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Abstract. It was shown by Edmonds, Ewing and Kulkarni in 1982 that the minimal
index of a torsion-free subgroup of a finitely generated Fuchsian group of the first

kind G is bounded above by twice the LCM of the orders of the finite subgroups of
G. Here we show that no such result is possible for Kleinian groups. Specifically,

we exhibit a sequence Γk of co-compact Kleinian groups for which the ratio of the

minimum index to the LCM is arbitrarily large.
The construction of the Γk uses generalized triangle groups and unknotting tun-

nels of 2-bridge knots. We also derive some results of independent interest involving
these two constructs.

Section 0 - Introduction

A Kleinian group Γ is a discrete subgroup of PSL(2,C), the full group of orientation-
preserving isometries of 3-dimensional hyperbolic space. In the language of [T1]
Q = H

3/Γ is a hyperbolic 3-orbifold; that is a metric 3-orbifold in which all sec-
tional curvatures are -1, and for which Γ is the orbifold fundamental group (see
[T1] for further details). A Fuchsian group is a discrete subgroup of PSL(2,R) and
as such acts discontinuously on the hyperbolic plane. We define Γ to be of finite
co-volume (resp. co-area) if the volume (resp. area) of the quotient orbifold Q is
finite.

By Selberg’s Lemma, if Γ is a Kleinian (resp. Fuchsian) group of finite co-volume
(resp. co-area) it contains a torsion-free subgroup of finite index. By definition any
torsion-free subgroup cannot contain any finite subgroups of Γ, so the index must
be a multiple of the lowest common multiple of all orders of finite subgroups of Γ
(see [CFJR] for a proof). Γ being of finite co-volume implies there are only finitely
many conjugacy classes of finite subgroups. Thus, we make the following
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Definitions. Let G be a finitely-generated group containing only finitely many con-
jugacy classes of finite subgroups and some torsion-free subgroup of finite index.
Then,
L(G) = the lowest common multiple of the orders of all finite subgroups of G

and
M(G) = the minimum index of a torsion-free subgroup of G.

Now non-trivial finite subgroups of a Fuchsian group are cyclic as follows from
the structure theory of Fuchsian groups, and the only possibilities in the case of a
Kleinian group are cyclic, dihedral, A4, S4 or A5. In [EEK], it is shown that if Γ is a
Fuchsian group of finite co-area, thenM(G)/L(G) ≤ 2. Given that the structure of
Fuchsian groups is well-understood, the proof of this theorem is remarkably subtle
in the case where the underlying space of the quotient orbifold is the 2-sphere.

The corresponding question as to whether there exists a bound forM(G)/L(G)
in the case of Kleinian groups has been of some interest lately in the study of small
volume hyperbolic 3-orbifolds. In particular if a bound exists, then this would, for
example, allow for simplification in the proofs of [CFJR] in the identification of the
smallest volume arithmetic hyperbolic 3-manifold. However, in [CFJR], a Kleinian
group Γ was constructed for which it was observed that M(Γ)/L(Γ) = 4. The
purpose of this paper is to prove

Theorem 1. For k ∈ N, k ≥ 2, there exists a Kleinian group Γk such that
M(Γk)/L(Γk) > k.

The construction of the Γk involve Generalized Triangle Groups (defined below).
These have attracted some attention recently for a variety of reasons (see for in-
stance [BMS], [GL], and [HMV]). An extension of our construction of the groups Γk
provides a partial answer to a question of M. Hagelberg in [G93] concerning which
Generalized Triangle Groups can be the orbifold fundamental group of a compact
orientable 3-orbifold (possibly with boundary). This question has been studied in
special cases recently; see for example [H], [HMR] and [HMV].

Section 1 - Generalized Triangle Groups and Tunnel Number 1 Links

The construction of the Kleinian groups Γk is closely connected with the notion
of a Generalized Triangle Group, and tunnel number 1 links, which we now define:

Definition. A Generalized Triangle Group is a group admitting a presentation of
the form

〈a, b : am, bn, (R(a, b))p〉

where R(a, b) is any cyclically reduced element of the Zm ∗ Zn generated by a and
b which is not conjugate to a proper power and m,n, p are integers greater than 1.

This group will be denoted ∆(m,n, p,R(a, b)).

