c2 − 4 = (λn − λ−n)2. So,

(c2 − 4)/(a2 − 4) = (λn−1 + λn−3 + · · ·+ λ1−n)2

= (trxn−1 + trxn−3 + · · · )2

where the second sum ends either with trx or with 1.
Hence, in any group commensurable with Γ, the axes of any two elements com-

mensurable with elements of trace a cannot intersect. Hence the claim in the first
paragraph of this proof.

Now, to show that there exists Γ′ commensurable with Γ in which Γ′(a) is
nonempty, we proceed as follows. Let λ =

√
a2 − 4. The field k(λ) splits AΓ,

and so embeds in AΓ. Let the embedding be generated over k by γ ∈ AΓ. Since
a2 − 4 is an algebraic integer, λ is an algebraic integer, and it follows that we can
take γ to be an integer of the quaternion algebra (see [V]). Hence there exists an
order O of AΓ containing γ. Then, Pρ(O1) is a group commensurable with Γ which
contains an element Pγ of trace a as is required. �

We remark here that this theorem only applies to arithmetic manifolds whose
invariant trace field is a degree-two extension of a totally real field. Similar methods
allow us to obtain the following, in which the restriction on the invariant trace-field
is relaxed, but we are restricted to non-dyadic ideals.

It will be convenient to recall some notation, see [La] p. 20–22. Let k be a
number field, a ∈ k, non-zero and let A be the principal fractional ideal generated
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by a. As is well-known there is a factorization of A as ΠPrP (where the product is
over all prime ideals) with at most finitely many of the rP being non-zero. Define
rP to be the order of A at P.

Now suppose that k/F is a finite extension of number fields, and suppose p is a
prime ideal of F . Denoting by Rk the ring of integers of k, the ideal pRk factorizes
as a product of k-primes Pe11 . . .Pegg . The exponent ei is called the ramification
index of Pi over p.

We will also use both of these terms in reference to places rather than primes.

Theorem 4.2. Let Γ be an arithmetic Kleinian group. Let F be the maximal
totally real subfield of kΓ and ν, ν′ be a pair of distinct finite places of kΓ which lie
above the finite non-dyadic place ξ of F , each with odd ramification index. Then,
if A Γ is ramified at ν and unramified at ν′, there exists a ∈ kΓ such that Γ(a) is a
link.

Proof. The proof will follow the same outline as the proof of Theorem 4.1, but we
will insure that β is a nonsquare unit at ν and ν′, whence it follows that the order
of α at ν must be odd and thus, if α ∈ F , the order of α at ν′ must be also odd,
which contradicts the assumption that A Γ is unramified at ν.

Define P, P ′, P ′′ as in the proof of Theorem 4.1. Do the same for aµ except for
µ = ν and µ = ν′. To define aν and aν′ , let qν and qν′ denote fixed nonsquare units
in kν and kν′ respectively, not equal to -1. Then, let aν = 2(qν + 1)/(qν − 1) so
that a2

ν − 4 = 4qν/(qν − 1)2 which is a nonsquare unit of kν . Define aν′ similarly.
Now, define a and β as in the proof of Theorem 4.1: there is again a Hilbert symbol
(α, β) for A Γ and again we claim that α cannot be real.

Suppose that α is real. Then, α ∈ F which implies that the orders of α at ν and
ν′ have the same parity since both ν and ν′ have odd ramification index in k/F (the
order of α at ν is equal to the product of the order of α at ξ and the ramification
index of ν in k/F – similarly for ν′). Now, since ν is non-dyadic, either α or β
must be a non-unit at ν (see [O], p. 166). But, β is a unit at ν by construction,
so α must be a non-unit at ν. In fact, since α is a nonsquare at ν, α must have
odd order at ν. But this implies that α must also have odd order at ν′, and since
β is a nonsquare unit at ν′, it follows that A Γ must be ramified at ν′, contrary to
hypothesis.

The remainder of the proof proceeds as in the proof of Theorem 4.1. �

Similar methods also yield

Theorem 4.3. Let Γ be an arithmetic Kleinian group. Let F be the maximal
totally real subfield of kΓ and ν be a finite place of kΓ which lies over a finite non-
dyadic place ξ of F , with even ramification index. Then, if A Γ is ramified at ν,
there exists a ∈ kΓ such that Γ(a) is a link.

Proof. The proof is identical to that of Theorem 4.2, but after construction of β
and α we note that the order of α at ν must be odd, which is impossible for α ∈ F ,
since the ramification index of ν in k/F is even. �
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