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Chapter 13 Stokes’ theorem

In the present chapter we shall discuss R?® only. We shall use a right-handed coordinate
system and the standard unit coordinate vectors 7, J, k. We shall also name the coordinates
x, 1y, z in the usual way.

The basic theorem relating the fundamental theorem of calculus to multidimensional in-
tegration will still be that of Green. In this chapter, as well as the next one, we shall see
how to generalize this result in two directions. In this chapter we generalize it to surfaces in
R3, whereas in the next chapter we generalize to regions contained in R™. But in all of these
procedures it is still Green’s theorem that is fundamental.

A. Orientable surfaces

We shall be dealing with a two-dimensional manifold M C R3. We’ll just use the word
surface to describe M. There are two features of M that we need to discuss first.

The first is the idea of a normal vector for M. We assume that M is of class C!, so that at
each point p € M there is a vector of unit norm which is orthogonal to M, in the sense that
it is orthogonal to the tangent space T, M. There are of course two choices of such a normal
vector, and we now need to make a choice.

QEFINITION. The surface M is said to be orientable if there exists a unit normal vector
N(p) at each point p € M which is a continuous function of p.

The continuity of N (p) is all-important. For instance, one can construct a Mobius strip
and obtain a surface which is not orientable:
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In case a surface is described implicitly by an equation

g(x,y,2) =0

such that Vg is never 0 at any point of the surface, and if g is of class C' ! then Vg is continuous
and we have two choices for N:

Vg i Vg

N=—" or = -7
Vgl Vgl
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For example, for the ellipsoid
2 2
e + 2 + 2= 1

we may take
o (@)
N =

332 y2 22 )
VaTmTa

For the sphere S(0, a) we have in particular either

7o @y2) v (Y2

a a

REMARK. An orientable surface is also said to be two-sided. The reason for this is that
the continuous normal vector N serves to define a direction of “up” at points of M. Thus at
points of M there is a definite sense of two sides of M, an “up” side and a “down” side. A
Mobius strip for example is one-sided, which may be demonstrated by drawing a curve along
the “equator” of M with a pencil.

EXTENSION. Frequently we shall need to analyze a surface M C R? which is not actually
orientable in the above sense, but is “close enough.” The surface may consist of finitely many
surfaces with the proper orientability. A few examples should suffice for a good explanation.

The surface of a cube. If the cube is [—1,1] x [—1,1] x [—1, 1], then the surface consists of
the six squares making up the boundary of the solid cube. A typical face is

(I x [~L1) x [-1,1] = {(1,y,2) | 1<y <1,-1<z< 1}

Now we may choose N at each point except those points on the edges to point (say) outward.
Thus for the above face we have N = (1,0,0) = i. On the opposite face {—1} x [—1,1] x [—1, 1]
we would have N = —i. We thus regard this surface as orientable.

)

|
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The boundary of a hemiball. For instance consider the hemiball
x2+y2+z2 §a2, z > 0.

Then the surface we have in mind consists of the hemisphere

?+yP 4+ =ad, 2>0,
together with the disk @

$2+y2 Saz, z=0.
If we choose the inward normal vector, then we have
(—$, -Y, _Z)

a
k on the disk.

on the hemisphere,

N
N

A cylindrical can. Consider the surface for which one part is given by

P 0<a<h <
‘\

2+ <a? z=0.

and the other part by

Then we might choose an “outer” unit normal vector

~

N :@ for 0 <z <h,
N = —k for z=0.

PROBLEM 13-1. The following surface is orientable. It consists of the union of the
cylinder
P4yt =d", 0<z<h

and the hemisphere
2+ +(z-h)P=d* h<z<h+a.

Draw a sketch of it and write down expressions for an “outer” unit normal vector.
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PROBLEM 13-2. Give formulas for an “ice cream cone” surface, consisting of a
right circular cone topped off with a hemisphere. Then give formulas for the ‘outer” unit
normal vector.

