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About this tutorial

Matrix.xla

Matrix.xla is an Excel add-in that contains useful functions and macros for
matrix and linear Algebra:

Norm. Matrix multiplication. Similarity transformation. Determinant. Inverse.
Power. Trace. Scalar Product. Vector Product.

Eigenvalues and Eigenvectors of symmetric matrix with Jacobi algorithm.
Jacobi's rotation matrix. Eigenvalues with QR and QL algorithm.
Characteristic polynomial. Polynomial roots with QR algorithm. Eigenvectors
for real and complex matrices

Generation of random matrix with given eigenvalues and random matrix with
given Rank or Determinant. Generation of useful matrix: Hilbert's,
Houseolder's, Tartaglia's, Vandermonde's

Linear System. Linear System with iterative methods: Gauss-Seidel and
Jacobi algorithms. Gauss Jordan algorithm step by step. Singular Linear
System.

Linear Transformation. Gram-Schmidt's Orthogonalization. Matrix
factorizations: LU, QR, QH, SVD and Cholesky decomposition.

The main purpose of this document is to show how to work with matrices and vectors in Excel,
and how to use matrices for solving linear systems. This tutorial is written with the aim to teach
how to use the Matrix.xla functions and macros. Of course it speaks about math and linear
algebra, but this is not a math book. You rarely find here theorems and demonstrations. You can
find, on the contrary, many examples that explain, step by step, how to reach the result that you
need. Just straight and easy. And, of course, we speak about Microsoft Excel but this is not a
tutorial for Excel. Tips and tricks for Excel can be found ion many Internet sites.

This tutorial is divided into two parts. The first part is the reference manual of Matrix.xla. The
second part explains with practical examples how to solve basic topics about matrix theory and
linear algebra.




Linear Systems

This chapter explains how to solve linear systems of
equations with the aid of many examples. They cover the
major part of cases: systems with a single as well as with,
infinitely many solutions, or none at all. Several algorithms
are shown: Gauss-Jordan, Crout's LU factorization, SVD

Linear System

Example 1. Solve the following 4x4 linear system

AX=Db 1 9 -1 4 18
2 0 1 1 -2
Where A and b are: 1 2 -4 0 17
1 5 1 1 7

Square matrix. If the number of unknowns and the number of equations are the same, the system
has surely one solution if the determinant of the matrix A is not zero. That is, if A is non-singular.
In that case we can solve the problem with the SysLin function.

AlB|lc D|EF|[G[H[ I [J
1 A b X
2 1T 79 1 4 15 1
3 2 o[ 1] 1 -2 2
4 112740 17 -3
5 1 1851111 7 -1
5
% detip) = [1351 {=SysLin(B2.E5,G2.G5)} '
3 =MDet{B2:E5)

10

The determinant can be computed with the MDet function or with Excel's built-in function
MDETERM.




The Gauss-Jordan algorithm

The Gauss and Gauss-Jordan algorithms are probably the most popular approaches for solving
linear systems. Functions SysLin and SysLinSing of Matrix.xla use this method with pivoting
strategy. Ancient, solid, efficient and - last but not least - elegant.

The main goal of this algorithm is to reduce the matrix A of the system A x = b to a triangular* or
diagonal® matrix with all diagonal elements equal to 1 by using a few row operations: linear
combination, normalization, and exchange.

Let's see how it works

Example: The following 3x3 system has the solution x;=-1; x, =2 ; X3 = 1, as you can verify it by
direct substitution.

14X +%,=-2 ~ 4 1 0o | -2
to2x - 2%, +x,=-1 U 2 2 1|4
1 2 2| 3

{xl 2X, +2%;=-3

Let's begin to build the complete matrix (3x4) with the matrix coefficients and the constant vector
(gray) as shown on the right. Our goal is to reduce the matrix coefficients to the identity matrix.

