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Chapter 1 Euclidean space

A. The basic vector space

We shall denote by R the field of real numbers. Then we shall use the Cartesian product
Rn = R × R × . . . × R of ordered n-tuples of real numbers (n factors). Typical notation for
x ∈ Rn will be

x = (x1, x2, . . . , xn).

Here x is called a point or a vector , and x1, x2, . . . , xn are called the coordinates of x. The
natural number n is called the dimension of the space. Often when speaking about Rn and
its vectors, real numbers are called scalars .

Special notations:

R1 x

R2 x = (x1, x2) or p = (x, y)

R3 x = (x1, x2, x3) or p = (x, y, z).

We like to draw pictures when n = 1, 2, 3; e.g. the point (−1, 3, 2) might be depicted as
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We define algebraic operations as follows: for x, y ∈ Rn and a ∈ R,

x + y = (x1 + y1, x2 + y2, . . . , xn + yn);

ax = (ax1, ax2, . . . , axn);

−x = (−1)x = (−x1,−x2, . . . ,−xn);

x− y = x + (−y) = (x1 − y1, x2 − y2, . . . , xn − yn).

We also define the origin (a/k/a the point zero)

0 = (0, 0, . . . , 0).

(Notice that 0 on the left side is a vector, though we use the same notation as for the scalar
0.)

Then we have the easy facts:

x + y = y + x;

(x + y) + z = x + (y + z);

0 + x = x; in other words all the

x− x = 0; “usual” algebraic rules

1x = x; are valid if they make

(ab)x = a(bx); sense

a(x + y) = ax + ay;

(a + b)x = ax + bx;

0x = 0;

a0 = 0.

Schematic pictures can be very helpful. One nice example is concerned with the line
determined by x and y (distinct points in Rn). This line by definition is the set of all points
of the form

(1− t)x + ty, where t ∈ R.

Here’s the picture:
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This picture really is more than just schematic, as the line is basically a 1-dimensional
object, even though it is located as a subset of n-dimensional space. In addition, the closed
line segment with end points x and y consists of all points as above, but with 0 ≤ t ≤ 1. This
segment is shown above in heavier ink. We denote this segment by [x, y].

We now see right away the wonderful interplay between algebra and geometry , something
that will occur frequently in this book. Namely, the points on the above line can be described
completely in terms of the algebraic formula given for the line. On the other hand, the line is
of course a geometric object.

It is very important to get comfortable with this sort of interplay. For instance, if we
happen to be discussing points in R5, we probably have very little in our background that
gives us geometric insight to the nature of R5. However, the algebra for a line in R5 is very
simple, and the geometry of a line is just like the geometry of R1.

Similarly, it is helpful to represent triangles with a picture in the plane of the page. Thus
if we have three noncollinear points x, y, z in Rn, there is a unique plane which contains them.
This plane lies in Rn of course, but restricting attention to it gives a picture that looks like
an ordinary plane. The plane is the set of all points of the form

p = t1x + t2y + t3z,

where t1 + t2 + t3 = 1. Sometimes the scalars t1, t2, t3 are called barycentric coordinates of
the point p.
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The point displayed inside this triangle is 1
3
(x+y+z), and is called the centroid of the triangle.

PROBLEM 1–1. We need to examine the word collinear we have just used. In fact,
prove that three points x, y, z in Rn lie on a line ⇐⇒ there exist scalars t1, t2, t3, not all
zero, such that

t1 + t2 + t3 = 0,

t1x + t2y + t3z = 0.

PROBLEM 1–2. Prove that x, y, 0 are collinear ⇐⇒ x is a scalar multiple of y or y
is a scalar multiple of x.

PROBLEM 1–3. Prove that if x, y, z in Rn are not collinear and if p belongs to the
plane they determine, then the real numbers t1, t2, t3 such that

t1 + t2 + t3 = 1,

t1x + t2y + t3z = p,

are unique.
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PROBLEM 1–4. In the triangle depicted above let L1 be the line determined by x
and the midpoint 1

2
(y + z), and L2 the line determined by y and the midpoint 1

2
(x + z).

Show that the intersection L1∩L2 of these lines is the centroid. (This proves the theorem
which states that the medians of a triangle are concurrent.)

PROBLEM 1–5. Prove that the interior (excluding the sides) of the above triangle is
described by the conditions on the barycentric coordinates

t1 + t2 + t3 = 1,

t1 > 0, t2 > 0, and t3 > 0.

