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Chapter 11 Integration on manifolds

We are now almost ready for our concluding chapter on the great theorems of classical
vector calculus, the theorems of Green and Gauss and Stokes.

The final thing we need to understand is the correct procedure for integrating over a
manifold. Of course, manifolds are typically curved objects, so there are significant issues
here that we did not have to face in dealing with integration over (flat) Euclidean space. Even
though we have been able to use integration to compute such things as the volume of a ball
in Rn, yet the integration involved is essentially flat. This is reflected in a formula such as

dvoln = dx1 dx2 . . . dxn.

As a specific example, we have for the ball B(0, r) in R3,

vol3(B(0, r)) =
4

3
πr3,

but we have not yet even defined what we should mean by the area of the sphere,

vol2(S(0, r)).

It will in fact turn out that there is a very reasonable way to accomplish this task, and it will
be based on our knowledge of flat integration.

We choose to employ the parametric presentation of manifolds as discussed thoroughly
in Section 6E. It is in this context that we shall see how to define volume and integration.
Though our definition is to be based on a particular choice of parameters, we shall be able to
prove that the integration we define is actually invariant under a change of parameters and is
thus intrinsic to the manifold.

We denote by M an m-dimensional manifold contained in Rn. In what follows we shall
first investigate how to define the m-dimensional volume of subsets of M , and after that we
shall easily define integrals of real-valued functions defined on M .

We begin with sort of a warm up case, that of one-dimensional manifolds in Rn.

A. The one-dimensional case
We assume in this section that m = 1, so we are dealing essentially with a curve M ⊂ Rn.

We effectively already know exactly how to deal with this case, thanks to Section 2B.
If M is represented parametrically as the image of a one-to-one function of class C1,

(a, b)
F−→ M,
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then the length of M is given as

vol1(M) =

∫ b

a

‖F ′(t)‖dt.

Of course, M ⊂ Rn and F ′(t) ∈ Rn and ‖F ′(t)‖ is the norm of the vector F ′(t).

We really need to say no more about this definition except to remark that if we imagine the
interval (a, b) to be partitioned into small pieces (α, β), then F sends (α, β) to an approximate
interval in Rn whose length should be approximately ‖F ′(α)‖(β−α). Thus ‖F ′(α)‖ represents
a scale factor relating the parameter length β−α to a length in Rn. A useful way to represent
this definition is

dvol1 = ‖F ′(t)‖dt.

As we discussed in Section 2B, the definition of vol1(M) is independent of the choice of
parametric representation of M .

PROBLEM 11–1. Suppose M ⊂ R2 is a curve described in polar coordinates by an
equation r = g(θ), where a ≤ θ ≤ b. Show that the length of M is

∫ b

a

√
g′(θ)2 + g(θ)2dθ.

(This formula is usually written as

∫ b

a

√(
dr

dθ

)2

+ r2 dθ

or even as ∫ b

a

√
(dr)2 + r2(dθ)2.

)
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PROBLEM 11–2. A certain curve in R2 is described in polar coordinates by the
equation

r =
√

cos 2θ.

This “figure eight” curve is called a lemniscate. (See Problem 2–6.) Show that its length
is equal to

√
π

Γ
(

1
4

)

Γ
(

3
4

) =
Γ2

(
1
4

)
√

2π
.

PROBLEM 11–3. Show that

∫ π/2

0

dθ√
1 + sin2 θ

=

√
π

4

Γ
(

1
4

)

Γ
(

3
4

) .

(HINT: substitute x = sin θ and then x = t1/4.)

PROBLEM 11–4. Show that

∫ π/2

0

sin2 θ√
1 + sin2 θ

dθ =
√

π
Γ

(
3
4

)

Γ
(

1
4

) .

PROBLEM 11–5. Combine the preceding two problems to show that

∫ π/2

0

√
1 + sin2 θdθ =

√
π

4

Γ
(

1
4

)

Γ
(

3
4

) +
√

π
Γ

(
3
4

)

Γ
(

1
4

) .

PROBLEM 11–6. The two cylinders x2 + z2 = 1 and x2 +y2 = 1 intersect in a certain
curve. Find its length.

(Answer: 8 times the answer to the preceding problem.)

Finally, we easily extend the definition of the length of M to the more general definition
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of integration of a function over M . Suppose then that M
f−→ R. Then we write

∫

M

fdvol1 =

∫ b

a

f(F (t))‖F ′(t)‖dt.

In this particular case this is often called an arc-length integral, and is written
∫

M

fds or

∫

M

fd`.

A frequent application of these integrals is the calculation of the average value of f over
M , defined to be

f̄ =
1

vol1(M)

∫

M

fdvol1.

Notice the easy facts

f + g = f̄ + ḡ,

cf = cf̄ if c is a constant,

1̄ = 1.

DEFINITION. The centroid of the curve M is the point x̄ ∈ Rn whose coordinates are
given by

xi = average of xi over M

=
1

vol1(M)

∫

M

xidvol1.