Let L be a knot or link in S3. An unknotting tunnel for L is an embedded arc t
in S3 disjoint from L with endpoints on L such that the complement of a regular
neighbourhood of L ∪ t in S3 is a genus 2 handlebody. If an unknotting tunnel for L
exists, L is called tunnel number 1. Note if a link has tunnel number 1 it must have
at most two components. Such a decomposition of the knot or link exterior leads
to a 2-generator, 1-relator presentation of the group, the relator corresponding to a
simple closed curve in the boundary of a genus 2 handlebody to which a 2-handle
is attached.
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All 2-bridge knots and links are tunnel number 1: a pair of unknotting tunnels
that are easy to see are the so-called “upper” or “lower” tunnels in a 4-plat projec-
tion of the knot or link. (cf. [BM] and [AR] for more on this). Each of these tunnel
decompositions results in a 2-generator, 1-relator presentation for the fundamental
group with a pair of meridians of the link as generators.

Let m, n and p be integers greater than 1. Form the labelled graph Σ =
Σ(m,n, p) in S3 as follows. Using the upper (or lower) tunnel t above, each 2-
bridge knot or link yields a graph (with three edges and two vertices) which is then
labelled by labelling the edges m, n and p, indicating a cone angle of 2π/i where
i is one of {m,n, p} along the edge (we shall take p to be the label of the tunnel).
Let Q = Q(t;m,n, p) be the orbifold with these specifications as base and singular
set, so that Q is a compact orientable 3-orbifold (strictly speaking, we must delete
an open neighborhood of the vertices if the labelling of the incident edges is not
spherical). It follows that πorb

1 (Q) is of the form 〈a, b : am = bn = R(a, b)p = 1〉.
With this discussion we have:

Lemma 2.
πorb

1 (Q) is a generalized triangle group. �

We now discuss in a little more detail one family of orbifolds that we shall use
below.

Example

For j ≥ 1, let Tj be the 2-bridge torus link with j full-twists (see Figure 1),
so T1 is the Hopf link. Note that we may take either left or right twists here as
convenient – we will simply get an orientation-reversal between the two and all
orbifold fundamental groups we subsequently obtain will be isomorphic regardless
of which orientation we choose.

Let Oj be the orbifold obtained from Tj as discussed above using the upper
tunnel. Label the edges of the graph using the triple {3, 3, 2} as shown in Figure 2
below.

Lemma 3.
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Figure 3

πorb
1 (Oj) has a presentation 〈a, b : a3 = b3 = ((ab)j(a−1b−1)j)2 = 1〉.

Proof. We will use the Wirtinger presentation – refer to Figure 3, where the case j =
3 is illustrated. The generators of πorb1 (Oj) are c, a0, a1, . . . , aj , b0, b1, . . . , bj . The
relations come from three sources: torsion relations, vertex relations and crossing
relations. The torsion relations are generated by c2 = a3

0 = b30 = 1. The singular
set vertices give the relations c = b−1

0 bj = a0a
−1
j . The crossings give relations

ai = bi−1ai−1b
−1
i−1 (i = 1, 2, . . . , j)

bi = aibi−1a
−1
i

Repeatedly using these crossing relations to write all the ai and bi in terms of
a0 and b0, we obtain

ai = (b0a0)i−1b0a0b
−1
0 (a−1

0 b−1
0 )i−1

bi = (b0a0)ib0(a−1
0 b−1

0 )i
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Substituting these into the vertex relations gives the single relation c = (a0b0)j(a−1
0 b−1

0 )j

so that
πorb1 (Oj) = 〈a0, b0 : a3

0 = b30 = ((a0b0)j(a−1
0 b−1

0 )j)2 = 1〉

�

Section 2 - The Construction

In this section we construct the Kleinian groups Γk advertised in Theorem 1
using the orbifolds Oj given in the Example of §1.

Theorem 1 will be a consequence of the next two lemmas.

Lemma 4. For j sufficiently large, Oj is a closed hyperbolic 3-orbifold.

Proof.
Let Q be the orbifold pictured in Figure 4. This is an orbifold whose base is the

open solid torus.

J

2 3

3

Figure 4

Notice that the orbifolds Oj are obtained by (1, j)-Dehn surgery on the cusp
of Q corresponding to the unknotted component J in Figure 4. We may also use
(−1, j)-Dehn surgery and obtain an isomorphic fundamental group.

We shall show that Q is hyperbolic and so Thurston’s Hyperbolic Dehn Surgery
Theorem implies the Lemma. A proof of the Dehn Surgery Theorem for orbifolds
is given in [DM]. To see that Q is hyperbolic we proceed as follows. From [FF]
for instance, the orbifold shown in Figure 5 is the hyperbolic orbifold B arising as
H

3/PSL(2,Z[
√
−2]). B is 2-fold covered by Q, where the quotient map is given

by the involution on the solid torus which rotates the solid torus about a core axis
(the dashed curve in Figure 6).