Choose the first diagonal element a,; ; it is called the "pivot" element

1. Normalization step: if pivot 1 0 and pivot ! 1 then 1 02 0 |05
divide all first row elements by the value of the 2 2 1 -1
pivot, 4. 1 -2 2 -3

1 0.25 0 -0.5

2. Linear combination: if a, * O then substitute the 0 15 1 2
second row with the difference between the 1 2 2 3
second row itself and the first row multiplied by
a2l

3. Linear combination: if ag; 1 0 then substitute the 1 0.25 0 -0.5
second row with the difference between the 0 -1.5 1 -2
second row itself and the first row 0 -225 2 -2.5

As we can see the first column has all zeros except for the diagonal element, which is 1.
Repeating the process for the second column - with pivot a,, - and for the third column - with pivot
as;; - we will perform the matrix "diagonalization™; the last column will contain, at the end, the
solution of the given system

In Excel, we can perform these tasks by using the power of array functions. Below is an example
of the resolution of a system by the Gauss-Jordan algorithm

Note that all the rows are obtained by array operations {...}. You must insert them with the
CTRL+SHIFT+ENTER key sequence.

! Properly called Gauss algorithm
2 Properly called Gauss-Jordan algorithm




A
1 4
2| -2
3 1
4
5 1
B0
700
]

] 1
1m0
1m0

12
13 1
14 0

15| 0

-
n

=i C
1 a
-2 1
-2 2
0.2a a
-1.5 1
-2.25 2

o3

0.5

-2

-2.5

a 0.16667 | -0.8333
1 -0.6667 | 1.33333

a 0.5
a a
1 a
1] 1

0.5

il
2

1

{=A1:D1/A1)
(=42 D2-AZ*A5 DS}
[=A3.D3-ATAS DS}

(=AGD5-B5"A10:D10}
{=AG: DE/BR)
{(=A7 D7-B7*A10:D10}

{=A3:D9-CH*A15:D15}
{=A10:010-C10"A15: D15}
=A11:011/C11}

We see in the last column the solution (-1 ; 2 ; 1). The formulas used for computing each row are
shown on the right

Swap rows

If one pivot is zero we cannot normalize the corresponding row. In that case we
will swap the row with another row that has no zero in the same position. This
operation does not affect the final solution at all; it is equivalent to reordering the
algebraic equations of the given system

Example: The following 3x3 system has the solution X; =5; x,=-3; Xs = 7.

1
2
3
4
o]

6 |

7
g
gl

=1}

10
11
12
13
14
15

A
a
2
1

B
1

-2
-2

—_ =

C D
1] -3
1 3
2 25
05 | -1.5
1] 3
258 | XBs
458 | 14
1] -3
25 75
1] 5
1] -3
1 7

The pivoting strategy
Pivoting can always be performed. In the above example we have exchanged one zero pivot with
any other non-zero pivot in order to continue the Gauss algorithm. But there is another reason for
which the pivoting method is adopted: to minimize round off errors.

Pivoting can

reduce round
off errors

E

(=A2:D2/A2)
1=A1:D1}
{=A3:D3-A3°A5 D5}

{=A5:05-B57410:D10)
{=AF: DE/EG]
{=A7-D7-B7*410:D10}

{=AG:D9-CIA15:D15)
1=A10:D10}
{=A11:D11/C11}

Note that the first pivot, ay;, is zero. We
cannot normalize this row

In this case we swap the first row with
the second one .

Now the new pivot is 2 and the
normalization can be done.

Note that the second row now has the
element ay =0, so we simply leave
that row unchanged. The linear
combination isn't needed in this case

The Gaussian elimination algorithm can have a large number of operations. If
we count the operations for the resolution of one system of n simultaneous
equations, we will discover that it requires of the order of n*3 computer
operations, i.e.., additions, subtractions, multiplications, and divisions. So, if the
number of equations and unknowns doubles, the number of operations
increases by a factor of 8. If n = 200, then there are more than two million operations! Certainly,
one might begin to worry about the accumulation of round off errors. One method to reduce such
round off errors is to avoid division by small numbers, and this is known as row pivoting or partial
pivoting , the strategy of the Gaussian elimination algorithm.