In other words, x̄ is the average position in Rn of points in M . Note that it is not to be
expected that x̄ necessarily belongs to M .

PROBLEM 11–7. Calculate the centroid of a semicircle.

PROBLEM 11–8. Calculate the centroid of the “right-half” of the lemniscate of
Problem 11–2.

(Answer: x̄=4
√

π/Γ2(1/4), ȳ=0.)

B. The general case
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Amazingly, what we have accomplished in the one-dimensional case generalizes almost
immediately to m dimensions. We thus suppose M ⊂ Rn is an m-dimensional manifold. We
also suppose that M is given by a parametric presentation of class C1,

A
F−→ Rn, F (A) = M,

where A is a contented subset of Rm. For short we may write x = F (t), so that the coordinates
of x are given real-valued functions of t = (t1, . . . , tm). In our discussion we must have
1 ≤ m ≤ n; the case m = n is tantamount to a discussion of integration over Rn itself.

In every situation our goal is the following: to use the calculus associated with F to find
a scale factor J (t) which converts the m-dimensional “infinitesimal” volume dt = dt1 · · · dtm
of the parameter space to the corresponding m-dimensional volume of M . We shall write this
correspondence in the form

dvolm = J (t)dt.

We have chosen the notation J (t) to remind ourselves that this scale factor is like a Jacobian
determinant. In this and other formulas of a similar nature we shall be very insistent upon
gaining an understanding of the Jacobian J (t).

As in the one-dimensional case, what we really need to do is see how F transforms small
rectangles in A and in particular what scale factor to multiply by to compute the approximate
m-dimensional volume of the image of the rectangle. As usual, let ê1, . . . , êm denote the unit
coordinate vectors in Rm. Then consider a special rectangle

[t1, t1 + ε1]× · · · × [tm, tm + εm],

where t is a vertex and the edge lengths are ε1, . . . , εm. We think of the εi’s as small positive
numbers.

The corresponding image of this rectangle with respect to F is approximately an m-
dimensional parallelogram with one vertex F (t) and edges given by

ε1
∂F

∂t1
(t), . . . , εm

∂F

∂tm
(t):
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Of course this flat parallelogram does not lie in the manifold M . However, it is tangent to M
at the point F (t).

We know how to compute the m-dimensional volume of this parallelogram: from Section 8C
it is

√
Gram(ε1∂F/∂t1, . . . , εm∂F/∂tm) = ε1 . . . εm

√
Gram(∂F/∂t1, . . . , ∂F/∂tm).

Since the factor ε1 . . . εm is the volume of the rectangle in the parameter space, we see imme-
diately that the scale factor for computing the volume of M is precisely

√
Gram(∂F/∂t1, . . . , ∂F/∂tm).

Since we think of εi as dti in some sense, and thus ε1 · · · εm is like dt1 · · · dtm = dt, we are thus
led to the

DEFINITION. Given the C1 parametric presentation of the m-dimensional manifold M ⊂
Rn

A
F−→ M,

where A is a contented subset of Rm,

volm(M) =

∫

A

√
Gram(∂F/∂t1, . . . , ∂F/∂tm)dt1 . . . dtm.

More generally, if f is a real-valued function defined on M , its integral over M is given by
∫

M

fdvolm =

∫

A

f(F (t))
√

Gram(∂F/∂t1, . . . , ∂F/∂tm)dt.
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We summarize both these equations by simply writing

dvolm =
√

Gram(∂F/∂t1, . . . , ∂F/∂tm) dt.

This equation gives the scale factor J (t) explicitly in this general setting.
There is a nice alternate description of the scale factor described above. Namely, use the

Jacobian matrix

DF =




∂F1

∂t1
. . . ∂F1

∂tm
...

...
∂Fn

∂t1
. . . ∂Fn

∂tm




(see Section 2H). This Jacobian matrix is an n×m matrix, and the matrix product

(DF )tDF

is precisely the m ×m Gram matrix (∂F/∂ti • ∂F/∂tj). Thus the scale factor in the above
definition can also be written in the form

J (t) =
√

det(DF )tDF.

EXAMPLES. For the case of curves, m = 1, this is the same definition we used before, as
Gram(∂F/∂t) = Gram(F ′(t)) = F ′(t) • F ′(t), so the scale factor is ‖F ′(t)‖.

For the case of 2-dimensional manifolds, we have

vol2(M) =

∫

A

√
‖∂F/∂t1‖2‖∂F/∂t2‖2 − (∂F/∂t1 • ∂F/∂t2)2dt.

Let us examine the sphere S(0, a) of radius a in R3. Let us use spherical coordinates in the
usual way, so that

F (ϕ, θ) = (a sin ϕ cos θ, a sin ϕ sin θ, a cos ϕ).

Then

∂F/∂ϕ = a(cos ϕ cos θ, cos ϕ sin θ, − sin ϕ),

∂F/∂θ = a sin ϕ(− sin θ, cos θ, 0).