As an example of our method of viewing triangles, think about an equilateral triangle. If
we imagine it conveniently placed in R2, the coordinates of the vertices are bound to be rather
complicated; for instance, here are two ways:

(0, 1)

(−  3 /2, −1/2) (  3 /2,−1/2)

x2

x1
(1, 0)(−1, 0)

(0,  3 )

x2

x1

But a really elegant positioning is available in R3, if we simply place the vertices at (1, 0, 0),
(0, 1, 0) and (0, 0, 1):
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(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

Now this looks much better if we view this triangle as it lies in the plane x1 + x2 + x3 = 1:

We can’t draw coordinate axes in this plane, or even the origin, though we could imagine the
origin as sitting “behind” the centroid:

origin
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PROBLEM 1–6. Prove that the four points w, x, y, z in Rn are coplanar ⇐⇒ there
exist real numbers t1, t2, t3, t4, not all zero, such that

t1 + t2 + t3 + t4 = 0,

t1w + t2x + t3y + t4z = 0.

As further evidence of the power of vector algebra in solving simple problems in geometry,
we offer

PROBLEM 1–7. Let us say that four distinct points w, x, y, z in Rn define a
quadrilateral , whose sides are the segments [w, x], [x, y], [y, z], [z, w] in that order.

w

z

y

x

y z

x

w

Prove that the four midpoints of the sides of a quadrilateral, taken in order, form the
vertices of a parallelogram (which might be degenerate). In particular, these four points
are coplanar. (Note that the original quadrilateral need not lie in a plane.) Express the
center of this parallelogram in terms of the points w, x , y , and z.
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PROBLEM 1–8. We have seen in Problem 1–1 the idea of three points being collinear,
and in Problem 1–6 the idea of four points being coplanar. These definitions can of course
be generalized to an arbitrary number of points. In particular, give the correct analogous
definition for two points to be (say) “copunctual” and then prove the easy result that two
points are “copunctual” if and only if they are equal.

PROBLEM 1–9. Give a careful proof that any three points in R1 are collinear; and
also that any four points in R2 are coplanar.

It is certainly worth a comment that we expect three “random” points in R2 to be non-
collinear. We would then say that the three points are in general position. Likewise, four
points in R3 are in general position if they are not coplanar.

B. Distance

Now we are going to discuss the all-important notion of distance in Rn. We start with R2,
where we have the advantage of really understanding and liking the Pythagorean theorem. We
shall freely accept and use facts we have learned from standard plane geometry. Thus we say
that the distance between x and y in R2 is

2
−y

2
|

1
−y

1
|

#2

  axis

#1 axis

 x|

 x|

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

We can even proceed easily to R3 by applying Pythagoras to the right triangle with legs given
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by the two segments: (1) from (x1, x2, x3) to (y1, y2, x3) and (2) from (y1, y2, x3) to (y1, y2, y3).

y

x

1, y2, x3 y( )

The segment (1) determines the distance

√
(x1 − y1)2 + (x2 − y2)2,

and the segment (2) determines the distance

|x3 − y3|.

If we square these distances, add the results, and then take the square root, the distance we
find is √

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Though we are hard pressed to draw a similar picture for R4 etc., we can easily imagine the
same procedure. For R4 we would consider the “horizontal” line segment from (x1, x2, x3, x4)
to (y1, y2, y3, x4), and then the “vertical” segment from (y1, y2, y3, x4) to (y1, y2, y3, y4). The
two corresponding distances are

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

and
|x4 − y4|,

respectively. (We have used our formula from the previous case of R3.) We certainly want to
think of these two segments as the legs of a right triangle, so that the distance between x and
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y should come from Pythagoras by squaring the two numbers above, adding, and then taking
the square root:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2.

We don’t really need a picture to imagine this sort of construction for any Rn, so we are
led to

THE PYTHAGOREAN DEFINITION. The distance between x and y in Rn is

d(x, y) =

√√√√
n∑

i=1

(xi − yi)2.

Clearly, d(x, y) = d(y, x), d(x, x) = 0, and d(x, y) > 0 if x 6= y. We also say that d(x, y) is
the length of the line segment [x, y].

This definition of course gives the “right” answer for n = 2 and n = 3. (It even works for
n = 1, where it decrees that d(x, y) =

√
(x− y)2 = |x− y|.)

It will be especially convenient to have a special notation for the distance from a point to
the origin:

DEFINITION. The norm of a point x in Rn is the number

‖x‖ = d(x, 0) =

√√√√
n∑

i=1

x2
i .

Thus we have equations like

R1 : ‖ − 3‖ = 3

R2 : ‖(3,−4)‖ = 5

R3 : ‖(1,−2, 3)‖ =
√

14

R4 : ‖(1, 1, 1, 1)‖ = 2.

The idea of “norm” is important in many areas of mathematics. The particular definition
we have given is sometimes given the name Euclidean norm.

We have some easy properties:

d(x, y) = ‖x− y‖;
‖ax‖ = |a| ‖x‖ for a ∈ R;

∴ ‖ − x‖ = ‖x‖;
‖0‖ = 0;

‖x‖ > 0 if x 6= 0.
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Here’s a typical picture in R3:

O

x
2

x
1

x
3

d

x

‖x‖2 = δ2 + x2
3

δ2 = x2
1 + x2

2

We close this section with another “algebra-geometry” remark. We certainly are thinking
of distance geometrically, relying heavily on our R2 intuition. Yet we can calculate distance
algebraically, thanks to the formula for d(x, y) in terms of the coordinates of the points x and
y in Rn.

