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Chapter 12 Green’s theorem

We are now going to begin at last to connect differentiation and integration in multivariable
calculus. In addition to all our standard integration techniques, such as Fubini’s theorem and
the Jacobian formula for changing variables, we now add the fundamental theorem of calculus
to the scene. In fact, Green’s theorem may very well be regarded as a direct application of
this fundamental theorem.

A. The basic theorem of Green

Consider the following type of region R contained in R2, which we regard as the x−y plane.
We use the standard orientation, so that a 90◦ counterclockwise rotation moves the positive
x-axis to the positive y-axis. Then we assume the existence of two continuous functions a(y)
and b(y), defined for c ≤ y ≤ d, where a(y) < b(y) for c < y < d and

R = {(x, y) | a(y) ≤ x ≤ b(y)}.

x

y

d

c

Given a function R
F−→ R of class C1, we then compute by means of Fubini’s theorem

∫∫

R

∂F

∂x
dxdy =

∫ d

c

∫ b(y)

a(y)

∂F

∂x
dxdy

FTC
=

∫ d

c

F (x, y)

∣∣∣∣
x=b(y)

x=a(y)

dy

=

∫ d

c

F (b(y), y)dy −
∫ d

c

F (a(y), y)dy.

We now write the right side of this equation as∫

bdR

Fdy,
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where we mean by this notation the counterclockwise integration of F , restricted to bdR, with
respect to y. (The actual definition is given in the formula.)

x

y

Notice that on a horizontal portion of bdR, y is constant and we thus interpret dy = 0 there.

B. Line integrals

We have now met an entirely new kind of integral, the integral along the counterclockwise
bdR seen above. Before proceeding further, we need to discuss this sort of oriented integral.

It will prove useful to do this in more generality, so we consider a curve γ in Rn which is
of class C1. Thus, [a, b]

γ−→ Rn is of class C1. We typically denote the independent variable
(the “parameter”) as t. If f is a continuous real-valued-function defined on Rn, we then define
the line integral ∫

γ

fdxi =

∫ b

a

f(γ(t))γ′i(t)dt.

Here of course 1 ≤ i ≤ n. The notation is intended to be very suggestive and to lead us to
the appropriate substitutions x = γ(t), xi = γi(t), and dxi = γ′i(t)dt.

It is an easy matter to imagine some useful properties of this sort of integral, and even
easier to prove them.

INDEPENDENCE OF PARAMETER CHANGE

Suppose first that γ(t), a ≤ t ≤ b, is represented instead as γ(h(s)), c ≤ s ≤ d, where h is
a C1 function such that h(c) = a and h(d) = b. Then using the parametrization γ(h(s)) leads
to the line integral

∫ d

c

f(γ(h(s)))
d

ds
γi(h(s))ds =

∫ d

c

f(γ(h(s)))γ′i(h(s))h′(s)ds

t=h(s)
=

∫ b

a

f(γ(t))γ′i(t)dt,
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which is the original line integral.

s

t

b

a

c d

This proves the desired independence.
On the other hand, if instead h(c) = b and h(d) = a, then we obtain

∫ d

c

f(γ(h(s)))
d

ds
γi(h(s))ds = −

∫ b

a

f(γ(t))γ′i(t)dt,

so we get the anticipated change of sign.

s

t

b

a

c d

LINEARITY
This is virtually obvious from the definition:

∫

γ

afdxi = a

∫

γ

fdxi if a is a constant;

∫

γ

(f + g)dxi =

∫

γ

fdxi +

∫

γ

gdxi.

COMBINING CURVES
Suppose we are given curves γ and δ such that the final point of γ equals the initial point

of δ. Then we can think of a new curve that covers γ and then δ. This curve will be continuous
but not necessarily C1. We denote this curve loosely as γ + δ, and then the clear result is

∫

γ+δ

fdxi =

∫

γ

fdxi +

∫

δ

fdxi.

GENERALIZATION
If f1, . . . , fn are given functions, then we define

∫

γ

f1dx1 + · · ·+ fndxn =

∫

γ

f1dx1 + · · ·+
∫

γ

fndxn.
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Another way to think of this is to arrange the functions into a vector F = (f1, . . . , fn) and
formally write

~x = (x1, . . . , xn),

d~x = (dx1, . . . , dxn),

F • d~x = f1dx1 + · · ·+ fndxn.

Thus we have the abbreviation
∫

γ

F • d~x =

∫

γ

f1dx1 + · · ·+ fndxn.

