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Abstract. We show that the arithmetic hyperbolic 3-manifold of smallest volume

is the Weeks manifold. The next smallest one is the Meyerhoff manifold.

§0. Introduction

A hyperbolic 3-manifold is a 3-manifold admitting a complete Riemannian metric
all of whose sectional curvatures are −1. The universal cover of such a manifold can
therefore be identified with the hyperbolic 3-space, that is, the unique connected
and simply connected hyperbolic 3-manifold. We denote by

H
3 = {(z, t) ∈ C⊕ R | t > 0},

the upper half space model of hyperbolic 3-space. With this convention, the full
group of orientation-preserving isometries of H3 is simply PGL(2,C). A Kleinian
group Γ is a discrete subgroup of PGL(2,C). Hence an orientable hyperbolic 3-
manifold is the quotient of H3 by a torsion-free Kleinian group, since this acts
properly discontinuously and freely on H3. If we relax the condition that Γ act
freely, allowing Γ to contain torsion elements, we obtain a complete orientable
hyperbolic 3-orbifold (cf. [Th] for further details). We will only be concerned with
the case that M = H

3/Γ has a hyperbolic structure of finite volume (we say Γ has
finite covolume). Therefore in what follows, by a hyperbolic 3-manifold or 3-orbifold
we shall always mean a complete orientable hyperbolic 3-manifold or 3-orbifold of
finite volume. By the Mostow and Prasad Rigidity Theorems [Mo] [Pr], hyperbolic
volume is a topological invariant of a hyperbolic 3-orbifold and is therefore a natural
object to study.

It is known from the work of Jørgensen and Thurston [Th] [Gr] that there is
a hyperbolic 3-manifold of minimal volume V0 and that there are at most finitely
many non-isometric hyperbolic 3-manifolds attaining this minimum. Much work
has been done in trying to identify V0. The current best estimate is V0 > 0.1668 . . . ,
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(see [GM]) which is a consequence of the work of Gabai, Meyerhoff and Thurston,
[GMT]. In addition, the program initiated by Culler and Shalen [CS1] [CS2], to-
gether with Hersonsky [CHS], uses topological information to help in estimating the
volume. At present this work has culminated in showing that the closed hyperbolic
3-manifold of smallest volume has b1 ≤ 2, where b1 is the rank of the first homology
with coefficients in Q.

The hyperbolic 3-manifold conjectured to be of smallest volume is the Weeks
manifold, first defined in [We1], which is obtained by (5, 1), (5, 2) Dehn surgery on
the complement of the Whitehead link in S3 (as shown below). In particular, the
Weeks manifold has b1 = 0.

5/1

5/2

Figure 1

Theorem 0.1. The Weeks manifold has the smallest volume among all arithmetic
hyperbolic 3-manifolds. Up to isometry, it is the unique arithmetic hyperbolic 3-
manifold of that volume.

The Weeks manifold has volume 0.9427073627769 · · · and is well-known to be arith-
metic. We shall also show that the arithmetic hyperbolic 3-manifold having the
next smallest volume is the Meyerhoff manifold, namely the manifold obtained by
(5, 1)-surgery on the figure eight knot complement (see [Ch]), which has volume
0.9813688288922 · · · , and is again the unique arithmetic hyperbolic 3-manifold of
that volume. There are no other arithmetic hyperbolic 3-manifolds having volume
less than 1. Below we recall the definition of an arithmetic hyperbolic 3-manifold
and give the arithmetic data associated to the Weeks manifold.

We now sketch the proof of Theorem 0.1. Let M ′ = H
3/Γ′ be an arithmetic

3-manifold of volume at most 1 and let M = H
3/Γ be a minimal orbifold covered

by M ′. Thus Γ′ is a torsion-free subgroup of finite index in the maximal arithmetic
Kleinian group Γ and

Vol(H3/Γ′) = [Γ : Γ′] Vol(H3/Γ) ≤ 1. (0.1)

The advantage of passing from a torsion-free Γ′ to a maximal, but not necessarily
torsion-free Γ, is that Borel [Bo] classified such Γ and gave a formula for the volume
of H3/Γ. With the help of this formula and results from [CF1], we first show that if
Vol(H3/Γ) ≤ 1, then the degree of the number field k used to define Γ must satisfy
[k : Q] ≤ 8.

When [k : Q] is small, there are abundantly (but finitely) many arithmetic 3-
orbifolds of volume smaller than 1. Hence we also look for lower bounds on the
index [Γ : Γ′] appearing in (0.1). The easiest way to do this is by finding finite
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subgroups H ⊂ Γ and noting that the order of such an H must divide the index
[Γ : Γ′]. Here we draw on the results of [CF2] and on exhaustive lists of number
fields of small discriminant. By these purely number-theoretic arguments we are
able to narrow the list of possible Γ’s in (0.1) to just the nine groups Gi, listed
in Theorem 2.0.1. The second half of the proof is devoted to nine orbifolds, and
is done using a package of computer programs developed by the third and fourth
authors for studying the geometry of arithmetic hyperbolic 3-orbifolds (see [JR2]
for more details).

For eight of these, neither volume nor finite subgroup considerations can rule
out a manifold cover of H3/Gi having volume less than 1. For the remaining
one, finite subgroup considerations do work, but the number theoretic approach
becomes cumbersome. The computer packages allow us to eliminate all but the
Weeks manifold and the Meyerhoff manifold as we now discuss. To handle the first
eight groups described in Theorem 2.0.1, we use the computer packages to generate
presentations for certain of Borel’s maximal arithmetic groups by constructing a
Dirichlet polyhedron for these arithmetic Kleinian groups. Once these presentations
are obtained, it can be checked directly that these “candidate” presentations are
indeed the presentations of the required groups, by computing the faithful discrete
representations involved and applying the results of [MR] and [Bo].

Next we use the presentations to try to either compute all torsion-free subgroups
of each Gi of the appropriate indices, or to show that such subgroups do not exist.
This we do first via the group theoretic language Cayley (or its more recent upgrade
Magma), but we then sketch a more direct method. By inspecting the data that
Cayley/Magma produced, we finally arrive at two arithmetic 3-manifolds of volume
less than 1. As these correspond to the Weeks and Meyerhoff manifolds, we are
then done with the proof.

The remaining group described in Theorem 2.0.1 is ruled out by using the com-
puter packages to construct a Z/2Z ⊕ Z/2Z subgroup in the group of units in a
certain maximal order of a quaternion algebra defined over a sextic field with one
complex place and discriminant −215811 (see §2.5). This then allows us to conclude
there is no manifold of volume less than 1 arising in this case.

Early attempts to construct the orbifold groups Gi used Weeks’ list of volumes
of hyperbolic 3-manifolds created by Snap Pea [We2]. Although not used in the
proof, we wish to acknowledge the role this data played in helping complete the
proof

§1. Definitions and Preliminaries.

We recall some basic facts about arithmetic Kleinian groups. See [Bo], [Vi] and
[CF3] for further details on this section. Recall that a quaternion algebra B over a
field k is a 4-dimensional central simple algebra over k. When k has characteristic
different from 2, we can describe B as follows. Let a and b be non-zero elements of
k. There is a basis for B of the form {1, i, j, ij} where i2 = a, j2 = b and ij = −ji.
B is then said to have Hilbert symbol {a, b}.

Now let k be a number field, that is, a finite extension of Q. Let ν be a place of
k, and kν the completion of k at ν. We let Bν = B ⊗k kν , which is a quaternion
algebra over kν . The set of places for which Bν is a division algebra (“B ramifies”),
denoted herein by Ram(B), is finite, of even cardinality and contains no complex
place of k. Conversely, any such set R of places of k determines a unique quaternion



4 T. CHINBURG, ET AL., FEB. 17, 98

algebra B over k satisfying R = Ram(B). We denote by Ramf(B) the subset of
Ram(B) consisting of all finite places in Ram(B).

Let B be a quaternion algebra over k, where k is a number field or a completion
of such a field at a finite place, and let Ok the ring of integers of k. An order of
B is a finitely generated Ok-submodule of B which contains a k-basis for B and
which is a ring with 1. An order of B is maximal if it is not properly contained in
any other order of B.

One way to define arithmetic Kleinian groups [Bo] is to begin with a number
field k having exactly one complex place and a quaternion algebra B over k ramified
at all real places of k. We shall use the notation x to denote an element of B∗/k∗

represented by x ∈ B∗. Let D be a maximal order of B and let

ΓD = {x ∈ B∗/k∗|xDx−1 = D}.

Via the complex place of k we get an embedding ρ : B ↪→ M(2,C) and hence a
ρ : B∗/k∗ ↪→ PGL(2,C). For simplicity we identify ΓD with ρ(ΓD). Then ΓD ⊂
PGL(2,C) is a Kleinian group giving rise to a hyperbolic 3-orbifold H

3/ΓD of
finite volume. The class of arithmetic Kleinian groups is that obtained from the
commensurability classes in PGL(2,C) of all such ΓD. For Kleinian groups, this
definition of arithmeticity coincides with the usual notion of arithmetic groups [Bo].
We recall that two subgroups Γ and Γ′ of PGL(2,C) are commensurable if some
conjugate Γ̃ of Γ is such that Γ̃∩Γ′ has finite index in both Γ̃ and Γ′. A hyperbolic
3-orbifold, or 3-manifold, H3/Γ is called arithmetic if Γ is an arithmetic Kleinian
group.

Here we summarize the arithmetic data associated to the Weeks manifold.

Proposition 1.1. The Weeks manifold is the unique hyperbolic 3-manifold which
covers with degree 12 the orbifold H3/ΓD, where D is any maximal order in the
quaternion algebra B defined over the cubic field k of discriminant −23, ramified
at the real place and at the prime of norm 5 of k.

Proposition 1.1 will be proved in §3. Explicitly, the field k in Proposition 1.1 can
be given as k = Q(θ) where θ satisfies θ3 − θ + 1 = 0. Borel’s volume formula (see
(2.1.1) below) shows that the volume of the Weeks manifold is

3 · 23
3
2 ζk(2)

4π4
= 0.9427073627769 · · · ,

where ζk denotes the Dedekind zeta function of k. The numerical value of the
volume can be obtained by computing ζk(2), which is incorporated in the PARI
number theory package [Co], or from the geometric definition of the manifold. Of
course, it was this coincidence of volumes that pointed immediately to the above
characterization.

A Kleinian group Γ ⊂ PGL(2,C) is maximal if it is maximal, with respect to
inclusion, within its commensurability class. Borel [Bo] proved that any maximal
arithmetic Kleinian group is isomorphic to some group ΓS,D, which we now define.
Let D be a maximal order of B and S a finite (possibly empty) set of primes of
k disjoint from Ramf(B). For each p ∈ S choose a local maximal order Ep ⊂ Bp

such that [Dp : Ep ∩ Dp] = Normk/Q(p), where Dp = D ⊗Ok Okp . We shall say
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that x ∈ B∗p fixes Dp (resp., {Dp, Ep}) if xDpx
−1 = Dp (resp., either x fixes Dp

and Ep, or xDpx
−1 = Ep and xEpx

−1 = Dp). Borel’s definition is

ΓS,D =
{
x ∈ B∗/k∗

∣∣x fixes Dp for all p /∈ S, and for p ∈ S, x fixes {Dp, Ep}
}
.

When S is empty we find ΓS,D = ΓD. We remark that ΓS,D is not necessarily
maximal if S is non-empty.