These observations complete the proof. �

In the case of j = 1, the link in the singular set in this case is simply the Hopf
Link, and the hence the labelled graph describing the singular set in this case is
the Hopf link labelled 3 and the arc labelled 2. This orbifold appears in the list of
spherical orbifolds in Table 8 of [Du1], so the group Gj is finite and hence O1 is
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certainly not hyperbolic. In fact it has been shown in [LR] that this group has order
288. In §3, we shall see that the Thurston Orbifold Conjecture actually implies that
Oj is hyperbolic whenever j > 1.

Define Γk to be the Kleinian group which is the orbifold fundamental group of
O(12k)!.

Lemma 5. M(Γk) > 12k for sufficiently large k.

Proof.
Suppose H is a torsion-free subgroup of index m ≤ 12k. The permutation

representation of Γk on H yields a homomorphism, ϕ : Γk → Sm such that a
and b map to a product of disjoint 3-cycles, and (ab)(12k)!(a−1b−1)(12k)! maps to a
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product of 2-cycles. Note that we are making use of hyperbolicity to assert that all
the relators actually have the order that they appear to have in the presentation.
In §3, we shall see that this is actually independent of hyperbolicity, so that the
hypothesis of “sufficiently large k” is really unnecessary here.

Since Sm embeds as a subgroup of S12k for all m ≤ 12k, we see that the order
of any element of Sm divides (12k)!. Hence ϕ((ab)(12k)!(a−1b−1)(12k)!) = 1, since it
is the product of two (12k)! powers. Now the kernel of ϕ is a subgroup of H, and
this contradicts the assumption that H is torsion-free. �

All that remains to complete the proof of Theorem 1 is to note that for all k,
L(Γk) is 12, since O(12k)! (indeed any Oj) contains only singular arcs with cyclic
isotropy of order 2 and 3 and two singular vertices with A4 isotropy. Thus, Lemma
5 implies Theorem 1. �

It seems worthwhile noting that many “more obvious” constructions of orbifolds
do not give examples where the conclusion of Theorem 1 is satisfied. Indeed for
many cases, one can say exactly what the minimal index torsion-free subgroup is.
These considerations, in part, led us to consider the examples above. The following
is quite straightforward, not even requiring hyperbolicity.

Theorem 6. Let M be a closed orientable 3-manifold, and L = L1 ∪L2 . . .∪Ln a
link embedded in M . Fix a framing (Mi, `i) for each component. Let Q denote the
orbifold obtained by doing (p1, 0), . . . (pn, 0) orbifold Dehn surgery. Then πorb

1 (Q)
has a torsion free subgroup of index LCM(p1, . . . , pn).

Proof.
This is merely an exercise in branched covers. Let pj1 , . . . , pjm be the distinct

prime factors of L = LCM(p1, . . . , pn). Using the framing given, there is a map
from πorb

1 (Q) to Zpj1 ⊕ . . . ⊕ Zpjm obtained by factoring the map from π1(M \ L)
through the homomorphism induced by the prescribed orbifold Dehn surgery. The
kernel of this map is necessarily torsion-free. �

The next result is somewhat more involved, but hyperbolicity is not needed here
either. This result states that we cannot construct the orbifolds we desire by doing
orbifold Dehn surgery on successively more complicated punctured surface bundles.

Theorem 7. Let X be a surface bundle with fiber a surface of genus g with n ≥ 1
punctures. Frame each component of the boundary of X as (Mi, `i) where Mi is a
component of the pre-image of a point in the fiber and `i is a boundary component
of the fiber. Let O be the orbifold obtained by (mipi, nipi) orbifold Dehn surgery on
component i of X, where mi and ni are relatively prime and ni and pi are relatively
prime. Let G denote the orbifold fundamental group of O. Then, there is a constant
q, depending only on g, n and the pi, such that M(G)/L(G) ≤ q. In particular, q
is independent of the monodromy of X.

Proof. For the sake of clarity, denote the (free) fundamental group of the fiber of
X by F and the mapping class group of X by MF .

