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Chapter 4 Symmetric matrices and the second
derivative test

In this chapter we are going to finish our description of the nature of nondegenerate critical
points. But first we need to discuss some fascinating and important features of square matrices.

A. Eigenvalues and eigenvectors

Suppose that A = (aij) is a fixed n × n matrix. We are going to discuss linear equations
of the form

Ax = λx,

where x ∈ Rn and λ ∈ R. (We sometimes will allow x ∈ Cn and λ ∈ C.) Of course, x = 0
is always a solution of this equation, but not an interesting one. We say x is a nontrivial
solution if it satisfies the equation and x 6= 0.

DEFINITION. If Ax = λx and x 6= 0, we say that λ is an eigenvalue of A and that the
vector x is an eigenvector of A corresponding to λ.

EXAMPLE. Let A =

(
0 3
1 2

)
. Then we notice that

A

(
1
1

)
=

(
3
3

)
= 3

(
1
1

)
,

so

(
1
1

)
is an eigenvector corresponding to the eigenvalue 3. Also,

A

(
3
−1

)
=

(−3
1

)
= −

(
3
−1

)
,

so

(
3
−1

)
is an eigenvector corresponding to the eigenvalue −1.

EXAMPLE. Let A =

(
2 1
0 0

)
. Then A

(
1
0

)
= 2

(
1
0

)
, so 2 is an eigenvalue, and A

(
1
−2

)
=

(
0
0

)
, so 0 is also an eigenvalue.

REMARK. The German word for eigenvalue is eigenwert . A literal translation into English
would be “characteristic value,” and this phrase appears in a few texts. The English word
“eigenvalue” is clearly a sort of half translation, half transliteration, but this hybrid has stuck.
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PROBLEM 4–1. Show that A is invertible ⇐⇒ 0 is not an eigenvalue of A.

The equation Ax = λx can be rewritten as Ax = λIx, and then as (A−λI)x = 0. In order
that this equation have a nonzero x as a solution, Problem 3–52 shows that it is necessary
and sufficient that

det(A− λI) = 0.

(Otherwise Cramer’s rule yields x = 0.) This equation is quite interesting. The quantity

det




a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

an1 an2 . . . ann − λ




can in principle be written out in detail, and it is then seen that it is a polynomial in λ of
degree n. This polynomial is called the characteristic polynomial of A; perhaps it would be
more consistent to call it the eigenpolynomial, but no one seems to do this.

The only term in the expansion of the determinant which contains n factors involving λ is
the product

(a11 − λ)(a22 − λ) . . . (ann − λ).

Thus the coefficient of λn in the characteristic polynomial is (−1)n. In fact, that product is
also the only term which contains as many as n − 1 factors involving λ, so the coefficient of
λn−1 is (−1)n−1 (a11 + a22 + · · ·+ ann). This introduces us to an important number associated
with the matrix A, called the trace of A:

traceA = a11 + a22 + · · ·+ ann.

Notice also that the polynomial det(A − λI) evaluated at λ = 0 is just det A, so this is the
constant term of the characteristic polynomial. In summary,

det(A− λI) = (−1)nλn + (−1)n−1(traceA)λn−1 + · · ·+ det A.

PROBLEM 4–2. Prove that

traceAB = traceBA.
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EXAMPLE. All of the above virtually provides an algorithm for finding eigenvalues and
eigenvectors. For example, suppose

A =

(
1 2
1 3

)
.

We first calculate the characteristic polynomial,

det(A− λI) = det

(
1− λ 2

1 3− λ

)

= (1− λ)(3− λ)− 2

= λ2 − 4λ + 1.

Now we use the quadratic formula to find the zeros of this polynomial, and obtain λ =
2 ±√3. These two numbers are the eigenvalues of A. We find corresponding eigenvectors x
by considering (A− λI)x = 0:

(−1∓√3 2

1 1∓√3

)(
x1

x2

)
=

(
0
0

)
.

We can for instance simply choose a solution of the lower equation, say x1 = 1∓√3, x2 = −1.
The upper equation requires no verification, as it must be automatically satisfied! (Neverthe-
less, we calculate: (−1 ∓ √3)(1 ∓ √3) + 2(−1) = 2 − 2 = 0.) Thus we have eigenvectors as
follows:

A

(
1−√3
−1

)
= (2 +

√
3)

(
1−√3
−1

)
,

A

(
1 +

√
3

−1

)
= (2−

√
3)

(
1 +

√
3

−1

)
.

EXAMPLE. Let

A =

(
0 1
−1 0

)
.

The characteristic polynomial is λ2 + 1, so the eigenvalues are not real: they are ±i, where
i =

√−1. The eigenvectors also are not real:

A

(
1
i

)
=

(
i
−1

)
= i

(
1
i

)
,

A

(
1
−i

)
=

(−i
−1

)
= −i

(
1
−i

)
.
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Of course, the moral of this example is that real matrices may have only nonreal eigenvalues
and eigenvectors. (Notice that this matrix is not symmetric.)

EXAMPLE. Let

A =




2 1 1
0 2 1
0 0 2


 .

The characteristic polynomial is clearly (2 − λ)3, so λ = 2 is the only eigenvalue. To find an
eigenvector, we need to solve (A− 2I)x = 0. That is,




0 1 1
0 0 1
0 0 0







x1

x2

x3


 =




0
0
0


 ,

or equivalently, {
x2 + x3 = 0,

x3 = 0.

Thus the only choice for x is x =




c
0
0


. Thus there is only one linearly independent eigen-

vector.

PROBLEM 4–3. Modify the above example to produce a 3× 3 real matrix B whose
characteristic polynomial is also (2−λ)3, but for which there are two linearly independent
eigenvectors, but not three.

Moral: when λ is an eigenvalue which is repeated , in the sense that it is a multiple zero of
the characteristic polynomial, there might not be as many linearly independent eigenvectors
as the multiplicity of the zero.

PROBLEM 4–4. Let λ0 be a fixed scalar and define the matrix B to be B = A−λ0I.
Prove that λ is an eigenvalue of A ⇐⇒ λ−λ0 is an eigenvalue of B. What is the relation
between the characteristic polynomials of A and B?

PROBLEM 4–5. If A is an n× n matrix whose characteristic polynomial is λn and
for which there are n linearly independent eigenvectors, show that A = 0.
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EXAMPLE. From Problem 3–29, take

A =




1 −1 1
−1 3 0
1 0 2


 .

The characteristic polynomial of A is

det(A− λI) = det




1− λ −1 1
−1 3− λ 0
1 0 2− λ




= (1− λ)(3− λ)(2− λ)− (3− λ)− (2− λ)

= −λ3 + 6λ2 − 9λ + 1.