Two maximal orders D and D′ of B are said to be of the same type if they are
conjugate by an element of B∗. In this case ΓS,D is conjugate to ΓS,D′ . Thus, to
study all the ΓS,D up to conjugacy, it suffices to select one D from each type. Types
can be parametrized by the group T (B) defined as the group of fractional ideals
of k, modulo the subgroup generated by squares of ideals, by ideals in Ramf(B)
and by principal ideals (α) generated by an α ∈ k∗ which is positive at all real
embeddings of k. The set of types is in bijection with the elements of T (B) [Vi]
(recall that we are assuming that Ram(B) includes all real places). The bijection
is obtained [CF3] by fixing any maximal order, say D, and mapping D′ to the class
of ρ(D,D′) in T (B), where ρ(D,D′) =

∏
i ai, the ai being ideals of Ok such that

D/(D ∩D′) ∼= ⊕iOk/ai as Ok-modules.
For the reader’s convenience, we relate our notation to Borel’s. The group Borel

writes ΓS,S′ [Bo, p. 9] coincides with our ΓS,D when our D is set equal to his D(S′)
[Bo, p. 12]. It will also be convenient (for the discussion in §3) to remark upon an
alternative description of Borel’s maximal groups. An Eichler Order of B is the
intersection of two maximal orders of B. As in the case for a maximal order above,
the normalizer of an Eichler Order E projects to an arithmetic Kleinian group.
Borel’s maximal groups can be described as certain of these images of normalizers
of Eichler orders. The corresponding S and S′, in Borel’s notation, depend on
divisors of the discriminant of the relevant E (see [JR2] and [Vi, p. 99, Ex. 5.4] for
more details).
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§2. Small Arithmetic Orbifolds with Little Torsion

2.0 The list.
We shall prove

Theorem 2.0.1. If M0 is an arithmetic hyperbolic 3-manifold with Vol(M0) ≤ 1,
then M0 covers one of the nine orbifolds H3/Gi described below, where notation is
as follows. Ram(B) always includes all real places of k, D stands for any maximal
order of B in the cases 1 ≤ i ≤ 8 and pj denotes the unique prime of k of norm j.
When i = 9, D is any maximal order of B not containing a primitive cube root of
unity.

Table 1
(1) k = Q(x), where x4 − 3x3 + 7x2 − 5x+ 1 = 0, disck = −283,Ramf(B) = ∅,

G1 = ΓD, Vol(H3/G1) = 0.0408903 · · · and 12 divides the covering degree
[M0 : H3/G1].

(2) k = Q(x), where x4− 5x3 + 10x2− 6x+ 1 = 0, disck = −331,Ramf(B) = ∅,
G2 = ΓD, Vol(H3/G2) = 0.0526545 · · · and 12 divides [M0 : H3/G2].

(3) k = Q(x), where x3 + x + 1 = 0, disck = −31,Ramf(B) = p3, G3 = ΓD,
Vol(H3/G3) = 0.06596527 · · · and 12 divides [M0 : H3/G3].

(4) k = Q(x), where x3 − x + 1 = 0, disck = −23,Ramf(B) = p5, G4 = ΓD,
Vol(H3/G4) = 0.0785589 · · · and 12 divides [M0 : H3/G4].

(5) k = Q(x), where x3 − x + 1 = 0, disck = −23,Ramf(B) = p7, G5 = ΓD,
Vol(H3/G5) = 0.1178384 · · · and 4 divides [M0 : H3/G5].

(6) k = Q(x), where x4− 5x3 + 10x2− 6x+ 1 = 0, disck = −331,Ramf(B) = ∅,
S = p5, G6 = ΓS,D, Vol(H3/G6) = 0.1579636 · · · and 4 divides [M0 :
H

3/G6].
(7) k = Q(x), where x5 +x4−3x3−2x2 +x−1 = 0, disck = −9759,Ramf(B) =

p3, G7 = ΓD, Vol(H3/G7) = 0.2280430 · · · and 4 divides [M0 : H3/G7].
(8) k = Q(x), where x4 − 3x3 + 7x2 − 5x+ 1 = 0, disck = −283,Ramf(B) = ∅,

S = p11, G8 = ΓS,D, Vol(H3/G8) = 0.2453422 · · · and 4 divides [M0 :
H

3/G8].
(9) k = Q(x), where x6 − x5 − 2x4 − 2x3 + x2 + 3x + 1 = 0, disck =
−215811,Ramf (B) = ∅, G9 = ΓD, Vol(H3/G9) = 0.27833973 · · · and 2
divides [M0 : H3/G9].

We will show in §3 that orbifolds (1) and (8) are covered by the Meyerhoff manifold
and (4) is covered by the Weeks manifold. The other orbifolds will turn out not to
be covered by any manifold of volume ≤ 1.

2.1 Reduction to small degrees.
Let H3/Γ be a minimal orbifold covered by a manifold M0 as in Theorem 2.0.1.
Then, as described in §1, Γ is isomorphic to some ΓS,D and Vol(H3/ΓS,D) ≤
Vol(M0) ≤ 1. In this subsection, which relies heavily on the volume inequali-
ties in [CF1], we prove that if Vol(H3/ΓS,D) ≤ 1, then the number field k defining
ΓS,D satisfies [k : Q] ≤ 8 and certain class number restrictions.

Borel proved [Bo] [CF1, Prop. 2.1]

Vol(H3/ΓS,D) =
2π2ζk(2)d

3
2
k

(∏
p∈Ramf (B)

Np−1
2

)∏
p∈S(Np + 1)

2m(4π2)[k:Q][kB : k]
, (2.1.1)
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for some integer m with 0 ≤ m ≤ |S|. Here ζk denotes the Dedekind zeta function of
k, dk is the absolute value of the discriminant of k, Ramf(B) and S are as in §1, N
denotes the absolute norm, and kB is the class field defined as the maximal abelian
extension of k which is unramified at all finite places of k, whose Galois group is
2-elementary and in which all p ∈ Ramf(B) are completely decomposed. By class
field theory, the Frobenius map induces an isomorphism T (B) ∼= Gal(kB/k), where
T (B) is the group defined in §1 which parametrizes the types of maximal orders of
B. Thus, [kB : k] equals the type number of B. The maximal order D itself does
not enter into the volume formula.

Remark. When S is empty, we clearly have m = |S| = 0. When S = {p} consists
of a single prime, then m = 1 if and only if p = (α)ba2 for some α ∈ k∗ which
is positive at all real places of k, some integral ideal b divisible only by primes in
Ramf(B) and some fractional ideal a . This follows from Borel’s proof [Bo,§5.3-5.5]
on noting that if p is not as above, then ΓS,D ⊂ ΓD. We note that the above
condition on p is equivalent to p being completely decomposed in kB/k.

From (2.1.1) we conclude as in [CF1, p. 512] that

Vol(H3/ΓS,D) ≥
8π2ζk(2)d

3
2
k [O∗k : O∗k,+]

(∏
p∈Ramf (B)

Np−1
2

)∏
p∈S(Np + 1)

2m(8π2)[k:Q]h(k, 2, B)
,

where O∗k and O∗k,+ denote respectively the units and the totally positive units
of k and h(k, 2, B) is the order of the (wide) ideal class group of k modulo the
square of all classes and modulo the classes corresponding to primes in Ramf(B).
In particular,

Vol(H3/ΓS,D) ≥
8π2ζk(2)d

3
2
k [O∗k : O∗k,+]

2r(8π2)[k:Q]h(k, 2, B)
, (2.1.2)

where r = r(B) is the number of primes in Ramf(B) of norm 2. Lower bounds for
volumes of arithmetic orbifolds can be obtained using Odlyzko’s lower bounds for
discriminants of number fields, as follows [CF1, Lemma 3.4].

Lemma 2.1.1. Let K/k be a finite extension which is unramified at all finite places.
Then

log dk
[k : Q]

≥ γ + log(4π) +
r1(K)
[K : Q]

− 12π
5
√
y[K : Q]

−
∫ ∞

0

(
1− α(x

√
y)
)( 1

sinh(x)
+

r1(K)
2[K : Q] cosh2(x/2)

)
dx

+
4

[K : Q]

∑
P

∞∑
j=1

log(NP)
1 + NPj

α(j
√
y log NP),

where γ = 0.5772156 · · · is Euler’s constant, y > 0 is arbitrary, r1(K) denotes the
number of real places of K, the sum on P is over all the prime ideals of K and

α(t) =
9 (sin t− t cos t)2

t6
.

In our applications, the field K above will always be contained in the class field kB
appearing in (2.1.1).
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Proposition 2.1.2. Assume Vol(H3/ΓS,D) ≤ 1. Here ΓS,D is associated to a
quaternion algebra B over a number field k having exactly one complex place, as
described in §1. Then the following hold

(1) [k : Q] ≤ 8.
(2) [kB : k] ≤ 2.
(3) For 6 ≤ [k : Q] ≤ 8, we have h(k, 2, B) = 1.
(4) For [k : Q] = 2, we have dk ≤ 56.

It follows from Borel’s classification of minimal arithmetic orbifolds [Bo] that the
manifold M0 in Theorem 2.0.1 covers an orbifold H3/ΓS,D associated to a field k
of degree at most 8 satisfying the above restrictions.

Proof. We first deal with claim (4). When [k : Q] = 2, i.e. when k is imaginary
quadratic, genus theory shows that h(k, 2, B) ≤ 2g−1, where g is the number of
prime factors of dk. Hence h(k, 2, B) ≤

√
dk/3. From (2.1.2), taking into account

the contribution to ζk(2) of a prime above 2, we find then in the imaginary quadratic
case that

Vol(H3/ΓS,D) >
dk

6π2
√

3
.

Hence, if Vol(H3/ΓS,D) ≤ 1, then dk ≤ 6π2
√

3 = 121.03 · · · . However, for dk ≤ 121,
genus theory again gives h(k, 2, B) ≤ 2 except for dk = 60. In this case k has unique
primes p2 and p3 of norm 2 and 3, respectively. Thus, considering two Euler factors
of ζk(2),

60
3
2 ζk(2)

∏
p∈Ramf (B)

Np−1
2

8π2h(k, 2, B)
>

60
3
2 (1− 1

4 )−1(1− 1
9 )−1

64π2
> 1.1.

This means dk 6= 60. Hence, if Vol(H3/ΓS,D) ≤ 1, then h(k, 2, B) ≤ 2. But then
(2.1.2) gives dk ≤ 56. This proves (4) in Proposition 2.1.2.

We may now assume [k : Q] ≥ 3. Then k has at least one real place and therefore
−1 6∈ O∗k,+ and [O∗k : O∗k,+] ≥ 2. A consequence of Lemma 2.1.1 and the volume
formula (2.1.1) is [CF1, Lemma 4.3]

Vol(H3/ΓS,D) > 0.69 exp
(

0.37[k : Q]− 19.08
h(k, 2, B)

)
. (2.1.3)

From this, we easily deduce that

if Vol(H3/ΓS,D) ≤ 1, thenh(k, 2, B) ≤ 16. (2.1.4)

Indeed, if h(k, 2, B) > 16 then h(k, 2, B) ≥ 32. Then (2.1.3) shows that

Vol(H3/ΓS,D) > 1

as soon as [k : Q] > 2.
We now use the inequalities [CF1, eq. (4.6)]

Vol(H3/ΓS,D)

>
2

[kB : k]
exp
(

[k : Q]
(
1.4143 +

1.005r1(K)
[K : Q]

− 1.14475r1(k)
[k : Q]

− 11.31
[K : Q]

))
>

2[O∗k : O∗k,+]
h(k, 2, B)

exp
(

[k : Q]
(
1.4143 +

1.005r1(K)
[K : Q]

− 1.8379r1(k)
[k : Q]

− 11.31
[K : Q]

))
,

(2.1.5)
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where K/k is any elementary abelian 2-extension unramified at the finite places
and in which all p ∈ Ramf(B) are completely decomposed (see also the sentence
preceeding [CF1, Lemma 4.6]). We first take K ⊂ kB to be the maximal unramified
2-elementary extension of k in which all p ∈ Ramf(B) are completely decomposed.
Then r1(K)/[K : Q] = r1(k)/[k : Q] = 1− 2

[k:Q] and, by class field theory, [K : k] =
h(k, 2, B). For [k : Q] ≥ 3, we have by (2.1.5)

log
(

Vol(H3/ΓS,D)
)
> log 4− log h(k, 2, B) + 2(0.8329) + 0.5814[k : Q]− 11.31

h(k, 2, B)
.

