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Chapter 8 Volumes of parallelograms

In the present short chapter we are going to discuss the elementary geometrical objects
which we call parallelograms. These are going to be contained in some ambient Euclidean
space, but each will have its own innate dimension. We shall usually denote the ambient space
as RN , and we use its usual inner product • and norm. In discussing these parallelograms,
we shall always for simplicity assume one vertex is the origin 0 ∈ RN . This restriction is of
course easily overcome in applications by a simple translation of RN .

DEFINITION. Let x1, . . . , xn be arbitrary points in RN (notice that these subscripts do
not here indicate coordinates). We then form the set of all linear combinations of these points
of a certain kind:

P =

{
n∑

i=1

tixi | 0 ≤ ti ≤ 1

}
.

We call this set an n-dimensional parallelogram (with one “vertex” 0). We also refer to the
vectors x1, . . . , xn as the edges of P .

• For n = 1 this “parallelogram” is of course just the line segment [0, x1]. 1x

O

• For n = 2 we obtain a “true” parallelogram.

x1

x2 O

• For n = 3 the word usually employed is parallelepiped.

x2

x1

x3

O

However, it seems to be a good idea to pick one word
to be used for all n, so we actually call this a
3-dimensional “parallelogram.”

We are not assuming that the edge vectors x1, . . . , xn are linearly independent, so it could
happen that a 3-dimensional parallelogram could lie in a plane and itself be a 2-dimensional
parallelogram, for instance.

PROBLEM 8–1. Consider the “parallelogram” in R3 with “edges” equal to the three
points ı̂, ̂, ı̂ − 2̂. Draw a sketch of it and conclude that it is actually a six-sided figure
in the x− y plane.

A. Volumes in dimensions 1, 2, 3
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We are going to work out a definition of the n-dimensional volume of an n-dimensional
parallelogram P , and we shall denote this as vol(P ); if we wish to designate the dimension, we
write voln(P ). In this section we are going to recall some formulas we have already obtained,
and cast them in a somewhat different format.
• Dimension 1. We have the line segment [0, x1] ⊂ RN , and we simply say its 1-dimensional
volume is its length, i.e. the norm of x1:

vol([0, x1]) = ‖x1‖.

• Dimension 3. We skip ahead to this dimension because of our already having obtained
the pertinent formula in Section 7C. Namely, suppose P ⊂ R3, so we are dealing at first with
the dimension of P equal to the dimension of the ambient space. Then if we write x1, x2, x3

as column vectors,

vol(P ) = | det(x1 x2 x3)|,
the absolute value of the determinant of the 3× 3 matrix formed from the column vectors.

This formula has the advantage of being easy to calculate. But it suffers from two related
disadvantages: (1) it depends on the coordinates of the edge vectors and thus is not very
geometric, and (2) it requires the ambient space to be R3.

Both of these objections can be overcome by resorting to the by now familiar device of
computing the matrix product

(x1 x2 x3)
t(x1 x2 x3) =




xt
1

xt
2

xt
3


 (x1 x2 x3)

=




x1 • x1 x1 • x2 x1 • x3

x2 • x1 x2 • x2 x2 • x3

x3 • x1 x3 • x2 x3 • x3


 .

Notice that whereas both matrices on the left side of this equation depend on the coordi-
nates of x1, x2, and x3, the matrix (xi • xj) on the right side depends only on the (geometric)
inner products of the vectors! The properties of determinant produce the formula

(det(x1 x2 x3))
2 = det(xi • xj).

Thus we have obtained the formula

vol(P ) =
√

det(xi • xj).
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This is our desired formula. It displays vol(P ) in such a way that we no longer need the
assumption P ⊂ R3. For if the ambient space is RN , we can simply regard x1, x2, x3 as lying
in a 3-dimensional subspace of RN and use the formula we have just derived. The point is
that the inner products xi •xj from RN are the same inner products as in the subspace of RN ,
since the inner product has a completely geometric description.

• Dimension 2. Here we are going to present the procedure for obtaining the formula
analogous to the above, but without using a coordinate representation at all. We shall see in
Section C that this procedure works for all dimensions.

We suppose P to be the 2-dimensional parallelogram in RN with vertices 0, x1, x2, and
x1 + x2. We choose the “base” of the parallelogram to be [0, x1] and then use the classical
formula for the area of P :

vol(P ) = base times altitude

= ‖x1‖h

x1

x2

h
O

(see the figure). The altitude h is the distance from x2 to the “foot” tx1 of the line segment
from x2 orthogonal to the base. The definition of t is then that

(tx1 − x2) • x1 = 0.