FUNDAMENTAL THEOREM OF CALCULUS
Suppose that f is a real-valued function of class C1 and that

F = ∇f = (∂f/∂x1, . . . , ∂f/∂xn).

Then we calculate directly

∫

γ

∇f • d~x =

∫ b

a

∇f(γ(t)) • γ′(t)dt

chain rule
=

∫ b

a

d

dt
f(γ(t))dt

FTC
= f(γ(t))

∣∣∣∣
b

a

= f(γ(b))− f(γ(a)).

Thus we have proved
∫

γ

∇f • d~x = f(final point of γ)− f(initial point of γ).

We shall say much more about this equation in Section E.

C. A general Green’s theorem

We now return to the formula of Section A,
∫∫

R

∂F

∂x
dxdy =

∫

bdR

Fdy. (∗)
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The right side is now completely understood as a line integral taken along the curve bdR with
its counterclockwise orientation. We presently have severe restrictions on what the region R
can be, and we now show how we may easily remove many of these restrictions.

Rather than give precise definitions to delineate the allowable regions, we prefer to rely on
pictures. Suppose then we have a region in R2 that looks like this:

R

x

y

Such a region fails to satisfy the conditions of Section A. However, the desired equation (∗)
still holds for it. An easy way to see this is to divide R into two regions R1 and R2 by means
of a “cut,” in such a way that (∗) is valid for each piece separately.

x

y

R
1

R
2

We thus have
∫∫

R1

∂F

∂x
dxdy =

∫

bdR1

Fdy,

∫∫

R2

∂F

∂x
dxdy =

∫

bdR2

Fdy.

Now add these two equations. The left sides produce the double integral over R itself, and the
right sides combine in an interesting way. Namely, the part of each line integral corresponding
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to the cut appears in each, but with opposite orientations. Thus they cancel to produce just

∫

bdR

Fdy.

We therefore find that (∗) remains valid for this R.

Of course, this procedure may be extended to several cuts, so that (∗) remains valid for a
region such as

One more generalization allows holes to appear in R, as for example

R

We again make cuts to get a couple of regions

R
1 R

2
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Then we apply (∗) to R1 and R2 and add the results, noting the cancellation of the integrations
taken along the cuts. The result still is (∗), but with an interesting distinction: the line integral
along the inner portion of bdR actually goes in the clockwise direction.

A convenient way of expressing this result is to say that (∗) holds, where the orientation
of bdR is such that the interior of R is located to the left of the path of integration.

Finally, we close this section with the corresponding result

∫∫

R

∂F

∂y
dxdy = −

∫

bdR

Fdx. (∗∗)

The minus sign appears naturally, as we see from rewriting the basic case of Section A. Another
way to think about it is to realize that the coordinate system with y first, x second, has the
opposite orientation to the one we have been working with.

Most texts combine these two formulas into a single one by using different letters for the
two cases, and adding. Thus,

∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

bdR

Pdx + Qdy.

D. Areas by means of Green

An astonishing use of Green’s theorem is to calculate some rather interesting areas. These
come for example by using F = x in (∗) in Section C to obtain

area(R) =

∫

bdR

xdy.

Likewise, using F = y in (∗∗) produces

area(R) = −
∫

bdR

ydx.

The latter equation resembles the standard beginning calculus formula for area under a graph:

x

y

a b

y f x= ( )

R
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The integral ∫ b

a

f(x)dx

is exactly the line integral

−
∫

ydx

taken around bdR.

It is interesting that the sum of these two formulas is often more easily exploited. Or use
Q = x, P = −y in the formula at the end of Section C. The result is

area(R) =
1

2

∫

bdR

xdy − ydx.

This is often useful in situations where x and y appear rather symmetrically.

ELLIPSE. We of course know from several investigations that the area inside the ellipse
x2/a2 + y2/b2 = 1 is equal to πab. This example gives a nice illustration of our new formula.
Namely, parametrize the ellipse by x = a cos t, y = b sin t, where 0 ≤ t ≤ 2π. Then

xdy − ydx = a cos t · b cos tdt− b sin t · (−a sin tdt)

= ab(cos2 t + sin2 t)dt

= abdt.

Thus the area equals
1

2

∫ 2π

0

abdt = πab.

Don’t miss the fact that if we had just integrated xdy or −ydx to find this area, the final
integration would have been significantly more difficult.