First, consider the case in which all mi are 0 and all ni are 1. The orbifold
Dehn surgery in this case induces an orbifold structure on the fiber, which we
denote by OF and its orbifold fundamental group by GF . Furthermore, G is an
HNN-extension of GF . Denote the HNN-extension element (some power of which
represents all of the Mi) by t. Now, GF has a torsion-free subgroup (of index at
most 2L(G)) which we denote by HF .
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Next, we construct another subgroup, KF of GF which is also torsion-free and
of finite index. We do this by pulling back HF to F , yielding a (free) subgroup
H ′F . Next, we observe that MF acts on H ′F , so we intersect all conjugates of
images of H ′F under the action of MF , yielding a finite-index normal subgroup
K ′F . The key fact here is that K ′F is invariant under the action of MF , hence the
projection homomorphism from F to F/K ′F is also invariant under the action of
MF . Let KF be the image of K ′F under the projection from F to GF . Since KF is
torsion-free, the index of KF in GF is a multiple of L(GF ). So, let r = [GF : KF ]
and let q = r/L(G). Now, there is a homomorphism ϕ : GF → Sr which is the
subgroup monodromy of KF (since KF is normal, it is in fact the projection map
to GF /KF embedded in Sr). As already observed, ϕ is invariant under the action
of MF on the generators of GF so that ϕ extends trivially (by sending t to the
identity) to a homomorphism from G to Sr. Abusing notation slightly, denote this
homomorphism also by ϕ. So, the HNN-extension of KF by t is a torsion-free
subgroup of G with index equal to qL(G). Thus, we have proven our result for the
case in which mi = 0 and ni = 1.

For the more general case, we merely remark that the homomorphism ϕ con-
structed above still works: since KF above is torsion-free, ϕ(`i) is a product of
disjoint pi-cycles. Furthermore, all of theMi are sent to the identity by ϕ. So, the
surgery curves are sent to ϕ(`i)ni which will still be a product of disjoint pi-cycles,
since ni and pi are relatively prime.

To actually calculate q for a particular (g, n, {pi}) it suffices to go through the
process outlined in the proof, which is rather tedious, but which could be easily
automated. We have calculated that for g = 1, n = 1, p1 = 2 (the simplest case)
we have q = 4 (the group GF /KF is the order 8 group of unit quaternions). �

Section 3 - Geometric Structures for Generalized Triangle Groups

In this section we extend our constructions in §1 and 2 to show that many
generalized triangle groups have realizations as the orbifold fundamental groups of
geometric 3-orbifolds. This has been of some interest recently (see [H], [HMR] and
[HMV]) and gives a partial answer to a question of Hagelberg in [G93]. Our methods
of exhibiting a geometric structure use the Orbifold Conjecture of Thurston (see
below).

We commence with a different description of the orbifolds obtained from 2-bridge
knots or links and an unknotting tunnel discussed in §2.

Definition. Let r, s be positive relatively prime integers with r < s and a, b be
generators of a free group G. Then

W (r, s, a, b) =
s−1∏
i=0

a(−1)[(2i+1)r/s]
b(−1)[(2i+2)r/s]

We will also abuse this notation slightly and use W (r, s, a, b) where a and b are
arbitrary elements of an arbitrary group to represent the obvious group element.

Theorem 8. Let G = ∆(m,n, p,R(a, b)) be a Generalized Triangle Group and
let ρ : Z ∗ Z → Zm ∗ Zn be the canonical homomorphism taking generators (a, b)
to generators (c, d). Let r, s be positive relatively prime integers with r < s such
that ρ(R(a, b)) (or its inverse) is the image of W (r, s, c, d) under an automorphism
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of Zm ∗ Zn. Then, G is the orbifold fundamental group of a compact orientable
3-orbifold.

Proof. Assume that G = ∆(m,n, p,W (r, s, a, b)) is a generalized triangle group
with r and s as in the hypothesis. We shall construct a 3-orbifold whose funda-
mental group is isomorphic to G by taking a genus-two handlebody H (with fun-
damental group generated by a and b) and adding singular 2-handles (with central
singularities of order m,n and p, respectively) along disjoint simple closed curves
in the boundary representing a, b and W (r, s, a, b). The curves representing a and b
may be taken to be the standard generating curves. Note that standard here means
standard with respect to the usual handlebody picture. This standard handlebody
will be mapped into S3 in a very nonstandard way in general.

At this point, the only remaining difficulty is in ensuring that a simple closed
curve representing W (r, s, a, b) may be found in the boundary with the a and b
curves removed. But this surface is a four-punctured sphere, and free homotopy
classes of simple closed curves on a four-punctured sphere are represented by “lines
of rational slope on a square pillowcase,” as in the usual classification of 2-bridge
links (see, for example, [HT]).