(How many times have we used this technique in this book?!) The definition of h then can be
rewritten

h2 = ‖x2 − tx1‖2 = (x2 − tx1) • (x2 − tx1)

= (x2 − tx1) • x2.

We now regard what we have obtained as two linear equations for the two “unknowns” t
and h2: {

tx1 • x1 + 0h2 = x1 • x2,

tx1 • x2 + h2 = x2 • x2.

We don’t care what t is in this situation, so we use Cramer’s rule to compute only the desired
h2:
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h2 =

det

(
x1 • x1 x1 • x2

x1 • x2 x2 • x2

)

det

(
x1 • x1 0
x1 • x2 1

)

=
det(xi • xj)

‖x1‖2
.

Thus

vol(P ) =
√

det(xi • xj).

This is the desired analog to what we found for n = 3, but we have obtained it without using
coordinates and without even thinking about R2!

EXAMPLE. We find the area of the triangle in R3 with vertices ~ı, ~, ~k. We handle this
by finding the area of an associated parallelogram and then dividing by 2 (really, 2!). A
complication appears because we do not have the origin of R3 as a vertex, but we get around
this by thinking of vectors emanating from one of the vertices (say ~) thought of as the origin.
Thus we take

x1 = ~ı− ~ =




1
−1
0


 , x2 = ~k − ~ =




0
−1
1


 .

Then the square of the area of the parallelogram is k

ji

det(xi • xj) = det

(
2 1
1 2

)

= 3.

Thus,

area of triangle =
1

2

√
3.

PROBLEM 8–2. Compute the area of the triangle in R3 whose vertices are aı̂, b̂, and
ck̂. Express the result in a form that is a symmetric function of a, b, c.

B. The Gram determinant
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Our work thus far indicates that the matrix of dot products (xi •xj) will play a major role
in these sorts of calculations. We therefore pause to consider it as an object of tremendous
interest in its own right. It is named after the Danish mathematician Jorgen Pedersen Gram.

DEFINITION. Suppose x1, x2, . . . , xn are points in the Euclidean space RN . Their Gram
matrix is the n× n symmetric matrix of their inner products

G = (xi • xj) =




x1 • x1 x1 • x2 . . . x1 • xn
...

...
...

xn • x1 xn • x2 . . . xn • xn


 .

The Gram determinant of the same points is

Gram(x1, x2, . . . , xn) = det G

= det(xi • xj).

Here are the first three cases:

Gram(x) = x • x = ‖x‖2;

Gram(x1, x2) = det

( ‖x1‖2 x1 • x2

x2 • x1 ‖x2‖2

)

= ‖x1‖2‖x2‖2 − (x1 • x2)
2;

Gram(x1, x2, x3) = det



‖x1‖2 x1 • x2 x1 • x3

x1 • x2 ‖x2‖2 x2 • x3

x1 • x3 x2 • x3 ‖x3‖2


 .

Notice that for n = 1, Gram(x) ≥ 0 and Gram(x) > 0 unless x = 0. For n = 2,
Gram(x1, x2) ≥ 0 and Gram(x1, x2) > 0 unless x1 and x2 are linearly dependent; this is the
Schwarz inequality. We didn’t encounter Gram(x1, x2, x3) until the preceding section, but
we realize that the analogous property is valid. In fact, we shall now give an independent
verification of this property in general.

THEOREM. If x1, . . . , xn ∈ RN , then their Gram matrix G is positive semidefinite. In
particular,

Gram(x1, . . . , xn) ≥ 0.



6 Chapter 8

Moreover, G is positive definite ⇐⇒

Gram(x1, . . . , xn) > 0

⇐⇒ x1, . . . , xn are linearly independent.

PROOF. We first notice the formula for the norm of
∑n

i=1 tixi:

∥∥
n∑

i=1

tixi

∥∥2
=

n∑
i=1

tixi •
n∑

j=1

tjxj

=
n∑

i,j=1

(xi • xj)titj.

In terms of the Gram matrix, the calculation we have just done can thus be written in the
form

∥∥
n∑

i=1

tixi

∥∥2
= Gt • t,

where t is the column vector with components t1, . . . , tn.
We see therefore that Gt•t ≥ 0 for all t ∈ Rn. That is, the matrix G is positive semidefinite

(p. 4–26). Thus det G ≥ 0, thanks to the easy analysis on p. 4–26. (Remember: the eigenvalues
of G are all nonnegative and det G is the product of the eigenvalues.) This proves the first
statement of the theorem.