The scale factor is therefore

√
a2(a sin ϕ)2 − 0 = a2 sin ϕ.
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Thus for this sphere we have

dvol2 = a2 sin ϕdϕdθ.

In particular, the area of the sphere is

vol2(S(0, a)) =

∫ 2π

0

∫ π

0

a2 sin ϕdϕdθ

= 4πa2,

a familiar result to be sure.

The example of a right circular cylinder in R3 is even easier, but it is so important we
should pause to consider it. Let us use the cylinder of radius a with axis given as the z-axis:

x2 + y2 = a2.

It is convenient to use cylindrical coordinates (no surprise!), which we call θ, t:





x = a cos θ,

y = a sin θ,

z = t.

We thus have

F (θ, t) = (a cos θ, a sin θ, t);

∂F

∂θ
= a(− sin θ, cos θ, 0);

∂F

∂t
= (0, 0, 1);

J (θ, t) = a;

dvol2 = adθdt.
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PROBLEM 11–9. Consider the right circular cone as in Problem 6–29:

z = cot α
√

x2 + y2.

z

In terms of cylindrical coordinates θ, z show that for this manifold

dvol2 = z tan α sec αdθdz.

Then show that the area of a right circular cone whose base has circumference c and
whose slant height is ` equals 1

2
c`.

Just as we have done in the one-dimensional case of the preceding section, we need to check
that our definition is independent of the choice of parametrization of M . In other words, we
must verify that if we change parameters we do not change the value of the integral. To be
sure, our geometric intuition tells us that all is well, but we should do the work to certify the
formulas.

Thus we suppose that M is parametrized in two manners:
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There is a parameter change involved here, namely

h(s) = F−1(G(s)).

That is, h = F−1 ◦G; we may represent

t = h(s),

and h is a C1 function from B onto A and has a C1 inverse.

THEOREM. In the above situation the integral
∫

M

fdvolm

has the same value whether computed using F or G.

PROOF. By now we realize that this proof will probably amount to no more than an
automatic calculation. And so it does. The scale factor in using G is the square root of

det(DG)tDG = det D(F ◦ h)tD(F ◦ h)

= det (((DF ) ◦ h)Dh)t ((DF ) ◦ h)Dh (chain rule)

= det(Dh)t ((DF ) ◦ h)t ((DF ) ◦ h)Dh

= det(Dh)t det[((DF ) ◦ h)t ((DF ) ◦ h)] det Dh

= (det(Dh))2[det(DF )tDF ] ◦ h.



Integration on manifolds 11

Thus we obtain

∫

B

f(G(s))
√

det(DG(s))tDG(s)ds

=

∫

B

f(F (h(s)))| det Dh(s)|
√

det(DF )tDF (h(s))ds

=

∫

A

f(F (t))
√

det DF (t)tDF (t)dt.

This is the desired equation. Notice that the last step used the change of variables formula
for integrals over Rm, t = h(s) and dt = | det h′(s)|ds, which we introduced in Section 10G.

QED

In summary, it should be stressed that the thing which shows that our definition of inte-
gration over manifolds makes sense is precisely the change of variables formula of Section 10G.

PROBLEM 11-10. The flat torus in R4 is a nice example of a two-dimensional
manifold. See Example 3 of Section 5G for the definition. Calculate its two-dimensional
volume (its area).

C. Hypermanifolds

We now examine the important special case of a manifold M ⊂ Rn of dimension n−1. The
scale factor for volume calculations has a particularly nice form. We first give a calculation:

LEMMA. det(δij + aiaj) = 1 +
∑
j

a2
j .

PROOF. This is a special case of Problem 3–41; nevertheless we provide a proof here.
Suppose we are dealing with an n× n matrix. Then its jth column is êj + aja, where a is the
column vector with coordinates a1, . . . , an. The linearity property of det (Section 3F), implies
that the determinant we want,

det (ê1 + a1a ê2 + a2a · · · ên + ana) ,

is equal to the sum of 2n terms, each term being the determinant of a matrix with either
êj or aja in the jth column. If a scalar multiple of a appears in at least two columns, the
corresponding determinant is zero. Thus only n of the terms of this sum survive, and we
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obtain for the above determinant

det I +
n∑

j=1

det (ê1 · · · aja · · · ên)

= 1 +
n∑

j=1

aj det (ê1 · · · a · · · ên)

= 1 +
n∑

j=1

aj det (ê1 · · · aj êj · · · ên)

= 1 +
n∑

j=1

a2
j .

QED

PROBLEM 11–11. For the vectors êj + aj ên, 1 ≤ j ≤ n− 1, show that

Gram(ê1 + a1ên, . . . , ên−1 + an−1ên) = 1 +
n−1∑
j=1

a2
j .

Now suppose that the hypermanifold M ⊂ Rn is presented as the graph of a function

A
ϕ−→ R, where A ⊂ Rn−1. Then we obtain an explicit parametrization of M with A

F−→ Rn,
where

F (x1, . . . , xn−1) = (x1, . . . , xn−1, ϕ(x1, . . . , xn−1)).