(2.1.6)
From (2.1.4) we know that h(k, 2, B) ≤ 16 if Vol(H3/ΓS,D) ≤ 1. Hence (2.1.6)
yields

If Vol(H3/ΓS,D) ≤ 1, then [k : Q] ≤ 14 and h(k, 2, B) ≤ 2. If also [k : Q] ≥ 6,

then h(k, 2, B) = 1. (2.1.7)

Thus we have shown (3) in Proposition 2.1.2.
To prove (2), we need to show [kB : k] ≤ 2. Let 2E := [kB : k] and 2F :=

2r1(k)/[O∗k : O∗k,+]. Then 0 ≤ F ≤ r1(k) − 1 = [k : Q] − 3 ≤ 11. Class field theory
shows that [kB : k] = h(k, 2, B)2F . As h(k, 2, B) ≤ 2, we have 0 ≤ E ≤ [k :
Q]−2 ≤ 12. Set K = kB in the first inequality in (2.1.5). Then, dropping the term
r1

(
kB
)
/[kB : Q] as kB/k may ramify at the infinite places,

log
(

Vol(H3/ΓS,D)
)
> − log 2E−1 + (1.4143− 1.14475)[k : Q] + 2(1.14475)− 11.31

2E

≥ −E log 2 + 0.26955(E + 3) + 2.9826− 11.31
2E

.

Thus E can only take the values 0, 1, 9, 10, 11 or 12. Suppose E ≥ 9. Then
[k : Q] ≥ 11 and kB/k is an extension of degree at least 29 which is unramified at
the finite places. Odlyzko’s discriminant bounds, as refined by Serre and Poitou,
give for any number field K [Po, eq. 16],

1
[K : Q]

log dK ≥ 3.10823− 12.644
[K : Q]

2
3
.

Hence
d

1/[k:Q]
k = d

1/[kB :Q]
kB

> 21.5,

as [kB : Q] ≥ 11 · 29. Then (2.1.2), with h(k, 2, B) ≤ 2, gives

Vol(H3/ΓS,D) >
8π2(1− 1

4 )−rd
3
2
k

2r(8π2)[k:Q]
≥ 8π2

( (21.5)
3
2

1.5 · 8π2

)[k:Q]

> 7.07,

for [k : Q] ≤ 14. Hence E = 0 or 1. This proves (2) in Proposition 2.1.2.
By (2.1.7), to conclude the proof of Proposition 2.1.2 we only need to rule out

fields k with degrees 9 ≤ [k : Q] ≤ 14. As [kB : k] ≤ 2, from (2.1.1) we find

Vol(H3/ΓS,D) >
π2d

3
2
k ( 2

3 )r

(4π2)[k:Q]
, (2.1.8)
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with r as in (2.1.2). We now use the following table.

[k : Q] = 9 10 11 12 13 14
1

[k : Q]
log dk > 2.316 2.421 2.511 2.591 2.661 2.724

π2d
3
2
k

(4π2)[k:Q]
> 1.605 6.34 26.78 123.7 598.3 3080

Norm 2 gives > 8.026 8.767 9.476 10.09 10.55 11.00
y parameter = 0.95 0.825 0.725 0.65 0.6 0.555

The second line gives the lower bound for 1
[k:Q] log dk, coming from Lemma 2.1.1

with K = k and y as given on the last line. This bound does not consider any
contribution from the finite places. The third line shows the corresponding lower
bound for the main term apearing in the volume formula (2.1.1). The fourth line
gives the factor by which the previous line can be multiplied for each prime of norm
2 in k (coming from its contribution to the lower bound for dk in Lemma 2.1.1). It
is clear from the table above that for 9 ≤ [k : Q] ≤ 14 the contribution to the lower

bound for d
3
2
k of a prime of norm 2 greatly exceeds the 2

3 lost in the estimate (2.1.8).
Hence the third line of the table and (2.1.8) complete the proof of Proposition 2.1.2.

2.2 Torsion.
In this step of the proof of Theorem 2.0.1, we study torsion in the groups ΓS,D. We
begin with a well-known result from group theory.

Lemma 2.2.1. Suppose Γ is a group having a finite subgroup H ⊂ Γ and a torsion-
free subgroup Γ′ ⊂ Γ of finite index. Then the index [Γ : Γ′] is divisible by the order
of H.

Proof. It will suffice to show that the left multiplication action of H on the set of
left cosets of Γ′ in Γ is free. This follows from the fact that the stabilizer in H of a
left coset of Γ′ is conjugate in Γ to a finite subgroup of Γ′, and Γ′ has no non-trivial
finite subgroups by assumption.

The lemma leads us to define

lcmtor(Γ) := least common multiple{|H| : H ⊂ Γ, H a finite subgroup}.

We shall often use the following consequence of Lemma 2.2.1.

Lemma 2.2.2. If a manifold M = H
3/Γ of finite volume covers an orbifold

H
3/ΓS,D, then Vol(M) is an integral multiple of lcmtor(ΓS,D) ·Vol(H3/ΓS,D).

We shall need the following results from [CF2].

Lemma 2.2.3. Let ΓS,D be associated, as above, to a number field k having exactly
one complex place and to a quaternion algebra B ramified at all real places of k.
Let l be an odd prime number and ζl a primitive l-th root of unity in some algebraic
closure of k. If ζl ∈ k, then ΓS,D contains an element of order l if and only if
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B ∼= M(2, k). Assume now ζl /∈ k. Then ΓS,D contains an element of order l if
and only if the following four conditions hold.

(1) ζl + ζ−1
l ∈ k.

(2) If p ∈ Ramf(B), then Np 6≡ 1 (modulo l). If p ∈ Ramf(B) lies above l, then
p is not split in k(ζl)/k.

(3) If p ∈ S, then Np 6≡ −1 (modulo l).
(4) D contains an element y 6= 1 such that yl = 1.

Furthermore, condition (4) is implied by (1) and (2) (and so may be dropped),
except when Ramf(B) is empty and all primes of k lying above l split in k(ζl)/k.

Note that D appears only in (4) above, and that this condition can be dropped if
[k : Q] is odd, or if some prime of k above l does not split in k(ζl)/k, or if the narrow
class number of k is odd. Here, and throughout the paper, we take “narrow” in its
strictest sense, taking all real places of k into consideration.

There is a similar criterion for ΓS,D to contain an element of order 4 [CF2].

Lemma 2.2.4. Let ΓS,D be as above and let i =
√
−1 in some algebraic closure

of k. If i ∈ k then ΓS,D contains an element of order 4 if and only B ∼= M(2, k).
Assume now that i /∈ k. Then ΓS,D contains an element of order 4 if and only the
following four conditions hold.

(1) If p ∈ Ramf(B), then Np 6≡ 1 (modulo 4). If p ∈ Ramf(B) lies above 2, then
p is not split in k(i)/k.

(2) If p ∈ S, then Np 6≡ −1 (modulo 4).
(3) Any prime of k lying above 2, and not contained in S ∪ Ramf(B), has an

even absolute ramification index.
(4) D contains an element y such that y2 = −1.

Furthermore, condition (4) is implied by (1) (and so may be dropped), except when
Ramf(B) is empty and all primes of k lying above 2 split in k(i)/k.

Next we examine the elements of order 2 in ΓS,D. Up to conjugacy these elements
are parametrized by a set C2 = C2(S,D) ⊂ k∗/k∗2 which we now define. The trivial
coset k∗2 is defined to be in C2 if and only if B ∼= M(2, k). The non-trivial cosets
in C2 are those represented by some totally negative w ∈ k∗ satisfying conditions
(a) through (d) below:

(a) No p ∈ Ramf(B) is split in k(
√
w)/k.

(b) Write the principal fractional ideal (w) = a2b, where a is a fractional ideal
and b is a square-free integral ideal. Then any p dividing b is in S∪Ramf(B).

(c) For every p ∈ S not lying above 2, either p divides the ideal b in condition
(b) above or p is split in k(

√
w)/k.

(d) There is an embedding over Ok of the ring of integers Ok(
√
w) into D.

As in Lemmas 2.2.3 and 2.2.4, condition (d) is implied by (a), and so can be
dropped, except when Ramf(B) is empty, k(

√
w)/k is unramified at all finite places

and all primes lying above 2 split in k(
√
w)/k.

We again cite from [CF2]

Lemma 2.2.5. The group ΓS,D contains an element of order 2 if and only if the
set C2(S,D) defined above is non-empty.

We will also need to know when ΓS,D contains a dihedral group of order 4 or 8.
In general, this may depend on D in a complicated way. We state here a simple
case which will suffice here.
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Lemma 2.2.6. Assume that kB = k, where kB is as in the volume formula (2.1.1).
Then ΓS,D contains a subgroup isomorphic to Z/2Z⊕Z/2Z if and only if there exists
c and d ∈ k∗ satisfying (1), (2) and (3) below:

(1) The algebra B has Hilbert symbol {c, d}.
(2) {p /∈ Ramf (B) | ordp(c) or ordp(d) is an odd integer} ⊂ S. Here ordp(α)

denotes the exponent of p in the prime ideal factorization of the principal
ideal (α).

(3) S ⊂ {p /∈ Ramf (B) | ordp(c) or ordp(d) is an odd integer, or p divides 2}.
ΓS,D contains a subgroup isomorphic to a dihedral group of order 8 if and only if
ΓS,D contains an element of order 4 and {c, d} above can be taken as {−1, d}.

Remark. In Lemma 2.2.6 it suffices to assume, instead of kB = k, that Gal(kB/k)
is generated by the image under the Frobenius map of the primes in S and of the
primes lying above 2 [CF2].

Let the manifold M0 in Theorem 2.0.1 cover some minimal orbifold H3/ΓS,D. By
Lemma 2.2.2, we have 1 ≥ Vol(M0) ≥ lcmtor(ΓS,D) · Vol(H3/ΓS,D). We therefore
assume, throughout the rest of §2, that

lcmtor(ΓS,D) ·Vol(H3/ΓS,D) ≤ 1 (2.2).

We proceed to make a complete list of all orbifold groups ΓS,D satisfying (2.2).
The resulting orbifolds are the first eight given in Theorem 2.0.1. The ninth one
is on the list because in this section we only prove that lcmtor(ΓD) is even and
that Vol(H3/ΓD) = 0.2783 . . . . In a later section, we shall by geometric means that
lcmtor(ΓD) = 4, so that it too can be excluded as it violates (2.2).

By Proposition 2.1.2, the field k defining ΓS,D satisfies 2 ≤ [k : Q] ≤ 8 and
[kB : k] ≤ 2.

