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Chapter 15 ∇ in other coordinates

On a number of occasions we have noticed that del is geometrically determined — it does
not depend on a choice of coordinates for Rn. This was shown to be true for ∇f , the gradient
of a function from Rn to R (Section 2H). It was also verified for ∇ • F , the divergence of a
function from Rn to Rn (Section 14B). And in the case n = 3, we saw in Section 13G that it
is true for ∇× F , the curl of a function from R3 to R3.

These three instances beg the question of how we might express ∇ in other coordinate
systems for Rn. A recent example of this is found in Section 13G, where a formula is given for
∇× F in terms of an arbitrary right-handed orthonormal frame for R3. We shall accomplish
much more in this chapter.

A very interesting book about ∇, by Harry Moritz Schey, has the interesting title Div,
Grad, Curl, And All That.

A. Biorthogonal systems

We begin with some elementary linear algebra. Consider an arbitrary frame {ϕ1, ϕ2, . . . , ϕn}
for Rn. We know of course that the Gram matrix is of great interest:

G = (ϕi • ϕj).

This is a symmetric positive definite matrix, and we shall denote its entries as

gij = ϕi • ϕj.

Of course, G is the identity matrix ⇐⇒ we have an orthonormal frame.
We also form the matrix Φ whose columns are the vectors ϕi. Symbolically we write

Φ = (ϕ1 ϕ2 . . . ϕn).

We know that Φ is an orthogonal matrix ⇐⇒ we have an orthonormal frame (Problem 4–20).
Now denote by Ψ the transpose of the inverse of Φ, and express this new matrix in terms

of its columns as
Ψ = (ψ1 ψ2 . . . ψn).

We then have the matrix product

ΨtΦ =




ψt
1
...

ψt
n


 (ϕ1 . . . ϕn)

= (ψi • ϕj).
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But since Ψt equals the inverse of Φ, we conclude that

ψi • ϕj = δij.

DEFINITION. Two frames {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn} are called a biorthogonal system
if

ψi • ϕj = δij.

Clearly, {ϕ1, . . . , ϕn} and {ϕ1, . . . , ϕn} form a biorthogonal system⇐⇒ the frame {ϕ1, . . . , ϕn}
is an orthonormal one. So the present definition should be viewed as a generalization of the
concept of orthonormal basis.

Also it is clear that the relation between the ϕi’s and the ψi’s given here is completely
symmetric.

PROBLEM 15–1. Let a frame for R2 be {ı̂, aı̂ + b̂}, where of course b 6= 0. Compute
the corresponding {ψ1, ψ2} which produces a biorthogonal system. Sketch all four vectors
on a copy of R2.

PROBLEM 15–2. Let {ϕ1, ϕ2, ϕ3} be a frame for R3. Prove that the biorthogonal
frame is given by

ψ3 =
ϕ1 × ϕ2

[ϕ1, ϕ2, ϕ3]
etc.

PROBLEM 15–3. Suppose {ϕ1, . . . , ϕn} is an orthogonal frame. Show that the
corresponding vectors ψ1, . . . , ψn are given as

ψi =
ϕi

‖ϕi‖2
.

PROBLEM 15–4. Given a frame {ϕ1, . . . , ϕn} denote

J = det Φ.

Prove that det G = J2.
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Finally, a little more notation. It has become customary to denote the inverse of G = (gij)
by

G−1 = (gij)

(called “raising the indices”). That is,

n∑

k=1

gikgkj =
n∑

k=1

gikg
kj = δij.

Inasmuch as

G = ΦtΦ,

we conclude that

Ψ = (Φt)−1

= ΦG−1.

In terms of entries of these matrices this equation means that

(Ψ)ij =
n∑

k=1

(Φ)ikg
kj.

Thus we find that the columns satisfy

ψj =
n∑

k=1

ϕkg
kj.

Rewriting this equation gives

ψi =
n∑

j=1

gijϕj.

The corresponding inverse equation is of course

ϕi =
n∑

j=1

gijψj.

PROBLEM 15–5. Prove that for all v ∈ Rn

v =
n∑

i=1

(ψi • v)ϕi.
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The result of this problem is that when you wish to express v as a linear combination of the
basis vectors ϕi, the corresponding coefficients are given directly in terms of inner products
with the ψi’s. You might think of the formal expression

n∑
i=1

(ψi • ( ))ϕi

as representing the identity linear function on Rn. In other words,

PROBLEM 15–6. Prove that

I =
n∑

i=1

ϕiψ
t
i .