All of the surfaces we shall be considering will be connected. Each will be piecewise C*
and any two points on M can be joined by a piecewise C! curve lying in M. Each will be
orientable as well and we shall be faced with just two choices for N. This leads to one more

DEFINITION. An orientable surface M is said to be oriented if a definite choice has been
made of a continuous unit normal vector N for M. R

There is actually a touch of vagueness in this definition in that N may not be continuous
for a piecewise C! surface, and certainly may fail to exist at various points. We have escaped
trouble in our examples thanks to an intuitive concept of “outer” or “inner.” The full resolution
of this ambiguity will be given in Section C and then again in Section F in our discussion of
Stokes’ theorem. But for the moment we are content to live with this ambiguity.

B. The boundary of a surface

This is the second feature of a surface that we need to understand. Consider a surface
M C R? and assume it’s a closed set. We want to define its boundary.

To do this we cannot revert to the definition of bdM given in Section 10A. For according
to that definition bdM = M. The reason is that M has no interior points, since interior points
have to do with open balls in R?.

Nevertheless it is clear that we would like some concept of the boundary of M. It’s easy to
make it precise. We say that p € M is an interior point if there is a “disk-like’ neighborhood
of p which lies in M. Otherwise, p is a boundary point of M.

Another way of thinking of this concept is to imagine M as being the “universe,” and
dwellers in this universe have their own two-dimensional idea of interior point, and don’t even
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know about the ambient R?. In other words, they think of intrinsic interior points of M.

NOTATION. The set of boundary points of M will be denoted

OM.

Here’s a typical sketch:

o oM

In another typical situation we’ll have a sort of edge in M where N is undefined:

The points in this edge are not in dM, as they have a “disk-like” neighborhood in M, even
though the disk is bent.

EXAMPLES from the preceding section:

The surface of a cube. OM = ).

The boundary of a hemiball. OM = (.

A cylindrical can. Here OM consists of the top circle,

>+ =ad’, z=h
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Another typical example is a cylinder “open at both ends”:

e y2 _ a2,
0<z<h.
Here OM consists of the two circles

2?4+yP=d% 2=0 and 2°4+¢y*=d* z=h

DEFINITION. A surface M is closed if OM = ().

Again, this definition conflicts with our use of the same word in Section 10A. Unfortunately,
this terminology has become standard. So you must be careful if someone utters the phrase
“closed surface.” Be sure you understand what is meant. A better term would be “surface
without boundary.”

Typically, if M is equal to bdD for some set D C R?, then M is a closed surface.

Notice that M may consist of several disjoint arcs.

C. Inherited orientation

The two concepts of orientation and boundary have an important relationship. Namely,
suppose the oriented surface M has a nonempty boundary M. Consider an arc belonging
to OM. Then we can assign a direction to OM by saying that if we walk along OM with our
heads “up,” then we see M at our left sides. Of course “up” refers to the chosen unit normal
vector N.

We describe this by saying that OM inherits its orientation from M.

Notice that this is in complete agreement with our statement of Green’s theorem. There
bdR is given the direction which keeps R on the left, if we suppose a third z direction pointing
“up” from the x — y plane with its usual orientation.
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EXAMPLE. Hemisphere.

EXAMPLE. Cylinder open at both ends.

This example is extremely typical, and is quite easy, but very important to understand!

It goes without saying that if OM = (), then we need not worry about an inherited orien-
tation.

Now we can easily explain the orientation of piecewise C! surfaces. Each smooth piece
needs to be oriented in such a way that the induced orientations given to any arc in M which
is in the boundary of each piece are opposite. A nice example is a cylinder with a top disk:

~
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The displayed unit normal vectors N give opposite orientations to the circular arc the two
parts of the surface have in common.

D. The basic calculation

Now we are ready to go! We start with a small piece of an oriented surface, and we actually
assume it’s of class C2. Call it M C R3. This surface is to be considered to be parameterized
in the usual way. Let us call the parameters u, v, so we have a parameter mapping ® from a
region R C R? onto M.