Let's see the following remarkable example of a 2x2 system

Its solution is (X1 , X2) = (1, 1), as we can easily verify by substitution

1 987654321 987654322
123456789 -1 123456788

If we apply the Gauss-Jordan algorithm, with a numerical precision of 15 digits, we have:

A B C D
1 1 987654321 | 987BS4322 The pivot =1
2 | 123456730 A 123456738
3
ﬂ 1 987654321 | 9BTES4322 |{=A1:C1MAT}
5 0 1 ZIGIEHT | A 2IGEAEAT (=22 C2- 8250404}
? ] 0 0999909762 | oA CA_BH-AE.CB) The solution has an error of about 1E-7
B 0 1 1 {=AS.CSBS)

On the contrary, if we simply exchange the order of the algebraic equations, so that the second
row becomes the first one, we have

A B C O
1 | 123456789 -1 123456785 Pivot = 123456789 >> 1
P 1 957654321 | 087654322
3
4 1 BAE-09 | 0.099999992 |{=a1:C1/a1} The solution is now much better, with
5 0 9ETESA321 | 987ES43D1 |;-azC2azasce;  an error of less than 1E-15
5
7 1 0 1 [=t4:C4- B4t A5 CEY
3 ] 1 1 {=85.C585)

As we can see, this little trick can improve the general accuracy.

The standard Gauss-Jordan algorithm always searches the element below it for the maximum
absolute value, to be used as pivot. If that maximum value is greater then that of the current pivot,
then the row of the pivot and the row of the maximum value are exchanged.

Not all elements can be used as pivot 1 al2 al3 ald al5 al6
exchange. In the matrix to the right we
could use as pivot a33 only the element 0 1 @23 a4 axd  a
as3, a43, as3, ae3 (yellow cells). 0 0 a33 | a34 a35 a36
For example:

0 0 a43 ad4 a45 a46
if |a63| =max( |a33|, |a43|, |as3|, [a63| )

0 0 a53 ab4 ab5 ab6
then rows 6 and 3 are swapped, and o o = T

the old element a3 becomes the new
pivot a33




Full Pivoting

In order to extend the area in which to search for a maximum pivot we could exchange rows and
columns. But when we swap two columns, the corresponding unknown variables are also
exchanged. So, in order to rebuild the final solution in the original given sequence, we have to
perform all the permutations, in reverse order, that we have made. This makes the final algorithm
a bit more complicated, because we now have to store all columns permutations.

The full pivoting method extends the

search area for the maximum value

. . . 1 al2 al3 al4 al5 al6
For example, if the pivot is element azs,
then the algorithm searches for the 0 1 _az3  a24 a2s _ a26
absolute maximal valug in the yellow 0 0 a33 | az4  a35  a36
area below and to the right of azs. If a
maximum value is found at a56, then 0 0 a43  a44  add  a46
rows 5 and 3 are swapped and, 0 0 a53 a4 a55  as6
thereafter, columns 5 and 3 are
exchanged. 0 0 a63 a64 a65 a66

The functions SysLin and SysLinSing of Matrix.xla use the Gauss-Jordan algorithm with full
pivoting strategy

Integer calculation
In the above examples we have seen that the Gauss elimination steps introduce non-integer
numbers - and round off errors -, even if the solutions and coefficients of the system are integers.

Is there a way to avoid such decimal round off errors and preserve the global accuracy? The
answer is yes, but in general, only for integer matrices.

This method - a variant of the original Gauss-Jordan approach - is very similar to the one that is
sometimes performed manually by students. It is based on the "minimum common multiple"
MCM (also LCM Least Common Multiple) and it is conceptually very simple

Assume that we have the following two rows: the pivot row, and the row that has to be reduced.
Pivotisa;; =-6

The element to set zero is a,; = 4

mcm = MCM(6, 4) =12

Multiply the first row by mecm /ay; =12/4=3

And the second row by - mcm /a;; = - 12/(-6) = 2

-6 0 5 9 |<== pivot row; multiply for 2
4 3 0 10 |<==for reducing; multiply for 3

-12 0 10 18 now, add the two rows
12 9 0 30

-6 0 5 9 <== the first row remains unchanged
0 9 10 48 | <== add the first row to the second row

In this way we can reduce a row only using integer numbers
Let's see how it works, step by step, in the function GJ_setp of Matrix.xla.