For the second we first note that of course G is positive definite ⇐⇒ det G > 0. If these
conditions do not hold, then there exists a nonzero t ∈ Rn such that Gt = 0. Then of course
also Gt • t = 0. According to the formula above,

∑n
i=1 tixi has zero norm and is therefore

the zero vector. We conclude that x1, . . . , xn are linearly dependent. Conversely, assume∑n
i=1 tixi = 0 for some t 6= 0. Take the dot product of this equation with each xj to conclude

that
∑n

i=1 tixi •xj = 0. This says that the jth component of Gt = 0. As j is arbitrary, Gt = 0.
Thus det G = 0.

QED

PROBLEM 8–3. For the record, here is the general principle used above: prove that
for a general real symmetric n×n matrix A which is positive semidefinite and for t ∈ Rn,
At • t = 0 ⇐⇒ At = 0.

The following problem strikingly shows that Gram matrices provide a concrete realization
of all positive semidefinite matrices.
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PROBLEM 8–4. Let A be a real symmetric positive semidefinite n×n matrix. Prove
that A is a Gram matrix; that is, there exist x1, . . . , xn ∈ Rn such that A = (xi • xj).
(HINT: use

√
A.)

PROBLEM 8–5. Let A be a real symmetric positive definite n × n matrix. Suppose
A is represented as a Gram matrix in two different ways:

A = (xi • xj) = (yi • yj).

Prove that
xi = Byi, 1 ≤ i ≤ n,

where B is a matrix in O(n). Prove the converse as well.

As we noted earlier, the inequality Gram(x1, x2) ≥ 0 is exactly the Schwarz inequality.
We pause to demonstrate geometrical significance of the next case, Gram(x1, x2, x3) ≥ 0.
Expanding the determinant, this says that

‖x1‖2‖x2‖2‖x3‖2 + 2(x1 • x2)(x2 • x3)(x3 • x1)

− ‖x1‖2(x2 • x3)
2 − ‖x2‖2(x3 • x1)

2 − ‖x3‖2(x1 • x2)
2 ≥ 0.

Now consider points which lie on the unit sphere in RN . These are points with norm 1. For
any two such points x and y, we can think of the distance between them, measured not from
the viewpoint of the ambient RN , but rather from the viewpoint of the sphere itself. We shall
later discuss this situation. The idea is to try to find the curve of shortest length that starts
at x, ends at y, and that lies entirely in the sphere. We shall actually prove that this curve
is the great circle passing through x and y. Here’s a side view, where we have intersected RN

with the unique 2-dimensional plane containing 0, x and y (minor technicality: if y = ±x then
many planes will do):
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O

θ

x

y

The angle θ between x and y is itself the length of the great circle arc joining x and y. This
is of course calculated by the dot product: cos θ = x • y. As −1 ≤ x • y ≤ 1, we then define
the intrinsic distance from x to y by the formula

d(x, y) = arccos x • y.

(Remember that arccos has values only in the interval [0, π].) The following properties are
immediate:

0 ≤ d(x, y) ≤ π;

d(x, y) = 0 ⇐⇒ x = y;

d(x, y) = d(y, x).

It certainly seems reasonable that the triangle inequality for this distance is true, based
on the fact that the curve of shortest length joining two points on the sphere should be the
great circle arc and therefore should have length d(x, y). However, we want to show that the
desired inequality is intimately related to the theorem. The inequality states that

d(x, y) ≤ d(x, z) + d(z, y).

We now prove this inequality. It states that

arccos x • y ≤ arccos x • z + arccos z • y.

If the right side of this equation is greater than π, then we have nothing to prove. We may
thus assume it is between 0 and π. On this range cosine is a strictly decreasing function, so
we must prove

x • y ≥ cos(arccos x • z + arccos z • y).



Volumes of parallelograms 9

The addition formula for cosine enables a computation of the right side; notice that

sin(arccos x • z) =
√

1− (x • z)2.

Thus we must prove

x • y ≥ (x • z)(z • y)−
√

1− (x • z)2
√

1− (z • y)2.

That is,

√
1− (x • z)2

√
1− (z • y)2 ≥ (x • z)(z • y)− x • y.

If the right side is negative, we have nothing to prove. Thus it suffices to square both sides
and prove that

(1− (x • z)2)(1− (z • y)2) ≥ ((x • z)(z • y)− x • y)2 .