The eigenvalue equation is

λ3 − 6λ2 + 9λ− 1 = 0;

this cubic equation has three real roots, none of them easy to calculate. The moral here is
that when n > 2, the eigenvalues of A may be difficult or impossible to calculate explicitly.

Given any n × n matrix A with entries aij which are real numbers, or even complex
numbers, the characteristic polynomial has at least one complex zero λ. This is an immediate
consequence of the so-called “fundamental theorem of algebra.” (This is proved in basic
courses in complex analysis!) Thus A has at least one complex eigenvalue, and a corresponding
eigenvector.

PROBLEM 4–6. Calculate the eigenvalues and eigenvectors of the matrix

A =




2 3 −1
−1 1 4
1 2 −1


 .

PROBLEM 4–7. Learn how to use Matlab or Mathematica or some such program
to find eigenvalues and eigenvectors of numerical matrices.

Now reconsider the characteristic polynomial of A. It is a polynomial (−1)nλn + . . . of
degree n. The fundamental theorem of algebra guarantees this polynomial has a zero — let us
call it λ1. The polynomial is thus divisible by the first order polynomial λ− λ1, the quotient
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being a polynomial of degree n− 1. By induction we quickly conclude that the characteristic
polynomial can be completely factored:

det(A− λI) = (−1)n(λ− λ1) . . . (λ− λn).

We think of λ1, . . . , λn as the eigenvalues of A, though some may be repeated. We can now
read off two very interesting things. First, the constant term in the two sides of the above
equation (which may be obtained by setting λ = 0) yields the marvelous fact that

det A = λ1 λ2 . . . λn.

Second, look at the coefficient of λn−1 in the two sides (see p. 4–2) to obtain

traceA = λ1 + λ2 + · · ·+ λn.

These two wonderful equations reveal rather profound qualities of det A and traceA. Although
those numbers are explicitly computable in terms of algebraic operations on the entries of A,
they are also intimately related to the more geometric ideas of eigenvalues and eigenvectors.

B. Eigenvalues of symmetric matrices

Now we come to the item we are most interested in. Remember, we are trying to understand
Hessian matrices, and these are real symmetric matrices. For the record,

DEFINITION. An n × n matrix A = (aij) is symmetric if aij = aji for all i, j. In other
words, if At = A.

We have of course encountered these in the n = 2 case. The solution of Problem 3–18
shows that the eigenvalues of the 2× 2 matrix

(
A B
B C

)

are

λ =
A + C ±

√
(A− C)2 + 4B2

2
,

and these are both real . This latter fact is what we now generalize.
If A is an n× n matrix which is real and symmetric, then Problem 2–83 gives us

Ax • y = x • Ay for all x, y ∈ Rn.

PROBLEM 4–8. Prove conversely that if Ax • y = x • Ay for all x, y ∈ Rn, then A
is symmetric.
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THEOREM. If A is a real symmetric matrix, then its eigenvalues are all real.

PROOF. Suppose λ is a possibly complex eigenvalue of A, with corresponding eigenvector
z ∈ Cn. Write λ and z in terms of their real and imaginary parts:

λ = α + iβ, where α, β ∈ R,

z = x + iy, where x, y ∈ Rn and are not both 0.

Then the eigenvalue equation Az = λz becomes

A(x + iy) = (α + iβ)(x + iy).

That is,
Ax + iAy = αx− βy + i(αy + βx).

This complex equation is equivalent to the two real equations

{
Ax = αx− βy,

Ay = αy + βx.

We now compute {
Ax • y = αx • y − β‖y‖2,

Ay • x = αx • y + β‖x‖2.

Since A is symmetric, the two left sides are equal. Therefore,

αx • y − β‖y‖2 = αx • y + β‖x‖2.

That is,
β(‖x‖2 + ‖y‖2) = 0.

Since ‖x‖2 + ‖y‖2 > 0, we conclude β = 0. Thus λ = α is real.
QED

We conclude that a real symmetric matrix has at least one eigenvalue, and this eigenvalue
is real. This result is a combination of the profound fundamental theorem of algebra and the
above calculation we have just given in the proof of the theorem. It would seem strange to
call upon complex analysis (the fund. thm. of alg.) to be guaranteed that a complex root
exists, and then prove it must be real after all. That is indeed strange, so we now present an
independent proof of the existence of an eigenvalue of a real symmetric matrix; this proof will
not rely on complex analysis at all. This proof depends on rather elementary calculus.
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Even so, it may seem strange to rely on calculus at all, since we are trying to prove a
theorem about algebra — roots of polynomial equations. However, simple reasoning shows
that something must be used beyond just algebra. For we are using the real numbers, a
complete ordered field. The completeness is essential, as for example the polynomial λ2 − 2
illustrates. Or even more challenging, imagine an equation such as λ113−λ+5 = 0; it definitely
has a real solution. These two examples have only irrational solutions.

Let A be the n× n real symmetric matrix, and consider the quotient function Rn Q→ R,

Q(x) =
Ax • x

‖x‖2
=

Ax • x

x • x
.

This is a rather natural function to consider. In a sense it measures something like the relative
distortion of angles caused by A. “Relative,” because the denominator ‖x‖2 is just right for
Q(x) to be scale invariant. Notice how geometry will be used in what follows to give our result
in algebra — the existence of an eigenvalue. This function is known as the Rayleigh quotient.

This function is defined and of class C∞ on Rn − {0}, and we can compute its gradient
quite easily. First, we have from Problem 2–84 a formula for the gradients of the numerator
and the denominator:

∇Ax • x = 2Ax,

∇‖x‖2 = 2x.

Thus the quotient rule yields

∇Q(x) =
‖x‖22Ax− (Ax • x)2x

‖x‖4

=
2Ax

‖x‖2
− 2Ax • x

‖x‖4
x.

The function Q is continuous on the unit sphere ‖x‖ = 1. Since this sphere S(0, 1) is closed
and bounded, Q restricted to S(0, 1) attains its maximum value. Say at a point x0, so that
‖x0‖ = 1 and Q(x) ≤ Q(x0) for all ‖x‖ = 1. But the homogeneity of Q shows that Q(x0) is
also the global maximum value of Q on Rn − {0}. (This argument probably reminds you of
Problem 3–18.) The details: if x 6= 0, then x/‖x‖ is on S(0, 1), so that

Q(x) = Q

(
x

‖x‖
)
≤ Q(x0).