10



a8l clD Note the 3 parameter setting the integer algorithm. If “false", the
Els 3 11w operations will use standard floating point operations using real (i.e.,
" not necessarily integer)_numbers. _ _

W[ 0 | .8 .0 | 45 P€ Only the last step can introduce decimal numbers; the previous steps
R e —— are always exact. Unfortunately, this method cannot be adopted in
B £ |0 | 610 Le general, even for matrices containing only integers, because the values
iy ol v i»m grow at each step and can become large enough to cause overflow
% 5 & 2k Thefunction used are:

E [ {=GJstep(A5:D7,,True)} inserted in the range A9:D11

%l '? 1:25 Eﬁ ge B {=GJstep(A9:D11,,True)} inserted in the range A13:D15

%; B {=GJstep(A13:D15,,True)} inserted in the range A17:D19

% I {=GJstep(A17:D19,,True)} inserted in the range A21:D23

wmr {=GJstep(A21:D23,,True)} inserted in the range A25:D27

Tip The above example can be quickly reproduced. After inserting the function in the

range A9:D11, give the CTRL+C command to copy the range still selected; highlight
cell A13 and paste the new matrix with the instruction CTRL+V. Repeat this simple
step still you reach the final 3x3 identity matrix. The sought solution will be in the last column.

This sequence shows how to do it.
Al BlC|D|E]F AB|lC|D|E]|F

Linear system complete matrix Linear system complete matrix
-6 ] 5 9 5 0 5 g

4 3 0 |10
R R 4 3 0 |10

O S0 = &) 1) e D B —

o -4 -0 -48‘5?\
1

I=GJstep(B2:B4, | TRUE]}
Given a complete system matrix in range B2:E4, select

the range AB:E8, just below the given matrix (leaving a Insert the array function GJstep with the CTRL+SHIFT+ENTER key
free row for separation) sequence and the given parameter

) 0| S =J| = | | L) B —

You should see the modified matrix after the first step. Leave the
selected range and give the copy command (CTRL+C)

AlB|lc|D|E|F AlBlc|D]|E]|F
Linear system complete matrix Linear system complete matrix
£ 0 5 ] B 0 5 9
4 3 ] 10 4 =) 0 10
a -1 2 4 0 -1 2 4

-6 0 5] 4
0 -8 10 48
0 -1 2 4

-

-G u] 5 =]
0 A A0 | 48
u] -1 2 4

-5 0 5 ]
1} 4 10 -48
0 0 25 84

| |
| | = | S| O | T O e L0 ) —

P DY Y (Y
MM_\ERDDZIHD?U‘I#UJM—I

]
%)

Select cell B10, under the 1st step matrix. Make sure that the Now, simply give the paste command (CTRL+V) and the 2nd
range below is empty. step matrix will appear

Repeating the above steps you can get all the intermediate Gauss-Jordan matrices, either in
floating or in integer mode (at your option).

11



Several ways to use the Gauss-Jordan algorithm

The matrix reduction method can be used in several ways. Here are some basic cases:

Solving a non-singular linear system

z

€, a, azuexu (fblu
Ax=b b gam 3, azsmgxzﬂzg)zﬂ
8, a, aLtRGH %
The complete matrix (3 x 4) is
éa; a, agzhbo é 0 0 xu
gaZl 8y ay bzﬂp & 10 ng
By ap ap b & 0 1 %[

At the end, the last column is the solution of the given system; the original matrix A is
transformed into the identity matrix.