With the conventions that wrapping from front to back on the right edge cor-
responds to generator a, wrapping from back to front on the left edge corresponds
to generator b, the lines have non-negative slope and are traversed from lower left
to upper right on the front and the basepoint is located at the lowest intersection
point of the lines with the left edge (see Figure 7), we read off W (r, s, a, b) for the
element in π1(H) corresponding to a line of slope r/s. Note that the lines may
be taken to have non-negative slope less than 1 without loss of generality since
increasing the slope by 1 has the effect of Dehn-twisting the pillowcase along the
vertical bisector (which bounds a disc in H) and replacing a by a−1.

Thus, we may attach a singular 2-handle along an r/s curve and obtain a 3-
dimensional orbifold (with boundary) whose orbifold fundamental group is the de-
sired Generalized Triangle Group. �

We should note here that a partial converse to this theorem was incorrectly
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asserted in a previous version of this paper. We are indebted to Jim Howie for
pointing this error out.

To make explicit the connection with §2 we argue as follows: let G be a gen-
eralized triangle group as in Theorem 8 (i.e. G = ∆(m,n, p,W (r, s, a, b)) for some
integers r, s,m, n, p). Then, G is the orbifold fundamental group of a compact ori-
entable 3-orbifold. As discussed in the proof of Theorem 8, we construct the orbifold
by taking a genus 2 handlebody H and attaching singular 2-handles along simple
closed curves in the boundary of the handlebody representing a, b and W (r, s, a, b)
where a and b are the standard generating curves in ∂H. Consider then, the
3-manifold obtained by attaching a 2-handle to H along the curve W (r, s, a, b). De-
pending on whether the curve representing W (r, s, a, b) is separating or not (which
depends on whether s is even or odd), we get a compact manifold M with two or
one torus boundary components, respectively. Viewing M as a knot or link comple-
ment in a closed 3-manifold, we see that the two generator presentation for π1(M)
arising from the above 2-handle attachment, yields generators which are meridians
of the knot or link. By killing these meridians we see that M is a knot or link
complement in a homotopy 3-sphere Σ.

One explicit way to realize this link complement in a homotopy 3-sphere is with a
2-bridge link in a 3-sphere, as we will see below. In fact, this is the only way to realize
this, since Σ has a genus 2 Heegard splitting, and there are no Heegard-genus 2
counterexamples to the Poincare Conjecture (see [MB], for example). Furthermore,
[BZ] implies that a link complement which is generated by two meridians must be
a 2-bridge link.

To see precisely which unknottings of 2-bridge links correspond to which group,
we will look a bit more carefully at the handlebody H: we can see that the 2-
bridge link which is being unknotted is (equivalently) the r/s rational link with
the “inner” unknotting tunnel or the the p/s rational link, where pr ≡ 1 (mod s),
with the “outer” unknotting tunnel (see Figure 8). To see this, observe that the
nontrivial curve which bounds a disc in a 3-ball with two unknotted arcs removed
is the boundary of a regular neighborhood of the homotopic image (rel. endpoints)
of either arc pushed to the boundary 2-sphere. This is exactly the relation between
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the simple closed curve in Figure 6 and the two arcs in the standard 2-bridge picture
(again, see Figure 8). So, the meridian of the unknotting tunnel corresponds to the
“inner” unknotting in Figure 8. But, the usual classification of two-bridge links
yields the fact that interchanging the inside and outside of a rational link diagram
converts r/s to p/s where pr ≡ 1 (mod s).

We now recall some salient definitions from the theory of 3-orbifolds, cf. [Du1],
[Sc] and [T1].

A compact 2-dimensional orbifold is said to be respectively spherical or toric if
it is the quotient by a finite (smooth) group action of the 2-sphere S2 or the torus
T 2. A 2-orbifold is called bad if it has no manifold cover. Following [Du2] we define
a turnover to be a 2-orbifold with underlying space S2 and three cone points, and
a pillow orbifold to be a 2-orbifold with underlying space S2 and having four cone
points, all of which have cone angle π.

A compact orientable 3-orbifold Q is said to be irreducible if it contains no bad 2-
suborbifold and every spherical 2-suborbifold bounds a BALL, that is, the quotient
of the 3-ball by a finite group of orientation preserving isometries of S2.

An embedded orientable non-spherical 2-orbifold S in Q is incompressible if any
1-suborbifold of S which bounds a DISC (that is, a 2-orbifold of the form D

2/F
where F is a finite subgroup of O(2)) in Q \ S bounds a DISC in S.