Thus x0 is a critical point of Q (p. 2–36). That is, ∇Q(x0) = 0. Let λ = Ax0 • x0. Then the
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above expression for ∇Q gives

0 = ∇Q(x0) =
2Ax0

‖x0‖2
− 2Ax0 • x0

‖x0‖4
x0

= 2Ax0 − 2λx0.

Therefore
Ax0 = λx0, ‖x0‖ = 1.

We conclude that λ is an eigenvalue of A, and x0 is a corresponding eigenvector! Moreover,
this particular eigenvalue is given by

λ = max{Ax • x | ‖x‖ = 1},
and x0 is a point where this maximum value is attained!

PROBLEM 4–9. Calculate the Hessian matrix of Q at a critical point x0 with
‖x0‖ = 1. Show that it is

H = 2A− 2λI (λ = Q(x0)).

The analysis we are going to do next will continue to use the quotient function and the
formula we have obtained for its gradient, so we record here for later reference

∇Q(x) = 2 (Ax−Q(x)x) for ‖x‖ = 1.

We are now doubly certain as to the existence of a real eigenvalue of the real symmetric
matrix A. We proceed to a further examination of the eigenvector structure of A. First here
is an incredibly important property with a ridiculously easy proof:

THEOREM. Let x and y be eigenvectors of a real symmetric matrix, corresponding to dif-
ferent eigenvalues. Then x and y are orthogonal.

PROOF. We know that Ax = λ1x and Ay = λ2y and λ1 6= λ2. Therefore

λ1(x • y) = (λ1x) • y

= Ax • y

= x • Ay (because A is symmetric!)

= x • (λ2y)

= λ2(x • y).
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Subtract:

(λ1 − λ2)x • y = 0.

Since λ1 − λ2 6= 0, x • y = 0.
QED

Next we give a very similar fact, based on the identical reasoning.

THEOREM. Assume A is an n× n real symmetric matrix. Assume x is an eigenvector of
A, and let M be the ((n− 1)-dimensional ) subspace of Rn consisting of all points orthogonal
to x:

M = {y ∈ Rn | x • y = 0}.
Then M is invariant with respect to A. That is,

y ∈ M =⇒ Ay ∈ M.

PROOF. So simple: if y ∈ M ,

Ay • x = y • Ax = y • λx = λ(y • x) = 0.

Thus Ay ∈ M .
QED

Looking ahead to Section D, we now see a very nice situation. We have essentially split
Rn into a one-dimensional space and an (n − 1)-dimensional space, and on each of them
the geometric action of multiplying by A is clear. For the one-dimensional space lies in the
direction of an eigenvector of A, so that A times any vector there is just λ times the vector.
On the (n − 1)-dimensional space M we don’t know what A does except that we know that
multiplication of vectors in M by A produces vectors that are still in M . This situation
effectively reduces our analysis of A by one dimension. Then we can proceed by induction
until we have produced n linearly independent eigenvectors.

C. Two-dimensional pause

We are now quite amply prepared to finish our analysis of the structure of real symmet-
ric matrices. However, I would like to spend a little time discussing a standard “analytic”
geometry problem, but viewed with eigenvector eyes. Here is an example of this sort of

PROBLEM. Sketch the curve in the x− y plane given as the level set

10x2 − 12xy + 5y2 = 1.
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The associated symmetric matrix is

A =

(
10 −6
−6 5

)
,

and the curve is given in vector notation as

A

(
x
y

)
•

(
x
y

)
= 1.

Now we find the eigenvalues of A:

det

(
10− λ −6
−6 5− λ

)
= λ2 − 15λ + 14

= (λ− 1)(λ− 14),

so the eigenvalues are 1 and 14. The eigenvector for λ = 14 is given by solving

(A− 14I)

(
x
y

)
=

(
0
0

)
;

(−4 −6
−6 −9

)(
x
y

)
=

(
0
0

)
.

Thus we may use the vector (
3
−2

)
.

Normalize it and call it ϕ̂1:

ϕ̂1 =
1√
13

(
3
−2

)
.

For the other eigenvalue 1 we can use a shortcut, as we know from Section B it must be
orthogonal to ϕ̂1. Thus we let

ϕ̂2 =
1√
13

(
2
3

)

and we are guaranteed this is an eigenvector! (Here’s verification:

Aϕ̂2 =
1√
13

(
10 −6
−6 5

)(
2
3

)

=
1√
13

(
2
3

)

= ϕ̂2.)
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Now we use the unit vectors ϕ̂1 and ϕ̂2 as new coordinate directions, and call the coordi-
nates s and t, respectively:

(
x
y

)
= sϕ̂1 + tϕ̂2.

We calculate:

A

(
x
y

)
•

(
x
y

)
= (sAϕ̂1 + tAϕ̂2) • (sϕ̂1 + tϕ̂2)

= (14sϕ̂1 + tϕ̂2) • (sϕ̂1 + tϕ̂2)

= 14s2 + t2.

(Notice: no term with st!) Thus we recognize our curve in this new coordinate system as the
ellipse

14s2 + t2 = 1.

Now the sketch is easily finished: we simply locate ϕ̂1 and ϕ̂2, and the rest is easy. Here is
the result:
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x

y

1

14

1ϕ

ϕ

2ϕ

1

s

t

What has happened here is clear. This ellipse is not well situated in the x− y coordinate
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system. In other words, the directions ê1 and ê2 are not of much geometrical interest for
it. But the directions ϕ̂1 and ϕ̂2 are extremely significant for this ellipse! In fact, ϕ̂1 is the
direction of its minor axis, ϕ̂2 of its major axis. We say that ϕ̂1 and ϕ̂2 are the “principal
axes” for the ellipse and for the matrix A. Notice of course that ϕ̂1 and ϕ̂2 are orthogonal.

(Another way of expressing this achievement is to think of the bilinear form 10x2−12xy +

5y2 as the square of a certain norm of the vector

(
x
y

)
. This is definitely not the Euclidean

norm, of course. But it has essentially all the same properties, and in fact in the new coordi-
nates s′ =

√
14s and t′ = t we have

(
x
y

)
=

1√
14

s′ϕ̂1 + t′ϕ̂2

and
10x2 − 12xy + 5y2 = (s′)2 + (t′)2,

so that the ellipse looks like the unit circle in the new coordinates.)
In the next section we are going to extend all of that to the n-dimensional case, and the

result will be called the principal axis theorem.
Here are some exercises for you to try.

PROBLEM 4–10. Carry out the same procedure and thus accurately sketch the
curve in the x− y plane given by the level set 16x2 + 4xy + 19y2 = 300.

PROBLEM 4–11. Repeat the preceding problem for the curve 23x2−72xy+2y2 = 50.

