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Abstract. Using a result of Tian concerning deformation of negatively curved metrics to

Einstein metrics, we conclude that, for any fixed link with hyperbolic complement, there is a
class of irregular branched covering spaces, branched over that link, effectively detectable by

their branching indices, which consists entirely of closed hyperbolic manifolds.

Section 0 - Introduction. One of the elusive components of the Thurston Geometriza-
tion Conjecture is the the conjecture that all 3-dimensional closed manifolds with a Rie-
mannian metric of negative sectional curvature admit a Riemannian metric of constant
negative sectional curvature – the “negatively curved implies hyperbolic” conjecture. This
conjecture is known to be false in dimensions higher than 3 (see [G-Th]), but is still very
much a viable conjecture in dimension 3 (and is of course true in dimension 2).

One of the easiest ways to construct 3-manifolds admitting negatively curved metrics is
to take a hyperbolic orbifold with singular locus a link and consider sufficiently branched
covers over this orbifold, that is, branched covers whose branching indices over a given
component of the singular locus of the orbifold are greater than or equal to the order of
the isotropy group of that component. These are precisely the branched covers on which
the cone manifold structure lifted from the base orbifold has all cone angles > 2π (see [Ho]
and [Jo] for discussions of cone manifolds). These cone manifold structures are singular
metrics which may be smoothed to Riemannian metrics of negative sectional curvature.
This construction is of particular importance to 3-dimensional topology in light of the
existence of universal links, that is, links such that all closed, orientable 3-manifolds are
obtainable as branched covers over that fixed link. Furthermore, all universal links are the
singular locus of a hyperbolic orbifold, so this construction potentially has considerable
bearing on the classification problem for 3-manifolds.

The purpose of this paper is to combine this smoothing technique, by way of some
explicit pinching constant computations, with a result of Tian (see [Ti]) to show

Theorem 3.2. Let (M,L) be a 3-manifold and a link such that M−L admits a hyperbolic
metric of finite volume. Let L1, . . . , Lq be the components of L. Let (M̂, L̂) be a branched
cover over (M,L) with minimum branching index ni over Li and maximum branching
index Ni over Li. Denote by Qi the number of components of branching locus over Li with

1991 Mathematics Subject Classification. Primary: 57R15, Secondary: 57M12, 53C25.
Key words and phrases. hyperbolic manifold, branched cover, universal links,.

Typeset by AMS-TEX

1



2 KERRY N. JONES

branching index not equal to ni (counted with the appropriate multiplicity in the case of
longitudinal wrapping). Then, there exist integers (m1, . . . ,mq) and functions (K1, . . . ,Kq)
with Kj : Z → R and Kj(i) > 1, only depending on (M,L), such that (M̂, L̂) admits a
hyperbolic metric if ni ≥ mi and Ni ≤ niKi(Qi) for all i = 1, . . . , q.

It is a straightforward consequence of Thurston’s Hyperbolic Dehn Surgery Theorem
(see [Th]) that if all the branching indices over each component are equal (for example,
in the case of regular branched covers), and greater than some fixed constant on each
component, then the cover is hyperbolic, but this is the first result giving combinatorial
conditions on the branched covering map under which irregular branched covers must be
hyperbolic (although admittedly this is far from a constructive proof – we have no idea
what order of magnitude the m’s and K’s have).

We will also note a simplified version of Theorem 3.2 which is implied by the conjecture
of the existence of a universal constant K > 1 such that any 3-manifold with curvature
between −K and −1 is hyperbolic.

Section 1 - Smoothing of Hyperbolic Cone Manifolds.
We will begin by making the following

Definition. A hyperbolic cone manifold is a metric space obtained as the quotient space
of a disjoint union of a collection of geodesic n-simplices in Hn by an isometric pairing
of codimension-one faces in such a combinatorial fashion that the underlying topological
space is a manifold and that the induced triangulation on the underlying space is uniformly
locally finite.