We define a 2-orbifold S properly embedded in a 3-orbifold Q to be essential if
it is not boundary parallel and S is either spherical and does not bound a BALL
or S is non-spherical and is incompressible.
Q is said to be simple if every incompressible toric suborbifold is boundary

parallel.
The following conjecture of Thurston [T2] (see [Ho] for a discussion and outline

of the proof) provides the existence of a geometric structure.

Thurston’s Orbifold Conjecture. Let Q be a compact irreducible orientable
simple 3-orbifold possibly with boundary. If ∂Q 6= ∅ assume that it consists of
Euclidean suborbifolds, and that the (nonempty) singular set has dimension 1. Then
Q has a geometric structure.

Using this conjecture we shall establish:

Theorem 9. Let Q(m,n, p) be a 3-dimensional orbifold with underlying space S3

and singular set a 2-bridge knot or link L together with an unknotting tunnel, la-
belled m, n and p, with p along the unknotting tunnel (and possibly with vertex
neighborhoods deleted as in §2). Let r, s denote positive relatively prime integers
with r < s such that πorb

1 (Q) = ∆(m,n, p,W (r, s, a, b)). Then Q(m,n, p) is geo-
metric unless L is a link of two unknotted, unlinked components. More specifically,

(1) if L is a link of two unknotted, unlinked components, then Q is bad.
(2) otherwise, if πorb

1 (Q) is finite, then Q is spherical
(3) otherwise, if s is odd, p = 2, either m or n = 2, and 2r ≡ ±1 (mod s) then

Q is Seifert-fibered
(4) otherwise, if r = 0, s = 1 then Q is Seifert-fibered (actually, I-fibered)
(5) otherwise, Q is hyperbolic

Proof. Denote the singular set of Q by Σ. We need to categorize the spherical and
toric 2-orbifolds in Q. Note that there are no essential spheres or tori in Q since
the complement of Σ is a handlebody. Nor are there any 2-orbifolds with boundary
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reflectors, since Q is an orientable orbifold. Thus, we must deal with the 2-orbifolds
having underlying space S2 and up to 4 cone points.

Let us examine carefully a few particular types of orbifolds we will need to
recognize. All of these will have underlying space a 3-ball (possibly with some
vertex neighborhoods deleted). We will refer to such an orbifold with singular set
a single vertex and three unknotted singular arcs running out to the boundary as
a “Y-ball,” to an orbifold with one unknotted singular arc as an “I-ball,” and to
an orbifold with two unknotted singular arcs as an “II-ball” (see Figure 9). In the
case of a Y-ball, the interior vertex will possibly have a neighborhood deleted if the
incident edges are not consistent with the vertex having a spherical link.

We note that each one of these special orbifolds may be recognized up to isotopy
by the combinatorial type of the singular set, together with the fundamental group
of the complement of any subgraph of the singular set being free (see [ST]). We
also observe that the boundary of any of these special orbifolds is inessential.

Let us call a 3-orbifold basic if it has underlying space a 3-ball, singular set
combinatorially equivalent to one of the 3 special orbifolds in Figure 9, and if the
fundamental group of the complement of any proper subgraph of the singular set
is free.

Let us suppose a 2-orbifold O in Q bounds a basic 3-orbifold B. Then, either
B \Σ has free fundamental group (in which case B is one of the special orbifolds) or
B \Σ fails to inject into Q\Σ (since Q\Σ is a handlebody) and thus some essential
loop γ in O \ Σ bounds a disc in Q \ (Σ ∪ O). If γ bounds a DISC in O, then we
have a bad 2-orbifold in Q by pasting the DISC and the disc together. Otherwise,
O is compressible in Q. Thus, any 2-orbifold in Q that bounds a basic 3-orbifold
must either be inessential or give rise to a bad 2-orbifold in Q.

Y-ball

I-ball II-ball

Figure 9

Let us next fix some notation: denote by τ the unknotting tunnel, and by K
the 2-bridge knot (if it is a knot) or by L1 and L2 the two components of the
link. In the knot case, denote by K1 and K2 the two arcs of K between the two
intersections with τ . Let S be an embedded sphere in Q meeting the singular set
in q points, where 1 ≤ q ≤ 4. Observe that the Li are unknotted circles and the Ki

are unknotted arcs. We will show that Q is geometric (unless L is a 2-component
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unlink) by showing that S can only be bad if L is a 2-component unlink, and that
otherwise S bounds a basic orbifold.