OR Az

We know that the partial derivatives ®,, ®, give a basis for the tangent space to M at
any point, and thus their cross product ®, x ®, is a nonzero vector normal to M. As M is
oriented we are given a unit normal vector N at each point of M. We now want to make
sure that ¢, x ®, is a positive scalar multiple of M. This can be achieved by the device of
interchanging v and v if necessary. Thus we have

~ O, xd
N=uX %
J
where the denominator J is simply the norm
J = ||, x D,

From Section 11B we know that area integration on M comes from J as the Jacobian
factor:
darea = Jdudv.

Next, we make sure that we represent the parameter u — v space as a right-handed coor-
dinate system, as shown in the figure. Then we make the all-important observation that the
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positive direction of bdR in the parameter space corresponds to the inherited orientation of
OM in R3. You should check this for yourself:

PROBLEM 13-3. Prove the statement just made about the orientation.

Now we are ready for the computation. The goal we have in mind is to rewrite a general
line integral of the form
/ Fedd
oM

//(???)darea.

M

as a surface integral of the form

(We don’t yet know what the integrand will be.) In doing this we have to integrate along 0 M
in the direction inherited from N. We need a parameter for describing OM, and we’ll just use
a convenient parameter ¢ for describing bdR. That is, bdR may be described by functions
u=wu(t), v=wo(t), and then M is described by the three coordinates

z = x(u(t), v(t)),
y = y(u(d),v(t)),

(1), v(1))-

I~

z=z(

Here we abuse the notation by thinking of ® as described by three functions z = x(u,v),
y =y(u,v), z = z(u,v). But we’ll completely suppress ¢ in our calculation. You'll never need
to see it.

Please notice that we write our surface integrals in the present chapter with two integral
signs, as the manifolds we consider are always two-dimensional ones (and their one-dimensional
boundaries).

Finally, we shall calculate just the particular special case of our line integrals,

fdx.

oM

In other words, ' = (f,0,0). We'll then easily get the other two cases by cycling through the
indices.
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Here we go! We have

fdx chain rule f(zydu + z,dv)
oM bdR

_ /bdR(fg;u)du + (fx)dv
Green //[(f%>u — (fwy)y]dudv
R

- //[f“m“ + [Ty = fotu — [Tududu
R

CANCEL

= 4 [t furaddude

chaip rule é / [(fatu + fyu + fozu)2e = (foo + fyyo + foz0)u]dudv

CANCEL

= //[fy(yuxv - yvxu) + fz(ZuL) — vau)]dudv.
R

Now we are ready to incorporate the normal vector N into this equation. By definition of
the cross product we have

N = 7 '&, x ®,

ik
= jil det Ty Yu Zu

Ty Yo 2o
= j_l(yuzv — Yo2u, Zuly — Zply, TulYv — mvyu)
= (N17 N27N3)'

Thus we recognize that

- fdxr = 4/(—ny3 + f.N2)J dudv.

Of course, Jdudv = darea. Thus if we write the integrand in the form of a dot product,

= [[ 0.0 St

we have
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This is the end result of our calculation. The parameters have disappeared and everything is
in terms of the surface M.

It is truly wonderful that just knowing the flat Green’s theorem has led to this curved
version by just routine manipulations of the definitions. Almost no thought was required!

“I cast it into the fire, and there came out this calf”
—Aaron, Exodus 32%

E. The basic theorem, curl

We now very quickly extend the result we have just proved by cycling through the coordi-
nates * — y — z — x. Thus we must have

/ gdy = //(—gz,o,gx) e Ndarea
oM
M
/ hdz = / / (hy, —hg,0) @ Ndarea.
oM N

We then add our three basic line integrals to obtain

/a fdx + gdy + hdz = //(hy — o fr—hay G — fy) @ Ndarea.
M
M

and

We have come to a point where we need to make a fascinating

DEFINITION. Given a vector field F' = (f, g,h) of class C' on R3, the curl of F is the
vector field

curlF = (hy — gz, fo — hay G2 — fy)-

Incidentally, most languages other than English use the word rotation in place of curl,
and write rot £’ for the vector field. On the next page you will find examples that have been
photocopied from calculus texts in Russian, German, French, and Italian.