B. The gradient

We continue with an arbitrary biorthogonal system on Rn, and maintain the notation of
Section A.

Suppose that Rn f−→ R is differentiable at a point x ∈ Rn. Our task is to express the
vector ∇f(x) ∈ Rn as a linear combination of the vectors ϕi in the given frame. This is quite
an easy task. In fact, Problem 15–5 gives immediately

∇f(x) =
n∑

i=1

∇f(x) • ψiϕi.

The inner products in this formula are of course directional derivatives of f in the directions
ψi. Thus, in the notation of Section 2C

∇f(x) =
n∑

i=1

Df(x; ψi)ϕi.

PROBLEM 15–7. Show that everything in this formula can be expressed entirely in
terms of the frame {ϕ1, . . . , ϕn} by a double sum

∇f(x) =
n∑

i,j=1

gijDf(x; ϕj)ϕi.
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C. The divergence

We want to discuss a vector field f defined on an open subset of Rn. We can thus regard
f as a function from Rn to Rn, and as such it has a derivative. At a point x in its domain, the
derivative Df(x) is a linear transformation of Rn to Rn, represented in terms of the standard
coordinate basis ê1, . . . , ên, by the n× n Jacobian matrix

(
∂fi

∂xj

)
.

It is the trace of this matrix which is ∇ • f , the divergence of f . This observation is the key
to our representation of ∇ • f , and we need a simple fact from linear algebra:

THEOREM. Suppose A is a real n × n matrix, and regard the ϕi’s and ψi’s as column
vectors. Then

traceA =
n∑

i=1

Aψi • ϕi.

PROOF. We use the matrices Φ and Ψ from Section A, so that

Aψi • ϕj = ji entry of the matrix Φ−tAΨ.

Thus

n∑
i=1

Aψi • ϕi = trace(ΦtAΨ)

= trace(AΨΦt) (Problem 4–2)

= trace(A),

since Ψ and Φt are inverses.
QED

As a result we now have

∇ • f(x) =
n∑

i=1

∂fi

∂xi

=
n∑

i=1

Df(x)ψi • ϕi

=
n∑

i=1

Df(x; ψi) • ϕi.
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D. The curl

Before going into the representation of curl, we summarize what we have obtained to this
point. In terms of a fixed biorthogonal system we have found

∇f(x) = ∇f(x) =
n∑

i=1

Df(x; ψi)ϕi

and

divF (x) = ∇ • F (x) =
n∑

i=1

DF (x; ψi) • ϕi.

These two formulas can be incorporated as a single expression

∇ =
n∑

i=1

ϕi times D( ; ψi)

where ∇ and the right side are both regarded as operators. They operate on scalar-valued
functions to produce the gradient and on vector fields to produce the divergence. In the
gradient situation “times” is scalar multiplication, whereas in the divergence situation it is
dot product.

A good way to remember this formula is to replace the directional derivative

Df(x; ψi)

by the symbol
∂f

∂ψi

Then we have

∇ =
n∑

i=1

ϕi times
∂

∂ψi

.

This leads us to an educated guess for curl, where we just use the same formula. Thus we
suppose that {ϕ1, ϕ2, ϕ3} and {ψ1, ψ2, ψ3} form a biorthogonal system for R3. Then we have

THEOREM. For a vector field F on R3,

curlF (x) = ∇× F (x) =
3∑

i=1

ϕi ×DF (x; ψi).
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PROOF. Every vector field F can be expressed in the given frame in the form

F (x) =
3∑

i=1

fj(x)ϕj.

Thus it suffices to prove the formula for the special case of vector fields of the form fj(x)ϕj,
for j = 1, 2, 3. Thus we assume

F (x) = f(x)ϕj.

We have from the product rule of Problem 13–14,

∇× F (x) = ∇f(x)× ϕj (since ϕj is constant)

and our formula for gradient gives

∇× F (x) =
3∑

i=1

Df(x; ψi)ϕi × ϕj

=
3∑

i=1

ϕi ×Df(x; ψi)ϕj

=
3∑

i=1

ϕi ×D(fϕj)(x; ψi)

=
3∑

i=1

ϕi ×DF (x; ψi).

QED

PROBLEM 15–8. Are you surprised that the formula for curl does not require the
frame {ϕ1, ϕ2, ϕ3} to be right-handed? Explain what happens if ϕ3 is replaced with −ϕ3.