Therefore
∂F

∂xj

= êj +
∂ϕ

∂xj

ên, 1 ≤ j ≤ n− 1.

Problem 11–11 immediately gives

Gram(∂F/∂x1, . . . , ∂F/∂xn−1) = 1 +
n−1∑
j=1

(∂ϕ/∂xj)
2.

Thus we can compute volume integrals over M in terms of the coordinates x1, . . . , xn−1, by

dvoln−1 =

√√√√1 +
n−1∑
j=1

(∂ϕ/∂xj)2 dx1 . . . dxn−1.
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PROBLEM 11–12. Compute the area of the portion of the surface z = xy contained
inside the cylinder x2 + y2 ≤ 3.

(Answer: 14π/3.)

PROBLEM 11–13. Compute the area of the portion of the paraboloid 2z = x2 + y2

contained inside the cylinder x2 + y2 ≤ 3.

We can now immediately generalize this result to hypermanifolds presented implicity.

THEOREM. Suppose M ⊂ Rn is a hypermanifold presented as the level set

g(x) = 0,

where g is a function on Rn of class C1 satisfying ∇g 6= 0 on M . Suppose for instance that
∂g/∂xn 6= 0. Then integration over M can be calculated by means of the formula

dvoln−1 =
‖∇g‖
|∂g/∂xn|dx1 . . . dxn−1.

PROOF. The implicit function theorem guarantees the local existence of a function Rn−1 ϕ−→
R such that

g(x) = 0 ⇐⇒ xn = ϕ(x1, . . . , xn−1).

Furthermore, differentiating the equation

g(x1, . . . , xn−1, ϕ(x1, . . . , xn−1)) = 1

gives the formula

∂ϕ/∂xj = −∂g/∂xj

∂g/∂xn

.

Thus the scale factor found above in terms of ϕ can be manipulated to give

√√√√1 +
n−1∑
j=1

(∂ϕ/∂xj)2 =

√√√√1 +
n−1∑
j=1

(∂g/∂xj)2/(∂g/∂xn)2

=
1

|∂g/∂xn|

√√√√(∂g/∂xn)2 +
n−1∑
j=1

(∂g/∂xj)2.
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QED

EXAMPLE. Let the manifold be the sphere S(0, a) ⊂ Rn. This is an (n − 1)-dimensional
manifold and is described implicitly by the equation

‖x‖2 − a2 = 0.

For the function we have
∇g = 2x, ∂g/∂xn = 2xn.

In order to cope with ∂g/∂xn 6= 0 we shall find the volume of the upper hemisphere xn > 0
and then double the answer. Thus

voln−1(S(0, a)) = 2 ·
∫ ‖2x‖

2xn

dx1 . . . dxn−1

= 2

∫
a

xn

dx1 . . . dxn−1

= 2

∫
a√

a2 − x2
1 − · · · − x2

n−1

dx1 . . . dxn−1,

where the integration region is the ball x2
1 + · · ·+ x2

n−1 < a2 in Rn−1. From Problem 10–49 we
therefore obtain

voln−1(S(0, a)) = 2(n− 1)αn−1

∫ a

0

a√
a2 − r2

rn−2dr.

Substitute r = a
√

t to obtain

voln−1(S(0, a)) = (n− 1)αn−1

∫ 1

0

1√
1− t

an−2t
n−2

2 at−
1
2 dt

= (n− 1)αn−1a
n−1

∫ 1

0

1√
1− t

t
n−3

2 dt

= (n− 1)αn−1a
n−1B

(
n− 1

2
,
1

2

)

= (n− 1)
π(n−1)/2

Γ
(

n+1
2

) an−1 Γ
(

n−1
2

)√
π

Γ
(

n
2

)

=
2πn/2

Γ
(

n
2

) an−1.
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We record this result for later reference:

voln−1(S(0, 1)) =
2πn/2

Γ (n/2)
= nαn.

For instance,

vol2(S(0, 1)) = 4π,

vol3(S(0, 1)) = 2π2,

vol4(S(0, 1)) =
8π2

3
.

EXAMPLE. Here we simply reconsider the sphere S(0, a) in R3. In Section B we calculated
the area formula

dvol2 = a2 sin ϕdϕdθ

in terms of the usual spherical coordinates. It is quite interesting to think of this result also
in terms of cylindrical coordinates for the sphere: x2 + y2 = a2 − z2, so that





x =
√

a2 − z2 cos θ,

y =
√

a2 − z2 sin θ,

z = z.

Of course we assume here that −a < z < a. Then we can calculate J (z, θ) from scratch, or
we can instead observe that in terms of the angle ϕ we have z = a cos ϕ; thus dz = a sin ϕdϕ
(we’ve included the absolute value). The result is that

dvol2 = adzdθ.

This is a truly fascinating result. The expression for this area is exactly that of the circum-
scribed cylinder

x2 + y2 = a2!

