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Abstract. Chinburg and Reid have recently constructed examples of hyperbolic 3-

manifolds in which every closed geodesic is simple. These examples are constructed
in a highly non-generic way and it is of interest to understand in the general case the

geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For
hyperbolic 3-manifolds which contain an immersed totally geodesic surfaces there are

always non-simple closed geodesics. Here we construct examples of manifolds with

non-simple closed geodesics and no totally geodesic surfaces.

Section 0 - Introduction

By a hyperbolic 3-manifold (resp. orbifold) we shall always mean a complete
orientable hyperbolic 3-manifold (resp. orbifold) of finite volume. Let M be a
hyperbolic 3-manifold, a closed geodesic in M is called simple if it has no self-
intersections, and non-simple otherwise.

As was recently shown in Chinburg and Reid [3], there are infinitely many com-
mensurability classes of closed hyperbolic 3-manifolds all of whose closed geodesics
are simple. It would seem, at least at the intuitive level, that this should be the
“generic case” for hyperbolic 3-manifolds. However the examples in [3] are arith-
metic, and their construction arises by interpreting the existence of a non-simple ge-
odesic in terms of a quaternion algebra that is naturally associated to these groups.
These examples are far from being understood in terms of hyperbolic geometry.

On the other hand many hyperbolic 3-manifolds contain immersions of a totally
geodesic surface, and therefore must contain non-simple closed geodesics, as any
hyperbolic 2-manifold of finite volume contains such closed geodesics. The focus of
this paper is manifolds “that arise between these two extremes.” Our main result
shows that there are infinitely many commensurability classes of closed hyperbolic
3-manifolds that contain a non-simple closed geodesic, but have no immersed totally
geodesic surface. Again the methods appeal to arithmetic hyperbolic 3-manifolds.
This is not surprising, since at present the only methods known to show that a
hyperbolic 3-manifold cannot contain an immersed totally geodesic surface are also
arithmetic in nature, cf. Maclachlan and Reid [9] and Reid [11] and [13].
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Section 1 - Preliminaries

For convenience we recall some salient points about arithmetic Kleinian groups
and quaternion algebras. We refer the reader to Borel [2] and Vignéras [15] for
details.

1.1. Let k be a field of characteristic different from 2. The standard notation for a
quaternion algebra over k is the following. Let a and b be non-zero elements of k.

Then
(
a, b

k

)
denotes the quaternion algebra over k with basis {1, i, j, ij} subject

to i2 = a, j2 = b and ij = −ji.
Now assume k is a number field, i.e. a finite extension of Q. By a place ν

of k we will mean one of the canonical absolute values of k defined in Lang, [7,
pp. 34–35]. The finite places of k correspond bijectively to the prime ideals of the
ring of integers Rk of k. An infinite place of k is either real, corresponding to
an embedding of k into R, or complex, corresponding to a pair of distinct complex
conjugate embeddings of k into C. We refer the reader to [7, p. 36] for the definition
of the completion kν of k at a place ν. When ν is an infinite place, kν is isomorphic
to R or C depending on whether ν is real or complex.

In addition, when ν is a finite place, the residue class field Fν associated to ν
is the field Rν/πνRν where Rν is the ring of ν-adic integers in kν and πν a local
uniformizing parameter for ν, see [7] for details. The field Fν is isomorphic to
Rk/Pν where Pν is the k-prime associated to ν.

Let B be a quaternion algebra over the number field k. The classification of
quaternion algebras Bν = B⊗k kν over the fields kν is quite simple. If ν is complex
then Bν is isomorphic to M(2, kν) over kν . Otherwise there is up to isomorphism
over kν a unique quaternion division algebra over kν , and Bν is isomorphic over kν
to either this division algebra or to M(2, kν).