PROBLEM 4–12. A further wrinkle in problems of the sort just presented is the
presence of first order terms in the equation. Here is the n-dimensional case. Let A be
an n× n real symmetric matrix and c ∈ Rn and a ∈ R and consider the set described by

Ax • x + c • x = a.

Suppose det A 6= 0. Then reduce this situation to one of the form

Ay • y = b

by a judicious choice of x0 in the translation x = x0 + y. This is called “completing the
square.” The point is that in the x coordinates the center of the figure is x0, but in the
y coordinates it is 0.
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PROBLEM 4–13. Accurately sketch the curve in the x− y plane given as the level
set (x− 2y)2 + 5y = 0. Show that it is a parabola, and calculate its vertex.

D. The principal axis theorem

Now we come to the result we have been eagerly anticipating. This result is of major
importance in a wide variety of applications in mathematics, physics, engineering, etc. In our
case it is definitive in understanding the Hessian matrix at a nondegenerate critical point. It
has a variety of names, including “The Spectral Theorem” and “Diagonalization of Symmetric
Matrices.” There is an important term used in the statement which we now define.

DEFINITION. If ϕ1, ϕ2, . . . , ϕk are vectors in Rn which are mutually orthogonal and which
have norms equal to 1, they are said to be orthonormal . In terms of the Kronecker symbol,

ϕi • ϕj = δij.

Since the vectors have unit norm, we distinguish them with our usual symbol for unit vectors,
ϕ̂i.

PROBLEM 4–14. Prove that the vectors in an orthonormal set are linearly indepen-
dent.
(HINT: if

∑k
i=1 ciϕ̂i = 0, compute the inner product of both sides of the equation with

ϕ̂j.)

Therefore it follows that if we have n orthonormal vectors in Rn (same n), they must form
a basis for Rn. See p. 3–37. We then say that they form an orthonormal basis . The coordinate
vectors ê1, ê2, . . . , ên are a standard example.
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PROBLEM 4–15. Here is an orthonormal basis for R2:

1√
2

(
1
1

)
,

1√
2

(
1
−1

)
.

Similarly, find an orthonormal basis for R4 for which each vector has the form

1

2




±1
±1
±1
±1


 .

Find an analogous orthonormal basis for R8.

We found an orthonormal basis for R2 in our ellipse problem at the end of Section C,
namely

ϕ̂1 =
1√
13

(
3
−2

)
, ϕ̂2 =

1√
13

(
2
3

)
.

PROBLEM 4–16. Suppose ϕ̂1, ϕ̂2, . . . , ϕ̂n are an orthonormal basis for Rn. Prove
that every x in Rn has the representation

x =
n∑

i=1

x • ϕ̂iϕ̂i.

Notice how very much the formula for x in the problem resembles the formula

x =




x1
...

xn


 =

n∑
i=1

xiêi.

In fact, it is the generalization to an arbitrary orthonormal basis instead of the basis of
coordinate vectors.
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PROBLEM 4–17. Orthonormal bases often provide nice information about determi-
nants. Suppose ϕ̂1, ϕ̂2, . . . , ϕ̂n are an orthonormal basis for Rn, written as column vectors.
Define the n× n matrix having them as columns:

Φ = (ϕ̂1 ϕ̂2 . . . ϕ̂n).

a. Prove that ΦtΦ = I.

b. Prove that det Φ = ±1.

c. Suppose A is a matrix such that the ϕ̂i’s are eigenvectors:

Aϕ̂i = λiϕ̂i.

Prove that
AΦ = (λ1ϕ̂1 . . . λnϕ̂n).

d. Prove that
det A = λ1λ2 . . . λn.

PRINCIPAL AXIS THEOREM. Let A be an n × n real symmetric matrix. Then there
exist eigenvectors ϕ̂1, ϕ̂2, . . . , ϕ̂n for A which form an orthonormal basis:

Aϕ̂i = λiϕ̂i, 1 ≤ i ≤ n.

The eigenvalues λ1, λ2, . . . , λn are real numbers and are the zeros of the characteristic poly-
nomial of A, repeated according to multiplicity.

PROOF. We are confident about using the quotient function Q(x) = Ax • x/‖x‖2. We
have already proved in Section B that an eigenvector ϕ̂1 exists, and we are going to carry
out a proof by induction on k, presuming we know an orthonormal sequence ϕ̂1, . . . , ϕ̂k of
eigenvectors. We assume 1 ≤ k ≤ n− 1. We define

M = {y ∈ Rn | y • ϕ̂1 = · · · = y • ϕ̂k = 0}.

(This is a subspace of Rn of dimension n − k.) We restrict the continuous function Q to the
closed bounded set M ∩ S(0, 1). It attains a maximum value there, say at a point x̂0. Thus
‖x̂0‖ = 1 and x̂0 • ϕ̂1 = · · · = x̂0 • ϕ̂k = 0. Because Q is homogeneous of degree 0, we know in
fact that Q(x) ≤ Q(x0) for all x ∈ M ; this is the same argument we used on p. 4–8.
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This implies that for all h ∈ M we have

Q(x̂0 + th) ≤ Q(x̂0), −∞ < t < ∞.

And this gives a maximum value at t = 0, so that

d

dt
Q(x̂0 + th)

∣∣
t=0

= 0.

That is, the directional derivative DQ(x̂0; h) = 0. That is,

∇Q(x̂0) • h = 0 for all h ∈ M.

Now the boxed formula on p. 4–9 asserts that

∇Q(x̂0) = 2 (Ax̂0 −Q(x̂0)x̂0) .

We know from the theorem on p. 4–10 that Ax̂0 ∈ M , and thus ∇Q(x̂0) ∈ M . But since
∇Q(x̂0) is orthogonal to all vectors in M , it is orthogonal to itself, and we conclude ∇Q(x̂0) =
0. Thus x̂0 is a critical point for Q!

That does it, for Ax̂0 = Q(x̂0)x̂0. We just name x̂0 = ϕ̂k+1 and Q(x̂0) = λk+1. We have
thus produced an orthonormal sequence ϕ̂1, . . . , ϕ̂k+1 of eigenvectors of A. By induction, the
proof is over, except for one small matter. That is the statement about the characteristic
polynomial. But notice that

(A− λI)ϕ̂i = (λi − λ)ϕ̂i,

and thus Problem 4–17 yields

det(A− λI) = (λ1 − λ) . . . (λn − λ).

QED

REMARK. This is an unusual sort of induction argument. If you examine it carefully, you
will notice that it really applies even in the case k = 0. There it is exactly the proof we gave in
Section B. Thus we don’t even actually need the proof of Section B, nor do we need a separate
argument to “start” the induction. This is quite a happy situation: the starting point of the
induction argument is not only easy, it is actually vacuous (there’s nothing to check).