An interesting application of this result has to do with constructing maps of the sphere
onto planes. If we project the sphere onto the cylinder by moving in horizontal straight lines
from the z-axis, then area is preserved ! The precise formula for this map is

F (x, y, z) =

(
ax√

a2 − z2
,

ay√
a2 − z2

, z

)
.



16 Chapter 11

Its inverse is

F−1(x, y, z) =
(√

a2 − z2
x

a
,
√

a2 − z2
y

a
, z

)
.

this is an amoeba on the sphere

this is its projection onto a cylinder

Then the map onto a plane is obtained by cutting the cylinder along a generator and unrolling
it.

An interesting and curious consequence comes from the above observation. Namely, a zone
on the sphere is defined as a set of the form

{(x, y, z) | x2 + y2 + z2 = a2, z1 ≤ z ≤ z2}.

Here −a ≤ z1 < z2 ≤ a. The area of this zone is precisely 2πa(z2 − z1), as that is the
corresponding area of the circumscribed cylinder. Thus the area of a zone depends only on
its “height” z2 − z1, and not on its location.

EQUAL
   AREAS
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PROBLEM 11–14. Let H be the unit hemisphere in R3 described as x2 + y2 + z2 = 1,
0 ≤ z ≤ 1. Let C be the boundary equator x2 + y2 = 1, z = 0. Let 0 ≤ α ≤ π

2
and let M

be the portion of H which lies over the triangle shown in the figure. That is, in standard
spherical coordinates M is described by





0 ≤ ϕ ≤ π
2
,

−α ≤ θ ≤ α,

sin ϕ cos θ ≤ cos α.

Show that the area of M equals

α

y

x

C
vol2(M) = 2α + π cos α− π.

(HINT: do no integration.)

PROBLEM 11–15. (This problem is based on Problem B3 from the William Lowell
Putnam Mathematical Competition for 1998.) Continue with the hemisphere H of the
preceding problem. Let P be a regular n-gon inscribed in the equator C. Determine the
surface area of that portion of H lying over the planar region inside P .

(Answer: 2π−nπ+nπ cos π/n)

PROBLEM 11–16. Find the area of the portion of the surface of the cylinder x2+y2 =
1 in R3 which is contained inside the cylinder x2 + z2 ≤ 1.

(Answer: 8)

PROBLEM 11–17. Find the area of the portion of the surface of the cylinder x2+y2 =
1 in R3 which is contained in the intersection of the two cylinders x2 +z2 ≤ 1, y2 +z2 ≤ 1.

(Answer: 16−8
√

2)
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PROBLEM 11–18∗. A surface M ⊂ R3 is described implicitly by the equation

(x2 + y2 + z2)2 = x2 − y2.

Prove that this is actually a two-dimensional manifold at each point except the origin.
Compute its area.

(Answer: π2/2)

PROBLEM 11–19. Consider these two surfaces in R3: the unit sphere x2 +y2 +z2 = 1
and the right circular cylinder x2 + y2 = y.

a. Find the area of the portion of the unit sphere that is inside the cylinder.

b. Find the area of the portion of the cylinder that is inside the sphere.

PROBLEM 11–20. Let M be the “elliptical cone” in R3 defined by the equation

z2

c2
=

x2

a2
+

y2

b2

and the inequality 0 ≤ z ≤ h. Show that the centroid of M is (0, 0, 2h/3). (You will not
be able to calculate the area of M .)

D. The Cauchy-Binet determinant theorem
This section is not very important for our development of integration, but is so fascinating

that it should be included.
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We start with an interpretation of the formula from Section 7B: for any two vectors a,
b ∈ Rn

Gram(a, b) =
∑
i<j

(aibj − ajbi)
2.

We know of course that the left side equals the square of the area of the parallelogram P with
vertices 0, a, b, and a + b (Section 8C). Now consider the orthogonal projection of P onto the
coordinate space R2, namely the xi − xj plane. This projection P (i, j) is the parallelogram
with vertices

(0, 0), (ai, aj), (bi, bj), and (ai + bi, aj + bj).

xi

x j

(bi, bj)

(ai, aj)

The square of its area is of course the corresponding Gram determinant,

det

(
a2

i + a2
j aibi + ajbj

aibi + ajbj b2
i + b2

j

)
= (aibj − ajbi)

2 .

Thus we have the interesting fact that the square of the area of P is equal to the sum of
the squares of the areas of all the projections P (i, j), for 1 ≤ i ≤ j ≤ n. This is sort of a
Pythagorean theorem for two-dimensional parallelograms in Rn.

The above result is a special case of the theorem of this section. Before discussing it let us
see what our special case implies about the change of variables formula for two-dimensional
manifolds. We use the parametric presentation of M ⊂ Rn, but instead of naming the presen-
tation function we simply denote its components as x1, . . . , xn regarded as functions of t1, t2.
Then we have from the above equation

(J (t1, t2))
2 =

∑
i<j

(
det

(
∂xi/∂t1 ∂xi/∂t2
∂xj/∂t1 ∂xj/∂t2

))2

.