A little calculation shows this reduces to

1 + 2(x • z)(z • y)(x • y)− (x • z)2 − (z • y)2 − (x • y)2 ≥ 0.

Aha! This is exactly the inequality Gram(x, y, z) ≥ 0.

PROBLEM 8–6. In the above situation, show that equality holds in

dist(x, y) = dist(x, z) + dist(z, y)

if and only if z lies on the “short” great circle arc joining x and y.
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PROBLEM 8–7. (Euclid) Show that when three rays in R3 make a solid angle in
space, the sum of any two of the angles between them exceeds the third:

D

C

A γ

β

α

B

PROBLEM 8–8. Suppose m rays meet in convex fashion at a point p in R3. Show
that the angles at p sum to less than 2π.
(HINT: sum all the angles α, β, θ over all the triangles. Use the preceding problem.)

αβ

θ

p
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PROBLEM 8–9∗. Here is a familiar and wonderful theorem of plane Euclidean
geometry. Consider the angles shown in a circle

O

x

z

y

β

α

with center 0. Both angles subtend the
same arc of the circle. We say α is
a central angle, β an inscribed angle.
The theorem asserts that α = 2β.

Now label the three points on the
circle as shown and show that the equation
α = 2β is exactly the equation Gram(x, y, z) = 0.

C. Volumes in all dimensions
We are now ready to derive the general formula for volumes of parallelograms. We shall

proceed inductively, and shall take an intuitive viewpoint: the n-dimensional parallelogram P
with edges x1, . . . , xn has as its “base” the (n − 1)-dimensional parallelogram P ′ with edges
x1, . . . , xn−1. We then compute the altitude h as the distance to the base, and define

voln(P ) = voln−1(P
′)h.

“Side view”:

P

xn

O y

h

This “definition” is not really adequate, but the calculations are too interesting to miss.
Moreover, Fubini’s theorem in the next chapter provides the simple theoretical basis for the
validity of the current naive approach.

To complete this analysis we simply follow the outline given in Section A for the case
n = 2. That is, we want to investigate the “foot” y =

∑n−1
j=1 tjxj of the altitude. We have

(y − xn) • xi = 0 for 1 ≤ i ≤ n− 1.

These equations should determine the ti’s. Then the altitude can be computed by the equation

h2 = ‖xn − y‖2

= (xn − y) • (xn − y)

= (xn − y) • xn.
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We now display these n equations for our “unknowns” t1, . . . , tn−1, h2:





n−1∑
j=1

tjxi • xj + 0h2 = xi • xn, 1 ≤ i ≤ n− 1;

n−1∑
j=1

tjxn • xj + h2 = xn • xn.

Cramer’s rule should then produce the desired formula for h2:

h2 =

det




x1 • x1 . . . x1 • xn−1 x1 • xn

x2 • x1 . . . x2 • xn−1 x2 • xn
...

xn • x1 . . . xn • xn−1 xn • xn




det




x1 • x1 . . . x1 • xn−1 0
x2 • x1 . . . x2 • xn−1 0

...
xn • x1 . . . xn • xn−1 1




.

Aha! This is precisely

h2 =
Gram(x1, . . . , xn)

Gram(x1, . . . , xn−1)
.

Of course, this makes sense only if the determinant of the coefficients in the above linear
system is nonzero. That is, only if x1, . . . , xn−1 are linearly independent. Notice then that
h2 = 0 ⇐⇒ x1, . . . , xn are linearly dependent; that is, ⇐⇒ xn lies in the (n− 1)-dimensional
subspace containing the “base” of the parallelogram.

Thanks to this formula, we now see inductively that

voln(P ) =
√

Gram(x1, . . . , xn).

PROBLEM 8–10. In the special case of an n-dimensional parallelogram P with edges
x1, . . . , xn ∈ Rn, show that

voln(P ) = | det(x1 x2 . . . xn)|.

D. Generalization of the cross product



Volumes of parallelograms 13

This is a good place to give a brief discussion of “cross products” on Rn. We argue by
analogy from the case n = 3. Suppose then that x1, . . . , xn−1 are linearly independent vectors
in Rn. Then we want to find a vector z which is orthogonal to all of them. We definitely
anticipate that z will exist and will be uniquely determined up to a scalar factor.

The formula we came up with for the case n = 3 can be presented as a formal 3 × 3
determinant as

z = det




î

x1 x2 ĵ

k̂


 ,

where x1 and x2 are column vectors and we expand the “determinant” along the third column.
This is a slight rearrangement of the formula we derived in Section 7A.