PROBLEM 15–9. Prove that

ϕ1 × ϕ2 = Jψ3,

ϕ2 × ϕ3 = Jψ1,

ϕ3 × ϕ1 = Jψ2.
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PROBLEM 15–10. Show how the formulas of the preceding problem behave when
each ϕi is replaced with the vector aiϕi, where the ai’s are nonzero scalars.

E. Curvilinear coordinates

All that we have done up to now is represent ∇ in terms of a fixed frame for Rn. In
practice, however, the coordinates themselves are changed in a perhaps nonlinear fashion. We
still need convenient expressions for ∇ in terms of the new coordinates.

We shall call our coordinate system T . What we mean is that T is a C1 function from Rn

to Rn, and has a C1 inverse as well. (Usually the domains of T and T−1 will not be all of Rn.)
The notation we shall use is

x = T (u),

representing the formula which determines x = (x1, . . . , xn) in terms of the curvilinear coor-
dinates u = (u1, . . . , un). The inverse function

u = T−1(x)

gives the curvilinear coordinates of the given point x.
The Jacobian matrix of T is of course

T ′(u) =




∂x1

∂u1
. . . ∂x1

∂un
...

...
∂xn

∂u1
. . . ∂xn

∂un


 .

This matrix must be invertible and we denote its determinant by

J(u) = det T ′(u).

The columns of T ′(u) represent linearly independent vectors of Rn, and we think of them as
“attached” to the point x = T (u). That is, they are tangent vectors to the manifold Rn at
the point x. These vectors play the role of a moving frame for Rn:

ϕi(u) =
∂T

∂ui

, 1 ≤ i ≤ n.

There are other natural tangent vectors at x, namely the gradients of the cordinates uj viewed
as functions of x. We denote them as

ψj(x) = ∇uj, 1 ≤ j ≤ n.
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Since uj is the jth coordinate of T−1(x), the gradient ∇uj is the jth row of the Jacobian matrix
for T−1. Therefore, since the chain rule implies

(T−1)′(T (u))T ′(u) = I,

we have the matrix equation




ψ1

ψ2
...

ψn


 (ϕ1 ϕ2 . . . ϕn) = I.

That is,

ψi • ϕj = δij.

In other words, the frames at x given by

{ϕ1(T (x)), . . . , ϕn(T (x))} and {ψ1(x), . . . , ψn(x)}

are biorthogonal. Here’s a representative sketch in the x1—x2 plane:
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Our point of view is going to be that when we work on Rn and use the coordinates
u1, . . . , un, we are interested in calculating everything in terms of the “natural” vectors ϕi(u)
and the “natural” derivatives ∂/∂uj.

Of course, each ψj is a vector field on Rn — in fact, a gradient field. And each ϕi ◦ T is
also a vector field on Rn, but not necessarily a gradient field.



∇ in other coordinates 11

We still maintain the notations introduced in Section A. Thus

gij(u) = ϕi(u) • ϕj(u),

and the matrix inverse to (gij) has entries

gij(u).

Furthermore, it follows that, with x = T (u),

ψi(x) =
n∑

j=1

gij(u)ϕj(u)

and

ϕi(u) =
n∑

j=1

gij(u)ψj(x).

F. The gradient

The formula for ∇f goes over with no change from Section B. We read it off from Problem
15–7: with x = T (u),

∇f(x) =
n∑

i,j=1

gij(u)Df(x; ϕj(u))ϕi(u).

We notice that the chain rule gives

Df(x; ϕj(u)) = ∇f(T (u)) • ∂T (u)

∂uj

=
∂

∂uj

f(T (u)).

NOTATION. In this context we denote the pull-back of f by the coordinate transformation
x = T (u) to be the function

f ∗(u) = f(T (u)).

Thus we have

∇f(x) =
n∑

i,j=1

gij(u)
∂f ∗

∂uj

ϕi(u).
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This is exactly the sort of formula we want. Everything on the right side of the equation is in
terms of the coordinates we are working with.

G. Spherical coordinates

We pause for a significant example. We use our standard spherical coordinates for R3:

x = r sin ϕ cos θ,

y = r sin ϕ sin θ,

z = r cos ϕ.

We then have the frame

ϕ1 = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ),

ϕ2 = r(cos ϕ cos θ, cos ϕ sin θ,− sin ϕ),

ϕ3 = r sin ϕ(− sin θ, cos θ, 0).