In terms of the notation mentioned in Section 10I, this says

(J (t1, t2))
2 =

∑
i<j

(
∂(xi, xj)

∂(t1, t2)

)2

.
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This makes the volume formula look like a rather natural generalization of the formula for
changing variables in an ordinary integral over R2:

dvol2 =
∑
i<j

{(
∂(xi, xj)

∂(t1, t2)

)2
}1/2

dt1dt2.

The above result does not appear to be particularly useful for calculations, but its elegance
is very interesting. The algebraic generalization we now present is likewise not something we
shall be using, but we present it here to display a beautiful piece of algebra.

Instead of m = 2, we now consider the general case of 1 ≤ m ≤ n. For the present
discussion we shall use the notation u to stand for a generic m-tuple of increasing integers in
the range [1, n]:

u = (u1, . . . , um), 1 ≤ u1 < u2 < · · · < um ≤ n.

Given an m × n matrix A and an index u, we can construct a (square) m ×m matrix A(u)
by using only the columns of A corresponding to u:

A(u) =




a1u1 . . . a1um

...
...

amu1 . . . a1um


 .

Likewise, given an n×m matrix B we construct B(u) by selecting only the rows of B corre-
sponding to u:

B(u) =




bu11 . . . bumm
...

...
bum1 . . . bumm


 .

Here is the amazing result:

THEOREM. If 1 ≤ m ≤ n and A is an m× n matrix and B is an n×m matrix, then

det AB =
∑

u

det A(u) det B(u).

PROOF. The ij entry of AB is of course

∑

k

aikbkj,
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where the sum extends for 1 ≤ k ≤ n. Therefore we can write the jth column of AB in the
form

(AB)column j =
∑

k

bkj(A)column k.

Now we use the linearity of det with respect to its columns, the multilinear property of
Section 3F. For each column of AB we need a distinct summation index; so in the above
formula for the jth column we change k to kj. Then we have

det AB =
∑

k1,...,km

bk11 · · · bkmm det ((A)col k1 · · · (A)col km) .

In this huge sum each kj runs from 1 to n.
Now think about the determinants in the sum. If two of the kj’s are equal, the corre-

sponding matrix has two identical columns so the determinant is zero. Thus we may restrict
the sum to distinct k1, . . . , km. These distinct choices, if reordered, correspond to the various
increasing sets of indices u. For a given u, there are m! distinct orderings k1, . . . , km, and each
determinant in the sum will be ± det A(u). Thus we can rewrite the above formula as

det AB =
∑

u

f(B, u) det A(u),

where f(B, u) just stands for some number that depends only on B and u (and not on A).
Now it’s easy to compute each coefficient by just picking a particular A. Given a particular

u choose A to be that matrix defined by
{

aiuj
= δij,

aik = 0 if k 6= u1, . . . , um.

That is, the uth
j column of A is the coordinate vector ej ∈ Rn, and all other columns of A are

0. Thus all det A(u′) except u′ = u are zero, and

det AB = f(B, u) det A(u)

= f(B, u) det I

= f(B, u).

On the other hand the ij entry of AB is
∑

k

aikbkj = aiu1bu1j + · · ·+ aiumbumj

= δi1bu1j + · · ·+ δimbumj

= buij.
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That is, AB = B(u). This proves that f(B, u) = det B(u).
QED

REMARKS. 1. This result in case m = n just asserts that for square matrices det AB =
det A det B. Thus we have given a third proof of this crucial property of determinants!

2. This proof should remind you of the proof of the lemma of Section C. In fact, in that
notation

(δij + aiaj) = BtB,

where

B =




1 0 . . . 0
0 1 0
...

...
...

0 0 1
a1 a2 an




is an (n + 1)× n matrix. Note that

B
(
(1, . . . , n)

)
= I,

B
(
(1, . . . , k − 1, k + 1, . . . , n + 1)

)
=




1 0 . . . 0
...
0 0 . . . 1
a1 a2 . . . an




}
kth row omitted

,

so

det B
(
(1, . . . , n)

)
= 1,

det B
(
(1, . . . , k − 1, k + 1, . . . , n + 1)

)
= ±ak.

Thus the lemma is a special case of the theorem.

3. In general, in case A = Bt, we have for m× n matrices with 1 ≤ m ≤ n,

det AAt =
∑

u

(
det A(u)

)2

.

4. Consider vectors x, y, u, v in R3 and define

A =

(
x1 x2 x3

y1 y2 y3

)
,

B =




u1 v1

u2 v2

u3 v3


 .
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Then

AB =

(
x • u x • v
y • u y • v

)
,

so the theorem gives

det

(
x • u x • v
y • u y • v

)
= det

(
x1 x2

y1 y2

)
det

(
u1 v1

u2 v2

)

+ det

(
x1 x3

y1 y3

)
det

(
u1 v1

u3 v3

)
+ det

(
x2 x3

y2 y3

)
det

(
u2 v2

u3 v3

)
.

This is precisely the result of Problem 7–3, the generalization of Lagrange’s identity.