PROBLEM 4–18. This is sort of an easy “converse” of the principal axis theorem.
Given any orthonormal sequence ϕ̂1, . . . , ϕ̂n in Rn and any real numbers λ1, . . . , λn, there
exists one and only one n× n real matrix A such that

Aϕ̂i = λiϕ̂i for all 1 ≤ i ≤ n.

Prove that A is symmetric.
(HINT: use Φ from Problem 4–17.)
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PROBLEM 4–19. Find a 4× 4 matrix A such that

A




1
1
1
1


 =




0
0
0
0


 , A




1
1
−1
−1


 =




2
2
−2
−2


 ,

A




1
−1
0
0


 =




−1
1
0
0


 , and A




0
0
1
−1


 =




0
0
5
−5


 .

The sort of matrix that was introduced in Problem 4–17 is exceedingly important in under-
standing both the algebra and the geometry of our Euclidean space Rn. We need to understand
all of this in great detail, so we pause to give the definition.

DEFINITION. A real n × n matrix Φ is an orthogonal matrix if its columns are an or-
thonormal basis for Rn. That is,

Φ = (ϕ̂1 ϕ̂2 . . . ϕ̂n)

and ϕ̂i • ϕ̂j = δij. The set of all orthogonal n× n matrices is denoted

O(n).

You noticed in Problem 4–17 that an equivalent way of asserting that Φ is orthogonal is
the matrix formula ΦtΦ = I. Thus, that Φt is a left inverse of Φ. But the theorem on p. 3–37
then asserts that Φ is invertible and has the inverse Φt. Thus, ΦΦt = I as well. Here is a
problem that summarizes this information, and more:
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PROBLEM 4–20. Prove the following properties of O(n):

a. Φ ∈ O(n) ⇐⇒ the columns of Φ form an orthonormal basis for Rn (this is actually
our definition).

b. Φ ∈ O(n) ⇐⇒ Φt is the inverse of Φ.

c. Φ ∈ O(n) ⇐⇒ the rows of Φ form an orthonormal basis for Rn.

d. Φ ∈ O(n) =⇒ Φt ∈ O(n).

e. Φ ∈ O(n) ⇐⇒ Φx • Φy = x • y for all x, y ∈ Rn.

f. Φ ∈ O(n) ⇐⇒ ‖Φx‖ = ‖x‖ for all x ∈ Rn.

g. Φ ∈ O(n) =⇒ Φ−1 ∈ O(n).

h. Φ, Φ′ ∈ O(n) =⇒ ΦΦ′ ∈ O(n).

(HINT for f : the hard part is ⇐. Try showing that the condition in part e is satisfied,
by verifying

2Φx • Φy = ‖Φ(x + y)‖2 − ‖Φx‖2 − ‖Φy‖2.)

DISCUSSION. Because of the last two properties in the problem, O(n) is called the or-
thogonal group. The word “group” is a technical one which signifies the fact that products of
group elements belong to the group, that there is an identity for the product (in this case it’s
the identity matrix I), and that each member of the group has a unique inverse (which also
belongs to the group).

Notice how easy it is to compute the inverse of an orthogonal matrix!

DEFINITION. The set of all n×n invertible real matrices is called the general linear group
and is denoted

GL(n).

The set of all n× n real matrices with determinant 1 is called the special linear group and is
denoted

SL(n).

Every orthogonal matrix has determinant equal to ±1 (Problem 4–17). The set of all orthog-
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onal matrices with determinant 1 is called the special orthogonal group and is denoted

SO(n).

Clearly,
SO(n) ⊂ SL(n) ⊂ GL(n)

and
SO(n) = O(n) ∩ SL(n).

PROBLEM 4–21. Prove that GL(n), SL(n), and SO(n) are all groups.

PROBLEM 4–22. Let ϕ̂1, . . . , ϕ̂n be an orthonormal basis for Rn, and A any n× n
real or complex matrix. Prove that

traceA =
n∑

i=1

Aϕ̂i • ϕ̂i.

E. Positive definite matrices

In this section we lay the foundation for understanding the Hessian matrices we are so
interested in.

Let A be an n × n real symmetric matrix. The principal axis theorem guarantees the
existence of an orthonormal basis for Rn consisting of eigenvectors of A:

Aϕ̂i = λiϕ̂i, 1 ≤ i ≤ n.

As we have discussed, the unit vectors ϕ̂1, . . . , ϕ̂n are very natural as far as the matrix A is
concerned. We now use them essentially as a new set of “coordinate axes” for Rn. That is,
every x ∈ Rn has a unique representation of the form

x =
n∑

i=1

siϕ̂i.

The numbers s1, . . . , sn are the “coordinates” of x in this new basis. They can be calculated
directly by using the inner product:

si = x • ϕ̂i.
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Now we calculate the quadratic form we are interested in. In the Cartesian coordinates it
is of course

Ax • x =
n∑

i,j=1

aijxixj.

In the more natural coordinates it is computed as follows:

Ax • x =
n∑

i=1

siAϕ̂i •
n∑

j=1

sjϕ̂j

=
n∑

i=1

siλiϕ̂i •
n∑

j=1

sjϕ̂j

=
n∑

i,j=1

λisisjϕ̂i • ϕ̂j

=
n∑

i,j=1

λisisjδij

=
n∑

i=1

λis
2
i .

Of course, the orthonormality was of crucial importance in that calculation. An example
of this sort of calculation appears in Section 4C.

The result is that Ax•x looks much nicer in the coordinates that come from the eigenvectors
of A than in the original Cartesian coordinates. We reiterate,

Ax • x =
n∑

i=1

λis
2
i .

In this form we can deduce everything we need to know about the quadratic form Ax •x. For
instance, we know in case A is the Hessian matrix of a function at a critical point, then the
critical point is a local minimum for the function if Ax • x > 0 for all x 6= 0. We see instantly
that this condition is equivalent to λi > 0 for all i:

THEOREM. In the above situation the eigenvalues of A are all positive ⇐⇒ Ax • x > 0 for
all x ∈ Rn − {0}.

PROOF. For the direction ⇐=, apply the given inequality to x = ϕ̂i. Then 0 < Aϕ̂i • ϕ̂i =
λiϕ̂i • ϕ̂i = λi. Thus all the eigenvalues of A are positive. This much of the theorem did not
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require A to be symmetric. However, the converse direction =⇒ relies on the principal axis
theorem. According to the calculation given above, Ax • x =

∑
λis

2
i ≥ 0 since all λi > 0, and

Ax • x = 0 implies each si = 0 and thus x =
∑n

i=1 siϕ̂i = 0.
QED

DEFINITION. The real symmetric matrix A is said to be positive definite in case the above
equivalent conditions are satisfied. That is, all the eigenvalues of A are positive. Equivalently,
Ax • x > 0 for all x ∈ Rn − {0}.