This vector field curlF' is quite amazing. You should keep in mind how very naturally it
appeared in our calculations. It isn’t something we had to be clever to invent; it simply arose
in the calculations.

There’s a wonderful mnemonic for the curl. Recall the mnemonic for the cross product of
two vectors,

ik
axb = det|a ay as]|,
bl bQ b3



12

Chapter 13

awrl B =VxF

Beesem KpoMe TOro B PacCMOTPEHH! BEKTOP, COCTABAAOILHE KOTO-
poro pasHH pPasHOCTAM, CTOSWHM NOI 3HAKOM JBORHOrO WHTErpana.

Bextop 3toT, o0pasyioulHl HOBO® BSKIQDHOE _j HAILIBALTCA BHXPEM
noas A H 0003HAYAETCH CHMBOAO wm). TaK uTo

A, 94, d0Ar 04, 94, 34,
W—F. rO{'A=F—-dT, rot, A—-T——-—— (40)

rot A=
dopuyay (39) npr 3TOM MOKHO MEpenKCaTh Tak:

J' \ JS_IJ (rot. A cos(a, X)rot, A cos(n, ¥i4-rot, A cos(n, 2)|dS
185

HINH

J'q. ds_J'J-rot AdS, (41)

18

Wir fithren in die Betrachtung luBerdem den Vektor ein, dessen Komponenten
glelch den in dem Doppelintegral tenzen sind. Dieser Vektor, der

g neues Vekigrfeld bildet, heilin ra!ion dca eldes aYund wird mit dem Symbol
oder @ bezeichnet, so da

ay day | 8 Ot da,  da.
rotg 2 = —a—y e T rotyd = g= F PR rot,a = bz '_a! Hﬂ}

ilt.
s Die Formel (30) l&8t sich damit umschreiben in

fa,d: ==fﬁrut.a cos(m, z) + rot,a cos(m, ¥) + rotacos(m, z)]dS

I (£
oder
a, 8 nffmt.. WA, (41)
()
1 Rotationnel d'un champ e vecteurs dans ['espace E'. — Dans
'espace E?” . ¥, 2 >, soit V(m) un champ de vecteurs, défini pour m =z, 5,35
appartenant & un domaine D, de composantes P, Q, R (. v, 2); la formule de

Stokes (3.0) peut s'écrire, en changeant les notations, et en considérant une
courbe I frontiére d'une surface A,

ll: Vim)dm = fluxy_(rotV),

o le edte sgl induit par le choix du sens de parcours sur I, et ou i'on a
designé pa @ ire rotationnel de V), le vecteur de composantes

. r') ’ [ ‘

oy vz oz Jr' oz ay

e, sommando ﬂuelt.o ] h (12) » membro @ membro, si PeTvieyy

alla formula
(13) ,(ra.:+ Yd,+za) ‘Q‘—z—i’—h -
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from Section 7A. If we replace the second row with the “vector”
v - 37 27 2 9
ox’ 0Oy 0z

iP5k
cwrllFF = Vx F = det|9/0x 0/dy 0/0=z
F Fy E3

then we obtain

The meaning of this “determinant” is this: expand along the first row and regard the entries
of the second row as “operating” on the functions in the third row. For example, the second
component of V x F' is

~ det (%?x agz) — _(9/0x)F; + (8]02)F

that is _% + @
ox 0z

PROBLEM 13-4. Suppose that the surface M is presented as a graph. Specifically,
assume M is given as the set

(g, 0(z,9)) | (z,y) € R},

where R is a region in the o — y plane and ¢ is a C? function. Start from the beginning
and derive Stokes’ theorem for this special case. Just follow the outline given above, using
the “upward” normal N with N3 > 0. The cases

fdxr and / gdy
oM

/ hdz
OM

In terms of curl we can now write Stokes’ theorem in the form

/ Fedi = // curlF e Ndarea.
oM

M

oM

are quite similar, whereas the term

requires a slightly different treatment.
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This is our basic version of Stokes’ theorem. Now we show how to extend it.