C. Right angle

Now we turn to a discussion of orthogonality. We again take our clue from the Pythagorean
theorem, the square of the hypotenuse of a right triangle equals the sum of the squares of the
other two sides . The key word we want to understand is right .

Thus we want to examine a triangle in Rn (with n ≥ 2). Using a translation, we may
presume that the potential right angle is located at the origin. Thus we consider from the
start a triangle with vertices 0, x, y. As we know that these points lie in a plane, it makes
sense to think of them in a picture such as
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O

x

y

We are thus looking at the plane containing 0, x, y, even though these three points lie in Rn.

We then say that the angle at 0 is a right angle if and only if the Pythagorean identity
holds:

d(x, y)2 = d(x, 0)2 + d(y, 0)2.

I.e., in terms of the Euclidean norm on Rn,

‖x− y‖2 = ‖x‖2 + ‖y‖2. (P)

You probably have noticed that our reasoning has been somewhat circular in nature. For we
used the Pythagorean idea to motivate the definition of distance in the first place, and now we
are using distance to define right angle. There is an important subtlety at work here. Namely,
in defining distance we worked with right angles in coordinate directions only, whereas now
we are defining right angles in arbitrary (noncoordinate) directions. Thus we have achieved
something quite significant in this definition.

We feel justified in this definition because of the fact that it is based on our intuition from
the Euclidean geometry of R2. Our planes are located in Rn, but we want them to have the
same geometric properties as R2.



Euclidean space 13

Now we perform a calculation based upon our use of algebra in this material:

‖x− y‖2 =
n∑

i=1

(xi − yi)
2

=
n∑

i=1

(x2
i − 2xiyi + y2

i )

= ‖x‖2 − 2
n∑

i=1

xiyi + ‖y‖2.

Thus the Pythagorean relation (P) becomes

n∑
i=1

xiyi = 0.

In summary, we have a right angle at 0 ⇐⇒ ∑n
i=1 xiyi = 0.

Based upon the sudden appearance of the above number, we now introduce an extremely
useful bit of notation:

DEFINITION. For any x, y ∈ Rn, the inner product of x and y, also known as the dot
product , is the number

x • y =
n∑

i=1

xiyi. I like to make this dot huge!

The above calculation thus says that

‖x− y‖2 = ‖x‖2 − 2x • y + ‖y‖2.

Just to make sure we have the definition down, we rephrase our definition of right angle:

DEFINITION. If x, y ∈ Rn, then x and y are orthogonal (or perpendicular) if x • y = 0.

Inner product algebra is very easy and intuitive:

x • y = y • x;

(x + y) • z = x • z + y • z;

(ax) • y = a (x • y) ;

0 • x = 0;

x • x = ‖x‖2.
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The calculation we have performed can now be done completely formally:

‖x− y‖2 = (x− y) • (x− y)

= x • x− x • y − y • x + y • y

= ‖x‖2 − 2x • y + ‖y‖2.

PROBLEM 1–10. As we have noted, the vector 0 is orthogonal to every vector. Show
conversely that if x ∈ Rn is orthogonal to every vector in Rn, then x = 0.

PROBLEM 1–11. Given x, y ∈ Rn. Prove that x = y ⇐⇒ x • z = y • z for all z ∈ Rn.

Here is an easy but astonishingly important

PROBLEM 1–12. Let x 6= 0 and y be in Rn. As we know, the line determined by 0
and x consists of all points of the form tx. Find the (unique) point on this line such that
the vector y − tx is orthogonal to x. Also calculate as elegantly as you can the distance
‖y − tx‖.

O

x

tx

y

PROBLEM 1–13. In the same situation, find the (unique) point on the line which is
closest to y. Comment?

(Solutions: (y − tx) • x = 0 ⇐⇒ y • x− t‖x‖2 = 0 ⇐⇒ t = x • y/‖x‖2. Also we have

‖y − tx‖2 = ‖y‖2 − 2tx • y + t2‖x‖2.
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For the above value of t, we obtain

‖y − tx‖2 = ‖y‖2 − 2x • y

‖x‖2
x • y +

(x • y)2

‖x‖2

= ‖y‖2 − (x • y)2

‖x‖2
.

Thus

‖y − tx‖ =

√
‖x‖2‖y‖2 − (x • y)2

‖x‖ .

This is the solution of 1–12. To do 1–13 write the formula above in the form

‖y − tx‖2 = ‖x‖2

[
t2 − 2t

x • y

‖x‖2

]
+ ‖y‖2

= ‖x‖2

(
t− x • y

‖x‖2

)2

− (x • y)2

‖x‖2
+ ‖y‖2.