Of course, we say A is negative definite if all the eigenvalues of A are negative; equivalently,
Ax • x < 0 for all x 6= 0; equivalently, −A is positive definite.

PROBLEM 4–23. Give an example of a real 2× 2 matrix for which both eigenvalues
are positive numbers but which does not satisfy Ax • x ≥ 0 for all x ∈ R2. (Of course,
this matrix cannot be symmetric.)

It is quite an interesting phenomenon that positive definite matrices are analogous to
positive numbers. The next result provides one of the similarities.

THEOREM. A real symmetric matrix A is positive definite ⇐⇒ there exists a real symmetric
invertible matrix B such that A = B2.

PROOF. If A = B2, then Ax • x = B2x • x = Bx • Bx = ‖Bx‖2 ≥ 0, and equality holds
⇐⇒ Bx = 0 ⇐⇒ x = 0 (since B is invertible). Conversely, use the eigenvectors ϕ̂i of A to
define the orthogonal matrix

Φ = (ϕ̂1 ϕ̂2 . . . ϕ̂n).

Then

ΦtAΦ =




ϕ̂t
1
...

ϕ̂t
n


 (λ1ϕ̂1 . . . λnϕ̂n)

=




λ1 0
λ2

0
. . . λn


 ,

so that

A = Φ




λ1 0
λ2

0
. . .

λn


 Φt.
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Now simply define

B = Φ




√
λ1 0√

λ2

0
. . . √

λn


 Φt.

Then B is even positive definite, and B2 = A. (We say B is a positive definite square root of
A.)

QED
What has happened in the above proof is tremendously interesting, probably more in-

teresting than the theorem itself. Namely, starting with A we have used the principal axis
theorem to represent it as simply as possible in coordinates tied closely to the geometry which
A gives. In that coordinate system it is easy to find a square root of A, and then we “undo”
the coordinate change to get the matrix B.

PROBLEM 4–24. Find a positive definite square root of

A =

(
16 2
2 19

)

(see Problem 4–10).

PROBLEM 4–25∗. Prove that a positive definite matrix A has a unique positive
definite square root. (For this reason, we can denote it

√
A.)

(HINT: suppose B is positive definite and B2 = A. Show that if λ is an eigenvalue of A
and Ax = λx, then Bx =

√
λx.)

PROBLEM 4–26. Show that

(
0 1
0 0

)
has no square root whatsoever. That is, there

is no 2× 2 matrix B even with complex entries such that B2 equals the given matrix.

PROBLEM 4–27. Prove that if A is positive definite, then so is A−1.

Now we are ready to focus our attention on the real issue we want to understand. Re-
member, we are trying to understand how to detect the nature of critical points of real-valued
functions. Referring to Section 3H, “Recapitulation,” we see that the crucial quantity is Hy•y,
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where H is the Hessian matrix at the critical point of the function. We assume the critical
point is nondegenerate, in other words that det H 6= 0. Now think about whether we have a
relative minimum. This translates to Hy • y > 0 for all y 6= 0, as we shall prove in Section F.
In other words, the condition for a relative minimum is going to be that H is positive definite.

Thus we are facing an algebra question: how can we tell whether a symmetric matrix
is positive definite? The immediate but naive answer is just to respond: precisely when its
eigenvalues are all positive.

However, we know that this is a potentially difficult matter for n×n matrices with n > 2,
as calculating the eigenvalues may be difficult. In fact, usually only numerical approximations
are available. The truly amazing thing is that there is an algorithm for detecting that all
the eigenvalues of a symmetric matrix A are all positive, without actually calculating the
eigenvalues of A at all . The fact is, we have observed this very feature in the n = 2 case. For
we know (Problem 3–18) that A is positive definite ⇐⇒

a11 > 0, a22 > 0, and a11a22 − a2
12 > 0.

In fact, we could drop the second inequality and simply write

a11 > 0 and det A > 0.

Notice that calculating the eigenvalues in this case requires the square root of (a11−a22)
2+4a2

12,
but our test requires no such thing.

The n× n case has a similar simplification:

THE DEFINITENESS CRITERION. Let A be an n×n real symmetric matrix. For any
1 ≤ k ≤ n, let A(k) be the k × k “northwest” square submatrix of A:

A(k) =




a11 . . . a1k
...

...
ak1 . . . akk


 .

(Thus,

A(1) = (a11),

A(2) =

(
a11 a12

a21 a22

)
,

...

A(n) = A.)
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Then A is positive definite ⇐⇒ det A(k) > 0 for all 1 ≤ k ≤ n.
(By the way, we could just as well have elected to employ the corresponding southeast

submatrices instead. More about this after the theorem.)

PROOF. We first make a simple observation: if a matrix is positive definite, then its
determinant is positive. The reason is that its determinant is equal to the product of its
eigenvalues (p. 4–6), which are all positive.

It is rather evident that the direction =⇒ of the proof should be the easier one, so we
attack it first. Suppose that A is positive definite. Then we prove directly that each A(k)
is positive definite; the above observation then completes this part of the proof. For a fixed
1 ≤ k ≤ n, let y ∈ Rk be arbitrary, y 6= 0. Then define x ∈ Rn by

x =




y1
...
yk

0
...
0




.

Then it is true that

Ax • x = A(k)y • y.

Since A is positive definite, Ax • x > 0. Thus A(k)y • y > 0. Thus A(k) is positive definite.
Now we prove the converse direction ⇐=. We do it by induction on n, the case n = 1 being

obvious. Thus we assume the result is valid for the case n− 1, where n ≥ 2, and we prove it
for an n × n matrix A. Thus we are assuming that each A(k) has positive determinant. By
the induction hypothesis, A(n− 1) is positive definite.

We now use the principal axis theorem to produce orthonormal eigenvectors for A. Ac-
tually, for the present proof it is convenient to assume only that they are orthogonal (and
nonzero), and that all of them with nth coordinate nonzero have been rescaled to have nth

coordinate equal to 1:

Aϕi = λiϕi, 1 ≤ i ≤ n;

ϕ1, . . . , ϕn are orthogonal and nonzero;

the nth coordinate of each ϕi is 0 or 1.