Thus gij = 0 if i 6= j, and

g11 = 1,

g22 = r2,

g33 = r2 sin2 ϕ.

Furthermore, gij = 0 if i 6= j, and

g11 = 1,

g22 =
1

r2
,

g33 =
1

r2 sin2 ϕ
.

Thus

∇f(x, y, z) =
∂f ∗

∂r
ϕ1 +

1

r2

∂f ∗

∂ϕ
ϕ2 +

1

r2 sin2 ϕ

∂f ∗

∂θ
ϕ3.

Frequently this formula is displayed in terms of the orthonormal frame associated with {ϕ1, ϕ2, ϕ3}.
Namely, define

ϕ̂i =
ϕi

‖ϕi‖ .

Then it becomes

∇f =
∂f ∗

∂r
ϕ̂1 +

1

r

∂f ∗

∂ϕ
ϕ̂2 +

1

r sin ϕ

∂f ∗

∂θ
ϕ̂3.
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In fact, a nice alternative for this notation is to say that in general

ûi =
∂T
∂ui

‖ ∂T
∂ui
‖ ,

so the formula becomes

∇f =
∂f ∗

∂r
r̂ +

1

r

∂f ∗

∂ϕ
ϕ̂ +

1

r sin ϕ

∂f ∗

∂θ
θ̂.

PROBLEM 15–11. Show that J = r2 sin ϕ.

PROBLEM 15–12. Carry out the same analysis for the case of cylindrical coordinates
for R3:

x = r cos θ,

y = r sin θ,

z = z.

Conclude that

∇f =
∂f ∗

∂r
r̂ +

1

r

∂f ∗

∂θ
θ̂ +

∂f ∗

∂z
ẑ.

H. The divergence

A new situation arises in the curvilinear representation of divergence and curl. Namely we
assume from the start that the vector field in question is represented in terms of curvilinear
coordinates and the frame {ϕ1, . . . , ϕn} associated with them. Thus we treat the vector field
F (x) by first expressing it in the form

F (x) =
n∑

i=1

Fi(u)ϕi(u), where x = T (u).

We then want to express the scalar∇•F in terms of derivatives ∂/∂ui involving the coefficients
Fi(u). Since the vector ϕi(u) comes from T by differentiation and is liable to be subject to
differentiation again, we need to assume T is of class C2. We shall make this assumption for
the remainder of the chapter.

It turns out that there is a huge simplification available if we first establish the remarkable
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LEMMA. ∇ • (J−1ϕi) = 0.

PROOF. The vector field we are dealing with in this context is

G(x) = J−1(u)ϕi(u), where x = T (u).

We give a proof of this lemma based on the divergence theorem. To set this up, suppose h is
any C1 real-valued function on Rn which is zero outside a small ball. We shall prove that

∫

Rn

h∇ •Gdx = 0. (∗)

Since ∇•G is a continuous function, this will prove the result. For if ∇•G(x0) > 0 for some
x0, then ∇ •G(x) > 0 for all x in some neighborhood of x0. We can then choose a suitable h
to make the integrand in (∗) always ≥ 0 and positive in a neighborhood of x0, so the integral
in (∗) will be positive, a contradiction. Likewise if ∇ •G(x0) < 0.

The function h in this calculation is frequently called a test function. It is unimportant in
itself, but is used to “test” the crucial function ∇ •G.

We now turn to the proof of (∗). First,

∫

Rn

∇ • (hG)dx = 0

follows from the divergence theorem. Actually, just the fundamental theorem of calculus is
needed, as a typical term in the Cartesian formula for divergence is

∫

Rn

∂

∂xj

(hG • êj)dx,

and performing the xj integration first gives the result, since h is zero outside a small ball.

Since the product rule gives

∇ • (hG) = ∇h •G + h∇ •G,

the proof of (∗) now reduces to proving that

∫

Rn

∇h •Gdx = 0.



∇ in other coordinates 15

In this integral we change variables with x = T (u), and we obtain
∫

Rn

∇h •Gdx =

∫

Rn

∇h(T (u)) •G(T (u))| det T ′(u)|du

=

∫

Rn

∇h(T (u)) • J−1(u)ϕi(u)|J(u)|du

= ±
∫

Rn

∇h(T (u)) • ∂T

∂ui

du

chain rule
= ±

∫

Rn

∂

∂ui

(h(T (u))du

FTC
= 0.