The minimum occurs ⇐⇒ t = x•y/‖x‖2. The comment is that the same point is the solution
of both problems.)

Another way to handle Problem 1–13 is to use calculus to find the value of t which minimizes
the quadratic expression.

You should trust your geometric intuition to cause you to believe strongly that the point
asked for in Problem 1–12 must be the same as that asked for in Problem 1–13.

PROBLEM 1–14. This problem is a special case of a two-dimensional version of the
preceding two problems. Let n ≥ 2 and let M be the subset of Rn consisting of all points
of the form x = (x1, x2, 0, . . . , 0). (In other words, M is the x1 − x2 plane.) Let y ∈ Rn.

a. Find the unique x ∈ M such that y − x is orthogonal to all points in M .

b. Find the unique x ∈ M which is closest to y.

BONUS. Since ‖y − tx‖2 ≥ 0, we conclude from the above algebra that
‖x‖2‖y‖2 − (x • y)2 ≥ 0. Furthermore, this can be equality ⇐⇒ y − tx = 0 ⇐⇒ y = tx.
Now that we have proved this, we state it as the

SCHWARZ INEQUALITY. For any x, y ∈ Rn,

|x • y| ≤ ‖x‖ ‖y‖.
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Furthermore, equality holds ⇐⇒ x = 0 or y = 0 or y is a scalar multiple of x.

It is extremely useful to keep in mind schematic figures to illustrate the geometric signifi-
cance of the sign of x • y:

y

O x

x    y = 0

y

O tx x

x    y > 0

y

xOtx

x    y < 0

The validity of these figures follows from the formula we have obtained for t, which implies
that t and x • y have the same sign.

D. Angles

Amazingly, we can now use our understanding of right angle to define measurement of
angles in general. Suppose x and y are nonzero points in Rn which are not scalar multiples
of each other. In other words, x, y, and 0 are not collinear. We now scrutinize the plane in
Rn which contains x, y, and 0. Specifically, we examine the angle formed at 0 by the line
segments from 0 to x and from 0 to y, respectively.

To measure this angle we use the most elementary
y

x

O
definition of cosine from high school geometry. We
have the three cases depicted at the end of Section C:
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xtxt

y y y

OxO x O x

θ θ
θ

In all cases we let θ be the angle between the two segments we are considering. Then

cos θ =
“adjacent side”

“hypotenuse”
=

t‖x‖
‖y‖ .

Remember that t = x • y/‖x‖2. Therefore we have our desired formula for θ:

O

y

x

0 < θ < π

θ

cos θ =
x • y

‖x‖ ‖y‖ .

At the risk of excessive repetition, this sketch of the geometric situation is absolutely
accurate, as we are looking at a plane contained in Rn.

Once again the interplay between algebra and geometry is displayed. For the definition
of the inner product x • y is given as an algebraic expression in the coordinates of the two
vectors, whereas now we see x • y is intimately tied to the geometric idea of angle. What is
more, in case x and y are unit vectors (meaning that their norms equal 1), then cos θ = x • y.
A nice picture for this is obtained by drawing a circle of radius 1, centered at 0, in the plane
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of 0, x, and y. Then x and y lie on this circle, and θ is the length of the shorter arc connecting
x and y.

arc
 le

ng
th

θ

y

x

θ

O

SUMMARY. The inner product on Rn is a wonderful two-edged sword. First, x • y is a
completely geometric quantity, as it equals the product of the lengths of the two factors and
the cosine of the angle between them. Second, it is easily computed algebraically in terms of
the coordinates of the two factors.

Any nonzero vector x produces a unit vector by means of the device of “dividing out” the
norm: x/‖x‖. Then the above formula can be rewritten

cos θ =
x

‖x‖ •
y

‖y‖ .

REMARK. If the vertex of an angle is not the origin, then subtraction of points gives the
correct formula:

y

x

z θ

cos θ =
(x− z) • (y − z)

‖x− z‖ ‖y − z‖ .
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EXAMPLE. A triangle in R3 has vertices (1, 0, 0), (0, 2, 0), and (0, 0, 3). What are its three
angles? Solution:

(0, 0, 3)

(1, 0, 0)

(0, 2, 0)

A

C

B

cos A =
(−1, 2, 0) • (−1, 0, 3)√

5
√

10
=

1√
50

.

cos B =
4√
65

,

cos C =
9√
130

.

Approximately,

A = 81.87o ,

B = 60.26o ,

C = 37.87o .

Notice how algebraic this is! And yet it produces valuable geometric information as to the
shape of the given triangle.
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EXAMPLE. Compute the acute angle between the diagonals of a cube in R3.

θ

Solution: it is enough to arrange the cube so that its eight vertices are located at the
points (±1,±1,±1). Then the diagonals are the line segments from one vertex p to the
opposite vertex −p. These diagonals intersect at 0. The picture in the plane determined by
two diagonals looks like this:
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-p

-q

q

p

O

We are supposed to find the acute angle of their intersection, so we use

cos θ =
p • q

‖p‖ ‖q‖ .