Such a metric space admits a smooth Riemannian metric of constant negative sectional
curvature on the union of the top-dimensional cells and the codimension-1 cells. On each
codimension-2 cell, the structure is completely described by an angle, which is the sum of
the dihedral angles around all of the codimension-2 simplicial faces which are identified to
give the cell. The cone locus is the closure of all the codimension-2 cells for which this
angle is not 2π (the Riemannian metric may be extended smoothly over all cells whose
angle is 2π.

A hyperbolic orbifold may be thought of simply as a hyperbolic cone manifold in which
all cone angles are of the form 2π/k for some integer k.

We will restrict ourselves in this paper to 3-dimensional cone manifolds in which the cone
locus is a link (i.e., a codimension-2 submanifold) to avoid problems with the smoothing
results and with the branched covering maps themselves (branched coverings over non-
manifold branch sets need not be manifolds).

On these cone manifolds, we may smooth the metric by the following procedure: take
disjoint metrically regular neighborhoods of the components of the cone locus (which must
be solid tori or solid Klein bottles – the obvious symmetry of the solid torus case yields
the solid Klein bottle case as well). On the complement of the singular core geodesic
within each of these solid tori, we have a Riemannian metric of constant negative sectional
curvature given (in Fermi coordinates – polar coordinates on each disk cross section with
t measuring distance along the core geodesic) by

ds2 = cosh2(r) dt2 + dr2 + (ϕ/2π)2 sinh2(r) dθ2
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where ϕ is the cone angle of the central core geodesic. Suppose that the radius of the
regular neighborhood is r0 so that the above is valid for 0 < r < r0. We will now consider
metrics of the form

ds2 = f2(r)dt2 + dr2 + g2(r)dθ2

and observe that the sectional curvatures in the principal directions relative to the given
coordinate system are −f ′′(r)/f(r), −g′′(r)/g(r) and −f ′(r)g′(r)/f(r)g(r). We also ob-
serve that this metric extends across the central core geodesic whenever g(0) = 0, f(0) 6= 0
and g′(0) = 1. If, in addition, all of the even derivatives of g and the odd derivatives of
f vanish at 0, and f, g are C∞, the extended metric will also be C∞. Thus, if we can
find functions f, g on some interval [−R0, R0] which are both increasing and convex such
that f is even, g is odd, f(0) 6= 0, g′(0) = 1, f, g and all their derivatives at R0 match
sinh(r), (ϕ/2π) cosh(r) (respectively) and all their derivatives at r0, we will have found a
smooth Riemannian metric of negative sectional curvature on the solid torus which may
be extended smoothly to the complement of the solid torus. This can clearly always be
done provided ϕ > 2π. In Section 3, we will find f, g of a particularly nice form in which
we can calculate bounds on the sectional curvature of the metric. For now, we will simply
note that we have proved

Lemma 1.1. An hyperbolic cone manifold with cone locus a link and all cone angles > 2π
admits a metric of negative sectional curvature.

and observe that we have in fact constructed this metric in an explicit way which will
allow us to make curvature calculations.

Section 2 - Einstein Metrics.
The key result by which we will obtain our hyperbolic structures is the following theorem

of Tian [Ti] (see [BGS] or [Th] for a discussion of the “Margulis number” mentioned in
the statement):

Theorem 2.1. Let M be a negatively curved Riemannian 3-manifold and η a Margulis
number for negatively curved 3-manifolds. Denote by Mη the η-thin piece of M and by
R(M) the trace-free Ricci curvature of M (in dimension 3, the sum of the Ricci tensor
and twice the metric tensor). Then, there is a universal constant ε such that if M satisfies

(1) Mη is a disjoint union of convex neighborhoods {Cα} of closed geodesics {γα} with
length ≤ 2η such that the normal injectivity radius of γα in Cα is greater than 1.

(2) let Pα : Cα → R be a smooth function such that Pα is equal to η near the boundary
of Cα and Pα(y) is equal to the injectivity radius at y whenever this is less than
η/2 (such Pα always exist). We require that for some choice of Pα,∫

Cα

1
Pα
| R(M) |2 dV ≤ ε

holds for each α.
(3) all sectional curvatures of M lie between −1− ε and −1 + ε.
(4)

∫
M
| R(M) |2 dV ≤ ε2
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Then, M admits a negatively curved Einstein metric.