Classification of quaternion algebras in general is slightly more complicated.
Again, let B be a quaternion algebra over the number field k. B is ramified at a
place ν of k if Bν is a division algebra. Otherwise we say B is unramified at ν. The
classification theorem for quaternion algebras over number fields (see [15, Chapter
3]) implies that the set Ram(B) of places of k which ramify B is finite and of even
cardinality (and contains no complex places). Conversely, suppose S is a finite set of
places of k which has even cardinality and which contains no complex places. Then
there is a quaternion algebra B over k with Ram(B) = S, and this B is unique up

to isomorphism over k. By [15, Chapter 2], a place ν of k is ramified in B =
(
a, b

k

)
exactly when the norm form of B, i.e., the quadratic form x2 − ay2 − bz2 + abw2

does not represent zero over kν . Furthermore, if ν is a place that ramifies B with
associated prime ideal P then P appears in the factorization of the fractional ideal
generated by a or b, or P divides 2, see [15, Chapter 2] or Lam [8, Chapter VI].
The set of finite places which ramify B is denoted Ramf (B).

1.2. Arithmetic hyperbolic 3-manifolds are obtained as follows (cf. [2] and [15,
Chapter 4]).

Let k be a number field having exactly one complex place. Let B be a quaternion
algebra over k which ramifies at all real places of k. Let O be an order of B
and let O1 the group of elements of reduced norm 1 in O. Over an embedding
k ↪→ C inducing the complex place of k one may choose an algebra embedding
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ρ : B ↪→ M(2,C) which restricts to an injection ρ : O1 ↪→ SL(2,C). Let P :
SL(2,C)→ PSL(2,C) be the natural projection. Then Pρ(O1) is a Kleinian group
of finite covolume. An arithmetic Kleinian group Γ is a subgroup of PSL(2,C)
commensurable with a group of the type Pρ(O1). We say Γ is derived from a
quaternion algebra if Γ is actually a subgroup of some Pρ(O1). We call Q = H

3/Γ
arithmetic or derived from a quaternion algebra if Γ is arithmetic or derived from
a quaternion algebra. The quotient Q is compact if and only if the algebra B is a
division algebra, which occurs precisely when some place of k is ramified in B, see
[15].

It is shown in [9] that a Kleinian group of finite co-volume is arithmetic if and
only if the group Γ(2) = gp{γ2 : γ ∈ Γ} is derived from a quaternion algebra.

1.3. As described in Neumann and Reid [10], to any Kleinian group Γ of finite
co-volume we can associate a quaternion algebra over a number field. Indeed as
discussed in [10] one can associate a quaternion algebra over a number field which
is an invariant of the commensurability class of Γ. The algebra is A Γ(2) (see below)
defined over the field Q((tr γ)2 : γ ∈ Γ). This field was shown to be an invariant of
the commensurability class of Γ in Reid [12]. In the arithmetic case this coincides
with the algebra described above. Moreover the construction of this algebra has
nothing to do with discreteness.

Let Γ be a non-elementary subgroup of SL(2,C), not necessarily discrete, and
let k = Q(tr(γ) : γ ∈ Γ) be the trace-field, which of course need not be a number
field. Define the associated quaternion algebra

A Γ = {Σaiγi : ai ∈ k, γi ∈ Γ},

where all sums are finite. That this is a quaternion algebra over k is shown in Bass
[1] for instance. We are using a different notation from [3] and [10] where A Γ
denoted the invariant quaternion algebra.

We now indicate how to reconstruct the quaternion algebra from any pair of
non-commuting elements of Γ. The proof of the following Lemma is completely
analogous to that of Proposition 2 of Takeuchi [14]; see also Hilden, Lozano and
Montesinos [6].

Lemma 1.1.

Let Γ be a non-elementary subgroup of SL(2,C), and let γ and δ be a pair of
non-commuting hyperbolic elements of Γ. Then,

A Γ ∼=
(

(tr2(γ)− 4), (tr([γ, δ])− 2)
k

)
.

For our purposes we require the following result which is almost a tautology, but
is of some interest as it gives a trivial method of proving discreteness.

Lemma 1.2.