F. Stokes’ theorem

We have proved the result in the preceding section under the restrictive hypothesis that
M is presented in terms of a single parametrization. We now go through the same exercises
we used in Section 12C to extend Green’s theorem.

The fundamental observation is in fact the same we used for Green. If two pieces of M
meet along a seam and Stokes is applied to each, the line integrals along the seam cancel each
other because of our assumption on the orientation of M and the inherited orientation of OM.
Here’s a sketch:

We then can finally present our theorem as follows:

STOKES’ THEOREM. Assume M is a piecewise C? bounded oriented surface in R whose
boundary OM has the inherited orientation. Assume F is a C' vector field defined on M. Then

/ Fedi = // curlF o Ndarea.
oM N

In summary, Stokes’ theorem may be regarded precisely as a curved version of Green’s
theorem in the plane.

Important special case: In the above theorem, if M is a closed surface (OM = ), then

// curlF e Ndarea = 0.
M
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EXAMPLE. Let M be the hemisphere 22 + y? + 22 = a?, 2 > 0. Let F =

curl# = (1,0,1).

Choose the orientation given by N = &:2) Y. 2 Then

// curlF e Ndarea = // T Zdarea
a
M M
symmetry 1 //
= - zdarea
a
M

sph. coords 1 2m /2
P 20T 2 / / acos ¢ a? sin pdpdd
0

= 7ra2.

= a° 27 -

DN —

And

/FOdf:/ xdxr + xdy + ydz
oM oM

= 0+/ zdy + 0
oM

2
= / acos 0(a cos 0df) = ma®.
0

15

(z,z,y). Then

Another method that can be used here is to use the larger (closed) surface M’ consisting
of the hemisphere M and the disk 2?2 +y? < a? z = 0. The orientation of M’ requires that at

points of the disk N = —k. Stokes” theorem glves

// curl F @ Ndarea = 0.
M/
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/ / curlF @ Ndarea = — / / curlF e Ndarea

M disk

_ //(1,0, 1) e (0,0, —1)darca

disk

— /[ daea

disk
= area of disk

= 7TCL2.

Thus

How nice! We didn’t really have to compute an integral this time.

PROBLEM 13-5. Let @& € R3 be a unit vector, and let —1 < a < 1 be fixed. Let v be
the circle defined by

||(ac,y,z)|| = 1
(x,y,z) o0 = a.

Give 7 the counterclockwise orientation as seen by a viewer located at the point 10.
Compute the line integral
/ xdy.
g

PROBLEM 13-6. Let m be a fixed real number, and let v be the curve of intersection
of the paraboloid z = 22 + 2 and the plane z = max. Assume the curve has the counter-
clockwise orientation as viewed from (0,0, r) for large positive r. Compute directly the

line integral
/ ydz.
gl

Also compute the same line integral using Stokes’ theorem.

(ANSWER: —7wm3/4.)

PROBLEM 13-7. Repeat the preceding problem but with a plane of the more general
form z = myx + moy.
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PROBLEM 13-8. Let M be the surface in R?® which is the portion of the sphere
2% + y? + 2% = 1 which lies in the cylinder 2% + y? < y and for which z > 0. Choose the
orientation given by the unit vector (—z, —y, —z). Give dM the inherited orientation.

Calculate the six line integrals
/ xdy and / ydx;
oM oM

/ ydz and / zdy;

oM oM

/ zdx and / xrdz.
oM oM

(ANSWERS: include the numbers 0, 2/3, = /4.)

PROBLEM 13-9. Let v be the ellipse which is the intersection of the cylinder
2% + 3% = 1 and the plane z = ax + by, and give v the counterclockwise orientation as
viewed from a distant point on the positive z-axis. Calculate the line integral

/ xyzdz
”

directly, and also by using Stokes’ theorem.

G. What is curl?

We pause to consider some significant examples, and then to give an interpretation of curl
that is completely geometric.