2.3. Degree 8.
For [k : Q] = 8 and r1(k) = 6, Lemma 2.1.1 with y = 1.1 and K = k gives the lower
bound dk > 8.9748. Hence (cf. (2.1.1))

2π2d
3
2
k

(4π2)[k:Q][kB : k]
>

0.912
[kB : k]

. (2.3.1)

Moreover, any p ∈ Ramf(B) allows us to gain a factor of

Np− 1
2

(1−Np−2)−1 exp
(

1.5 ∗ 4
∞∑
j=1

log(Np)
1 + Npj

α(j
√
y log Np)

)
(2.3.2)

to the lower bound for Vol(H3/ΓS,D) (see formula (2.1.1) and Lemma 2.1.1). For
any p ∈ Ramf(B), this improves (2.3.1) by a factor of at least 4.864, using y = 1.1 in
(2.3.2). A p ∈ S contributes even more, as the Np−1

2 is replaced by Np+1
2 . Therefore

S and Ramf(B) must be empty. We now use Lemmas 2.2.2 and 2.2.3. If [kB : k] = 1
and Ramf(B) is empty, then the narrow class number is odd. We find then that 3
divides lcmtor(ΓD), as k(

√
−3)/k must ramify at some prime above 3. This gives

lcmtor(ΓD) ·Vol(H3/ΓD) > 2.736, considering (2.3.1).
The case [kB : k] = 2 is more difficult. First we prove the existence of 2-torsion

in ΓD.



SMALLEST ARITHMETIC MANIFOLD, FEB. 17, 98 13

Lemma 2.3. Suppose [kB : k] = 2, h(k, 2, B) = 1 and that Ramf(B) is empty.
Then ΓD has two-torsion. The same holds for ΓS,D if the product of the primes in
S has trivial image in the narrow class group of k.

Proof. Let hk and h+
k denote, respectively, the wide and narrow class number of

k. From the hypotheses, h+
k /hk = 2. A short calculation then shows [O∗k,+ :

(O∗k,+)2] = 4. It follows that there is a totally positive unit ε such that k(
√
−ε)/k

is a quadratic extension which is not contained in the narrow Hilbert class field
of k. Hence −ε ∈ C2(∅,D) and, by Lemma 2.2.5, ΓD has 2-torsion for every D.
To prove the last statement, replace ε above by a totally positive generator of the
product of the primes in S.

Although Lemmas 2.2.2 and 2.3 show that

lcmtor(ΓD) ·Vol(H3/ΓD) ≥ 2 ·Vol(H3/ΓD)

the lower bound dk > 8.9748 only yields 2 · Vol(H3/ΓD) ≥ 0.912. Fortunately, M.
Atria [At] has recently succeeded in improving Poitou’s bound to dk > 9.058. This
yields 2 ·Vol(H3/ΓD) ≥ 1.009. Hence we can rule out the case [k : Q] = 8.

2.4. Degree 7.
In this case the lower bound is dk > 7.767, corresponding to y = 1.35 and K = k,
which yields

2π2d
3
2
k

(4π2)[k:Q][kB : k]
>

0.28
[kB : k]

. (2.4)

As Ram(B) includes all five real places and has even cardinality, there must be a
p ∈ Ramf(B). Any such prime contributes a factor of at least 4.23 to (2.4). Thus,
Ramf(B) has exactly one prime p, S is empty and [kB : k] = 2 (as 4.23 · 0.28 > 1).
We now use

Lemma 2.4. Suppose K/k is a quadratic extension unramified at all finite places
and that r1(k) is odd. Then r1(K) ≥ 2.

Proof. Considering the image under the reciprocity map to Gal(K/k) of the global
idele −1 ∈ k∗, we find

1 = (−1)number of real places of k ramified in K/k.

Therefore at least one real place of k splits in K/k.

We return to degree 7 fields. Thus [kB : Q] = 14, r1(kB) ≥ 2 and p ∈ Ramf(B)
is split to kB (by definition of kB). Then Lemma 2.1.1, with y = 0.8 and K = kB
gives dk > 8.977. As p contributes a factor, as in (2.3.2), of at least 5.95, we
conclude [k : Q] < 7.

2.5. Degree 6.
If [kB : k] = 2, then dk > 7.416. This follows from Lemma 2.1.1 with y = 1.1,
K = kB and taking the worst possible value of r1(kB) (which is always 0 [Ma][Po]).
Thus,

2π2d
3
2
k

(4π2)[k:Q][kB : k]
> 0.1755 .
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Any prime in Ramf(B) (which necessarily splits to kB), contributes a factor of at
least 4.86. As Ram(B) has even cardinality, it follows that Ramf(B) is empty. A
prime in S split to kB yields a factor of 7.51. Hence S is empty or contains only
primes inert to kB . A prime in S inert to kB contributes at least a factor of 2.855,
except for a prime of norm 3 which contributes only 2.767. Hence S contains at
most one prime, which must be inert to kB . By the Remark following (2.1.1), if S
is nonempty then ΓS,D is properly contained in ΓD, and so can be dismissed in the
proof of Theorem 2.0.1. We conclude that S is empty. Therefore, by Lemma 2.3,
ΓD has 2-torsion. Also, if the narrow Hilbert class field kB 6= k(

√
−3), then ΓD

has 3-torsion (Lemma 2.2.3), which suffices to rule out such orbifolds. This leaves
us to check only the list of sextic fields with exactly one complex place such that
k(
√
−3)/k is unramified above 3 and with dk < 332572. A check of the complete

lists of sextic fields of this signature (see [BMO] [O1-2] and the tables available by
FTP from megrez@math.u-bordeaux.fr) with dk < 332572, dk divisible by 3, and
with the prime(s) above 3 having an even absolute ramification index, yields the
following three fields:
a) k = Q(x), where x6−x5−2x4−2x3+x2+3x+1 = 0, disck = −215811 = −33 7993,
b) k = Q(x), where x6 − 2x5 − x2 + 2x+ 1 = 0, disck = −288576 = −33 43 167,
c) k = Q(x), where x6 − 2x5 − 2x4 + 5x3 − 2x2 − 2x + 1 = 0, disck = −309123 =
−33 1072.

Using PARI [Co] we find that the place above 3 splits in k(
√
−3)/k only in case a).

Hence, in cases b) and c), any ΓD has 2- and 3-torsion. This suffices to rule out
these two fields.

However, in case a) above, we do not have 3-torsion in all ΓD’s. It follows from
the discussion at the end of §1 that there are two types of maximal orders in B. Let
D and D′ be maximal orders of different types. Since Ramf (B) = ∅ each of the
groups ΓD and ΓD′ has 2-torsion. Exactly one of these, say ΓD′ , also has 3-torsion
[CF2]. Since Vol(H3/ΓD′) = Vol(H3/ΓD) = 0.27833973 · · · , this suffices to rule out
ΓD′ . The last group in Theorem 2.0.1 is the group ΓD.

If [kB : k] = 1, we only have the lower bound dk > 6.526, corresponding to
y = 1.7 and K = k in Lemma 2.1.1. This yields

2π2d
3
2
k

(4π2)[k:Q][kB : k]
> 0.111 .

Also, any prime in Ramf(B) (respectively, in S) contributes at least a factor of 3.6
(respectively, 5.7). It follows that Ramf(B) is empty and that S is either empty or
contains exactly one prime. Since Ramf(B) is empty and [kB : k] = 1, k has odd
narrow class number. We now need a result which we will also use frequently for
smaller degrees.

Lemma 2.5. Suppose the narrow class number h+
k is odd. Then ΓS,D has 2-torsion

for any S and D.

Proof. Let S′ = S∪Ramf(B) and a =
∏

p∈S′ p. Then we can find a totally positive

c ∈ k∗ such that ah
+
k = (c). As h+

k is odd, −c represents an element of C2(S,D)
for any D, notation being as in Lemma 2.2.5. Here we must take a little care with
condition (d) in the definition of C2(S,D). It can be dropped, as remarked there,
if k(
√
−c)/k ramifies at some finite place. This must be the case since h+

k is odd,
except possibly in the case that −c is a square. This can only happen if S′ is empty
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and [k : Q] = 2, as c is totally positive. But then B = M(2, k), in which case (by
definition) C2(S,D) always contains the trivial coset. We conclude that C2(S,D)
is non empty, and so ΓS,D has 2-torsion, by Lemma 2.2.5.

By the lemma, ΓS,D has 2-torsion . Hence S is empty. But then we also have
3-torsion. This leads to dk < 100720. However, for the two fields in this discrimi-
nant range, the prime 2 is inert from Q, which means that B has Hilbert symbol
{−1,−1}. This shows, by Lemma 2.2.6, that 12 divides lcmtor(ΓD) for these fields.
Hence we conclude that [k : Q] < 6.

2.6. Degree 5.
Suppose first that [kB : k] = 2. Lemma 2.4, aplied to kB/k, shows that r1(kB) ≥ 2.
Lemma 2.1.1, with y = 1.1 and K = kB , now implies that dk > 7.495. Hence

2π2d
3
2
k

(4π2)[k:Q][kB : k]
> 0.372 . (2.6)

Any prime in Ramf(B) contributes at least a factor of 4.86. As Ramf(B) is not
empty, we conclude that [kB : k] = 1.

If the narrow class number h+
k is even, which may happen even if [kB : k] = 1,

let K/k be a quadratic extension unramified at the finite places. We get the same
lower bound dk > 7.495. However, now the contribution of any p ∈ Ramf(B),
which may be inert to K, is only ≥ 1.18, if Np = 2, and ≥ 1.38 if Np > 2. Using
[kB : k] = 1, (2.6) and 1.38 · 2 · 0.372 > 1, we conclude that Ramf(B) consists of a
single prime of norm 2 and S is empty. But then Lemma 2.2.3 shows that ΓD has
3-torsion. Therefore h+

k is odd.
Lemma 2.1.1, with y = 2.3 and K = k, gives dk > 5.265. Hence

2π2d
3
2
k

(4π2)[k:Q]
> 0.0525 .

By Lemma 2.5, ΓS,D has 2-torsion. Any prime in Ramf(B) (respectively, in S)
contributes a factor of at least 2.9 (respectively, 4.8). Hence Ramf(B), which
has odd cardinality, contains exactly one prime and S is empty. This allows us to
restrict ourselves to ΓD coming from quintic fields with dk < 18070, unless Ramf(B)
consists of a prime of norm 2. But in this case, ΓD has 3-torsion, so we get the
better bound dk < 11384. Examining k with dk < 18070 yields only the field of
discriminant −9759 (for which ΓD has no 3-torsion). This gives the seventh field
in Theorem 2.0.1.

2.7. Degrees 2, 3 and 4.
When the degree [k : Q] is this small, one comes across very many fields and
orbifolds that need to be examined individually in order to compute lcmtor(ΓS,D) ·
Vol(H3/ΓS,D), or at least insure that it is > 1. We give a sample of some of these
calculations.

When working through imaginary quadratic fields we need not consider unram-
ified (matrix) algebras B = M(2, k), as this corresponds to cusped manifolds. In
this case, Adams [Ad] showed that the smallest volume of any cusped manifold
(arithmetic or not, orientable or not) is the volume of the regular ideal simplex
in H3, which is approximately 1.01 . . . . Thus, by Proposition 2.1.2, we need only
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consider imaginary quadratic fields with dk ≤ 56 and with Ramf(B) consisting of
at least two primes. An interesting example corresponds to k = Q(

√
−3) and B the

algebra ramified at the primes of norm 3 and 4. Then Vol(H3/ΓD) = 0.1268677 · · ·
and ΓD has no 3-torsion. Lemmas 2.2.4 and 2.2.6, with {c, d} = {−1,

√
−3},

show that ΓD contains a subgroup isomorphic to a dihedral group of order 8. As
8 ·Vol(H3/ΓD) = 1.01494 · · · > 1, this field can be dismissed.