Let Γ be a non-elementary subgroup of SL(2,C) such that the traces of Γ consist
of algebraic integers, the trace field of Γ is a number field with one complex place
and A Γ is ramified at all real places. Then Γ is discrete and may be projectivized
and embedded in a Kleinian group of finite covolume.
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Proof. The assumption on the traces imply that Γ is contained in the norm one
elements of an order O of A Γ, see [1]. However the conditions on the trace-field
and A Γ imply that P (O1) is an arithmetic Kleinian group by §1.2. Hence Γ is
discrete. �

1.4. To complete our discussion of arithmetic Kleinian groups, we recall one result
of [11] and [13] concerning totally geodesic surfaces in arithmetic hyperbolic 3-
manifolds. In particular the following theorem is proved in [11] extending [9] (see
also [13]).

Theorem 1.3.
Let M = H

3/Γ be a closed arithmetic hyperbolic 3-manifold with invariant trace-
field k and invariant quaternion algebra A. M contains an immersion of a totally
geodesic surface if and only if the following conditions are satisfied:

(1) [k : k ∩ R] = 2;
(2) Ramf (A) = ∅ or Ramf (A) = {νP1 , νP′1 , . . . , νPr , νP′r} where Pi ∩ Rk∩R =
P ′i ∩Rk∩R = pi, for i = 1, . . . , r, where pi is a prime ideal of k ∩ R.

For convenience we state a corollary of this result that suffices for our needs.

Corollary 1.4.
Let M = H

3/Γ be an arithmetic hyperbolic 3-manifold such that the invariant
quaternion algebra A is defined over Q(

√
−d), where d is a square-free positive

integer. If A is ramified at a place ν which lies over an inert place in Q, then M
does not contain an immersed totally geodesic surface.

Section 2 - Construction

For the purpose of constructing these manifolds, we recall a few facts about
traces in SL(2,C) and their relation to hyperbolic geometry. Note that we will
be working in SL(2,C) rather than in PSL(2,C). When we say that an isometry
of H3 is represented by a matrix in SL(2,C), we assume a fixed representation
from Isom+(H3) to PSL(2,C) and a fixed, consistent lifting of the image group to
SL(2,C).

Proposition 2.1. Let α, β ∈ SL(2,C). Then,
(1) tr(α) tr(β) = tr(αβ) + tr(αβ−1)
(2) tr([α, β]) = tr2(α) + tr2(β) + tr2(αβ)− tr(α) tr(β) tr(αβ)− 2

(3) if α is diagonal and β =
(
a b
c d

)
, then tr([α, β])− 2 = −bc(tr2(α)− 4)

Proof. Parts (1) and (2) are standard trace identities (valid over SL(2, R) for any
commutative ring R with identity) so we omit the proof.

For part (3), we let α =
(
λ 0
0 λ−1

)
and simply calculate directly that

tr([α, β]) = 2ad+ (λ2 + λ−2)(1− ad)

so that
tr([α, β])− 2 = 2(ad− 1) + (λ2 + λ−2)(1− ad)

= (1− ad)(λ2 − 2 + λ−2)

= −bc(tr2(α)− 4)
�
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Proposition 2.2. Let x be an hyperbolic or elliptic isometry of H3 represented by
α ∈ SL(2,C). Let the translation distance of x be ρ and the rotation angle (torsion)
be θ. Then,

ρ+ iθ = 2 cosh−1(
tr(α)

2
)

Proof. Conjugate so that α is diagonal, and use the fact that cosh−1(z) = ln(z +√
z2 − 1). �

Proposition 2.3. Let α, β ∈ SL(2,C) be matrices representing non-commuting
hyperbolic or elliptic isometries x, y (respectively) of H3 with the fixed points of x
and y−1xy all distinct. Let z be the isometry with axis mutually perpendicular to
the axis of x and the axis of y−1xy taking the axis of x to the axis of y−1xy. Let z
be represented by a matrix γ. Then,

tr(γ) = 2

√
1− tr([α, β])− 2

tr2(α)− 4

Proof. First, conjugate α and β into the form

α =
(
λ 0
0 λ−1

)
, β =

(
a b
c d

)
, (ad− bc = 1)

and note that the condition on the fixed points forces a, b, c, d to be nonzero. Next,

conjugate by an isometry ϕ =
(
p q
s t

)
which takes the fixed points of α to 1 and

−1 and takes the fixed points of β−1αβ to ω and −ω for some ω in C. This requires
that (pz+q)/(sz+t) take (0,∞, b/d, a/c) to (1,−1, ω,−ω). The first two constraints

force p = −s and q = t. Thus, ϕ =
(
p q
−p q

)
. The remaining constraint is that

ω =
p bd + q

−p bd + q
= −

pac + q

−pac + q

or, p2ab = q2cd. Without loss of generality, take q = 1, p = ±
√

cd
ab (ϕ may not be

in SL(2,C) with this choice, but it doesn’t matter, since we are only conjugating
by ϕ). Then,

ω =

√
ad±

√
bc√

ad∓
√
bc

= ad+ bc± 2
√
adbc

since ad− bc = 1. Note that ω−1 = ad+ bc∓ 2
√
adbc.

At this point, we see that z is realized by the matrix
(√

ω 0
0
√
ω−1

)
. Thus,

tr(γ) =
√
ω+
√
ω−1. We need to calculate this in terms of the traces of the original

α and β. Using Proposition 2.1(1), we see that

tr2(γ) = ω + ω−1 + 2 = 2ad+ 2bc+ 2 = 4(1 + bc)

Proposition 2.1(3) yields tr([α, β])− 2 = −bc(tr2(α)− 4) so that

tr(γ) = 2

√
1− tr([α, β])− 2

tr2(α)− 4

as claimed. �
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Proposition 2.4. Let z1(6= ±2), z2, z3 ∈ C. Then, there exist α, β ∈ SL(2,C) such
that tr(α) = z1, tr(β) = z2, and tr([α, β]) = z3.

Proof. Let

α =
(
a 0
0 a−1

)
, β =

(
b bc− 1
1 c

)
Then, Proposition 2.1(3) yields

tr([α, β])− 2
tr2(α)− 4

= 1− bc

So, to satisfy the conclusion of the Proposition, we need merely find a, b, c such that

(1) a+ a−1 = z1

(2) b+ c = z2

(3) 1− bc = (z3 − 2)/(z2
1 − 4)

These are solved by setting a = (z1 ±
√
z2

1 − 4)/2, λ = (z3 − 2)/(z2
1 − 4), b =

(z2 ±
√
z2

2 − 4 + 4λ)/2, c = z2 − b. �

Putting all these pieces together, we have the following. We point out that
by closed geodesic in a hyperbolic 3-orbifold, we mean: the image of a circle in
the orbifold that lifts to a geodesic in H3. The geodesic is simple if the distinct
geodesics in the lift do not intersect. Otherwise the closed geodesic is non-simple.

Theorem 2.5. Let p, q, d ∈ Z+ with d prime, and p < q. Let a, b 6= ±2 be algebraic
integers in Q(

√
−d) such that there exist algebraic integers x, y in Q(

√
−d) with

(1) a2 − 4 = qx
(2) qx(b2 − 4) + 4px = y2

Then, there is a Kleinian group Γ of finite covolume such that Γ contains elements
of trace a and trace b and the orbifold H3/Γ contains a non-simple closed geodesic.

Proof. We will apply Proposition 2.4 with z1 = a, z2 = b and z3 = px + 2 to
obtain matrices α, β ∈ SL(2,C) with tr(α) = a, tr(β) = b, and tr([α, β]) = px+ 2.
Applying Proposition 2.3 to α and β, we find that the isometry taking the axis of
α to the axis of β−1αβ and having axis mutually perpendicular to these two axes is
elliptic, since its trace is 2

√
1− p/q. This is equivalent to showing that the axes of

α and β−1αβ intersect. In fact, using Proposition 2.2, we see that p/q = cos2(θ/2)
where θ is the intersection angle of the two axes. Thus, we have our non-simple
geodesic, provided we have a Kleinian group. We need only to show now that 〈α, β〉
may be embedded in a finite covolume Kleinian group.