(If this turns out to be negative, as in the sketch, then we have π
2

< θ < π and we use
π − θ for the answer.) As p = (±1,±1,±1) and q = (±1,±1,±1), and p 6= ±q, we have
‖p‖ = ‖q‖ =

√
3 and p • q = ±1. Thus

cos θ =
1

3
,

giving

θ = arccos
1

3
(∼= 70.5◦).

PROBLEM 1–15. Consider two diagonals of faces of a cube which intersect at a
vertex of the cube. Compute the angle between them.
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PROBLEM 1–16. Given a regular tetrahedron (its four faces are equilateral triangles),
locate its centroid. (You may define its centroid to be the average of its four vertices;
in other words, the (vector) sum of the vertices divided by 4.) Then consider two line
segments from the centroid to two of the four vertices. Calculate the angle they form at
the center. (Here is displayed a particularly convenient location of a regular tetrahedron.)

(−1,−1, 1)

(1, 1, 1)

(1,−1,−1)

(−1, 1,−1)

PROBLEM 1–17. Repeat the calculation of the receding problem but instead use
a regular tetrahedron situated in R4 having vertices at the four unit coordinate vectors
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).
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PROBLEM 1–18. Two adjacent faces of a cube intersect in an edge and form a
dihedral angle, which is clearly π

2
:

dihedral angle

Side view of cube
Calculate the dihedral angle formed by two faces of a regular tetrahedron.

An important consequence of the Schwarz inequality is the

TRIANGLE INEQUALITY. For any x, y ∈ Rn,

‖x + y‖ ≤ ‖x‖+ ‖y‖.

PROOF. We simply compute as follows:

‖x + y‖2 = (x + y) • (x + y)

= ‖x‖2 + 2x • y + ‖y‖2

≤ ‖x‖2 + 2|x • y|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 (Schwarz inequality)

= (‖x‖+ ‖y‖)2.

QED
The reason for the name “triangle inequality” can be seen in a picture:
The shaded triangle has edges with lengths as shown, so the triangle inequality is the

statement that any edge of a triangle in Rn is less than the sum of the other two edges .
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xO x

y

x + y
||     

      |
|

||    ||

||    ||

y x + y

PROBLEM 1–19. Prove that the triangle inequality is an equality ⇐⇒ either x = 0
or y = tx for some t ≥ 0. What does this mean geometrically?

PROBLEM 1–20. Use the triangle inequality to prove that for any points x, y, z ∈ Rn,

d(x, y) ≤ d(x, z) + d(z, y).

And prove that equality holds ⇐⇒ z belongs to the line segment [x, y].

PROBLEM 1–21. Prove that for any x, y ∈ Rn,

| ‖x‖ − ‖y‖ |≤ ‖x− y‖.

Also prove that for any x, y, z ∈ Rn,

| d(x, y)− d(x, z) |≤ d(y, z).

We should pause to wonder why it should be necessary to prove the triangle inequality, as
we know this inequality from elementary plane geometry. The reason is twofold: First, we are
after all working in Rn and this requires us to take great care lest we make an unwarranted
assumption. Second, it is a truly wonderful accomplishment to be able to prove our results with
such minimal assumptions; this can enable us to conclude similar results under circumstances
which seem at first glance to be quite different.
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PROBLEM 1–22. Prove the PARALLELOGRAM “LAW”: the sum of the squares
of the diagonals of a parallelogram is equal to the sum of the squares of its edges .
(HINT: explain why this is equivalent to

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.)

Before proceeding to trigonometry, a few words might be said about some generalizations
of the above material. There are certainly many other ways of measuring distances on Rn.
For instance, we might sometimes want to use the norm

‖x‖∞ = max
i=1,...,n

|xi|.

This quantity is called a norm because it satisfies the basic properties

‖ax‖∞ = |a| ‖x‖∞,

‖0‖∞ = 0,

‖x‖∞ > 0 if x 6= 0,

‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞.

Another choice of norm even has its own special name, the taxicab norm:

‖x‖1 =
n∑

i=1

|xi|.

It too satisfies the listed properties.
Neither of these two norms arises from an inner product via a formula

‖x‖ =
√

x • x.

But other norms do so arise. For instance, define an inner product on R3 by means of the
expression

x ? y = x1y1 + 3x2y2 + 10x3y3.

Then
√

x ? x gives a norm on R3.