QED
Now we compute the divergence of a typical summand in F (x): the product rule gives

∇ • (Fi(u)ϕi(u)) = ∇ • (J(u)Fi(u)
1

J(u)
ϕi(u))

= ∇(J(u)Fi(u)) • 1

J(u)
ϕi(u),

the other term being zero thanks to the lemma. And now we invoke the chain rule to get

1

J(u)
∇(J(u)Fi(u)) • ϕi(u) =

1

J
∇(JFi) • ∂T

∂ui

=
1

J

∂

∂ui

(JFi).

Thus we have our final formula: in case

F (x) =
n∑

i=1

Fi(u)ϕi(u), x = T (u),

then

∇ • F =
1

J(u)

n∑
i=1

∂(J(u)Fi)

∂ui

.

Notice how closely this resembles the Cartesian case!
For our spherical coordinate example, write

F (x, y, z) = F1(r, ϕ, θ)r̂ + F2ϕ̂ + F3θ̂,



16 Chapter 15

so that the corresponding functions in our formula are actually

F1, F2/r, and F3/r sin ϕ, respectively.

Thus

∇ • F =
1

r2 sin ϕ

[
∂

∂r
(r2 sin ϕF1) +

∂

∂ϕ
(r sin ϕF2) +

∂

∂θ
(rF3)

]

=
1

r2

∂

∂r
(r2F1) +

1

r sin ϕ

∂

∂ϕ
(sin ϕF2) +

1

r sin ϕ

∂F3

∂θ
.

PROBLEM 15–13. For the case of cylindrical coordinates for R3 let

F (x, y, z) = F1r̂ + F2θ̂ + F3ẑ,

and prove that

∇ • F =
1

r

∂(rF1)

∂r
+

1

r

∂F2

∂θ
+

∂F3

∂z
.

PROBLEM 15–14. Suppose that {ϕ1, . . . , ϕn} is a frame field for Rn, so that it may
vary from point to point. Suppose that the corresponding frame field {ψ1, . . . , ψn} yields
a biorthogonal system. Prove that the basic formula of Section C is still valid:

∇ • F =
n∑

i=1

ϕi • ∂F

∂ψi

.

I. The curl

We continue the notation of the preceding section, so that we are concerned with a vector
field on R3, but instead of expanding F in terms of the frame {ϕ1, ϕ2, ϕ3}, it seems better to
work with F (x) itself. We then follow the notation of Section F and define the pull-back

F ∗(u) = F (T (u)).

We shall employ the formula for curl as given in Section D, but with the ϕi’s and ψi’s inter-
changed. So we find

∇× F (x) =
3∑

i=1

ψi ×DF (x; ϕi).
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Since ϕi = ∂T/∂ui, the chain rule gives with x = T (u),

∇× F (x) =
3∑

i=1

ψi(x)× ∂F ∗

∂ui

(u).

Next we insert the algebra of Problem 15–8:

ψ1 = J−1ϕ2 × ϕ3 etc.,

obtaining

∇× F = J−1(ϕ2 × ϕ3)× ∂F ∗

∂u1

+ · · · .

The formula for vector triple product of Problem 7–4 gives

J∇× F = ϕ2 • ∂F ∗

∂u1

ϕ3 − ϕ3 • ∂F ∗

∂u1

ϕ2 + · · · .

The product rule gives

J∇× F =
∂

∂u1

(ϕ2 • F ∗)ϕ3 − ∂ϕ2

∂u1

• F ∗ϕ3

− ∂

∂u1

(ϕ3 • F ∗)ϕ2 +
∂ϕ3

∂u1

• F ∗ϕ2 + · · · .

The other eight terms are obtained from these by cycling through the indices 1→2→3→1.
Look at the terms in which F ∗ appears undifferentiated: the coefficient of ϕ3 in these terms is

−∂ϕ2

∂u1

• F ∗ +
∂ϕ1

∂u2

• F ∗.

But
∂ϕ1

∂u2

=
∂

∂u2

∂T

∂u1

=
∂

∂u1

∂T

∂u2

=
∂ϕ2

∂u1

,

so that the coefficient of ϕ3 just obtained is zero. Notice here that we have the assumption
that T is of class C2 so that the mixed partial derivatives are equal. Likewise for ϕ1 and ϕ2.
Thus we have

J∇× F =
∂

∂u1

(ϕ2 • F ∗)ϕ3 − ∂

∂u1

(ϕ3 • F ∗)ϕ2 + · · ·
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(four more terms). This expression is precisely the formal determinant

det




ϕ1 ϕ2 ϕ3

∂

∂u1

∂

∂u2

∂

∂u3

ϕ1 • F ∗ ϕ2 • F ∗ ϕ3 • F ∗




.