Note that q cannot be 1, unless L is a two component unlink, since no sphere
can meet L in a single point, and a sphere that meets only τ in an odd number
of points must separate the two components of L (and cannot occur at all if L is
a knot). So, except for the Q arising from this particular link, there are no bad
2-suborbifolds in Q.

If q = 2, then either S meets τ twice or one of the Li twice or one of the Ki

twice. In either case, S bounds a basic orbifold equivalent to an I-ball.
If q = 3 (turnover), then S must meet τ exactly once, and either some Li twice

or both Ki once: it cannot meet L (or K) an odd number of times for homological
reasons, and it cannot meet τ 3 times as observed above. In the knot case, since
2-bridge knots are prime, one of the balls bounded by S must contain an unknotted
arc of K. This ball will also necessarily contain an unknotted subarc of τ and so
it is a basic orbifold equivalent to a Y-ball. In the 2-component case, one of the
balls bounded by S will contain the other component of L and the other one will
not. The ball which does not contain the other component must contain only an
unknotted arc of Li (since Li is in fact an unknot) and an unknotted arc of τ and
so is also a basic orbifold equivalent to a Y-ball.

If q = 4 (pillow), then there are several combinatorial possibilities, but in every
case S bounds two balls, one of which contains both vertices and the other of which
contains none. The side containing no vertices is a basic orbifold equivalent to an
II-ball.

This shows that Q is geometric as long as there are no (deleted) vertices with link
a hyperbolic 2-orbifold. If there are such vertices, we may perform the usual trick of
doubling along the links of such vertices (denote this double by DQ), and observing
that any essential toric or spherical 2-orbifolds in DQ gives rise to an essential toric
or spherical 2-orbifold inside one of the halves. This is because the doubling surfaces
are 2-spheres with 3 cone points and any essential embedded 2-orbifold placed in
general position will intersect the doubling surface at most in simple closed curves,
which all bound a DISC in the doubling surface. Using an inductive process on
innermost such curves, we may decompose the original 2-orbifold into an essential
2-orbifold in one half, together with some (possibly empty) collection of essential
2-spheres with 2 cone points (again embedded in one of the halves). Thus, if there
are no essential spherical or toric 2-orbifolds in each half, there are none in DQ.

So, DQ must be geometric. Observe that since πorb
1 (DQ) is infinite and contains

a Fuchsian triangle group, the geometric structure on DQ cannot be modelled on
S3, S2 × R, E3, Nil or Sol. Therefore either the double is hyperbolic or it is a
Seifert fibered orbifold with geometry modelled on H2 × R or ˜SL(2,R). Note that
DQ admits an orientation-reversing involution σ0 interchanging the two copies of Q.
As is well-known, in the hyperbolic case, we can make this involution an isometry,
hence forcing Q to be hyperbolic and making the boundary of Q totally geodesic.
In the Seifert fibered cases, since πorb

1 (DQ) is residually finite, we can pass to a
regular finite cover DM of DQ which is a manifold and which admits a lift σ of
the orientation reversing involution switching the two copies of Q. This induces a
covering of Q by a manifold. Thus we have a finite group G acting on the geometric
manifold DM . By Meeks and Scott [MS], since we are in the Seifert fibered case,
the G-action preserves the geometric structure, and so in particular σ acts as an
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isometry of the geometric structure on DM . Hence we deduce that the involution
σ0 on DQ preserves the geometric structure and so we deduce that Q is geometric.

In fact, the only essential hyperbolic 2-orbifolds that exist in a Seifert-fibered
3-orbifold are “horizontal” 2-orbifolds, which cut the 3-orbifold apart into an I-
bundle. Since the doubling surfaces are 2-sided, the I-bundle must in fact be
trivial, so this only occurs when r = 0, s = 1 (i.e., when the Generalized Triangle
Group is actually a Triangle Group).

Now that Q is geometric, to complete the proof we need to decide which geometry
is possessed by Q. By the above comments we may restrict to the case in which
the doubling argument above was not needed.

By Theorem 1 of [Du1] Q must either be spherical (and have finite π1), Seifert-
fibered (with either finite or infinite π1), one of 12 Euclidean orbifolds (infinite
π1), a solvorbifold (infinite π1) or a hyperbolic orbifold (infinite π1). Note that
Seifert-fibered orbifolds with finite π1 are also spherical.