1. CENTRAL SYMMETRIC FIELD. A vector field is said to be central if all values of it
point toward a fixed point. We may conveniently take this fixed point to be the origin, so a
vector field on R™ is central if and only if it is given by an expression of the form

F(z) = ¢(x)z for z € R",

where of course ¢ is a real-valued function. We then say F' is also symmetric if p(z) depends
only on ||z||. For the case of R? this becomes

F(x,y,2) = g(r)(z,y,2),
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where of course r = ||(z,y, z)| is the usual spherical coordinate. Then for example the first
component of curlF' equals
0 0 RNz L2y
9,92 = g lary) = g(r)=- =g
= 0.

Thus curlF = 0.

2. CONSERVATIVE FIELD. Our definition from Section 12 states that a vector field on R?
is conservative if there exists a potential function f such that F' = V f. Assuming that f is of
class C?, we conclude that curlF = 0. For instance, the second coordinate of curlF is

OF, OF, 9 9f 0 of

0z Or  0z0x Oxdz
= 0.

Thus we have the interesting result, that always
curl gradf = 0.

Or in terms of the “del” notation,

VxVf =0]

3. REMARK. Actually, Example 1 is a special case of Example 2, as every central symmetric
field is conservative. This is even true for R™. For suppose

F(z) = ¢(r)

is given on R", and we want to find a potential function for F'. We would certainly expect
this potential to be spherically symmetric itself, so we look for a function of the form f(r).
We thus want

that is,
x
fir)= = e(r)z;
we thus simply need to integrate the equation
f'ir) = ro(r)

in order to find f.
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4. ZERO CURL. We now can explain the strange terminology of Section 12E. There we said
that a vector field F' on R™ with

oF;  OF;

al'j n 83;2
has zero curl. In case n = 3 this is exactly the condition that curl = 0, so by analogy we
say the same for general n. It’s just that for n # 3 we don’t actually have a vector field we
call curlF.

5. PLANAR FIELDS. Suppose a vector field on R? has the special form
F(.CIZ’, Y, Z) = (Fl(xa y)? Fg(l', y)> 0)7

so that F' is parallel to the plane z = 0 and also is independent of z. Then

_(OF, OR) ;
curlFF = (%—a—y) k.

6. EXAMPLES OF PLANAR FIELDS. Our first example comes from the famous V6 on R2,

so that
F = 0]).
(x2+y2’:c2+y2’ )

Then curl/ = 0. Two more significant examples are

curl(—y, x,0) = 2k,
curl(y,0,0) = —F.

PROBLEM 13-10. Let a € R3 be an arbitrary fixed vector. Show that
V x(ax¥) = 2a.
(Here & stands for (z,vy, 2).)
PROBLEM 13-11. The vector field a x & of the preceding problem is a special case

of a general linear vector field. Such a field can be written F'(Z¥) = AZ, where A is a real
3 x 3 matrix and ¥ is written as a column vector. Show that

V x F = (ags — ag3, 13 — az1, a1 — A12).
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PROBLEM 13-12. Hereisa problem from American Mathematical Monthly, Volume 109, Number 7, August-
September, 2002, proposed by Victor Alexandrov, Sobolev Institute of Mathematics, Novosibirsk, Russia:

Let M be a surface contained in the unit sphere in R3. Use the outer unit normal
vector N for the sphere. In addition, let 7 denote the unit vector at points of M which
is tangent to the unit sphere and is orthogonal to dM. (In particular, 7 ¢ N = 0.) Prove

that
/ﬁds—i—Q//]/\\fdarea: 0.
M

oM

Here ds denotes arc length and the integrals with vector integrands are to be interpreted
in the sense of integrating the components and then combining the results into vectors.
(HINT: apply Stokes to the vector field F' = a x & for any fixed vector a.)
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PROBLEM 13-13. Let C' denote the unit circle
{(z,9,0) | 2* +y* =1}
in R3. Define the “function” g on R3 — C by

= arctan —.
g9(z,y,2) = arc R —

Of course, g is not completely well defined.

a. Prove that the vector field F' = Vg is a well defined vector field on R* — C, and
that it is C*°.

b. Prove that F' is irrotational.

c. Prove that F is not conservative by showing that there is a loop in R?* — C' along
which the line integral of F'is not zero.

d. Calculate F explicitly, and show that on the specific loop v
y=0, 22=22%— 24 (x >0),

the line integral of F' equals

/—szdx + (2* — 1)dz.

v

Calculate this integral directly and show it equals 27.