E. Miscellaneous applications

1. Surfaces of revolution

We are going to examine a special class of surfaces in R3 obtained by revolving about an
axis. We may as well use the z-axis as the axis of revolution. We then start with a curve γ of
class C1 lying in the x− z plane, where all points of γ have positive x-coordinates.

x

z

γ

We revolve the points of γ about the z-axis through a full angle of 360◦ and thus obtain a
2-dimensional manifold (a surface) M . We want to investigate integration on M .

Let γ = γ(t) be a parametrization, where a ≤ t ≤ b. We assume γ does not intersect itself,
except that perhaps γ is a closed curve (γ(a) = γ(b)). We shall designate the coordinates of
γ as

γ(t) = (x(t), z(t)).

Thus, x(t) > 0.
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Let θ denote the angle of rotation about the z-axis. Then M can be parametrized as
follows:

F (t, θ) =
(
x(t) cos θ, x(t) sin θ, z(t)

)
.

This is a representation using cylindrical coordinates, where the distance from the axis is x(t).
Then we compute easily

∂F

∂t
=

(
x′(t) cos θ, x′(t) sin θ, z′(t)

)
,

∂F

∂θ
= x(t)(− sin θ, cos θ, 0).

These tangent vectors are orthogonal, so the corresponding Gram determinant is

∥∥∥ ∂F

∂t

∥∥∥
2 ∥∥∥ ∂F

∂θ

∥∥∥
2

=
(
x′(t)2 + z′(t)2

)
x(t)2.

Thus the Jacobian factor for dvol2 is

J (t, θ) = x(t)
√

x′(t)2 + z′(t)2.

Hence we obtain for instance

area(M) = vol2(M)

=

∫ b

a

∫ 2π

0

x(t)
√

x′(t)2 + z′(t)2dθdt

= 2π

∫ b

a

x(t)
√

x′(t)2 + z′(t)2dt.

Another way of saying this is

area(M) = 2π

∫

γ

xds.
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A surface of revolution.

PROBLEM 11–21. Instead of revolving a curve, we can revolve a two-dimensional
region around an axis. Suppose that R is such a contented subset of the x− z plane and
again suppose that for all (x, z) ∈ R, x > 0. Then revolve R around the z-axis through
360◦, obtaining the solid of revolution D:

D = {(x cos θ, x sin θ, z) | (x, z) ∈ R, 0 ≤ θ ≤ 2π}.

Prove that

vol3(D) = 2π

∫

R

xdxdz.

2. Pappus’ theorems

Pappus of Alexandria lived about 290–350, and has been described as the last of the great
Greek geometers. Here is one of his theorems, which is known as the basis of modern projective
geometry:
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If the vertices of a hexagon lie

meets of opposite sides are

collinear.

alternately on two lines, then the

Pappus’s theorem states:

Just for fun, you might try proving this for yourself.

The theorems of Pappus we want to discuss are about areas and volumes of figures of
revolution in R3. (We shall of course prove them with calculus).

First consider the case of a surface of revolution, using the notation introduced above.
Then

area(M) = 2π

∫

γ

xds.

But also the centroid of γ has its x-coordinate defined by

x̄ =

∫
γ
xds∫

γ
ds

=

∫
γ
xds

L
,

where L = the length of the curve γ. Thus we obtain Pappus’ theorem,

area(M) = 2πx̄L.

Notice that 2πx̄ is the distance the centroid of γ travels in one rotation. Thus Pappus’ theorem
can be stated in words as

The area of a surface of revolution equals the product of the length of the
initial curve and the distance traveled around the axis by its centroid.
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A great example is provided by a torus of revolution. Using the notation of Section 5G, where
the center of the initial circle of radius a was located at distance b > a from the axis, the
resulting area is given by 2πa · 2πb = 4π2ab.

Sometimes the Pappus theorem can be used “backwards.” For example, suppose we revolve
a semicircle around the z-axis as shown:

a

z

The resulting surface is a sphere of radius a. Since we already know the area of the sphere,
we obtain from Pappus,

4πa2 = πa · 2πx̄,

and we have found the centroid of a semicircle:

x̄ =
2a

π
.

PROBLEM 11–22. Prove another Pappus theorem for a solid of revolution, and
express the result in words as we did above.

PROBLEM 11–23. Use Pappus to find the centroid of a semiball in R3.

3. Tubes

There is an interesting extension of Pappus’ theorems to figures in R3 we might describe
as “tubes.” Start with a nonselfintersecting C1 curve γ in R3, parametrized as γ(t), a ≤ t ≤ b.
Then imagine constructing a circle of radius r centered at each point γ(t) of the curve, and
orthogonal to the curve. To make sense of the orthogonality, we of course require the tangent
vector γ′(t) 6= 0. Then it can be shown that if r is sufficiently small, “self-intersections” do
not occur, and the resulting set is an actual two-dimensional manifold. We want to find its
area. In fact, it equals the length of γ times 2πr.
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In order to prove this with calculus, we need to construct an orthogonal frame at each
point γ(t). For the first vector of the frame we can use γ′(t). The other two vectors may be
chosen rather arbitrarily. Let us call such a choice u(t), v(t), where u(t) and v(t) are unit
vectors in R3, and the three vectors,

γ′(t), u(t), v(t),

are mutually orthogonal. We also need to know that u(t) and v(t) are of class C1. (One way to
insure this is to assume γ is of class C2 and take u(t) as the unit vector in the same direction
as

d

dt

γ′(t)
‖γ′(t)‖ ,

and then

v(t) =
γ′(t)
‖γ(t)‖ × u(t).)