FOLIUM OF DESCARTES. Here is a truly significant example, one for which our formula
provides what is perhaps the easiest method for calculating a certain area. We first discussed
this curve in Section 6E, where we used the implicit equation x3 + y3 = 3xy. In terms of the
ratio t = y/x, we have the parametric presentation

x

y

x =
3t

1 + t3
,

y =
3t2

1 + t3
.
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Now we find the area of the “leaf,” that region enclosed by the part of the curve in the first
quadrant. Here the parameter t runs between 0 and ∞. We calculate

xdy − ydx = xd(tx)− txdx

= x(tdx + xdt)− txdx

= x2dt

=
9t2dt

(1 + t3)2

= d

( −3

1 + t3

)
.

Thus

area =
1

2

∫ ∞

0

d

( −3

1 + t3

)

= −3

2

1

1 + t3

∣∣∣∣
∞

0

=
3

2
.

PROBLEM 12–1. Obtain the area of the leaf of Descartes by using just the formula

area(R) = −
∫

bdR

ydx.

PROBLEM 12–2. Show that the equations

area(R) = −
∫

bdR

ydx

=

∫

bdR

xdy

can be regarded as equivalent by means of an integration by parts.
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PROBLEM 12–3*. Find the area between the folium of Descartes and its asymptote
x + y = −1, as shown in the figure.

x

y

PROBLEM 12–4. Find the area enclosed by the curve

x4 + y4 = 4xy

in the first quadrant.

PROBLEM 12–5. Consider the curve defined by the equation x4 = xy2 + y3.

a. Use the parameter t defined by y = tx to express the curve in parametric form.
b. Show that this curve has a “leaf” in the fourth quadrant.
c. Calculate the area of the leaf. (ANSWER: 1/210).

E. Conservative vector fields

Now we return to our discussion of line integrals in general, as they were introduced in
Section B.

DEFINITION. Let D be an open subset of Rn. A vector field on D is a continuous function

D
F−→ Rn.

Thus F assigns to each point x ∈ D a point F (x) ∈ Rn. We always think of F (x) as a vector
attached to the point x. Thus we have a picture of the following sort:
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x1

x2

O

D

F x( )

F x( )

Using the components of F = (F1, F2, . . . , Fn), we have defined line integrals of the form

∫

γ

F1dx1 + · · ·+ Fndxn.

In Section B we introduced the notation
∫

γ

F • d~x

for these line integrals.
Now we state an important basic theorem about these vector fields.

THEOREM. Let D be an open subset of Rn, and let F be a vector field defined on D. Then
the following three conditions are equivalent.

1. The line integral
∫

γ
F •d~x is independent of path, in the sense that its value depends

only on the initial point of γ and the final point of γ.

2. The line integral
∫

γ
F • d~x = 0 for every loop in D (a loop is a curve γ whose initial

point equals its final point).

3. There exists a function D
f−→ R of class C1 such that

F = ∇f.
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PROOF. The proof that 1 ⇒ 2 is just based on the simple observation that a loop which
starts at x0 and ends at x0 and the constant path which just stays at x0 are two paths with the
same initial and final points. As the line integral over the constant path is zero, condition 1
implies that the line integral around the loop is zero as well.

The proof that 2 ⇒ 1 is based on another simple observation: if γ1 and γ2 are two paths
with the same initial and final points, then the path that goes along γ1 and then backwards
along γ2 is a loop. Thus condition 2 implies

∫

γ1

F • d~x +

∫

γ2reversed

F • d~x = 0.

This proves condition 1.
The proof that 3 ⇒ 1 is an immediate consequence of the last formula in Section B.
The really significant part of this theorem is the proof that 1 ⇒ 3.
Before we introduce the crucial construction of the function f we notice that we may as

well assume that our open set D is connected. In other words, that any two points in D can
be joined by some curve lying in D. For we may work on each connected component of D and
produce the required function f on each of them in turn.

In this context it is important to observe that any two points in the connected set D can
in fact be joined by a “nice” curve, say one of class C1 or one which is polygonal. For we need
to be able to do line integrals along such curves.

D

Now our definition of f is actually forced upon us. For given the vector field F , if there is
to be a function such that F = ∇f , then we know from Section B that

f(final point of γ)− f(initial point of γ) =

∫

γ

F • d~x.