When [k : Q] = 4, for example, one begins by finding an upper bound for dk
by checking from (2.1.1) that Vol(H3/ΓS,D) > 1 for dk ≥ 11579, even in the case
that Ramf(B) contains four primes of norm 2 and [kB : k] = 2. If [kB : k] = 2 we
proceed as follows. An examination, using PARI, of the list of all fields of degree 4
with r1 = 2 and even narrow class number h+

k shows that there are none with four
primes of norm 2. Hence Ramf(B) contains at most 3 primes of norm 2. Again
from (2.1.1), and using the fact that Ramf(B) is of even cardinality we find that
Vol(H3/ΓS,D) > 1 for dk ≥ 8170. However, the first field k with h+

k even and three
primes of norm 2 has dk = 8712. Hence Ramf(B) contains at most two primes
of norm 2. The corresponding bound is now dk ≤ 6743. One now examines the
six fields with h+

k even and two primes of norm 2 in this discriminant range. The
conclusion in each case is that either the orbifold volume is large enough (from the
contributions of other primes in Ramf(B) or in S) or that lcmtor(ΓS,D) is at least
2, 3 or 6, depending on the field. Thus, there is at most one prime of norm 2 in
Ramf(B). We are then down to fields with h+

k even, one place of norm 2 in Ram(B)
and dk < 4758. These have to be examined one by one.

In this way, after a laborious check of the rigorous lists of small-discriminant
number fields (available by FTP from megrez@math.u-bordeaux.fr), we arrive at a
list of seven orbifold groups ΓS,D such that lcmtor(ΓS,D) · Vol(H3/ΓS,D) ≤ 1 and
[k : Q] ≤ 4. Together with the orbifold coming from the quintic of discriminant
−9759 and the sextic of discriminant −215811 discussed in §2.5, this is the list
appearing in Theorem 2.0.1. Volumes appearing there were calculated using PARI.
The covering degree restrictions come from the results on lcmtor in subsection 2.2.
This concludes the proof of Theorem 2.0.1.

§3 Proof of Theorem 0.1

Here we complete the proof of Theorem 0.1. The underlying idea is simply to
get presentations for the groups of the orbifolds listed in Table 1 and check that
subgroups of the appropriate index all have elements of finite order. This is done
for the groups G1, . . . G8. G9 is handled separately.

3.1 The groups Gi, i = 1, · · · 8.
In this section we prove,

Proposition 3.1. Presentations Γi for the groups Gi (i = 1, . . . 8) in Table 1 are:

(1) Γ1 =< a, b, c|a3 = b2 = c2 = (a(bc)2b)2 = (abc)2 = (acbc)3 = 1 >;

(2) Γ2 =< a, b, c|a3 = b3 = c2 = (a−1b)2 = (baca−1bc)2 = 1,
(cbcb−1aca−1b)2 = 1 >;

(3) Γ3 =< a, b, c|a2 = b2 = c2 = (abacab)3 = (ca)2 = ((ba)3cbac)2 = 1 >;

(4) Γ4 =< a, b, c|a2 = b2 = c2 = (abc)3 = (babc)2 = (acb(ca)2c)2 = 1 >;

(5) Γ5 =< a, b, c|a2 = b2 = c2 = (babc)2 = (ca)2(bc)2(bac)2a = 1 >;
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(6) Γ6 =< a, b, c|a2 = b2 = c2 = (bc)2 = ((ca)2(ba)2)2 = 1,
(c(ab)2)3ac(ab)3 = 1 >;

(7) Γ7 =< a, b, c|a2 = b2 = c2 = 1, (c(ab)2a)2 = 1,
(ab)2acbabc(abac)2bab = 1, (abcabacbab)2 = 1 >;

(8) Γ8 =< a, b, c|a2 = b2 = c2 = (abcb)2 = (b(ca)2c)2 = 1,
ab(ca)3bab(ca)3babc = 1 >;

Proof. The presentations in this proposition were obtained by a rigorous process in-
volving computer calculation, which we discuss briefly. More details of this process
will be given in [JR2].

The idea is this: from the arithmetic data, we know that there exists a co-
compact Kleinian group Gi. In all of the cases at hand, Gi is the normalizer of
a certain order Di. This is obvious for all values of i except 6 and 8 where S is
nonempty. To deal with these, recall from the discussion in §1 that ΓS,D has the
description as the image of the normalizer of an Eichler order. Hence, using only
integer arithmetic, we can generate subgroups Γ of Gi. This is accomplished by
enumerating the elements in the order Di, and checking to see which order ele-
ments are in the group (by checking whether or not a given element normalizes
Di). Using this enumeration, we then use a particular representation of Gi into
PGL(2,C) (essentially induced by splitting the quaternion algebra at the complex
place), together with floating-point interval arithmetic, to calculate an approximate
Dirichlet fundamental polyhedron. The representation of Γ into PGL(2,C) is in-
duced by a representation of Di, which is readily determined by knowing the trace
of each basis element of Di. We continue adding new elements to Γ until a volume
computation tells us that Γ = Gi.

The face-pairings of this approximate polyhedron are then used to generate a
group presentation for the orbifold (one generator for each face-pair, one relation
for each edge class). Note that all conjugacy classes of elements of finite order
show up as relators which are a proper power of the word represented by the faces
around an edge class, with the total dihedral angle around the edge class used to
calculate the exponent associated to each relator. Thus, torsion-free groups are
easily recognized from such a presentation.

Note that the vertices of this polyhedron are only calculated with finite precision
– that is, there is an uncertainty associated to each vertex. However, because of the
use of interval arithmetic, upper bounds on this uncertainty are known (precisely).
The true Dirichlet polyhedron of the group Gi (if it were known precisely) could
be obtained from the approximate one by adjusting vertices within their “region
of uncertainty” as well as possibly splitting approximate vertices into multiple true
vertices joined by new edges lying entirely within a region of uncertainty.

However, if the regions of uncertainty are small compared to the injectivity radius
of the Kleinian group (suitably defined), then none of these adjustments will affect
the presentation calculated from the face-pairings of the polyhedron. Specifically,
if the largest diameter of any region of uncertainty is smaller than the minimum of
half of the length of the shortest closed geodesic and half of the shortest ortholength
between two nonintersecting elliptic axes (using in both cases precisely known lower
bounds for these lengths), then the presentation computed from the approximate
polyhedron will be isomorphic to the group Gi.

This procedure was carried out for each of the groups Gi (i = 1, . . . 8) in Table
1 and the resulting presentations (after simplification) are the ones given in the
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statement of this Proposition. The approximate fundamental domains are given in
Figure 2 in the Appendix. It might be noted that in these pictorial representations,
the uncertainties are sufficiently small that the true fundamental domains would
be indistinguishable from the approximate ones to the naked eye.

The simplifications used to obtain the presentations in this Proposition from the
face-pairing presentations derived directly from the polyhedra are given in Table
3 of the Appendix. The maximum uncertainties and the various relevant lengths
for each polyhedron are given in Table 4 of the Appendix. Note that the uncer-
tainties themselves are highly dependent on the numerical implementation chosen
(and on the domain generating algorithm chosen, as well as choice of basepoint and
representation) whereas the lengths are geometrically determined and thus inde-
pendent of all these factors. Another implementation of the same procedure might
well produce much more uncertainty, to the point of having an uncertainty that
is larger than the bound guaranteeing correctness of the resulting presentation.
These numbers are the results of our particular implementation and in these cases
the uncertainties are all well within the necessary limits. The reader may notice
that in all cases in Table 4 the shortest ortholength is half the length of the shortest
geodesic. This is often the case for orbifolds generated by elliptic elements as all of
the Gi are.

3.2 Trace calculations.
As a further check on the presentations, we can compute the character varieties

of the Γi and verify that these do correspond to the arithmetic data on Gi with
which we started. This allows us to rule out the possibility of an error, either in the
implementation of the procedure that calculated the face-pairing presentations for
Γi or in the simplification process that led to the presentations above. We indicate
how this was done specifically for Γ1 and Γ4. The others follow similar lines and
details are available from the authors.

Throughout this calculation, we will be working with SL(2,C) since it it com-
putationally simpler than PSL(2,C), but since we are working with orbifolds, some
care is required when lifting representations from PSL(2,C).

To show that Γ1 is isomorphic to G1 we first compute a faithful discrete repre-
sentation of Γ1. Note that by construction Γ1 is isomorphic to a Kleinian group
since it arises as face-pairings on a polyhedron. We find it convenient to work with
traces.

By standard arguments (cf. [CS3] for example), the traces of a three-generator
subgroup 〈x, y, z〉, of SL(2,C) are completely determined by the traces of x, y, z,
xy, yz, zx and xyz. Let ρ : Γ1 → SL(2,C) be any representation and let

t = trρ(a)

u = trρ(b)

v = trρ(c)

x = trρ(ab)

y = trρ(bc)

z = trρ(ca)

w = trρ(abc)

Then, we compute that trρ(a(bc)2b) = xy2 − tvy + yz − x, and trρ(acbc) =
yz − tu + x. These seven variables are not independent: it is always true that
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w2−w(ty+uz+vx−tuv)+t2 +u2 +v2 +x2 +y2 +z2 +xyz−4−tvz−uvy−tux = 0.
Thus, the relations in the group give us the following seven equations in the seven
trace variables:

1 = t

0 = u

0 = v

0 = xy2 − tvy + yz − x
±1 = yz − tu+ x

0 = w

0 = w2 − w(ty + uz + vx− tuv) + t2 + u2 + v2 + x2 + y2 + z2

+ xyz − 4− tvz − uvy − tux

These readily simplify to yield y =
√
α, x = ±1/(2−α), z = ±(1−α)/

√
α(2−α)

where α satisfies α4 − 7α3 + 16α2 − 12α + 1 = 0. Applying the results of [MR]
to the group generated by a2 and ba−2b−1, we find that the invariant trace field is
Q(α) and the invariant quaternion algebra has Hilbert symbol {−3, α3 − α2 − 1}.
The invariant trace field is thus a field with one complex place of discriminant
−283 and the invariant quaternion algebra is ramified at both of the real places.
Furthermore, the algebra is not ramified at any finite place, since the only primes
dividing the entries in the Hilbert symbol are 3 (which is inert from Q) and a prime
of norm 13 (α3−α2−1 has norm 13). Neither of these primes ramifies since -3 is a
square modulo 13 and α3 − α2 − 1 is a square in Z

3Z (α), the finite field of order 81.
Furthermore, 2 is inert, so it does not ramify since the ramification set must have
even cardinality.

Thus, we see that Γ1 is indeed commensurable with G1. To see that it is iso-
morphic to that group, the computer packages allow us to calculate the volume of
the approximate fundamental domain for Γ1 and observe that it coincides (only a
very rough approximation is necessary) with the covolume for G1 given in Table 1.
However, as the algebra has only one type of maximal order (see §1), the results of
[Bo] show that G1 is the unique group in its commensurability class achieving the
smallest covolume and the next covolume is at least twice as big. Thus, G1

∼= Γ1.
We now show G4

∼= Γ4. Repeating the earlier procedure, we obtain the seven
equations

0 = t = u = v

0 = xy − tv + z

0 = yz3 − tuz2 + xz2 − 2yz + tu− x
±1 = w

0 = w2 − w(ty + uz + vx− tuv) + t2 + u2 + v2 + x2 + y2 + z2

+ xyz − 4− tvz − uvy − tux

which simplify to yield y =
√

2− α2, x = ±
√
α2 + 1 and z = −xy where α satisfies

α3 − α + 1 = 0 (there is also another solution x = z = 0, y =
√

3 which is
totally real and hence does not correspond to a discrete, faithful representation
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into PSL(2,C)). Again applying [MR], this time to the group generated by (ba)2

and (bc)2, we find that the invariant trace field is Q(α) and the invariant quaternion
algebra has Hilbert symbol {−3,−2− α}. Thus, the invariant trace field is a field
with one complex place of discriminant −23 and the invariant quaternion algebra is
ramified at the unique real place. The only possible finite places in the ramification
set are primes over 2, 3 and 5 (since −2− α has norm 5). In this field, 2 and 3 are
inert, while 5 splits as a product of a prime ideal of norm 5 and a prime ideal of
norm 25. The algebra is ramified at the prime of norm 5, but not at the prime of
norm 25 since −3 is not a square in Z/5Z but is a square in the field of order 25.
The algebra does not ramify at 3 since −2− α is a square in Z

3Z (α), the finite field
of order 81. The algebra does not ramify at 2 since the ramification set must have
even cardinality.