Now, we can rule out the 12 “special” Euclidean orbifolds by checking Dunbar’s
list directly. We rule out the Seifert-fibered case by observing that the only possible
vertex stabilizers for Seifert-fibered orbifolds with infinite fundamental group are
cyclic or dihedral (see §4 and §5 of [Du1]), and that the only possible Q(m,n, p)
which have vertex stabilizers of this form are the orbifolds Q(2, 2, p) and Q(2, n, 2)
(or Q(m, 2, 2)). The former have finite (dihedral) fundamental group and thus are
spherical, whether or not they are fibered.

The latter only arise in the 2-bridge knot case (the link case has vertex indices
of (2, 2, 2) and (2, n, n)). Assume for definiteness that K1 is labelled 2. Observe
that here, the 2-fold cyclic branched cover of S3 branched over the unknot τ ∪K1

is again S3 and that the union of the two lifts of K2 is a knot J . Then Q is Seifert-
fibered if and only if J is a torus knot. We claim that this will happen precisely
when r ≡ ±1 (mod s).

To see this, recall the geometric picture of Q with its vertices deleted which
was given in the proof of Theorem 2, i.e., a genus-two handlebody with singular
discs attached along two standard meridians a and b and a simple closed curve
representing W (r, s, a, b). The 2-fold branched cover corresponds to a genus-three
handlebody (cover corresponding to index-2 subgroup freely generated by a2, b,
aba−1) with singular discs attached to the lifts of b and aba−1 and nonsingular
discs attached to the lifts of a2 and W (r, s, a, b)2. Now, note that if a has order 2,
W (r, s, a, b)2 = W (2r, s, aba−1, b), so that this orbifold is a punctured realization of
the group ∆(n, n, 1,W (2r, s, c, d)) (where c and d are lifts of aba−1 and b, respec-
tively). In particular, J is a 2-bridge knot and is a torus knot if and only if 2r ≡ ±1
(mod s).

We rule out the solvorbifold case by recalling Theorem 1 of [Du1] which shows
that solvorbifolds fiber over S1 or have a double cover which does. The abelianiza-
tion of πorb

1 (Q) is clearly finite (since both generators have finite order), so Q itself
doesn’t fiber over S1. Furthermore, if there exist any index-2 subgroups, they are
generated by {a2, b, aba−1}, {b2, a, bab−1} or {a2, ba−1, ab}. The first two of these
also have obviously finite abelianization. To handle the third subgroup (which only
occurs when m and n are both even and either p is even or L is a link), let A = a2,
B = ba−1 and C = ab. Then, in the abelianization, A, B + C and B − C all
have finite order and hence so does 2B and hence B. Thus, the generating set
{A,B,BC} is a set of generators which all have finite-order in the abelianization.

To see that no cusped orbifolds (those with vertex links that are Euclidean
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triangle groups) result in Seifert-fibered (or I-fibered, which we will henceforth not
distinguish) orbifolds, other than the cases mentioned in the theorem, recall that
totally geodesic surfaces in Seifert-fibered spaces are either transverse to the fibers
(in which case they decompose the space into a union of I-bundles) or are parallel
to the fibers (in which case they are fibered themselves).

Now, suppose that Q is a Seifert-fibered orbifold with either one or two cusps.
If either cusp is transverse, then Q is an I-bundle (so the other cusp if it exists
must be transverse also). If there are two cusps (note that this always occurs if the
2-bridge link is a knot), then the I-bundle must be trivial and we are in case (4) of
the conclusion of the theorem. If there is only one cusp, then the other vertex must
be dihedral (as observed earlier) and so the singular locus must consist of a singular
fiber connecting the cusp to itself, another loop of 2-fold singularity connected to
the cusp by the unknotting tunnel. But, this cannot be an I-bundle, since taking
the 2-fold cyclic cover over the singular loop should produce another I-bundle, but
instead produces a two-cusped orbifold with one singular arc joining the two cusps
and a singular arc running from each cusp to itself (note that the singular arcs are
fibers of the I-bundle).

If no cusps are transverse, then there must be a “parallel” cusp (that is, a cusp
that is itself fibered). Such a cusp must have only 2-fold singularities and so must
be a 2-sphere with four 2-fold cone points (pillow cusp), but all the cusps in Q are
3-cone point (turnover) cusps.

�

We note here that the proof of Theorem 9 also yields the fact that all elements
in these Generalized Triangle Groups that appear to have finite order, actually do
have the order that the presentation would imply (this was used in the proof of
Lemma 4 in §2). The only way for this to fail in a 3-orbifold is for the orbifold to
contain a bad 2-suborbifold, and our analysis rules out such suborbifolds.
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