In fact, Tian’s result is rather stronger than this, allowing dimensions other than 3,
norms other than the L2 norm, and controlling the amount of deviation of the Einstein
metric (and its first three derivatives) from the original negatively curved metric. However,
the statement here is all we will in fact need, once we have made the observation that the
constant “1” in the first hypothesis is arbitrary and any a priori lower bound on the normal
injectivity radius will do. In fact, we may take this bound to be η, in which case the first
hypothesis is vacuous in the case at hand, i.e., closed 3-manifolds, in which the η-thin piece
always consists of neighborhoods of short geodesics (length at most 2η) of radius at least
η.

Now, recall that in dimension 3, Einstein manifolds have constant sectional curvature,
and thus, if we can verify hypotheses (2), (3) and (4) of Theorem 2.1 for certain smoothings
of branched covers with constrained branching indices, where these constraints are of the
form of the hypotheses of Theorem 3.2, we will have proven the desired result.

We also note here, for reference in the next section, that, relative to an orthonormal
frame, the entries in the 3× 3 matrix for R(M) are all between −4ε and 4ε if all sectional
curvatures are pinched between −1 − ε and −1 + ε. This follows from the fact that the
Ricci tensor may be recovered by polarization from its associated quadratic form Q(u) =
Ric(u, u) and that Ric(u, u) is simply < u, u > multiplied by the sum of the sectional
curvatures of any 2 orthogonal planes containing u.

Section 3 - Pinching Computations. In this section, we will use some particular
smoothings of cone metrics for which we can estimate curvature bounds and the asymptotic
behavior of such bounds. These bounds will enable us to complete the proof of Theorem
3.2.

Lemma 3.1. If (M,L) is a (manifold,link) pair such that M − L admits a hyperbolic
metric of finite volume, then, for each component, Li of L there is a positive integer mi

and a function Ki : [1,∞) → [0,∞) such that any branched cover over M , branched over
L with minimum branching index ni ≥ mi over Li and maximum branching index Ni over
Li admits a negatively curved metric which has constant sectional curvature outside of a
regular neighborhood of the branching locus and everywhere has sectional curvature pinched
between −1− ε and −1 + ε where ε = maxiKi(Ni/ni) and limx→1Ki(x) = 0 for all i.

Proof. We begin by choosing mi and Ri so that there is a hyperbolic cone manifold struc-
ture on (M,L) with cone locus contained in L, such that the cone angle on Li is 2π/mi

and there is a regular neighborhood of L consisting of radius-Ri neighborhoods about each
Li. We further stipulate that there must exist cone manifold structures on (M,L) with
any cone angle ϕi < 2π/mi on Li (this is conjecturally always the case for mi as above,
but in any event, we may increase mi until this is true) in which the Ri-neighborhoods of
the Li still form a regular neighborhood (one can always reduce Ri to achieve this). The
Hyperbolic Dehn Surgery Theorem guarantees that some choice of mi and Ri is possible.
One would like to have small mi values and larger Ri values and, in general, one can
trade-off one for the other. It is unclear which one would produce the sharpest bounds.

Now, let (M̂, L̂) be a branched cover of (M,L) satisfying our hypotheses. Let L̂j be
some component of the preimage of Li with branching index kj (ni ≤ kj ≤ Ni). By the
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construction of mi and the hypothesis that ni ≥ mi there exists a cone metric on (M,L)
with cone angle 2π/ni at Li. Let us smooth the cone metric on M̂ obtained by lifting this
cone metric on M in a Ri-neighborhood of L̂j . The cone angle at L̂j is 2πkj/ni and so
(using coordinates as in Section 1) the metric is

ds2 = cosh(r)2 dt2 + dr2 + (kj/ni)2 sinh2(r) dθ2

where t ∈ [0, L), θ ∈ [0, 2π), r ∈ [0, Ri) and L is the length of L̂j . We need to construct
functions f and g with domain [0, R̂) which satisfy the following hypotheses:

(1) f, g are C∞, increasing, concave.
(2) f is even, f(0) = 1, f and all its derivatives at R̂ are equal to cosh(r) and all its

derivatives at Ri.
(3) g is odd, g′(0) = 1, g and all its derivatives at R̂ are equal to (kj/ni) sinh(r) and

all its derivatives at Ri.
Let us set f(r) = cosh(α(r)) and g(r) = (kj/ni) sinh(α(r)). This choice lets us eas-
ily bound the sectional curvature of the resulting metric, since the sectional curvatures
of the principal (coordinate) directions become (α′(r))2, (α′(r))2 + α′′(r) tanh(α(r)) and
(α′(r))2 +α′′(r) coth(α(r)). In particular, if α′′ is nonnegative, all sectional curvatures are
pinched between min(α′(r))2 and max(α′(r))2 + α′′(r) coth(r). Furthermore, the condi-
tions on f and g all reduce to the insistence that α′′ be a positive C∞ bump function with
support contained in [0, R̂) and that α′(0) = ni/kj , α′(R̂) = 1, α(0) = 0, α(R̂) = Ri. We
will return to these conditions momentarily, but first let us obtain more workable estimates
for the curvature bounds.

Since α′′ ≥ 0, the minimum of α′ is attained at 0, so the lower bound is (ni/kj)2. Also,
α′ ≥ ni/kj , together with α(0) = 0 implies that α(r) ≥ nir/kj , which in turn implies that
coth(α(r)) ≤ coth(nir/kj). In particular,

(α′(r))2 + (α′′(r)) coth(α(r)) ≤ 1 + (α′′(r)) coth(
nir

kj
)

Now, when the right-hand side of this equation is maximized, we have that

α′′′(r) coth(
nir

kj
) =

ni
kj
α′′(r) csch2(

nir

kj
)

and thus
α′′(r) =

ni
kj
α′′′(r) cosh(

nir

kj
) sinh(

nir

kj
)

Thus, using the fact that (ni/kj) ≤ α′(r) ≤ 1 and hence (kjRi/ni) ≤ R̂ ≤ Ri, we obtain
that

maxα′′(r) coth(α(r)) ≤ maxα′′(r) coth(
nir

kj
)

≤ max
ni
kj
α′′′(r) cosh2(

nir

kj
)

≤ ni
kj

cosh2(
niR̂

kj
) maxα′′′(r)

≤ ni
kj

cosh2(Ri) maxα′′′(r)
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In particular, the sectional curvature of the smooth metric obtained in this way is
pinched between (ni/kj)2 and 1 + (ni/kj) cosh2(Ri) maxα′′′(r).

So, to obtain asymptotic estimates on pinching for these metrics, we must consider
bounds on maxα′′′(r) where α′′ is a positive C∞ bump function with support in [0, R̂],
α(0) = 0, α′(0) = ni/kj , α(R̂) = Ri, and α′(R̂) = 1. Set ϕ(r) = α′′(r) and let us translate
the constraints on α into constraints on ϕ. The first-derivative constraints on α become∫ R̂

0

ϕ(r) dr = 1− ni
kj

while the constraints on the values of α itself become∫ R̂

0

[
ni
kj

+
∫ s

0

ϕ(r) dr
]
ds = Ri

These constraints can be satisfied in general by the following scheme: let ψ be a fixed bump
function with support in [0, 1], area A and

∫ 1

0

∫ s
0
ψ(r) dr ds = B. Then, ϕ(r) = K1ψ(K2r)

has support in [0, 1/K2], area K1A/K2 and iterated integral K1B/K
2
2 . Thus, if we set

K2 =
ni
kj

+ (1− ni
kj

)BA
Ri

and
K1 = K2(1− ni

kj
)
B

A

all the constraints on ϕ are satisfied and

α(r) =
∫ r

0

[
ni
kj

+
∫ s

0

ϕ(t) dt
]
ds

is the required function as above and we have that the sectional curvature is bounded
between (ni/kj)2 and

1 +K(
kj
ni
− 1)

cosh2Ri
R2
i

(
B

A
)(
ni
kj

+ (1− ni
kj

)
B

A
)2

where K is maxψ′. Now, letting ni/kj → 1, we obtain the desired asymptotic result, by
setting Ki(x) to be the radius of the symmetric neighborhood of 1 which is obtained by
rescaling the interval