Solving m simultaneous linear systems

éa; a, agl égX, X,u éy b, byu
AX=B b gam Az a233>§)(21x22"'x2m3=621 bzz---meE
By By Apf B Xp Xnl 80 by, by{

The complete matrix (3 x 3+m) is:

éail a, a; by b, blmu
ga21 8y 8y by bzz---meHp
B A A Dy by by

0 0 X3%, XU

a
1 0 Xy Xy Xomy)

e

0 1 XX XuBl

TP P

At the end, the solutions of the m system are found in the last m columns of the complete
matrix

Inverse matrix computing

This problem is similar to the one above, except that the matrix B is the identity matrix. In
fact, by definition:

AxAl=|
AX=|1 U X=A!?

7

éa; &y Al Xy X, X3l (;:‘1 0 0@
AX=1 P g8y 8y ay u’égle Xp Xy = 0 1 0f
s a; aApf 8%, X Xl &0 0 1

The complete (3 x 6) matrix is:

12



é 647 48U
é, a, a; 1 0 Ou gl 0 0% X )(].33
gaZI 8, a; 0 1 03:§0 10 X X Xzslgl
By 3 3 0018 D 01X X X
é u

At the end, the inverse matrix is found in the 3 last columns of the complete matrix
Determinant computing

For this problem we need only reduce the given matrix to the triangular form.

éa; ap azu  dy fp tu

_ € u e u
A=gn 3y augP 50 1, tyg
85 a4, agf 80 0 tuy

after which the determinant can be computed readily as
Det(A) =ty >ty >ty

Linear independence checking

A linearly independent set of vectors S = {vi, V,...vy} is this in which no vector is a
combination of the others. Gauss algorithm can evidence how many linear dependent
vectors there are in a given set. For that simply perform the triangularization of the matrix in
which the columns are the vectors of the set.

?119 ?12 0 ?’13 0 ?14 ol &y Vi Vi V14l;| Uy Wy Uy Uy
: : : : 4

&Vor+ GV + CVaz + CVas & Va2 Vo3 Vo O wy Uy

&y, *0, TG ¥C, P g a P 00 u, u
Var o &3z o Va3 ZVa 4 & Vap Va3 Vg i i My

g%.l 3&Var @ §V43 '] §V44 23] &n Va2 Vi Vul o0 0 0

The number of zero rows at the bottom of the triangularized matrix coincides with the linearly
dependent vectors: i.e., one zero row, one dependent vector; two zero rows, two dependent
vectors, and so on. Of course, no zero row means that the columns of the matrix form a
linearly independent set.

13



Non-singular Linear system

The function SysLin finds the solution of a non-singular linear system using the Gauss-Jordan
algorithm with full pivoting strategy.

Example: solve the following matrix equation
Ax=b Q)
The solution is
x=A"b )]
You can get the numerical solution in two different ways. The first is the direct application of the
formula (2); the second is the resolution of the simultaneous linear system (1)
Example: Find the solution of the linear system having the following A (6 x6) and b (6 x 1)

-10 93 6.7 5 -47 0 47.7
-0.5 -28 1 7 0 0 -20.5
0 0 1 8 35 -47 -3
45 0 -13 3 -23 -59 -47
65 0.1 3 32 0 0 100.1
-7 4 -1.5 -1 0 4.9 -0.6

We solve this linear system with both methods: by using Excel's MINVERSE and our SysLin
function. In both cases we find the unitary solution (1, 1, 1, 1, 1, 1) (Note that the algebraic
sum of terms in each row is equal to the corresponding constant term b)

A, B G D E F ] H I

1 Linear System Ax=Db b X A'b

2 -10 93 6.7 = -47 0 477 1.0000000000000000 | 1.0000000000000000
3 -0.5 -25 1 7 a 0 -20.5 | 1.0000000000000000( 1.0000000000000000
4 0 0 1 g 33 -47 -3 1.0000000000000000 | 1.0000000000000000
5 45 0 -13 3 =23 -59 -47 1.0000000000000000 | 0.9999999595999950
G 65 04 3 32 a 0 1001 | 1.0000000000000000( 1.0000000000000000
7 -7 4 -1.5 -1 1 449 -0.6 1.0000000000000000 | 1 .0000000000000000
8

=)

|{=SYSLIN(A2:FT,G2:GT)} I |{=MMULT(MINVERSE(AE:FT),GE:GT)I

Note also that the methods give similar - but not equal - results, because their algorithms are
different. In this case both solutions are very accurate (»1E-15) but this is not always true.