GEOMETRY. We now present a geometric interpretation of curl which provides intuition
for the above examples and others. First, we need to understand line integrals in a certain
geometric way. Suppose that F' is a vector field on R™ and + is a curve in R", say v = (1),
a <t <b. Then the dot product

F(y(t) e +'(1)

represents the component of F' in the direction tangent to the curve, multiplied by the speed
of the curve. Thus in a very significant sense the integral

b
/ F(y(t)) » ' (£)dt
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represents the total net component of F' tangent to the curve . In particular, if v is a closed
curve, then this integral represents the net increase of the tangential component of F' around
~v. We thus say that

/F e d¥ = the net circulation of F' around ~.
.

In case F represents a force, then we might think of the circulation as the net work done
by F'in going around ~. In case F' represents the velocity of a fluid, then it would be the net
flow of the fluid.

In particular, a vector field is conservative <= it has zero circulation around every closed
curve.

PROBLEM 13-14. Let F be a vector field in R? which is given by

F = r(-yz). (=va*>+y°)

Find the net circulation of F' around the counterclockwise circle 22 + 3% = a%. For which
value of « is the result independent of the radius a?

Stokes’ theorem thus asserts that in the case of R3 the net circulation of F around OM
may be measured by calculating the surface integral over M of the normal component of the
curl of F' (with proper orientation).

This idea may be presented infinitesimally in such a way as to give an entirely different
way of defining curl. To see this, suppose F is a vector field on R? which is defined in some
neighborhood of a fixed point py. We shall derive a formula for curlF(pg) without using any
coordinate system and even without using any partial derivatives of any components of F'!

In order to know curlF'(py), it suffices to know the number curl '(py) e @ for any unit vector
@. This dot product is of course the component of the vector curlF'(py) in the direction .
Construct the disk D, with center pg, radius €, orthogonal to 4.

U

0D,

Use the vector u as the unit normal vector for D, thus rendering D, an oriented surface. The
bounding circle 0D, is of course supplied with the induced orientation: it travels counterclock-
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wise as viewed from the tip of 4. Then Stokes’ theorem gives

// curlF e {idarea = //F o dT.
D, 9D,

If € is small, the left side of this equation is very close to curlF'(pg) e @ times the area of D,
thanks to the continuity of the integrand. Thus if we divide by me? and let € — 0, we obtain

1
curl F(py) e i = hm—/Fodi".

e—0 €2
0D

There is a significant way to think about the right side of this equation in terms of the idea
of circulation, and this lead to the sentence

b

curl F(py) e & = “the counterclockwise circulation per unit area of F' at py with respect to .

MORAL. The right sides of these expressions have a definite meaning independent of any
choice of coordinate system. Thus the same must be true of curlF'(py) e . As this is true for
every choice of the unit vector 4, we conclude that

the curl of a vector field on R? is a geometric property of the field, depending only
on the choice of the orientation of R3.

Notice how very naturally this description of curl has arisen. Natural as it is, it is nevertheless
stunning in view of our initial definition in terms of the coordinate system,

) ik
curl(Fii + Fo)+ F3k) = det | 0/0x 0/0y 00z
Fy F, K

All three rows of the matrix depend on the coordinate system, but the output does not!
Once again we observe the wonderful interplay between algebra and geometry! Stokes’
theorem provides us with the deep geometric significance of curl, while the initial definition
gives us a handy way of computing the curl of vector field.
For instance, suppose {(bl, ¢2, ¢3} is a right-handed orthonormal frame for R® and define
coordinates ty, to, t3 by the formula

(,y,2) = 751@;1 +t2€52 +t3¢§3-
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Then we conclude immediately that
o b b
curlFF = det | 9/0t; 0/0ty 0/0ts
F [ ] le F [ ] ¢2 F [ ] Qg3

No calculations needed!