By Problem 4–17,

0 < det A = λ1 λ2 . . . λn.
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Each ϕi with nth coordinate 0 can be written

ϕi =




y1
...

yn−1

0


 ,

where y ∈ Rn−1 and y 6= 0, so that

λi‖ϕi‖2 = λiϕi • ϕi

= Aϕi • ϕi

= A(n− 1)y • y

> 0,

since A(n− 1) is positive definite. Thus λi > 0.
Now suppose two of the eigenvectors ϕi and ϕj have nth coordinate 1. Then ϕi − ϕj has

nth coordinate 0 and is not itself 0, so as above we conclude that since A(n − 1) is positive
definite,

0 < A(ϕi − ϕj) • (ϕi − ϕj)

= (λiϕi − λjϕj) • (ϕi − ϕj)

= λi‖ϕi‖2 + λj‖ϕj‖2 (by orthogonality).

Thus at least one of λi and λj is positive.
This leads to an interesting conclusion indeed! Among all the eigenvalues λ1, λ2, . . . , λn,

at most one of them is negative! Since their product is positive, they must all be positive.
Therefore, A is positive definite.

QED
DISCUSSION. For any n× n real symmetric matrix A with det A 6= 0, we now completely
understand the criterion for A to be positive definite. Next, A is negative definite ⇐⇒ −A
is positive definite ⇐⇒ det(−A(k)) > 0 for all k ⇐⇒ (−1)k det A(k) > 0 for all k. Thus we
obtain the negative definite result for free.

SUMMARY. When we examine the signs of the determinants det A(k) in order for k = 1,
2, . . . , n, there are exactly three cases:

• +, +, +, +, . . . ⇐⇒ A is positive definite.

• −, +, −, +, . . . ⇐⇒ A is negative definite.
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• any other pattern ⇐⇒ A is neither positive nor negative definite.

PROBLEM 4–28. State and prove the corresponding criterion, using instead the
k × k southeast square submatrices of A.

PROBLEM 4–29. Let A be an n × n real diagonal matrix with det A 6= 0. Show
that the definiteness criterion is virtually obvious for A. (Thus the useful content of the
criterion is for matrices which are not diagonal.)

THE DEGENERATE CASE. The definiteness criterion of course deals only with the
nondegenerate case in which det A 6= 0. There is a companion result which is valid even if
det A = 0. Although this criterion appears to be of little interest in the classification of critical
points, since we need them to be nondegenerate, we include the material in the rest of this
section for the beautiful mathematics that is involved. We continue to work with an n × n
real symmetric matrix. Such a matrix A is said to be positive semidefinite if

Ax • x ≥ 0 for all x ∈ Rn.

Equivalently, all the eigenvalues of A are nonnegative numbers.
What you might expect the definiteness criterion to assert is that the equivalent condition

is det A(k) ≥ 0 for all 1 ≤ k ≤ n. However, a simple 2× 2 example belies this:
(

0 0
0 −1

)
.

The key is to realize that our restriction to northwest square submatrices is rather artificial.
Instead we should use all possible “symmetric square submatrices.” These are matrices A′

obtained from A by using only the entries aij where i, j are restricted to the same collection
of indices. Put in negative terms, we have deleted some rows of A as well as the corresponding
columns. Whereas there are n symmetric square submatrices of the form Ak, there are 2n− 1
symmetric square submatrices in all.

THE DEFINITENESS CRITERION BIS. Let A be an n × n real symmetric matrix.
Then A is positive semidefinite ⇐⇒ every symmetric square submatrix A′ satisfies

det A′ ≥ 0.

PROOF. The =⇒ direction of the proof is just as before. The ⇐= direction is again proved
by induction on the dimension; the n = 1 case is trivial and we presume the n − 1 case is
valid.
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We again use a principal axis decomposition as before,

Aϕ̂i = λiϕ̂i for 1 ≤ i ≤ n,

ϕ̂1, . . . , ϕ̂n are orthonormal.

If det A 6= 0, then the theorem is already known from the previous result, so there is nothing
to prove. Thus we may assume det A = 0, so that A has 0 as one of its eigenvalues. We may
as well assume λ1 = 0. Now consider any 2 ≤ i ≤ n. There exists a scalar c such that ϕ̂i− cϕ̂1

has at least one coordinate equal to 0 (it could happen that c = 0). Say its jth coordinate is
0. Then we choose the particular symmetric square submatrix A′ obtained by deleting the jth

row and the jth column from A (thus A′ equals the minor Ajj as defined on p. 3–29). Also
let y ∈ Rn−1 be obtained from ϕi − cϕ1 by simply deleting its jth (zero) entry.

By the inductive hypothesis, A′ is positive semidefinite. Therefore

0 ≤ A′y • y

= A(ϕ̂i − cϕ̂1) • (ϕ̂i − cϕ̂1)

= (Aϕ̂i − cAϕ̂1) • (ϕ̂i − cϕ̂1)

= (λiϕ̂i − cλ1ϕ̂1) • (ϕ̂i − cϕ̂1)

= λiϕ̂i • (ϕ̂i − cϕ̂1) (λ1 = 0)

= λiϕ̂i • ϕ̂i (ϕ̂i and ϕ̂1 are orthogonal)

= λi.

Thus λi ≥ 0 for all 2 ≤ i ≤ n (and λ1 = 0). Thus A is positive semidefinite.
QED

PROBLEM 4–30. Assume A is positive semidefinite and aii = 0. Prove that the
ith row and the ith column of A consist of zeros. Prove that if A is positive definite, then
aii > 0.

PROBLEM 4–31. Suppose A is an n× n positive definite matrix. Prove that

(det A)
1
n ≤ traceA

n

and that equality holds ⇐⇒ A = cI for some c > 0.
(HINT: use the arithmetic-geometric mean inequality (Problem 5–31) for the eigenvalues
of A.)
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PROBLEM 4–32. Suppose A is an n× n positive definite matrix. Prove that

det A ≤ a11 a22 . . . ann.

Prove that equality holds ⇐⇒ A is a diagonal matrix.
(HINT: let B = the diagonal matrix with entries

√
aii. Let C = B−1AB−1 and apply the

preceding problem to C.)

PROBLEM 4–33. Suppose A is an n× n positive semidefinite matrix. Prove that

det A ≤ a11 a22 . . . ann,

and that equality holds ⇐⇒ A is a diagonal matrix or some aii = 0.

PROBLEM 4–34. Suppose A is an n× n real matrix with columns a1, . . . , an in Rn:

A = (a1 a2 . . . an).

Show that Problem 4–33 may be applied to the matrix B = AtA, and results in what is
known as Hadamard’s inequality:

| det A| ≤ ‖a1‖ ‖a2‖ . . . ‖an‖.