Note that if tr(α), tr(β) and tr([α, β]) are all algebraic integers, then tr(αβ) must
be an algebraic integer, since, by Proposition 2.1(2) it satisfies a monic polynomial
with algebraic integer coefficients. By assumption, tr(α) and tr(β) lie in Od, the ring
of integers in Q(

√
−d). Thus using Lemma 1.2 to construct Γ it suffices to show that

tr(αβ) also lies in Od, for then every trace in 〈α, β〉 is an integer combination of these
traces, and as we are dealing with algebras over Q(

√
−d), every quaternion algebra

over this field gives rise to arithmetic Kleinian groups, possibly non-cocompact.
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The assertion will follow, if the discriminant of the quadratic polynomial satisfied
by tr(αβ) in 2.1(2) is a square in Q(

√
−d). This follows from the calculation below.

−4(tr2(α) + tr2(β)− tr([α, β])− 2)

+ tr2(α) tr2(β) = (tr2(α)− 4)(tr2(β)− 4)

+ 4(tr([α, β])− 2)

= qx(b2 − 4) + 4px

= y2

�

In Theorem 2.5, the algebra A Γ may be the matrix algebra. However, we can
arrange that this will not be the case as we now proceed to show.

We compute the Hilbert symbol of A Γ, using Lemma 1.1 and the following two
basic facts about Hilbert symbols. First, the entries of a Hilbert symbol may be
freely multiplied by nonzero squares in K without altering the isomorphism class
of the quaternion algebra. Second,(

a, b

K

)
∼
(
−ab, a
K

)
where ∼ denotes the relation of having isomorphic algebras. Thus, we compute

that the Hilbert symbol of A Γ is(
px, qx

Q(
√
−d)

)
∼
(
−pqx2, qx

Q(
√
−d)

)
∼
(
−pq, a2 − 4
Q(
√
−d)

)
So, whenever there is a prime ramifying this algebra, we will have H3/Γ compact.

More important for our purposes here is the following corollary of our discussions
above.

Corollary 2.6. Given any positive prime d and m an algebraic integer in Q(
√
−d),

there is a Kleinian group Γ of finite covolume such that the Hilbert symbol of A Γ
is (

−3,m2 − 1
Q(
√
−d)

)
and the orbifold H3/Γ contains a non-simple closed geodesic.

Proof. Apply Theorem 2.5 with p = 3, q = 4, a = 2m, b = m. Then, x = m2 − 1
and

qx(b2 − 4) + 4px = 4(m2 − 1)(m2 − 4) + 12(m2 − 1)

= 4(m2 − 1)(m2 − 4 + 3)

= 4(m2 − 1)2

so we may take y = 2(m2 − 1). Since squares may be freely removed from the
entries in the Hilbert symbol, we remove factors of 4 from both entries of the Hilbert
symbol calculated following the proof of Theorem 2.5 to obtain the asserted Hilbert
symbol. �
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We note that none of the groups constructed here are torsion-free: tr(αβ) = 1 so
αβ is elliptic of order 3. We need one further result to be able to construct manifolds
with a non-simple geodesic. We will do this by constructing an appropriate torsion-
free subgroup of finite index. That is, we produce a torsion-free subgroup of finite
index in the group Γ above containing β. For then it will also contain some power
of α, and thus will still contain a non-simple closed geodesic. Most techniques for
constructing torsion-free, finite index subgroups in Kleinian groups do not allow
one to include an arbitrary non-torsion element in the subgroup. To do this, we
need the following result which is of interest in its own right. For it seems that
it is unknown in general that, given a hyperbolic 3-orbifold group Γ and γ ∈ Γ a
loxodromic element, there is a torsion-free finite index subgroup that contains γ.

Remark. We have been informed by Peter Scott that this is true for Fuchsian
groups, and the method of proof uses strong separability properties of such groups
which are not known to be true for hyperbolic 3-orbifold groups.