E. A little trigonometry, or, we can now recover all the Euclidean geometry of
triangles
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We now have more than enough information to be able to discuss triangles in Rn rather
well. So consider an arbitrary triangle located in Rn (n ≥ 2), with vertices, edges, and interior
angles as shown:

b

z

x

B

C

A

c

a

y

Then we have immediately

c2 = ‖x− y‖2

= ‖(x− z)− (y − z)‖2

= ‖x− z‖2 − 2(x− z) • (y − z) + ‖y − z‖2

= ‖x− z‖2 − 2‖x− z‖ ‖y − z‖ cos C + ‖y − z‖2

= b2 − 2ba cos C + a2.

This so-called “law” is the famous

LAW OF COSINES
∣∣ c2 = a2 + b2 − 2ab cos C .

Notice how elegantly this result is a consequence of easy algebra.
Next we employ the ordinary high school definition of the area of a triangle:

area =
1

2
× base× height.

Thus,

area =
1

2
× b× a sin C.

This implies
sin C

c
=

2× area

abc
.
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As the right side is symmetric with respect to a, b, c, we obtain the

LAW OF SINES
sin A

a
=

sin B

b
=

sin C

c
.

Easy as it was to obtain the law of sines, there’s an interesting different proof that uses
essentially only algebra (not areas at all): use the law of cosines to calculate

sin2 C = 1− cos2 C

= (1 + cos C)(1− cos C)

=

(
1 +

a2 + b2 − c2

2ab

)(
1− a2 + b2 − c2

2ab

)

=
2ab + a2 + b2 − c2

2ab
× 2ab− a2 − b2 + c2

2ab

=
(a + b)2 − c2

2ab
× c2 − (a− b)2

2ab

=
(a + b + c)(a + b− c)

2ab
× (c + a− b)(c− a + b)

2ab
.

Rearrange this to obtain

sin C =

√
(a + b + c)(−a + b + c)(a− b + c)(a + b− c)

2ab
.

Again, we see that sin C
c

is symmetric in a, b, c, yielding the law of sines once more.
There is a nice bonus. To state it in its classical form, we define the semiperimeter of the

triangle to be

s =
a + b + c

2
.

Then

sin C =

√
2s(2s− 2a)(2s− 2b)(2s− 2c)

2ab

= 2

√
s(s− a)(s− b)(s− c)

ab
.

By combining this result with our formula for sin C in terms of the area, we obtain the
formula for the area of a triangle,

HERON’S FORMULA Area =
√

s(s− a)(s− b)(s− c) .
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PROBLEM 1–23. Refer to the picture of the triangle at the beginning of this sec-
tion. Prove that the angle bisectors of the three angles of the triangle are concurrent,
intersecting at the point

ax + by + cz

a + b + c
.

PROBLEM 1–24. Again consider a triangle in R2 with vertices x, y, z. We have
considered its centroid 1

3
(x + y + z) in Problem 1–4 and noted that it is the common

intersection of the medians. This triangle has a unique circumcircle, the circle which
passes through all three vertices. Its center q is called the circumcenter of the triangle.
Prove that the point p = x + y + z − 2q is the orthocenter, the common intersection of
the altitudes. (HINT: show that (p− x) • (y − z) = 0, etc.)

PROBLEM 1–25. Prove that the centroid, circumcenter, and orthocenter of a triangle
lie on a common line (known as the Euler line).

PROBLEM 1–26∗. A cyclic quadrilateral is one whose vertices lie on a circle. Suppose
that a convex cyclic quadrilateral is given, whose sides have lengths a, b, c, d, and whose
semiperimeter is denoted p = 1

2
(a + b + c + d). Prove this formula for its area:

BRAHMAGUPTA’S FORMULA

∣∣∣∣ Area =
√

(p− a)(p− b)(p− c)(p− d) .
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PROBLEM 1–27∗. There is a result that greatly generalizes Brahmagupta’s formula.
Prove that for a general quadrilateral in R2 as shown, its area equals

b

d

a

c

θ

ψ

√
(p− a)(p− b)(p− c)(p− d)− abcd cos2 1

2
(θ + ψ).

(HINT: cos2 1

2
(θ + ψ) =

1

2
(1 + cos(θ + ψ))

=
1

2
(1 + cos θ cos ψ − sin θ sin ψ);

area =
1

2
ab sin θ +

1

2
cd sin ψ (why?);

a2 + b2 − 2ab cos θ = c2 + d2 − 2cd cos ψ (why?). Now have courage!)

PROBLEM 1–28. Prove that Heron’s formula is an easy special case of Brah-
magupta’s.

PROBLEM 1–29. Show that the area of a general convex quadrilateral in R2 cannot
be expressed as a function of only the lengths of the four sides.
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PROBLEM 1–30. Given a convex quadrilateral in R2 whose area is given by Brah-
magupta’s formula, prove that it is necessarily cyclic.

F. Balls and spheres

Before developing the ideas of this section, we mention that mathematical terminology is
in disagreement with the English language in denoting the basic objects. From The American
College Dictionary, Harper 1948, we have:

ball 1. a spherical . . . body; a sphere
sphere 2. a globular mass, shell, etc. Syn. ball

However, mathematics always uses “ball” to represent a “solid” object and “sphere” to repre-
sent its “surface.” Here are the precise definitions.