When can equality hold?

We shall see in Section 8A that Hadamard’s inequality has a very appealing geometric
interpretation: the volume of an n-dimensional parallelogram is no greater than the product
of its edge lengths.

There is another approach to the analysis of positive semidefinite matrices that is quite
elegant. This approach is completely algebraic in nature and thus entirely different from that
we have seen thus far. It begins with a discussion of the determinant of a sum of two matrices.
Suppose then that A and B are matrices represented in terms of column vectors in the usual
way:

A = (a1 a2 . . . an),

B = (b1 b2 . . . bn).

Thus aj and bj ∈ Rn. Then the multilinearity of the determinant represents det(A+B) as
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a sum of 2n determinants, where each summand is the determinant of a matrix C of the form

(c1 c2 . . . cn),

where each cj is either aj or bj.
(This is very similar to the binomial expansion of (x + y)n when the power is regarded as

(x + y)n = (x + y) (x + y) . . . (x + y)

and all the multiplications are carried out, resulting in 2n terms.)
Now specialize this formula to the case B = λI. Then bj = λêj, and when n − k of the

columns of C come from the bj’s, the resulting determinant is

det C = λn−k det A′,

where A′ is the k × k square submatrix of A resulting from eliminating the particular n − k
rows and columns of A corresponding to this choice of C. Thus

det(A + λI) =
n∑

k=0

λn−k
∑

A′ is k×k

det A′, (∗)

where each A′ in the inner sum is one of the

(
n
k

)
square submatrices of A resulting from

deleting k rows and the same k columns. For instance, the n = 2 case is

det(A + λI) = λ2 + λ(a11 + a22) + det A.

(Notice that when k = 0 we are required to interpret the coefficient of λn as 1.)
Notice that replacing λ by −λ in (∗) gives an explicit formula for the characteristic poly-

nomial of A.
Here then is the punch line. Suppose we want to prove the hard direction ⇐= of the

definiteness criterion for positive semidefiniteness. We thus assume A is symmetric and every
A′ satisfies det A′ ≥ 0. Then for all λ > 0 we have det(A + λI) > 0. Therefore, if λ is an
eigenvalue of A, det(A − λI) = 0 and we conclude that −λ ≤ 0. Thus all the eigenvalues of
A are nonnegative, proving that A is positive semidefinite.

PROBLEM 4–35. Prove that a positive semidefinite matrix has a unique positive
semidefinite square root.

F. The second derivative test
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We return at last to the calculus problem we were interested in, as summarized at the close
of Chapter 3. We use that outline exactly as written, and we assume that the critical point
x0 for the function f is nondegenerate, so that the determinant of the Hessian matrix H is not
zero. The test we are going to state is in terms of the definiteness of H, and we realize that
the definiteness criterion of Section E may be useful in deciding this in a given case. However,
we do not need to refer to the rule in the statement of the result.

THEOREM. Assume the following:

• Rn f−→ R is of class C2 in a neighborhood of x0.

• x0 is a critical point of x0.

• x0 is nondegenerate.

• H is the Hessian matrix of f at x0.

Then the conclusion is definitive:

• f has a strict local minimum at x0 ⇐⇒ H is positive definite.

• f has a strict local maximum at x0 ⇐⇒ H is negative definite.

• f has a saddle point at x0 ⇐⇒ H is neither positive nor negative definite.

PROOF. We have the Taylor expansion from Section 3B,

f(x0 + y) = f(x0) +
1

2
Hy • y + R,

where |R| is smaller than quadratic as y → 0.
• Assume H is positive definite. Then we use a principal axis representation for H as on

p. 4–22, writing

y =
n∑

i=1

siϕ̂i,

so that

Hy • y =
n∑

i=1

λis
2
i .

All λi > 0, so let λ = min(λ1, . . . , λn). Then λ > 0 and

Hy • y ≥ λ

n∑
i=1

s2
i = λ‖y‖2.
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Choose δ > 0 such that for ‖y‖ ≤ δ we have |R| ≤ λ
4
‖y‖2. Then 0 < ‖y‖ ≤ δ =⇒

f(x0 + y) ≥ f(x0) +
1

2
λ‖y‖2 − |R|

≥ f(x0) +
1

2
λ‖y‖2 − 1

4
λ‖y‖2

= f(x0) +
1

4
λ‖y‖2

> f(x0).

Thus f has a strict local minimun at x0.
• If H is negative definite, the same proof yields a strict local maximum at x0 (or simply

apply the previous result to −f).
• If H is neither positive nor negative definite, then since all its eigenvalues are nonzero, it

must have a positive eigenvalue and a negative eigenvalue. Suppose for example that λi < 0.
Then

f(x0 + tϕ̂i) = f(x0) +
t2

2
Hϕ̂i • ϕ̂i + R

= f(x0) +
1

2
λit

2 + R

≤ f(x0) +
1

2
λit

2 + |R|.

Now choose δ > 0 so that

‖y‖ ≤ δ =⇒ |R(y)| ≤ −1

4
λi‖y‖2.

Then 0 < |t| ≤ δ =⇒

f(x0 + tϕ̂i) ≤ f(x0) +
1

2
λit

2 − 1

4
λit

2

= f(x0) +
1

4
λit

2

< f(x0).

Thus f does not have a local minimum at x0. Likewise, using a positive eigenvalue shows that
f does not have a local maximum at x0. Thus x0 is a saddle point.

Thus far we have covered the three implications ⇐=. But since the three assertions on the
left sides of the statements as well as on the right sides are mutually exclusive, the proof is
finished.
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QED

G. A little matrix calculus

We take the viewpoint of Section 3I, thinking of n×n real matrices as being the Euclidean
space Rn2

. Now we want to think of the calculus of the real-valued function det.

PROBLEM 4–36. Use the formula (∗) of Section 4E to write

det(A + λI) = λn + λn−1traceA + λn−2R + . . . ,

where
R =

∑
1≤i≤j≤n

(aiiajj − aijaji).

PROBLEM 4–37. In the preceding problem perform algebraic manipulations to
rewrite

R =
1

2

∑
i,j

(aiiajj − aijaji)

=
1

2
[(traceA)2 − trace(A2)].

PROBLEM 4–38. Manipulate Problem 4–35 in such a way to achieve the polynomial
equation

det(I + tB) = I + ttraceB + higher order terms in t.

Conclude that the differential of det at I is the linear mapping trace. In terms of direc-
tional derivatives,

D det(I; B) = traceB.
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PROBLEM 4–39. Generalize the preceding result to obtain

D det(A; B) = trace(BadjA).