Theorem 2.7. Let Γ be a Kleinian group whose traces consist of algebraic integers.
Let k denote the trace-field of Γ. Let a1, a2, . . . , an be a finite subset of Rk and let
γ ∈ Γ. Suppose there exists a prime ideal p of Rk such that

(1) tr γ − 2 ∈ p
(2) ai − 2 /∈ p for all i = 1, 2, . . . , n
(3) νp does not ramify A Γ.

Then, there exists a finite index subgroup Γ′ ≤ Γ such that γ ∈ Γ′ and Γ′ contains
no elements of trace ai for any i = 1, 2, . . . , n.

Proof. Since νp does not ramify A Γ, we have a homomorphism from A Γ to A Γ⊗k
kνp and an isomorphism from there to M(2, kνp). This, together with the inclusion
of Γ into A Γ gives a representation from Γ into SL(2, kνp).

In fact, since the traces of elements of Γ are algebraic integers, this representation
may be chosen to have image in SL(2,Oνp) where Oνp is the p-adic integers in kνp .
Now, if we let π be a local uniformizing parameter for Oνp , we get a representation
ϕ : Γ→ SL(2,F) where F = Oνp/πOνp is the residue class field at p (recall §1).

Since tr γ−2 ∈ p, ϕ(γ) is the identity or is unipotent. In either case, trϕ(γm) = 2
for all m. Let Γ′ = ϕ−1(〈ϕ(γ)〉). Clearly, Γ′ has finite index in Γ. Furthermore, no
element in Γ of trace ai is in Γ′ since ai − 2 /∈ p by assumption. �

We can now proceed to construct closed hyperbolic manifolds containing a non-
simple closed geodesic.

Theorem 2.8. Let d be a prime congruent to 1 modulo 3. Let n be an arbitrary
algebraic integer in Q(

√
−d). If we let m = 1+4

√
−d+6n, then the Kleinian group

Γ constructed in Corollary 2.6 has a torsion-free finite index subgroup Γ′ such that
H

3/Γ′

(1) is a closed hyperbolic manifold
(2) contains no immersed totally geodesic surfaces
(3) contains a non-simple closed geodesic

Proof. First, observe that the only torsion elements of Γ have order 2 or 3, since
the trace of an element of order q is ±2 cosπ/q, and this by assumption must lie in
Q(
√
−d).
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We shall apply Theorem 2.7 to Γ with γ = β and a1 = 0, a2 = −1, a3 = +1. First
we observe that m−2 is not ±1 as m is not real. As d is congruent to 1 (mod 3), ±1
are the only units, hence there is a non-trivial prime ideal P of Q(

√
−d) containing

m− 2.
Now P cannot contain −3, −2, or −1: clearly, P cannot contain −1. If P

contains −2 then P contains m−4
√
−d−6n = 1 which is impossible. Finally since

d is congruent to 1 (mod 3), 3 does not divide the norm of m−2 = −1+4
√
−d+6n.

As discussed in §1.1 for any place ramifying the algebra A Γ of Corollary 2.6, the
associated prime ideal divides 〈3〉, 〈m2 − 1〉 or 〈2〉. Thus the ideal P above cannot
ramify the algebra, since it would then necessarily contain either 2, −3, m− 1, or
m + 1. Thus, Theorem 2.7 applies to obtain a finite index, torsion-free Γ′ with
β ∈ Γ′ and thus, we have part (3).

To prove (1) we shall show that the place ν of Q(
√
−d) associated to the prime

ideal 〈3〉 (which is inert since d ≡ 1 (mod 3)) ramifies the algebra A Γ. For then
as noted in §1.2, this ensures cocompactness of any group in the commensurability
class determined by Γ. Moreover by Corollary 1.4, this also guarantees no totally
geodesic surfaces.