So, again we see that Γ4 is commensurable with G4. Volume considerations then
force G4

∼= Γ4 as before.

The other groups, G2 to G8, are treated similarly. Details are available from the
authors. We now relate G4 and G1 to the Weeks and Meyerhoff manifolds.

Proposition 3.2. The orbifold H3/G4 is covered with degree 12 by the Weeks
manifold. The orbifold H3/G1 is covered with degree 24 by the Meyerhoff manifold.

Proof. We first record the arithmetic nature of the Weeks manifold MW . Chinburg
and Jørgenson stated in §I of [Ch] that MW is arithmetic, but a proof was never
published. A proof is in fact implicit in several places now, e.g. in [RW]. For
completeness we give details, following [RW].

To simplify some of the calculations, it is convenient to work with a slightly
different surgery description of the Weeks manifold given in the Introduction. Doing
(5, 1)-surgery on one component of the Whitehead link produces a once punctured
torus bundle X (the sister to the figure eight knot) and the manifold we require
can be described as (−3, 1)-surgery on X with respect to some framing of the
peripheral torus (see for example the census of closed 3-manifolds produced by
Snap Pea [We2]). Let MW denote this closed manifold, a presentation for the
fundamental group is

π1(MW ) =< a, b | a2b2a2b−1ab−1 = 1, a2b2a−1ba−1b2 = 1 > .

By [We1], this manifold is hyperbolic, and we now compute a faithful discrete
representation (which is unique up to conjugacy). We shall make use of Mathemat-
ica in these calculations.

We begin by noting that the hyperbolic structure on MW arises from a faithful
discrete representation of π1(MW ) into PSL(2,C), and this can be lifted to a rep-
resentation of π1(MW ) into SL(2,C) (see [Cu]). We can conjugate a representation
ρ of π1(MW ) into SL(2,C) so that the images of a and b are the matrices:

ρ(a) =
(
x 1
0 x−1

)
ρ(b) =

(
y 0
r y−1

)
respectively. As we are looking for the faithful discrete representation into SL(2,C),
x and y are always non-zero, and not roots of unity.
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Write the first relation as w = 0 where w = a2b2a2 − ba−1b. This gives the
following equations.

0 = w11 = r x2 + r x4 + r x y2 + r x2 y2 + r x4 y2 − y3 + x5 y3.
0 = w12 = 1 + x2 + r x y + 2 r x3 y + r x5 y + x3 y2 + r x y3 + 2 r x3 y3 + r x5 y3 +
x4 y4 + x6 y4.
0 = w21 = r

(
x− x2 + r x y − y2 + x y2

)
.

0 = w22 = 1− x5 + r x y + r x3 y + r x4 y + r x y3 + r x3 y3.
Note from the equation for w21 we have either r = 0 or we can solve for r in

terms of x and y (which as noted above are always non-zero). Since the faithful
discrete representation will correspond to a non-elementary subgroup of SL(2,C)
we must have r 6= 0. Thus we may assume r is non-zero and from above, is given
by:

r =
(x2 − x+ y2 − xy2)

xy
.

Using this and re-working the above equations gives:
w11 = (−1 + x) x

(
1 + x2 + y2 − x y2 + x2 y2 + y4 + x2 y4

)
.

w12 =
(
1− x+ x2 − x3 + x4

) (
1 + x2 + y2 − x y2 + x2 y2 + y4 + x2 y4

)
.

w21 = 0.
w22 = (−1 + x) (−1 + x)

(
−1− x2 − y2 + x y2 − x2 y2 − y4 − x2 y4

)
).

Notice that the expressions for w11,w12 and w22 all have the common factor

p(x, y) =
(
1 + x2 + y2 − x y2 + x2 y2 + y4 + x2 y4

)
.

The only way we can simultaneously satisfy all the above equations is for p(x, y) = 0.
Writing the second relation as u = a2b2−b−2ab−1a, and solving u = 0 we deduce

that
u12 = (x− y) (−1 + x y) = 0,

and so we must have x = y or x = 1/y. With x = y (a similar argument applies to
y = 1/x, which also yields the same characters), p(x, y) is simply the polynomial
in x given by:

p(x) = 1 + 2x2 − x3 + 2x4 + x6,

which must solve to zero to determine a representation. Solving for z = x + x−1

yields the polynomial in z, z3 − z − 1 = 0. From the equation for r we see that
r = 2− z.

To see that MW is arithmetic, and determine the arithmetic data associated to
MW we use [MR]. Briefly, let Γ denote the faithful discrete representation con-
structed above. The invariant trace-field of Γ is the cubic field Q(z) with one
complex place and which has discriminant −23. All traces of elements in Γ are
integers in Q(z) since this is true for the images of a, b and ab. The Hilbert symbol
for the invariant quaternion algebra is given by {tr2(a)− 4, tr([a, b])− 2} which on
calculation gives {z2−4, x} where x = 3z2−z−5 and satisfies x3+9x2+32x+25 = 0
and u = z2 − 4 satisfies, u3 + 10u2 + 33u+ 35 = 0

Note that the real Galois conjugate of u is approximately −2.24512, so that
z2 − 4 < 0, and the real Galois conjugate of x is approximately −1.06008, and
hence the invariant quaternion algebra is ramified at the real place of Q(z). It
follows from these remarks that MW is arithmetic.

To determine the finite places at which the algebra is ramified we proceed as
follows. From the description of the invariant quaternion algebra given above the
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only finite places that can ramify are the unique places of norm 5, 7, 8, and 25.
As noted in the introduction, the volume of MW is approximately 0.9427073627769
(this approximation can be determined from Snap Pea). Now the group of isome-
tries of MW is known to be the dihedral group of order 12 (see [HW] or [MV]),
hence in the commensurability class of MW there is an orbifold of volume approx-
imately 0.078558946. Using the volume formula of Borel discussed in §1 the only
finite place that can ramify in the invariant quaternion algebra is the one of norm 5.
This completes the description of the arithmetic structure associated to the Weeks
manifold. The discussion above also shows that MW covers H3/G4 with degree 12,
which completes the proof of Proposition 3.2 for the Weeks manifold.

We now deal with the Meyerhoff manifold. In what follows we shall denote the
Meyerhoff manifold by M . From [Ch] M is arithmetic with invariant trace field and
quaternion algebra being as described by the first case in Theorem 2.0.1. Further-
more, as is easily deduced from [Ch], M covers the orbifold H3/G1(alternatively in
the language of [MR] M is derived from a quaternion algebra as H1(M,Z) = Z/5Z).
From the volume comparisons we see that the index is 24.

3.3 Subgroup enumeration.
The next step in the proof of Theorem 0.1 is to enumerate all the subgroups of

Gi of the appropriate index j. Namely, by Theorem 2.0.1, j must be divisible by
12 = lcmtor(Gi) for 1 ≤ i ≤ 4, by 4 for 5 ≤ i ≤ 8. Also and j ·Vol(H3/Gi) ≤ 1.

We now give the list of subgroups obtained using the presentations in Proposition
3.1 and the Cayley/Magma group theory software. In the next section we give an
alternative algorithm for ruling out torsion-free subgroups.
Case 1:
From Table 1, lcmtor(G1) Vol(H3/G1) = 12 · 0.04089 · · · = 0.49068 · · · . There is a
unique subgroup Γ′ ⊂ Γ1 of index 12, generators for which are:

< ba−1, c, aca−1ba > .

This contains c which has order 2, hence has torsion.
Magma can also be used to show there is a unique torsion-free subgroup Γ ⊂ Γ1

of index 24 (there are 2 with torsion). We also find Γ ⊂ Γ′ . By Proposition 3.2,
H

3/Γ is isometric to the Meyerhoff manifold.
Case 2:
From Table 1, lcmtor(G2) Vol(H3/G2) = 12 · 0.05265 · · · = 0.6318 · · · . As above,
there is a unique subgroup of Γ2 of index 12 generated by:

< ba−1, caca−1, cb−1ac, a−1cac > .

Notice that from the presentation given in Proposition 3.1, a−1b has order 2, hence
ba−1 has order 2, and therefore this subgroup contains an element of finite order.
Thus, there are no torsion-free subgroups of index 12.
Case 3:
From Table 1, lcmtor(G3) Vol(H3/G3) = 12 · 0.06596 · · · = 0.7915 · · · . The sub-
groups of Γ3 of index 12 are:

< a, b, cbabababcbc >;
< a, c, bab, bcbcbcabcbcb >;
< a, bcb, cbcbc, bababab >;
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< a, cbab, bcbcbcab >;
< b, acbca, abababa, cbababc >;

< b, (cba)2, abcbacbca >;
< ca, (ba)2, bcbcbcba >;
< ca, bcab, (ba)4 >.

Since a, b and ca all have finite order, none of the groups are torsion-free and so
there is no torsion-free subgroup of index 12.
Case 4:
From Table 1, lcmtor(G4) Vol(H3/G4) = 12 · 0.0785589 · · · = 0.9427 · · · . There is
a unique torsion-free subgroup Γ of index 12 in Γ4. By Proposition 3.2, H3/Γ is
isometric to the Weeks manifold.
Case 5:
From Table 1, lcmtor(G5) Vol(H3/G5) = 4·0.11783 · · · = 0.4713 · · · . The subgroups
of Γ5 of index 4 are:

< a, b, cac >;
< a, c, bab, bcacb >;
< a, bab, cac, (cb)2 >.

Since a has finite order, none of these give torsion-free subgroups of index 4. The
index 8 subgroups in Γ5 are:

< a, bab, cac, bcacb >;
< b, aba, (ca)2 >;

< c, aca, (ba)2, bcacba >.
Again it is clear that each of these has an element of finite order, hence no torsion-
free subgroup of index 8 exists. We have checked that the minimal index of a
torsion-free subgroup of Γ5 is 16. This seems interesting in light of the fact that
for Fuchsian groups the minimal index of a torsion-free subgroup is always either
the least common multiple of the orders of the elements of finite order or twice this
[EEK]. For more on this phenomenon, in particular, for construction of co-compact
Kleinian groups where lcmtor is bounded but the minimal index of a torsion free
subgroup gets arbitrarily large, see [JR1].
Case 6:
From Table 1, lcmtor(G6) Vol(H3/G6) = 4·0.15796 · · · = 0.6318 · · · . The subgroups
of Γ6 of index 4 are:

< a, bab, cacb >;
< b, aba, (ca)2 >;
< c, acba, (ba)2 >.

Again all these groups have elements of finite order.
Case 7:
From Table 1, lcmtor(G7) Vol(H3/G7) = 4 · 0.22804 · · · = 0.9121 · · · . Subgroups of
Γ7 of index 4 are listed below and again there are elements of finite order in all of
them.