[(
1
x

)2, 1 + (
KB

A
)(

coshRi
R2
i

)(x− 1)(
1
x

+ (
x− 1
x

)
B

A
)2]

�

With this lemma in hand, we will proceed to the proof of
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Theorem 3.2. Let (M,L) be a 3-manifold and a link such that M−L admits a hyperbolic
metric of finite volume. Let L1, . . . , Lq be the components of L. Let (M̂, L̂) be a branched
cover over (M,L) with minimum branching index ni over Li and maximum branching
index Ni over Li. Denote by Qi the number of components of branching locus over Li with
branching index not equal to ni (counted with the appropriate multiplicity in the case of
longitudinal wrapping). Then, there exist integers (m1, . . . ,mq) and functions (K1, . . . ,Kq)
with Kj : Z → R and Kj(i) > 1, only depending on (M,L), such that (M̂, L̂) admits a
hyperbolic metric if ni ≥ mi and Ni ≤ niKi(Qi) for all i = 1, . . . , q.

Proof. Using Lemma 3.1, it is sufficient to show that there exists ε(Qi) such that whenever
the metrics constructed in Lemma 3.1 have sectional curvature pinched between −1−ε(Qi)
and −1 + ε(Qi), hypotheses (2), (3) and (4) of Theorem 2.1 are satisfied.

Hypothesis (3) is clear, and (4) is not much harder, once we observe that the integral in
(4) is bounded by product of the maximum of | R(M) |2 with the volume of the support of
R(M). The former is uniformly bounded (as observed earlier) and so we need to estimate
the latter, which is the volume of all of the tubular neighborhoods of components of
branching locus for which the branching index is strictly greater than ni (there are Qi of
these). Next, we note that as a sequence of hyperbolic cone metrics tends to the complete
metric on the complement of the cone locus, the length of each component of the cone
locus tends to zero. Thus, there is a global maximum, for all of the cone metrics with cone
angle ≤ 2π/mi on the length of the cone geodesics. Thus, there is an a priori bound on the
volume of the tubular neighborhood of the cone geodesic which will be lifted and smoothed.
It suffices, then, to estimate the volume of the smoothed tubular neighborhood in terms
of the volume of the singular tubular neighborhood. We observe that (with notation as in
the proof of Lemma 3.1 - ` is the length of the core geodesic)

Volsmooth = 2π`
kj
ni

∫ R̂

0

cosh(α(r̂)) sinh(α(r̂)) dr̂

whereas

Volcone = 2π`
kj
ni

∫ R

0

cosh r sinh r dr

but ∫ R

0

cosh r sinh r dr =
∫ R̂

0

cosh(α(r̂)) sinh(α(r̂))α′(r̂) dr̂

≥ (min(α′(r̂)))
∫ R̂

0

cosh(α(r̂)) sinh(α(r̂)) dr̂

=
ni
kj

∫ R̂

0

cosh(α(r̂)) sinh(α(r̂)) dr̂

so that Volsmooth ≤ Ni
ni

Volcone and thus we have bounded the integral in hypothesis (4) by
a function of Qi and Ni/ni which tends to 0 as Ni/ni tends to 1.
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Hypothesis (2) is handled in a very similar way – we only note that the worst possible
case for this hypothesis occurs when the core geodesic of one of the smoothing neigh-
borhoods is “short,” but that in this case, the symmetry of the neighborhood allows us
to trivially integrate along the geodesic (the t direction) and around the geodesic (the θ
direction) and that the short length essentially cancels the 1/Pα term in the integrand. �

We also note that if one had a universal pinching constant ε such that any manifold with
sectional curvature between −1− ε and −1 + ε could be deformed to a constant curvature
metric, then one could eliminate the dependence on Qi in the previous theorem.

It is difficult to make direct use of this theorem to show that any particular branched
cover is hyperbolic, since there are so many undetermined universal constants involved,
but it does provide the first sufficient combinatorial conditions under which an irregular
branched cover may be shown to be hyperbolic.
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