Let a ∈ Rn and 0 < r < ∞ be fixed. Then we define

B(a, r) = {x ∈ Rn
∣∣∣ ‖x− a‖ < r} OPEN BALL WITH CENTER a AND RADIUS r;

B(a, r) = {x ∈ Rn
∣∣∣ ‖x− a‖ ≤ r} CLOSED BALL WITH CENTER a AND RADIUS r;

S(a, r) = {x ∈ Rn
∣∣∣ ‖x− a‖ = r} SPHERE WITH CENTER a AND RADIUS r.

r

a

Of course in R2 we would use the words “disk” and “circle” instead of “ball” and “sphere,”
respectively. And in R1, B(a, r) is the open “interval” from a− r to a + r, and the “sphere”
S(a, r) consists of just the two points a− r and a + r.
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“ball” in R
1

a r- a a+r

“sphere”

DEFINITION. If the center is 0 and the radius is 1, we call the above objects the unit
open ball, the unit closed ball, and the unit sphere, respectively.

PROBLEM 1–31. Prove that the two closed balls B(a, r) and B(b, s) have a nonempty
intersection ⇐⇒ ‖a− b‖ ≤ r + s.

In the above problem the implication in the direction ⇒ is straightforward: just use a
point x ∈ B(a, r) ∩ B(b, s) and the triangle inequality. The opposite implication is subtler,
as you must actually demonstrate the existence of some point in B(a, r) ∩ B(b, s). (The line
segment [a, b] is a good place to look.)

PROBLEM 1–32. Prove that the two open balls B(a, r) and B(b, s) have a nonempty
intersection ⇐⇒ ‖a− b‖ < r + s.

PROBLEM 1–33. Consider the preceding problems in the case of equality, ‖a− b‖ =
r + s. Then the two balls are tangent, as in the figure. What is x equal to in terms of a,
b, r, s?

x

r s

a b
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PROBLEM 1–34. Prove that B(a, r) ⊂ B(b, s) ⇐⇒ a certain condition holds relating
‖a − b‖ and r and s. This means you are first required to discover what the condition
should be.

PROBLEM 1–35. Prove that for n ≥ 2 the sphere S(a, r) is quite “round,” in the
sense that there do not exist three distinct points in S(a, r) which are collinear.
(HINT: WLOG (why?) assume you are working with the unit sphere. Assume x, y, z are
collinear with z between x and y, so that z = (1− t)x + ty, where 0 < t < 1, and assume
‖x‖ = ‖y‖ = 1 and x 6= y. Calculate ‖z‖2 and show ‖z‖2 < 1.)

PROBLEM 1–36. Assume n ≥ 2. Prove that the two spheres S(a, r) and S(b, s) have
a nonempty intersection ⇐⇒ |r − s| ≤ ‖a− b‖ ≤ r + s.
Explain why the intersection is like a sphere of radius R in Rn−1, where

R2 =
r2 + s2

2
− ‖a− b‖2

4
− (r2 − s2)2

4‖a− b‖2
.

(HINT: any point in Rn can be written uniquely in the form (1 − t)a + tb + u, where
(a− b) • u = 0.)
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PROBLEM 1–37. Assume n ≥ 2. Given two intersecting spheres S(a, r) and S(b, s),
say that the angle between them is the angle formed at a common point x by the vectors
a− x and b− x. Prove that this angle θ is independent of x, and satisfies

cos θ =
r2 + s2 − ‖a− b‖2

2rs
.

x

θ

a b

(Incidentally, notice that the inequalities in the statement of Problem 1–36 exactly state that
1 ≥ cos θ ≥ −1, respectively.)

We are going to accomplish many wonderful things with balls and spheres in this course,
including the completion of this interesting table:

dimension n n-dimensional “volume” (n− 1)-dimensional “volume”

of B(a, r) of S(a, r)

1 2r 2

2 πr2 2πr

3 4
3
πr3 4πr2

4 1
2
π2r4 2π2r3

5 8
15

π2r5 8
3
π2r4

6 1
6
π3r6 π3r5

...
...

...

Probably you should be unable to see a pattern in going from n to n + 1 in this table, but
you should definitely be able to see how to proceed from the volume of B(a, r) to the volume
of S(a, r) for any given n. Do you see it?

It is fascinating to try to gain some intuition about Rn by meditating on balls. Some
intuition indeed comes from the familiar cases of dimensions 1, 2, and 3, and algebraically it
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is relatively easy to understand the higher dimensional cases as well, at least on a superficial
level. But geometric properties of balls and spheres in higher dimensions can appear bizarre at
first glance. The following problems deal with the situation of a ball “inscribed” in a “cube”
in Rn. The picture in R2 appears as shown:

We begin these problems by assuming that the situation has been normalized so that the
ball is the open unit ball B(0, 1) and the cube is the Cartesian product

C = [−1, 1]× . . . x[−1, 1] = {x ∈ Rn | |xi| ≤ 1 for i = 1, . . . , n}.