This gives our final formula for curl:

∇× F =
1

J
det




ϕ1 ϕ2 ϕ3

∂

∂u1

∂

∂u2

∂

∂u3

ϕ1 • F ∗ ϕ2 • F ∗ ϕ3 • F ∗




.

Of course, the pattern is just that of the original definition of curl in terms of Cartesian
coordinates.

Now let’s examine the spherical coordinate case:

F (x, y, z) = F1(r, ϕ, θ)r̂ + F2ϕ̂ + F3θ̂.

Then

ϕ1 • F ∗ = r̂ • F ∗ = F1,

ϕ2 • F ∗ = rϕ̂ • F ∗ = rF2,

ϕ3 • F ∗ = r sin ϕθ̂ • F ∗ = r sin ϕF3,

so that

∇× F =
1

r2 sin ϕ
det




r̂ rϕ̂ r sin ϕθ̂

∂

∂r

∂

∂ϕ

∂

∂θ

F1 rF2 r sin ϕF3




.
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PROBLEM 15–15. For the case of cylindrical coordinates in the notation of Problem
15–12, show that

∇× F =
1

r
det




r̂ rθ̂ ẑ

∂

∂r

∂

∂θ

∂

∂z

F1 rF2 F3




.

In particular, if the vector field is planar,

F = F1(r, θ)r̂ + F2(r, θ)θ̂,

conclude that

∇× F =

(
∂F2

∂r
+

1

r
F2 − 1

r

∂F1

∂θ

)
k̂.

It is especially interesting to see the formula for the operator∇ in terms of these curvilinear
coordinates. The directional derivative in the direction ϕi(u), as we have noticed, is just ∂/∂ui.
Thus we may rewrite the general formula from Section D in the form

∇ =
n∑

i=1

ψi times
∂

∂ui

,

or if we replace ψ by its definition,

∇ =
n∑

i=1

∇ui times
∂

∂ui

.

As always, times means

• scalar multiplication if we are calculating gradient,
• dot product if we are calculating divergence,
• cross product if we are calculating curl.

This version of the expression for ∇ is rather easy to remember. If we think of ∇ loosely
as ∂/∂x, then the formula is similar to

∂

∂x
=

n∑
i=1

∂ui

∂x
times

∂

∂ui

,
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or, even more briefly,
∂

∂x
=

∂u

∂x
times

∂

∂u
.

J. Orthogonal curvilinear coordinates

Many coordinate systems that arise in specific applications have the feature that the curves
in Rn determined by them are orthogonal. This means in our notation that for i 6= j

ϕi • ϕj =
∂T

∂ui

• ∂T

∂uj

= 0.

In other words, gij = 0 if i 6= j. Then the numbers of importance are

gii(u), 1 ≤ i ≤ n,

and

gij(u) =

{
0 if i 6= j,

1
gii(u)

if i = j.

Moreover,
J2 = g11g22 . . . gnn.

Notably, spherical coordinates and also cylindrical coordinates both fit this situation.
Our formulas for ∇ all simplify under the assumption of orthogonality. Thus the gradient

is given by

∇f(x) =
n∑

i=1

1

gii(u)

∂f ∗

∂ui

ϕi(u).

The divergence is still the same, no simplification occuring at all.
The formula for curl is much simpler. For in the notation

F (x) =
3∑

i=1

Fi(u)ϕi(u)

we now have simply
ϕi • F ∗ = giiFi.

Thus

∇× F =
1

g11g22g33

det




ϕ1 ϕ2 ϕ3

∂

∂u1

∂

∂u2

∂

∂u3

g11F1 g22F2 g33F3




.
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PROBLEM 15–16. If you use instead the associated orthonormal frame so that

F (x) =
3∑

i=1

Fi(u)ϕ̂i(u),

show that

∇× F =
1

g11g22g33

det




√
g11ϕ̂1

√
g22ϕ̂2

√
g33ϕ̂3

∂

∂u1

∂

∂u2

∂

∂u3

√
g11F1

√
g22F2

√
g33F3




.