Now notice that differentiating the equation u • u = 1 produces u′ • u = 0. Thus we may
express u′ as a linear combination of γ′, u, and v, and the result looks like this:

u′(t) = a(t)γ′(t) + c(t)v(t).

Likewise,

v′(t) = b(t)γ′(t) + d(t)u(t).

Notice also that u • v = 0 implies u′ • v + u • v′ = 0, so that c(t) + d(t) = 0. Thus we have the
formulas {

u′ = aγ′ + cv,

v′ = bγ′ − cu.

Now we present a parametrization of our tube:

F (t, θ) = γ(t) + r cos θu(t) + r sin θv(t).

We calculate as follows:

∂F

∂t
= γ′ + r cos θ(aγ′ + cv) + r sin θ(bγ′ − cu)

= (1 + ar cos θ + br sin θ)γ′ − cr sin θu + cr cos θv,

∂F

∂θ
= −r sin θu + r cos θv.
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Thus we have ∥∥∥ ∂F

∂θ

∥∥∥
2

= r2

and
∂F

∂t
• ∂F

∂θ
= cr2 sin2 θ + cr2 cos2 θ = cr2.

Thus the Gram determinant is therefore

J (t, θ)2 =
∥∥∥ ∂F

∂t

∥∥∥
2

r2 − (cr2)2

= {(1 + ar cos θ + br sin θ)2 ‖γ′‖2 + c2r2}r2 − c2r4

= (1 + ar cos θ + br sin θ)2 ‖γ′‖2r2.

How nice! If r is sufficiently small that 1 + ar cos θ + br sin θ is always positive, then

J (t, θ) = (1 + ar cos θ + br sin θ) ‖γ′‖r.
We conclude that

area(M) = r

∫ b

a

∫ 2π

0

(1 + a(t)r cos θ + b(t)r sin θ) ‖γ′(t)‖dt

= r

∫ b

a

2π ‖γ′(t)‖dt

= 2πr · length of γ.

PROBLEM 11–24. Perform the analogous computation for the 3-dimensional volume
of a “solid” tube in R3, using the parametrization given above written now as

F (t, θ, r) = γ(t) + r cos θu(t) + r sin θv(t),

where the new variable r lies in the interval 0 < r < r0.

4. Ellipsoids

You probably know that the arc length of an ellipse cannot be expressed in elementary
terms, unless of course the ellipse is merely a circle. In fact, it is for this very reason that a
class of special functions has been defined, the elliptic integrals. Here is one example:

DEFINITION. The complete elliptic integral of the second kind is the function E given by

E(k) =

∫ π/2

0

√
1− k2 sin2 t dt.
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For our purposes, we restrict attention to 0 ≤ k ≤ 1. Of course we have the elementary values

E(0) =
π

2
, E(1) = 1.

PROBLEM 11–25. Find one of the few known “elementary” values of E:

E

(
1√
2

)
=

√
π

2

(
Γ

(
1
4

)

4Γ
(

3
4

) +
Γ

(
3
4

)

Γ
(

1
4

)
)

(see Problem 11–5).

PROBLEM 11–26. Prove that the length of an ellipse is equal to

4 · (semimajor axis) · E(eccentricity).

We should expect that calculating the area of an ellipsoid in R3 would lead to even more
complicated integrals. Indeed it does. However, there is quite a surprise: the case of ellipsoids
of revolution is completely elementary. The results are given in

PROBLEM 11–27. Consider the ellipsoid of revolution in R3,

x2

a2
+

y2

a2
+

z2

b2
= 1.

Oblate spheroid: Show that if a > b, then the area is equal to

2πa2 +
2πab2

√
a2 − b2

log

(
a +

√
a2 − b2

b

)
.

Prolate spheroid: Find the area in case a < b (notice that the above formula doesn’t make
sense in this case).

Although the length of an ellipse in R2 and the area of an ellipsoid in R3 are not elementary
integrals, there happen to be associated integrals that are. Here is an example:
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PROBLEM 11–28. Let M ⊂ Rn be the ellipsoid described implicitly as

x2
1

a2
1

+ · · ·+ x2
n

a2
n

= 1.

Through any x ∈ M construct the hyperplane
which is tangent to M at x. Let D(x) = the
distance from this hyperplane to the origin.

a. Prove that

D(x)

D(x) =
1√

x2
1

a4
1

+ · · ·+ x2
n

a4
n

b. Calculate explicitly ∫

M

Ddvoln−1.