< a, bab, cac, (cb)2 >;
< b, aba, (ca)2, cbca >;
< c, aca, (ba)2 >.

Case 8:
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From Table 1, lcmtor(G8) Vol(H3/G8) = 4 · 0.24534 · · · = 0.9813 · · · . There is a
unique subgroup of index 4 in Γ8. It is torsion-free and corresponds to the Meyerhoff
manifold. This last claim can be justified as follows. G8 is commensurable with
G1. In fact, by results in [Bo], [G1 : G1 ∩G8] = 12 and [G8 : G1 ∩G8] = 2. Thus,
G1 ∩ G8 = Γ′, the unique subgroup of G1 of index 12. Γ′, in turn, has a unique
torsion-free subgroup of index 2, which corresponds to the Meyerhoff manifold (see
Case (1) above). As G8 has a unique subgroup of index 4, the two subgroups
coincide.
It should be noted that the elements of finite order alluded to above are all nontrivial
(and hence give rise to torsion) since in every case, adding that element as a relation
changes the group in one of two easily verifiable ways: either changing Γi/[Γi,Γi]
or making Γi abelian (which is not possible for a finite covolume Kleinian group).

3.4 The case of G9.
The one outstanding case to deal with is the case of the sextic field k of dis-

criminant −215811 discussed in §2.5. Here, the algebra B is unramified at all finite
places and there are two distinct types of maximal orders. We shall show for the
one type not handled in §2.5, that ΓD contains a copy of Z/2Z⊕ Z/2Z.

We first note that this algebra is isomorphic to the one with Hilbert symbol
{−1,−1} over the sextic field k. This is because 2 is inert in this field, and so
{−1,−1} is unramified at all finite places.

Firstly it is convenient to use the following representation of k, namely as Q(α)
where α satisfies α6+5α5+8α4−12α2−8α+1 = 0 (that this is the same field as the
one described in §2.5 follows by uniqueness of the discriminant −215811 for sextic
fields of one complex place). Then, using PARI, we find that Ok, the algebraic
integers in k is Z[α]. We will construct an explicit representation of B into M(2,C)
as follows.

As is well-known (see [CS3]) a pair of matrices {a, b} generating a non-elementary
subgroup of SL(2,C) determines, and is completely determined up to conjugacy by,
a triple of numbers (tr(a), tr(b), tr(ab)). In view of this we define the following
elements of SL(2,C): a has trace α, b has trace α5 + 3α4 + 2α3 − 3α2 − 4α and
ab has trace −α5 − 3α4 − 2α3 + 4α2 + 5α − 1. Note, by construction the field
generated by traces of elements of the group < a, b > is k. Define the k-subalgebra
A of M(2,C) to be k[1, a, b, ab]. This is a quaternion algebra over k. We claim it
is isomorphic to B. To this end, let D = Ok[I, a, b, ab]. It is an easy exercise to
see that Ok[I, a, b, ab] always forms an order when a, b, and ab all have norm 1 and
integral trace (cf. [GMMR]) Hence D is an order in A. The Hilbert symbol for A
can be computed directly as {tr2(a) − 4, tr([a, b]) − 2}. We also remark that the
discriminant of D is the Ok-ideal < tr([a, b])−2 >. On performing this calculation,
we get {α2 − 4,−α5 − 3α4 − α3 + 5α2 + 3α − 4} with the Hilbert symbol entries
being units in Ok. Thus we deduce that, since 2 is inert in k, together with the
fact that both Hilbert symbol entries for A are negative at all real places (and so
ramified at all real places, and unramified at all finite places) A is isomorphic to B,
and D is a maximal order of A. Thus it suffices to work with the representation A
of B.

Now, a Z/2Z⊕ Z/2Z inside k∗D∗/k∗ is generated by the image of

(−α5 − 3α4 − 2α3 + 3α2 + 4α)I + (−α5 − 3α4 − 2α3 + 4α2 + 5α− 1)a+ b+ ab
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and

(−α5 − 5α4 − 5α3 + 6α2 + 8α− 1)I + (−α5 − 3α4 + 6α2 + α− 5)a

+ (2α2 + 4α+ 1)b− (2α+ 3)ab

One needs merely to check that the trace of each of these elements and the trace
of their product is zero. Note that both of these elements have unit norm, and so
are in the normalizer of D (see [Bo]).

It remains now only to show that there is no 3-torsion in ΓD. The simplest way
to see this is by using the computer package as discussed in §3 to show that a and
b generate a Kleinian group G of co-volume equal to 8 times the co-volume of the
maximal group ΓD. As discussed in the proof of Proposition 3.1, torsion elements
produced by the program are readily observed from the presentation. In particular
the group G can be seen to have no 3-torsion (see below). Hence there cannot be
any 3-torsion in the maximal group, since the index of G in the maximal group is
a power of 2.

For the sake of completeness, we indicate that the group G is determined by the
computer package to have an unsimplified presentation

< a, b, c,d, e, f, g, h, i, j, k, l,m :

b = fk, c = ab = da = ke = g−2, d = bj = ki = f2, e = cj = ia = ad,

f = kj, g = dh, i = jf, l = eh = ag = hc,m = hj,

emb = bhe = cmf = blj = dlg = hic = 1 >

In this computation, the maximum uncertainty was 3.48978×10−7 and the shortest
geodesic has length 0.404575. There is no ortholength between two elliptic axes,
since the group is found to be torsion free.

Remark
In fact the group G discussed in the previous paragraphs is the fundamental

group of (1, 2)-Dehn surgery on the complement of the knot 52. In particular G is
torsion-free. This manifold (and a pair of 11-fold coverings) seems to be the only
known examples of integral homology spheres which are arithmetic. Further details
can be obtained from the authors.

3.5 Completing the proof.

Proof of Theorem 0.1. We can now put together all the pieces of the proof. By
Theorem 2.0.1, an arithmetic hyperbolic 3-manifold M0 with Vol(M0) ≤ 1 covers
one of the nine orbifolds H3/Gi described in Table 1. Section 3.4 rules out G9.
Furthermore, Proposition 3.1 gives presentations for the groups Gi for i = 1, . . . 8
and the Cayley/Magma data given above show that only G1, G4 and G8 have
torsion-free subgroups giving rise to manifolds of volume ≤ 1. As remarked above,
the uniqueness of each of these subgroups and Proposition 3.2 allow us to conclude
that M0 is isometric to the Weeks or Meyerhoff manifolds. In particular, these
are also the unique arithmetic hyperbolic 3-manifolds attaining their respective
volumes.

Remark
A review of the proof shows that the main obstacle to extending Theorem 0.1,

perhaps to listing volumes < 1.3, is the weak discriminant lower bound in degree
8, namely dk > 9.058. The Generalized Riemann Hypothesis implies the far better
bound dk > 9.268 [Ma].
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§4 Ruling out torsion-free subgroups

As an independent check of the results produced by Cayley/magma, we decided to
implement another method of ruling out the existence of torsion-free subgroups of
Γi of small index. We sketch two typical cases, one for subgroups of index 12 and
another one for index 4. Consider first the case of Γ1. From Theorem 2.0.1, the
minimal index torsion-free subgroup is a multiple of 12.

Lemma 4.1. Γ1 has no torsion-free subgroup of index 12.

Proof. If there were a torsion-free subgroup Γ ⊂ Γ1 of index 12, there would be a
map ϕ : Γ1 → S12 such that ker(ϕ) ⊂ Γ, ϕ(a) and ϕ(acbc) would be products of
4 disjoint 3-cycles and ϕ(b), ϕ(c), ϕ(abc), and ϕ(abcbcb) would be each a product
of 6 disjoint 2-cycles (more generally, each element of finite order n must map to a
product of 12/n n-cycles). We will show that there is no such map.

First, observe that cbca and a generate an A4 subgroup of Γ1 (cbca has order 3,
a has order 3 and cbc has order 2). There is a unique map from A4 to S12 (up to
conjugacy) that has the correct cycle structure. Thus, without loss of generality,
we may assume that

ϕ(cbca) = (1 2 3)(4 5 6)(7 8 9)(10 11 12)

ϕ(a) = (1 7 4)(2 10 9)(3 5 12)(6 8 11)
.

Next, observe that c and bca generate an S3 subgroup of Γ1. Note that the image
of the product of these two was determined above. There are 27 possible ways to
map S3 to S12 with the correct cycle structure and so that a given element of order
3 has fixed image (these are enumerated below in Table 2 – one simply lists all
the products of disjoint two-cycles that conjugate the fixed 3-cycle product to its
inverse). Now, note that the complete map to S12 is determined, since a, c and
cbca form a generating set for Γ1. Thus, for each of the 27 possibilities for ϕ(c), we
can calculate ϕ(abcbcb) and show that in each case, it does not have the required
cycle structure. The results of this calculation are summarized in Table 2 below
and complete the proof that Γ1 has no torsion-free subgroup of index 12.

Now consider the case of Γ7. From Theorem 2.0.1, the minimal index torsion-free
subgroup is a multiple of 4.

Lemma 4.2. Γ7 has no torsion-free subgroups of index 4.

Proof. Suppose there exists a torsion-free subgroup Γ of index 4. Hence the per-
mutation representation of Γ7 on Γ yields a map ϕ into S4. Since Γ is torsion-free,
ϕ(a), ϕ(b) and ϕ(c) must be products of two disjoint 2-cycles. There are only three
such in S4, and they lie in a Z/2Z⊕Z/2Z subgroup. Hence the image of Γ7 under
ϕ is abelian. However, from Proposition 3.1 it is easy to observe that the element
cacababa lies in the kernel of the map induced by abelianizing, and has order 2.
Hence this contradicts Γ being torsion-free.

This method has been automated, and a computer program has been written
which produces a detailed (and rather tedious) proof, based on a case-by-case ex-
amination of the possible representations into Sn, of the existence or nonexistence
of torsion-free subgroups of index n, given a presentation of a group in which all
conjugacy classes of elements of finite order correspond to proper power relators
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in the presentation. The presentations given in Proposition 3.1 are of this type
(since they are derived from the face-pairings of an orbifold fundamental domain)
and all eight presentations have been run through this machinery, confirming the
Cayley/Magma results. The proofs generated by this method are available from
the authors on request.

As an example of the sort of proof generated by the program, we present the
computer-generated proof of Lemma 4.2 above.

Alternate Proof of Lemma 4.2. The proof proceeds by attempting to construct a
representation ϕ : Γ7 → S4 in which every element of order 2 maps to a product of
2 disjoint 2-cycles. After relabelling, we may assume that ϕ(a) is (0 1)(2 3). There
are then three possibilities for ϕ(b)(0): 0, 1, and 2 (the choice of 3 is conjugate
to a choice of 2). 0 produces a fixed point for ϕ(b) and is rejected. So, assume
that ϕ(b)(0) = 1. Then, ϕ(b) must also be (0 1)(2 3). Consider the choices now for
ϕ(c)(0): the same three choices exist (0, 1 and 2) and again 0 produces a fixed point
for ϕ(c), so we first assume that ϕ(c)(0) = 1 which leads to a contradiction with the
relation ϕ(ababacbabcabacabacbab) = 1. So, next we assume that ϕ(c)(0) = 2 which
implies that ϕ(c) = (0 2)(1 3). Again, the relation ϕ(ababacbabcabacabacbab) = 1 is
not satisfied. So our assumption that ϕ(b)(0) = 1 is ruled out.