To show that ν ramifies this algebra, from the discussion in §1.1 we are required
to prove that the form x2 + 3y2 − (m2 − 1)z2 − 3(m2 − 1)w2 does not represent 0
over Q(

√
−d)ν . We have already observed above that m2 − 1 is a ν-adic unit, i.e.,

〈3〉 does not divide 〈m2 − 1〉. By [8, Chap. VI, Proposition 1.9], to prove that ν
ramifies it suffices to show that x2 − (m2 − 1)y2 does not represent zero over the
residue class field Fν , which is a finite field of order 9. Since −1 is not a square
modulo 3, Fν = F3[

√
−1], where F3 is the finite field with 3 elements.

If this form did represent 0, this would imply that (m2−1) is a square in F3[
√
−1].

However, as is easily checked, the only squares in this finite field are {0,±1,±
√
−1},

and m was chosen so that m2 − 1 ≡ −1 −
√
−1 (mod ν). In particular m2 − 1 is

not a square and this completes the proof. �

To get infinitely many commensurability classes we simply note that by Dirich-
let’s Theorem on primes in an arithmetic progression, there are infinitely many
primes congruent to 1 (mod 3).

Section 3 - Examples

To construct simple examples of these manifolds, we first observe that the sim-
plest trace-field to which our results apply is Q(

√
−1) (although, strictly speaking,

1 isn’t prime, we really only need d to be non-composite). The algebraic integers
in Q(

√
−1) are the Gaussian integers Z[

√
−1]. So, to find a simple example of a

hyperbolic manifold of the type we have constructed, we seek a Gaussian integer
n such that m = 1 + 4i + 6n generates a “fairly simple algebra” as in Corollary
2.6. By this we mean construct an algebra so that one obtains examples of small
volume. It is well-known (cf. [2]) that the co-volume of a group Pρ(O1), for O a
maximal order, is related to the primes that ramify the algebra. On setting n = −i,
we obtain m = 1− 2i, so that one particular algebra is (after some simplification)(

3, 1 + i

Q(i)

)
This algebra is ramified at the places corresponding to the primes 3 and 1 + i
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(the prime above 2). It can be checked that there is a unique type of maximal order
(see [15]), and that the co-volume of Pρ(O1) is approximately 2.4425749 . . . .

The Kleinian group corresponding to the elements of norm one in a maximal
order of this algebra is an orbifold whose underlying space is the Lens Space L(5, 2)
and having singular set a knot with isotropy group Z3. Since the singular set is
a knot, there is a unique (up to conjugacy) maximal torsion-free subgroup (the
fundamental group of the 3-fold cyclic branched cover of L(5, 2), branched over the
singular set of the orbifold). Now, this torsion-free subgroup will not necessarily
be the torsion-free subgroup whose existence is guaranteed by Theorem 2.7, but
some conjugate of it will contain that subgroup, and hence, the maximal torsion-
free subgroup will also correspond to a closed hyperbolic manifold containing a
non-simple geodesic and no immersed totally geodesic surfaces.

This orbifold is obtained by (5,−2), (3, 0) surgery on the (3,−4,−4) pretzel link,
where the knotted component has the (3, 0) surgery (see Fig. 3.1). Jeff Weeks’ com-
puter program, Snappea confirms that the volume of this orbifold is 2.4425749 . . . .

The best presentation that we have found for this orbifold group has three gen-
erators and abelianization Z15. Two views of the fundamental domain for this
orbifold (in the upper half-space model of hyperbolic space) are given in Fig. 3.2.
Note that the face pairings are indicated on one of the views (looking down from
above). Although we have not indicated the precise nature of the pairings by edge
identifications, this is fairly clear because of the conformality of the upper half-space
model. In the first view, the observer is situated slightly below the polyhedron and
is looking at the face labelled “J” in the second view.

Figure 3.1

The maximal torsion-free subgroup (fundamental group of the manifold contain-
ing the non-simple geodesic) is a two-generator group and has first homology group
Z8⊕Z40. We should note, however, that this manifold has a double-cover with first
homology Z ⊕ Z4 ⊕ Z20 and so the manifold is Haken, by a result of Hass [5], So,
although it contains no (immersed) totally geodesic surfaces, it does nevertheless
contain an (embedded) incompressible surface. This is in itself interesting, since
the manifold has no totally geodesic surfaces, and at present the only other way of
trying to show that an arithmetic hyperbolic 3-manifold has a finite cover which
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is Haken, is to use the results of Clozel [4]. However, these do not apply to this
example, nor indeed to any of the examples given in the construction as 3 is inert.