Now choose an arbitrary but fixed point b ∈ D. It will serve as a “base point.” Then for any
x ∈ D we produce a curve γ in D whose initial point is b and whose final point is x. Then
our “potential” function f has to satisfy

f(x) = f(b) +

∫

γ

F • d~x.
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Since b is fixed, f(b) is a constant; we may as well call it 0, as adding a constant to f does

not disturb our desired equation ∇f = F . Thus we now define D
f−→ R by the equation

f(x) =

∫

γ

F • d~x,

where γ is any “nice” curve in D starting at b and ending at x.
We have now in fact used the hypothesis 1, since the value given for f(x) does not depend

on the choice of γ.
Finally we must verify that ∇f = F . We’ll present two proofs. These proofs are indeed

related, but they have distinct emphases.

FIRST PROOF. Consider any fixed point y ∈ D. Let γ0 be a “nice” curve in D starting
at b and ending at y. Also let B(y, r) be an open ball contained in D. For any unit vector
ĥ ∈ Rn and any 0 ≤ s < r we use the curve γ0 followed by the curve which is the line segment
from y to y + sĥ. Then

f(y + sĥ) =

∫

γ0

F • d~x +

∫

[y,y+sĥ]

F • d~x

= constant +

∫ s

0

F (y + tĥ) • ĥdt.

b

g
0

B y r( , )

y sh+

y

We immediately obtain from the FTC the formula for the directional derivative

d

ds
(f(y + sĥ)) = F (y + sĥ) • ĥ.

Set s = 0 to achieve
Df(y; ĥ) = F (y) • ĥ.

In particular, when ĥ = unit coordinate vector êi,

∂f

∂xi

(y) = Fi(y).

Thus the partial derivatives ∂f/∂xi are equal to Fi and are thus continuous; we conclude that
f is of class C1 and ∇f = F .
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SECOND PROOF. This time we go straight for the definition of differentiability as found
in Section 2E. We have of course a candidate for ∇f(y), namely F (y). So we are led to
consider the quantity

f(y + h)− f(y)− F (y) • h

for small h ∈ Rn. Then the definition of f gives

f(y + h)− f(y)− F (y) • h =

∫

[y,y+h]

F • d~x− F (y) • h

=

∫ 1

0

F (y + th) • hdt− F (y) • h

=

∫ 1

0

[F (y + th)− F (y)] • hdt.

Given ε > 0, the continuity of F at y implies that there exists δ > 0 such that for ‖z− y‖ < δ
we have ‖F (z)− F (y)‖ < ε. Thus we have for ‖h‖ < δ the inequalities

|f(y + h)− f(y)− F (y) • h| ≤
∫ 1

0

|[F (y + th)− F (y)] • h|dt

≤
Schwarz

∫ 1

0

‖F (y + th)− F (y)‖ ‖h‖dt

≤
∫ 1

0

ε‖h‖dt

= ε‖h‖.
This is precisely what we needed! We conclude that f is differentiable at y and that ∇f(y) =
F (y). QED

DEFINITION. A vector field which satisfies the above equivalent conditions is said to be
a conservative vector field. And any function f satisfying 3 is said to be a potential function
for F .

That theorem is really wonderful: clean statement, easy but significant proof. However,
it might be difficult to apply in practice. How would we ever verify the hypothesis 2, for
instance? We now turn to a discussion of this aspect of the subject. First, we notice the
following elementary

NECESSARY CONDITION. Suppose F = (F1, . . . , Fn) is a conservative vector field de-
fined on an open set D ⊂ Rn, and suppose F is of class C1. Then

∂Fi

∂xj

=
∂Fj

∂xi

for all i, j.
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PROOF. We use the third characterization that F = ∇f for some potential function f of
class C1. Since F is assumed to be of class C1, we conclude that f is of class C2. Therefore,
its mixed partial derivatives are equal, and we have immediately

∂Fi

∂xj

=
∂

∂xj

(
∂f

∂xi

)

=
∂

∂xi

(
∂f

∂xj

)

=
∂Fj

∂xi

.

QED

DEFINITION. Any vector field satisfying the condition we have just given is said to have
zero curl. Also it is said to be irrotational. These terms will be explained in Chapter 13. In
particular, we do not at the present time define the term “curl.”

This necessary condition is certainly simply to apply. For instance, on R3 the vector field

(y2z + yz2, 2xyz + xz2, xy2 + xyz)

is not conservative, since

∂

∂z
(2xyz + xz2) = 2xy + 2xz,

∂

∂y
(xy2 + xyz) = 2xy + xz

are not equal.
However, the necessary condition is not sufficient, even in case F is of class C1. Everyone’s

favorite counterexample is the following. Use the polar coordinate “function” θ on R2:

x = r cos θ,

y = r sin θ.