Next, we proceed to the final possibility for ϕ(b)(0) and assume that ϕ(b)(0) = 2,
leading to the deduction that ϕ(b) = (0 2)(1 3). Now there are four distinct choices
for ϕ(c)(0), namely 0, 1, 2 and 3. Again ϕ(c)(0) = 0 leads to a fixed point for
ϕ(c), so we assume first that ϕ(c)(0) = 1 which implies that ϕ(c) = (0 1)(2 3).
This leads to a fixed point for ϕ(cababa) which should be a product of 2 disjoint
2-cycles. Next, assume that ϕ(c)(0) = 2 implying that ϕ(c) = (0 2)(1 3). In this
case ϕ(abcabacbab) has a fixed point. Our final possibility, then, is ϕ(c)(0) = 3
implying that ϕ(c) = (0 3)(1 2). Here, the relation ϕ(ababacbabcabacabacbab) = 1
is again not satisfied, ruling out all possible cases.

While this proof would certainly not be considered elegant, it is nevertheless
effective and easy (though quite tedious in the case of the index 12 proofs) to verify
by hand.
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Table 2

ϕ(c) ϕ(abcbcb)
(1 4)(2 6)(3 5)(7 10)(8 12)(9 11) (1 10 11 2 7)(5 8 9 6 12)
(1 4)(2 6)(3 5)(7 11)(8 10)(9 12) (1 12 9)(2 8 4)(3 6 10)(5 7 11)
(1 4)(2 6)(3 5)(7 12)(8 11)(9 10) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 5)(2 4)(3 6)(7 10)(8 12)(9 11) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 5)(2 4)(3 6)(7 11)(8 10)(9 12) (1 4 2 8 9)(3 6 10 11 5)
(1 5)(2 4)(3 6)(7 12)(8 11)(9 10) (1 12 6 11 3)(2 9 4 5 7)
(1 6)(2 5)(3 4)(7 10)(8 12)(9 11) (1 9 10 7 3)(4 5 11 8 12)
(1 6)(2 5)(3 4)(7 11)(8 10)(9 12) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10) (1 9 6)(2 5 11)(3 10 7)(4 8 12)
(1 7)(2 9)(3 8)(4 10)(5 12)(6 11) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 7)(2 9)(3 8)(4 11)(5 10)(6 12) (2 5 6 3 10)(4 7 11 12 8)
(1 7)(2 9)(3 8)(4 12)(5 11)(6 10) (1 8 5)(2 4 12)(3 11 9)(6 7 10)
(1 8)(2 7)(3 9)(4 10)(5 12)(6 11) (1 2 4 8 6)(3 12 9 7 10)
(1 8)(2 7)(3 9)(4 11)(5 10)(6 12) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 8)(2 7)(3 9)(4 12)(5 11)(6 10) (1 8 5 6 7)(2 9 3 11 12)
(1 9)(2 8)(3 7)(4 10)(5 12)(6 11) (1 5 10)(2 12 8)(3 7 6)(4 9 11)
(1 9)(2 8)(3 7)(4 11)(5 10)(6 12) (1 2 12 5 10)(4 9 7 6 11)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 10)(2 12)(3 11)(4 7)(5 9)(6 8) (1 10 8)(2 7 5)(3 4 11)(6 9 12)
(1 10)(2 12)(3 11)(4 8)(5 7)(6 9) (2 3 4 7 5)(6 9 12 10 8)
(1 10)(2 12)(3 11)(4 9)(5 8)(6 7) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 11)(2 10)(3 12)(4 7)(5 9)(6 8) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 11)(2 10)(3 12)(4 8)(5 7)(6 9) (1 5 3 7 8)(4 11 9 10 6)
(1 11)(2 10)(3 12)(4 9)(5 8)(6 7) (1 6 12)(2 11 7)(3 9 4)(5 8 10)
(1 12)(2 11)(3 10)(4 7)(5 9)(6 8) (1 4 12 10 5)(2 3 9 11 8)
(1 12)(2 11)(3 10)(4 8)(5 7)(6 9) (1 6 10)(2 8 5)(3 11 7)(4 9 12)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7) (1 6 4 3 12)(2 11 7 8 10)
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Appendix

Conventions for Figure 2: these polyhedra are drawn in the upper half-space
model and are oriented (approximately) so that the viewer is beneath them, looking
up.

G 1 G 2

G 3 G 4
Figure 2 - Fundamental Polyhedra
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G 5 G 6

G 7 G 8
Figure 2 - Fundamental Polyhedra (cont.)
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Table 3 - Presentation Details

Conventions for Table 3: The polyhedral presentations have generators a
through l for G1 and G2, a through n for G3, a through q for G4, a through o for G5,
a through w for G6, a through z and a2 through d2 for G7, and a through r for G8.
The relations for the presentation of each group G are given in the second column
of Table 3. Column 3 contains successive generator elimination equations which
reduce each group to a 3-generator presentation. The correspondence between these
generators and the generators given in Proposition 3.1 is then given in column 4. In
most cases, these eliminations are sufficient to exactly reproduce the presentations
of Proposition 3.1. G2, G5 and G8 require some slight rewriting of relations to
produce the indicated presentations.

G Polyhedral Relations Eliminations Substi-
(in order) tutions

G1 a3, be−1a, b3, af−1c j = la−1, h = ga A = a−1

gj−1d, ah−1g, g−1je, b−1lg c = fa−1, e = ab B = d
c−1kg, fih−1, hld, di−1h b = lg, g = ald C = l
f−1kh, alj, c2, d2 f = ldk, i = dld
e2, f2, g2, i2, k2, l2 k = dldldld

G2 b3, cdb−1, a−1ec, c3 i = k−1e, h = kd−1 A = b
dfa, bfe, gic, dhg−1 a = kg−1, l = jc−1 B = c
gk−1a, ejg, fkh−1, dk−1h f = b−1e−1, j = e−1g−1 C = g
eli−1, e−1ki, j−1lc, d2 d = c−1b, k = ecg
e2, f2, g2, j2, k2, l2 e = b−1cgc−1bg−1c−1

G3 a3, bfd−1, ag−1d, d−1fc k = f−1n−1,m = d−1n A = h
b−1ge, efa, hie, h−1kf l = a−1j−1, g = be−1 B = c
cih, ikd, ijf−1, il−1e b = df−1, e = i−1h−1 C = j
i−1mf, alj, knf,mn−1d n = dif−1, a = f−1hi
b2, c2, d2, e2, g2, h2 d = fh−1i−1, f = ij
j2, l2,m2, n2 i = c−1h−1

G4 a3, b3, bgf, chg−1 a = ik, b = f−1g−1 A = i
ika−1, i−1oe, gni, b−1ki c = gh−1, d = jn B = j
hmi−1, cli, iq−1c, ekj−1 k = f−1g−1i−1, n = g−1i−1 C = h
jnd−1, a−1oj, j−1kh, fp−1j m = h−1i, o = ie−1

kn−1f, kld−1, d−1pk, hnl−1 f = j−1p, g = i−1l−1h
mq−1g, hq−1m, e2, f2, g2, h2 q = i−1l−1i, e = jl−1hj−1p
i2, j2, l2, o2, p2, q2 p = jh−1lhj−1, l = ih−1i−1hi−1

G5 b−1kd, cj−1d, dlc, efa−1 a = ef, c = dj A = b
bme, c−1je, fnb−1, fi−1c d = kb, f = bn B = j
chf, gmb, amg, bo−1h g = bm−1, h = jkbnb C = e
i−1ja, k−1oc, lo−1b, anm i = bkjbn, k = bjej
con−1, a2, b2, d2, e2, g2 l = jejej,m = be
h2, i2, j2, k2, l2, n2 n = bebebeb, o = ejbebebeb
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Table 3 - Presentation Details (cont.)

G Polyhedral Relations Eliminations Substi-
(in order) tutions

G6 cda−1, gj−1e, iph, i−1mc a = cd, c = m−1i A = m
jog−1, dmj, km−1d, k−1ni d = j−1m−1, g = e−1j B = n
lmf, knl,mr−1h, gqm i = h−1p−1, j = m−1km−1 C = b
mt−1j, e−1vm, lu−1m,ms−1b k = l−1n−1, l = f−1m−1

mtk−1,m−1pi, nra, aq−1n p = nf−1m−1nh−1

jv−1n, np−1d, nte−1, ns−1i s = bm, t = fn−1

nw−1c, con, f−1tn, bun v = em−1, e = fn−1m−1qm
nsl, oqd−1, prc, qv−1j f = m−1u−1m,h = rm−1

mws−1, b2, e2, f2 o = mnm−1uq−1

h2,m2, n2, o2 q = nm−1n−1u−1mn−1mnm−1u
q2, r2, u2, w2 r = n−1u−1mn−1m−1nm−1unm

u = b−1n−1, w = m−1bm
G7 akc−1, c−1gf, amg−1, gl−1d b = gl, c = ak A = g

dig, glb−1, g−1ib, gk−1c d = lg−1, e = o−1r B = o
gjf, hng−1, g−1kj, k−1mf f = j−1g−1, h = fn−1 C = q
oti, o−1xj, ixo−1, k−1c2o i = t−1o−1, j = x−1o
jto, dwo−1, ovl−1, bb2o

−1 k = c2o, l = ov
er−1o, o−1ul, b−1d2o, oa

−1
2 a m = a−1g, n = oz−1

osm−1, kyo−1, fp−1o, os−1h p = xg−1, r = g−1x
nzo−1, or−1d, o−1we, pyh s = gz, t = o−1xo−1

gx−1p, hqp, qxn−1, gw−1q w = gv−1, x = q−1oz−1

rx−1g, rze−1, n−1wr, gzs−1 a2 = ao, d2 = gu−1

g−1a2s, fys, tc
−1
2 g, gb2t b2 = v−1o−1g−1o, c2 = oy−1o−1

g−1d2u, g
−1wv, a2, g2 a = gz−1g−1o−1, u = ov−1o−1

o2, q2, u2, v2, y2 v = g−1q−1g
z2, a2

2, b
2
2, c

2
2, d

2
2 y = zo−1qog−1o

z = o−1qgo−1g−1q−1o
G8 bfe−1, e−1fa, dje−1, eic−1 a = f−1e, b = ef−1, c = ei A = e

d−1ge, e−1kc, fjc−1, d−1kf d = ej−1, f = ln B = l
ghb, bk−1g, ij−1a, lnf−1 m = i−1r−1, p = g−1l C = r
f−1rl, lo−1b, gpl−1, hp−1l q = j−1l−1, o = en−1

jpl, am−1l,mri, e−1rm h = l−1g−1l, k = ei−1e−1

iqm, e−1on, op−1h, e2, g2, h2, i2 g = e−1je−1, i = r−1e−1r
j2, k2, l2, n2, o2, q2, r2 n = l−1rl, j = l−1r−1er−1e−1r
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Table 4 - Numerical Data

Group Max. Uncertainty Short Geodesic Short Ortholength
G1 3.6651655 × 10−8 .215767 .107884
G2 1.8146944 × 10−8 .194764 .0973818
G3 8.3967628 × 10−9 .278891 .139445
G4 1.8867982 × 10−6 .292302 .146151
G5 4.9626183 × 10−8 .292302 .146151
G6 2.6573629 × 10−4 .287539 .143770
G7 1.3768871 × 10−6 .234004 .117002
G8 2.1005956 × 10−4 .289041 .144521

Recall from §3 that the uncertainties are compared to half the length of the
shortest closed geodesic and half the shortest ortholength between non-intersecting
elliptic axes (that is the length of the perpendicular bisector). The values in the
third and fourth columns are lengths, so that the second column should be compared
to half the third and fourth columns.
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