PROBLEM 1–38. Consider balls B(a, r) which are contained in C and disjoint from
B(0, 1).

a. Show that the maximum radius of such balls is
√

n−1√
n+1

.

b. Show that the maximum radius is attained for precisely 2n choices of the center a,
namely

a =
2√

n + 1
(±1,±1, . . . ,±1).
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PROBLEM 1–39. Here is the picture in R2 of one of the four smaller balls:

With extreme accuracy and care, draw the corresponding picture in R3 as viewed looking
straight at the x1 − x2 plane:

?

PROBLEM 1–40. Show that for the case of R9 each of the small balls is tangent to
nine other of the small balls!
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PROBLEM 1–41. Assume the fact which we shall prove later that the n-dimensional
volume of any ball B(a, r) in Rn has the form

vrn,

where v is a constant (depending on the dimension n). Show that if n = 9 the total
volume of the small balls equals the volume of B(0, 1), but this is not true for n 6= 9.

Incidentallly, the definition of C can be rephrased as follows: if we use the norm max
i=1 ... n

|xi|
as on p. 1-18, then C is the closed unit “ball” with respect to that norm.

G. Isoperimetric inequalities

Thinking about areas of regions in R2 leads us to wonder about the following question: of
all plane regions of equal perimeter, which has the greatest area? Everyone who thinks about
this gives the same intuitive answer: a disk. And that is correct.

Though an actual proof of this innocent sounding statement is beyond our capability in
this book, it is definitely of some interest to meditate on this problem, and to prove some
interesting associated results.

First it is helpful to normalize the situation. Let us suppose we are dealing with a region
of area A and perimeter L.

area A

perimeter L

Then we want to compare A and L, but we want the comparison not to be confused with the
actual size of the region. There are several ways to achieve this. One is to assume that L is
fixed and then study how large A may be (“isoperimetric”). In doing this we may rescale to
achieve for instance that L = 1. Another is to assume A is fixed, say A = 1, and study L.
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These methods are clearly equivalent, and are also equivalent to studying the dimensionless
ratio A/L2. For whatever units of measurement we use, both numerator and denominator
contain the square of the particular unit employed, and thus A/L2 is truly dimensionless.

This means that we may multiply all points in R2 by any scalar a > 0, and note that the
area of the region gets multiplied by a2 and the perimeter by a. Thus A/L2 is invariant.

For a disk of radius 1, A = π and L = 2π, so that A/L2 = 1/4π. So the isoperimetric
theorem should say that for all regions in the plane

A

L2
≤ 1

4π
.

For instance, a square has A/L2 = 1/16. A semidisk of radius 1 has A = π/2 and L = π + 2,
so A/L2 ≈ 0.06.

A proof of the isoperimetric inequality is outside our interests for this book. However, in
restricted situations we are able to obtain good results using familiar techniques. The following
problem is a good instance.

PROBLEM 1–42. Prove that for any triangle in R2, the quotient A/L2 is maximal if
and only if the triangle is equilateral, using the following outline.

a. Show that Heron’s formula requires proving that

√
(s− a)(s− b)(s− c) ≤ s3/2/

√
27

with equality if and only if a = b = c.

b. Define x = s − a, y = s − b, z = s − c, and show that part a is equivalent to
the classical inequality between geometric and arithmetic means (which you may
assume),

(xyz)1/3 ≤ x + y + z

3
.

PROBLEM 1–43. Using the same technique, investigate triangles with perimeter 1
and a given value 0 < a < 1

2
for one of the sides. Show that the greatest area occurs when

the triangle is isosceles with sides equal to a, 1−a
2

, 1−a
2

.
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PROBLEM 1–44. Prove that for any quadrilateral in R2, the quotient A/L2 is
maximal if and only if the quadrilateral is a square.
(HINT: use Problem 1–27 and the same outline as in the preceding problems.)

PROBLEM 1–45. Consider a regular polygon in R2 with n sides. Show that its ratio
is

A

L2
=

cot π
n

4n
.

PROBLEM 1–46. As n increases, a regular n-gon increasingly resembles a disk. Prove
that the ratios A/L2 increase with n and have the limit 1/4π (the corresponding ratio for
a disk).

PROBLEM 1–47. Among all sectors of a disk with opening α, which angle α produces
the maximum value of A/L2?

α

PROBLEM 1–48. Argue that the isoperimetric inequality for regions in R3 should
have the form

volume

(surface area)3/2
≤ 1

6
√

π
.

PROBLEM 1–49. Consider right-angled boxes in R3. Show that the ratio of the
preceding problem is maximized only for cubes and that it is less than 1/6

√
π.