Of course, θ is undefined at the origin and is also determined only up to additive integer
multiples of 2π. But the gradient of θ is completely well defined on R2 − {0}. Using θ =
arctan(y/x) for example, we have

∇θ =

( −y

x2 + y2
,

x

x2 + y2

)
.
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And that gives us our counterexample. Namely, the vector field

F (x, y) =

( −y

x2 + y2
,

x

x2 + y2

)

is of class C∞ on R2 − {0}, and

∂F1

∂y
=

∂F2

∂x
,

but F is not conservative. For instance F fails to satisfy the criterion 2, as we can detect if
we integrate around any circle centered at 0: x = a cos t, y = a sin t for 0 ≤ t ≤ 2π gives

∫

circle

F • d~x =

∫ 2π

0

(
−sin t

a
,
cos t

a

)
• (−a sin t, a cos t)dt

=

∫ 2π

0

(sin2 t + cos2 t)dt

= 2π.

(Of course, we might formally write this computation as

∫

circle

F • d~x =

∫

circle

∇θ • d~x

= θ

∣∣∣∣
final point

initial point

= 2π.)

We shall call this nonconservative vector field ∇θ; the vector field is well defined through the
“potential function θ” is not.

PROBLEM 12–6. Do the differentiations to check that for the vector field ∇θ we
have

∂F1

∂y
=

∂F2

∂x
.

And then explain why it is completely unnecessary to do so, that the equation actually
holds “automatically.”
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PROBLEM 12–7. Let γ be a closed curve in R2 which loops around the origin exactly
once in the counterclockwise direction:
Show that

x

y

∫

γ

−ydx + xdy

x2 + y2
= 2π.

PROBLEM 12–8. Determine all possible values of the line integral

∫

γ

−ydx + xdy

x2 + y2

for curves γ which start at (−3, 0) and end at (1,−1) and do not pass through the origin.

PROBLEM 12–9. Show that the vector field on R2 − {0} given by

F (x, y) =

(
y3

r4
,
−xy2

r4

)
,

where of course r2 = x2 + y2, has zero curl.

PROBLEM 12–10. Show that the vector field of the preceding problem can be
expressed in the form

F =
1

2
∇

(xy

r2
− θ

)
.



18 Chapter 12

PROBLEM 12–11. Calculate the line integral

∫

γ

y3dx− xy2dy

(x2 + y2)2
,

where γ is the counterclockwise ellipse x2

a2 + y2

b2
= 1.

F. Sufficiency

We now want to consider a C1 vector field on an open subset D of Rn and investigate
whether it is conservative. Of course, we necessarily assume it has zero curl. We then turn to
the question of deciding whether it is conservative. We’ll give two types of answers.
CASE 1. n = 2, and D is simply connected.

The hypothesis indicates that D has no “holes.”

simply connected

not simply connected

Then it follows that zero curl =⇒ conservative. We can see this from Green’s theorem. We
verify criterion 2 of Section E. Consider a loop in D, and assume it is of a simple enough
nature that it can be realized as the boundary of a nice region R:

D

R

bd R

Then Green =⇒
∫

bdR

F • d~x =

∫

bdR

(F1dx + F2dy)

=

∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dxdy

=

∫∫

R

0dxdy

= 0.
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This proves that criterion 2 holds for F , at least for a pretty broad variety of loops. But
certainly enough loops to ensure that the proof of 2=⇒1=⇒3 holds.

CASE 2. Any n, and D is all of Rn or is a rectangle or . . . .
We can go directly to determining a potential function by the simple device of integration.

Before giving the proof, here is an example of the procedure. Let us take n = 3 and

F = (2xy − 3yz, x2 − 3xz, 6z2 − 3xy).

Without checking its curl let us just see whether there may be a potential function f(x, y, z).
This would have to satisfy 




fx = 2xy − 3yz,

fy = x2 − 3xz

fz = 6z2 − 3xy.

Naively integrate the first equation:

f = x2y − 3xyz + g(y, z),

where g is a “constant” of integration. Plug this into the second equation to get

x2 − 3xz + gy = x2 − 3xz.

Thus
gy = 0.

Naively integrate this last equation to get

g = h(z),

where h is the ‘constant” of integration. Thus we now have

f = x2y − 3xyz + h(z).

Plug this into the third equation to get

−3xy + h′(z) = 6z2 − 3xy.

Thus
h′(z) = 6z2.

Integrate to get
h(z) = 2z3 + const.
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Thus we have succeeded in finding

f = x2y − 3xyz + 2z3.