PROBLEM 13-15.  How does this formula change if {¢y, s, @3} is a left-handed

orthonormal frame?

This is a good time to remember that we stressed a similar geometry/algebra connection
back in Section 2H in our discussion of the gradient of a function. We thus arrive at two
significant geometric insights into the “differential operator” V = (9/0z,0/dy,0/0z), one
when it acts on functions to produce conservative vector fields V f, and now one when it acts
on vector fields to produce new vector fields V x F.

You should also notice why curlF' is also called the rotation of F' and is sometimes written
rotF', as we mentioned in Section E. It all has to do with the geometric description of curl in
terms of the circulation, or rotation, of the vector field.

There are some straightforward calculus results that are frequently quite helpful in manip-
ulating curl. We have seen one already: V x V f = 0. Here is a useful product rule:

PROBLEM 13-16. Show that

Vx(fF) = fVXF+VfxF

In Chapter 15 we shall greatly extend the formula given above for curl ' to allow nonorthog-
onal frames, and in fact to allow curvilinear coordinates.

H. Curlometer

Imagine a fluid flowing in R3, and imagine the velocity vector at each point #. This gives
some sort of a vector field F'(Z), which we suppose to be independent of time.
The streamlines of this fluid are obtained by solving the system of ordinary differential

equations for the curves Z(t):
dz
— = F(Z(1)).
p (#(1))
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Now imagine that we want to have a mechanical device for measuring the curl of F'.
Imagine then a propeller free to spin, attached to a movable stick:

We might then situate the propeller at any point and the stick pointing in any direction. The
speed (and direction) of rotation could then presumably describe the component of V x F at
that point and in that direction. This is what Stokes’ theorem guarantees.

We now give three illuminating examples of this idea. Fach is a planar field, so that
F = (Fi(z,y), F5(x,y),0). We then know of course that

or, O0F\ -
F=|—2-—|E
VX (895 8y>k

1. SHEAR FLOW. Here F' = (ay,0,0). Here’s a picture of the streamlines, supposing a > 0.

s >
T

But the lines with y large are moving faster than those with y small, so we expect that V x F
will be nonzero. In fact,

VxF = —ak.

Thus our propeller experiences a clockwise rotation (supposing a > 0), just as our intuition
expects.

2. CIRCULAR FLOW. Here F — “V§" — (—Tyy . 0). We know that V x F = 0. This

was mentioned in Section G6. So our propeller would tend to move in counterclockwise circles
around the origin, but with no tendency to rotate as it moves.

On the other hand, consider F' = (—y,z,0). The streamlines are still counterclockwise
circles, but now

VXxF = 21%,
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which means that the propeller will spin counterclockwise as it rotates.

streamlines

3. CENTRAL FLOW. Here we take F' = f(0)(x,y,0), so that the streamlines are rays through
the origin. However, the velocity may vary with 6.

PROBLEM 13-17. Show that in this example

VxF = —f()k.

I. Conservative fields revisited

In Section 12F we considered vector fields defined on open subsets D C R™ which had
“zero curl.” We noticed particularly the simple example in R? — {0} described as F = V.
This field is irrotational but not conservative. In case D is simply connected in R?, we saw
that irrotational fields are indeed conservative.

The same is true for simply connected open subsets of R3. For instance, suppose that F is
a vector field of class C' on R? — {0} and suppose that V x F' = 0. Then we can prove that
F is conservative. For consider a sufficiently “nice” closed curve v C R?* — {0}. Then we can
construct an oriented surface M also contained in R* — {0}, with OM = . Stokes’ theorem
then gives

/Fod:z_:’:/ V x F e Ndarea
aM

M
= //0 darea
M

=0.



Stokes’ theorem 27

This verifies the validity of the second criterion in the theorem of Section 12E, and thus F' is

conservative.
The reason for the difference between R* — {0} and R3 — {0} is clear: in R — {0} there is
room to maneuver to fill in a loop with a surface missing the origin.

PROBLEM 13-18. Show that the same result holds for the open set

R? — R x [0,00) x {0}.