K. The Laplacian

Without a doubt the most important second order partial differential operator on Rn is
the Laplace operator, or the Laplacian. It operates on a real-valued function by first forming
its gradient and then forming the divergence of the resulting vector field. Thus the notation
is ∇2:

∇2f = ∇ • (∇f).

Another common notation is ∆ = ∇2.

Thus we have in Cartesian coordinates

∇2f(x) =
n∑

i=1

∂2f

∂x2
i

.

Of course, we well recognize that ∇2 has an intrinsic geometric meaning apart from any
coordinate system, since the same is true of ∇f and of the divergence of a vector field.

Before giving the general formula in curvilinear coordinates we mention the linear case in
which x = T (u) is given by matrix multiplication

x = Au,
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where A = (aij) is a real nonsingular n× n matrix. Then our notation gives the following:

ϕj =
∂x

∂uj

=




a1j

a2j
...

anj


 = jth column of A;

ψi = ∇ui = ∇(A−1x)ith entry

=




ai1

ai2

...
ain


 = transpose of ith row of A−1;

J = det A;

gij =
n∑

k=1

akiakj;

gij =
n∑

k=1

aikajk.

PROBLEM 15–17. Prove that

∇2f(x) =
n∑

i,j=1

gij ∂
2f ∗(u)

∂ui∂uj

.

PROBLEM 15–18. Prove that ∇2 is invariant with respect to this change of variables,
that is,

∇2f(x) =
n∑

i=1

∂2f ∗

∂u2
i

,

if and only if A ∈ O(n).

Now we turn to the general case of curvilinear coordinates. We have from Section F

∇f(x) =
n∑

i,j=1

gij(u)
∂f ∗

∂uj

ϕi(u),
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so the gradient vector field∇f is represented as in Section H with the corresponding coefficients
denoted there as Fi(u) given by

Fi(u) =
n∑

j=1

gij(u)
∂f ∗

∂uj

(u).

Therefore the result of Section H gives immediately

∇2f(x) =
1

J

n∑
i,j=1

∂

∂ui

(
Jgij ∂f ∗

∂uj

)
.

If we have the special case of orthogonal curvilinear coordinates, then of course

J2 = g11g22 . . . gnn,

gii =
1

gii

,

so we have

∇2f =
1√

g11 . . . gnn

n∑
i=1

∂

∂ui

(√
g11 . . . gnn

gii

∂f ∗

∂ui

)
.

For spherical coordinates on R3 this gives

∇2f =
1

r2 sin ϕ

[
∂

∂r

(
r2 sin ϕ

∂f ∗

∂r

)
+

∂

∂ϕ

(
r2 sin ϕ

r2

∂f ∗

∂ϕ

)
+

∂

∂θ

(
r2 sin ϕ

r2 sin2 ϕ

∂f ∗

∂θ

)]

=
1

r2

∂

∂r

(
r2∂f ∗

∂r

)
+

1

r2 sin ϕ

∂

∂ϕ

(
sin ϕ

∂f ∗

∂ϕ

)
+

1

r2 sin2 ϕ

∂2f ∗

∂θ2
.

PROBLEM 15–19. For the case of cylindrical coordinates in R3, show that

∇2f =
1

r

∂

∂r

(
r
∂f ∗

∂r

)
+

1

r2

∂2f ∗

∂θ2
+

∂2f ∗

∂z2
.

L. Parabolic coordinates

Here’s an example that we have not yet mentioned. It’s a coordinate system for R2 based
on squaring complex numbers. Namely, in complex notation

x + iy =
1

2
(u + iv)2.
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In real notation, {
x = 1

2
(u2 − v2),

y = uv.

We assume that u > 0, −∞ < v < ∞. Then we produce all points of R2 except the negative
x-axis (−∞, 0]× {0}.

PROBLEM 15–20. Write out explicit formulas for u, v as functions of x, y. (Be
careful to have u > 0.) (See Problem 2–93.)

PROBLEM 15–21. We call u, v parabolic coordinates because the curves in the x− y
plane on which u is constant and also those along which v is constant are parabolas. Prove
this, and also prove that the origin is the focus of each of these parabolas.

Our notation from Section E leads us to the frame vectors

ϕ1(u, v) = (u, v),

ϕ2(u, v) = (−v, u).

These vectors are orthogonal, so we have here orthogonal curvilinear coordinates.

PROBLEM 15–22. Show that

∇2f(x, y) =
1

u2 + v2

(
∂2f ∗

∂u2
+

∂2f ∗

∂v2

)
.