MORAL. This naive procedure always works in case D is a rectangle or all of Rn. If F is
conservative, it produces a potential function. If F is not conservative, somewhere along the
way an impasse will be reached and we’ll learn that F is not conservative.

Moreover, the general case works in exactly the same way as the example! We can proceed
by induction on n.

As an example, let us use the procedure to test whether the vector field

F = (2xy − 3yz, x2 + 3xz, 6z2 − 3xy)

is conservative. We suppose it is, so F = ∇f . Then the equation for ∂f/∂x gives as before

f = x2y − 3xyz + g(y, z).

Then the equation for ∂f/∂y gives

x2 − 3xz +
∂g

∂y
= x2 + 3xz,

so that
∂g

∂y
= −6xz.

This equation is impossible, as g = g(y, z) is independent of x, but the right side −6xz is
dependent on x. Thus F is not conservative.

Here is a description of the inductive procedure. We suppose F = (F1, . . . , Fn) is a C1

vector field defined on Rn, and we suppose F satisfies the “zero curl condition.” That is,

∂Fi

∂xj

=
∂Fj

∂xi

for 1 ≤ i, j ≤ n.

Assume that we have verified the validity of our procedure for dimension n−1. We then apply
it to the vector field (F1, . . . , Fn−1) on Rn−1, where xn is just regarded as a parameter. The
integration procedure therefore produces a function f0(x1, . . . , xn−1, xn) which satisfies

∂f0

∂xi

= Fi for 1 ≤ i ≤ n− 1.
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We anticipate that one more integration will give the desired potential function f . So we hope
that

f(x) = f0(x) + g(xn)

will do. The required equation is ∂f/∂xn = Fn, or in other words

g′(xn) = Fn − ∂f0

∂xn

.

We need to know that the right side of this equation is independent of x1, . . . , xn−1. So we
check its partial derivative with respect to xi for i < n:

∂(Fn − ∂f0

∂xn
)

∂xi

=
∂Fn

∂xi

− ∂2f0

∂xi∂xn

=
∂Fn

∂xi

− ∂2f0

∂xn∂xi

=
∂Fn

∂xi

− ∂Fi

∂xn

by the inductive assumption. Now the right side is indeed 0, thanks to the curl assumption.
So one final integration gives us g(xn), and, thus, f(x).

G. A slick proof of sufficiency

We suppose that F is a C1 vector field on Rn, defined on an open set B ⊂ Rn which is
star shaped with respect to one of its points x0. This means that for every x ∈ B, the line
segment from x0 to x is contained in B.

star shaped convex not star shaped

x
0

x
0

x
0

Any convex open set is star shaped with respect to any of its points.

In what follows we assume (WLOG) that x0 = 0.

If F is conservative with potential f , then from the equation ∇f = F we can derive a
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formula for f . Namely, the FTC gives

f(x) = f(0) +

∫ 1

0

∂

∂t
f(tx)dt

= f(0) +

∫ 1

0

(∇f)(tx) • xdt

= f(0) +

∫ 1

0

F (tx) • xdt.

Now turn this around. Suppose F satisfies the zero curl condition and define

f(x) =

∫ 1

0

F (tx) • xdt.

Notice that f is well defined on B, whether or not F satisfies the extra condition; but the
condition is exactly what gives us ∇f = F . We check this by performing a differentiation of
f “under the integral sign” as follows:

∂f

∂xi

=
∂

∂xi

(∫ 1

0

F (tx) • xdt

)

=

∫ 1

0

∂

∂xi

(F (tx) • x)dt

=

∫ 1

0

[
∂

∂xi

(F (tx)) • x + F (tx) • êi

]
dt,

the last equality coming from the product rule. Now the chain rule gives

∂

∂xi

(F (tx)) • x =

(
∂F

∂xi

)
(tx)t • x

= t

n∑
j=1

∂Fj

∂xi

(tx)xj

= t

n∑
j=1

∂Fi

∂xj

(tx)xj,

the last equality coming from the curl condition. The chain rule now gives

∂

∂xi

(F (tx)) • x = t
∂

∂t
(Fi(tx)),
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so the formula for ∂f
∂xi

becomes

∂f

∂xi

=

∫ 1

0

[
t
∂

∂t
(Fi(tx)) + Fi(tx)

]
dt

=

∫ 1

0

∂

∂t
[tFi(tx)] dt

= tFi(tx)

∣∣∣∣
t=1

t=0

= Fi(x).

Thus ∇f = F .