A few words of explanation are in order as to how this example was computed.
We have written computer programs which take as input an order in a quaternion
algebra and calculate a fundamental domain for the Kleinian group consisting of
the elements of norm one in the order (as well as other useful quaternion algebra
calculations). More investigations using these computer programs will be discussed
in a future paper. The great benefit of arithmetic Kleinian groups here is that most
of the calculations may be carried out in integer arithmetic (by working relative
to an integral basis for an order) and that the group elements may be enumerated
with a fixed amount of memory (by enumerating the order elements, which form a
lattice). At present, the program is limited to quadratic trace fields, but we plan
to remove this limitation shortly.

The fundamental domain in Fig. 3.2 was obtained by the following process:
First, find an order containing the group generated by α and β as in the proof of
Theorem 2.5 (the axis of α intersects its image under β, giving rise to the non-
simple closed geodesic). For this, we may take the order consisting of Gaussian
integer linear combinations of the basis {I, α, β, αβ}. Next, we find a maximal
order containing this order. Maximal orders may be recognized in the following
fashion: let {a1, a2, a3, a4} be a basis for the order and let A = (tr aiaj) be the
matrix of traces of products of these basis elements. Recall from [15, Chapter 1] the
discriminant of such an order d(O) is the integral ideal given by d(O)2 = 〈det(A)〉.
The order is maximal if and only if d(O) is exactly the product of prime ideals for
which the corresponding places ramify the quaternion algebra, see [15, Chapter 1].

A useful fact in our context is that if the basis is of the form {I, x, y, xy} where
x and y have determinant 1, then 〈detA〉 = 〈tr[x, y]−2〉2. Using these two facts, it
is straightforward to find a maximal order which will then contain some conjugate
of the previous order.

In the case at hand, the maximal order is generated by {I, x, y, xy} where trx =
1 + i, tr y = 1 and trxy = −1 + 2i. Then, we find the fundamental domain of the
orbifold consisting of elements of norm 1 in this maximal order. We should note
the computational importance of passing to a maximal order: in this example, the
best fundamental domain for the original order that we were able to find has 130
faces, while the fundamental domain for the maximal order in Fig. 3.2 has 26 and
is much more easily dealt with.

The assertion that this orbifold is obtained by (5,−2), (3, 0) surgery on the
(3,−4,−4) pretzel link is seen to be true by the following procedure: There are
3 edges in the fundamental domain that correspond to singular edges in the orb-
ifold (the total cone angle around them is 2π/3). We begin by “folding up” the
fundamental domain along these edges, which all occur as edges between adjacent
identified faces (labelled B,E and M in Fig. 3.2). We also keep track of the singular
arcs so produced, which are now in the interior of the ball on whose boundary the
remaining identifications are to be carried out. After doing this, we see that many
of the faces are redundant. That is, there are regions consisting of multiple faces
which are glued to each other as a unit. In fact, after amalgamating these regions
into single faces, we are left with a single tetrahedron whose faces are identified in
pairs to give L(5, 2), together with three singular arcs which are identified end-to-
end to give a knot in L(5, 2) (see Fig. 3.3). By isotoping the knot in L(5, 2), we may
put it entirely inside a solid torus which is half of a Heegaard splitting for L(5, 2)
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Figure 3.2(b)
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(the core of this solid torus is an unknotted arc between the centers of the two front
faces in Fig. 3.3). We then embed this solid torus in S3 to get a link complement
on which the asserted surgery gives our orbifold. This link is readily seen to be the
(3,−4,−4) pretzel link. As a side note, the reader is invited to consider performing
this procedure on the 130-face fundamental domain corresponding to the original
order!
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