We now take the straightforward generalization for any dimension n ≥ 2:

z = det




ê1

ê2

x1 x2 . . . xn−1
...
...
ên




.

This is a formal n× n determinant, in which the last column contains the unit coordinate
vectors in order. The other columns are of course the usual column vectors.

Notice the special case n = 2: we have just one vector, say

x =

(
a
b

)
,

and the corresponding vector z is given by

x2

x1

Jx

x

z = det

(
a ê1

b ê2

)

= aê2 − bê1

=

(−b
a

)
.

NOTATION. For n ≥ 3 we denote

z = x1 × x2 × · · ·× xn−1,
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and we call z the cross product of the vectors x1, . . . , xn−1. For n = 2 this terminology doesn’t
work, so we write

z = Jx,

where J can actually be regarded as the 2× 2 matrix

J =

(
0 −1
1 0

)
.

(Another way to think of this is to use complex notation x = a + ib, and then Jx = ix
(= −b+ ia).) If we depict R2 as in the above figure, then J is a 90◦ counterclockwise rotation.
(Thus J is in SO(2).)

We now list the properties of the cross product. We shall not explicitly state the corre-
sponding easy properties for the case n = 2.

PROPERTIES.

1. x1 × · · ·× xn−1 is a linear function of each factor.

2. Interchanging two factors in the cross product results in multiplying the product by −1.

3. The cross product is uniquely determined by the formula

(x1 × · · ·× xn−1) • y = det(x1 x2 · · · xn−1 y), all y ∈ Rn.

4. (x1 × · · ·× xn−1) • xi = 0.

5. ‖x1 × · · ·× xn−1‖2 = det (x1 . . . xn−1 x1 × · · ·× xn−1).

6. x1 × · · ·× xn−1 = 0 ⇐⇒ x1, . . . , xn−1 are linearly dependent.
(Proof: ⇐ follows from 5, as the right side of 5 is zero. To prove the converse, assume
x1, . . . , xn−1 are linearly independent. Choose any y ∈ Rn such that x1, . . . , xn−1, y are
linearly independent. Then 3 implies (x1×. . .×xn−1)•y 6= 0. Thus x1×. . .×xn−1 6= 0.)

7. ‖x1 × · · ·× xn−1‖ =
√

Gram(x1, . . . , xn−1).
(Proof: let z = x1 × · · ·× xn−1. Then 5 implies

‖z‖4 = (det(x1 . . . xn−1 z))2

= Gram(x1, . . . , xn−1, z).
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Now in the computation of this Gram determinant all the terms xi • z = 0. Thus

‖z‖4 = det




x1 • x1 . . . x1 • xn−1 0
...

xn−1 • x1 . . . xn−1 • xn−1 0
0 . . . 0 z • z




= ‖z‖2Gram(x1, . . . , xn−1).)

8. If x1, . . . , xn−1 are linearly independent, then the frame
{x1, . . . , xn−1, x1 × . . . × xn−1} has the standard orientation.
(Proof: the relevant determinant equals ‖x1 × . . . × xn−1‖2 > 0, by 5.)

This completes the geometric description of the cross product. Exactly as on p. 7–9, we
have the following

SUMMARY. The cross product x1×. . .×xn−1 of n−1 vectors in Rn is uniquely determined
by the geometric description:

(1) x1 × . . . × xn−1 is orthogonal to x1, . . . , xn−1,

(2) ‖x1 × . . . × xn−1‖ is the volume of the parallelogram with edges x1, . . . , xn−1,

(3) in case x1 × . . . × xn−1 6= 0, the frame {x1, . . . , xn−1, x1 × . . . × xn−1} has the standard
orientation.

PROBLEM 8–11. Conclude immediately that

ê1 × . . . × ên (with êi omitted) = (−1)n+iêi.

PROBLEM 8–12. Now prove that

(x1 × . . . × xn−1) • ê1 × . . . × ên (with êi omitted)

= det((x1 . . . xn−1) (with row i omitted)).
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PROBLEM 8–13. Now prove that

(x1 × . . . × xn−1) • (y1 × . . . × yn−1) = det(xi • yj).

(HINT: each side of this equation is multilinear and alternating in its dependence on the
yj’s. Therefore it suffices to check the result when the yj’s are themselves unit coordinate
vectors.)

The result of the last problem is a generalization of the seventh property above, and is also
a generalization of the Lagrange identity given in Problem 7–3.

PROBLEM 8–14. In the preceding problem we must be assuming n ≥ 3. State and
prove the correct statement corresponding to R2.