Round-off errors
Sometimes, the round-off errors decrease the obtainable maximum accuracy
Look at the following system:

-151 386 -78 -4 234 387
-76 194 -39 -2 117 194
-299994 599988 3 -2 299994 599989
2 -4 0 2 0 0
-100000 200000 0 0 100001 200001

The exact solution is, again, the unitary solution (1, 1, 1, 1, 1, 1).
In order to measure the error, we use the following formula

=ABS(X-ROUND(x, 0)) where x is one approximate solution value

14



The total error is calculated with

=AVERAGE(H2:H6) total error for SysLin function
=AVERAGE(J2:J6) total error for MINVERSE function

A B [ ] E F (5 H | J
1 A b * (SYSLINY err x {MINVERSE) err
2| s 386 78 -4 234 387 0.999999999990755 | 9.21E-12( 1.000000000000000 0
3 76 194 -39 -2 17 194 0.999999999995393| 4.6E-12( 1.000000000000000 0
4 | -239994 | 599935 3 -2 | 299994 | 599953 | 0.999999999995034 | 4.97E-12| 0.999999999941792| 5.82E-11
5 2 -4 0 2 o o 1.000000000000010 | 1.09E-14( 1.000000000000000| 3 55E-15
6 | -100000 | 200000 0 1] 100001 | 200001 | 0.999999999999533( 1.1E-14( 1.000000000000040| 3.95E6-14
7 3.7EE-12 1.17E-11
g |{=SYSL|N[A2;F?IGQ;G?H l |{=MMULT(MINVERSE[A2:F?),GE:G?)}I
e

As we can see the total errors of these solutions are more than a thousand times greater
that that in the previous example.

Sometimes, round-off errors are so large that they can give totally wrong results. Look at this
example.

3877457 -3 -347 -691789 3877457 387
_ -3773001 0 34 46 -3773001 194
A= -286314 1 0 -2 -286314 599989
-377465 -12 6 4 -377465 0
-1 0 -6 0 -1 200001

As we can easily see by inspection, the matrix is singular because the first and last columns
are equal. So there is no solution for this system. But if you try to solve this system with the
MINVERSE function you will get a totally different (and clearly wrong) result. This error is
particularly sneaky because, if we try to compute the determinant, we also get a wrong, non-
zero result

MDETERM(A) = -0.0082

As the algorithms used by Excel and Matrix.xla are not equal, we can compute an alternative
solution with SysLin and the determinant with MDet . In this case, the full pivot strategy of
Gauss-Jordan is used, and gives us the right answer.

A B C D E F 5 H

1 A b ® (SYSLIH} | x (MINVERSE)
2 | 3877457 -3 -347 -691789 | 3877457 | 385319 ? -2 TTEE2E+G
3 | -3FTIo0e 0 34 46 -3773001 | -37F29E2 ? -1 10853903
4 | 286314 1 0 -2 -286314 | -286315 ? 0152519853
5 | -3774ES 12 6 4 S37T46S | -3T7444 ? 1.0003915
5] -1 1] -5 1] -1 -5 7 2 TTEEZE+16
7

8 -0.0082097 |=MDETERM(A2:ER)

9 0|=mMDetA2.ER

Full pivoting or partial pivoting?
The full-pivoting strategy reduces the round-off errors, so we might expect that its accuracy
is greater than with a partial-pivoting method. But this is not always true. Sometimes it can

15



happen that the full strategy gives an error similar to or even greater than the one obtained
by the partial strategy.

In Matrix.xla we can perform the partial Gauss-Jordan algorithm using the didactic function
GJstep.

Example: Solve the following linear system. The matrix is the inverse of the 6x6 Tartaglia
matrix. The exact system solution is the vector [1, 2, 3, 4, 5, 6]

6 -15 20 -15 6 -1 0

-15 55 -85 69 -29 5 1

A= 20 -85 146 -127 56 -10 0
-15 69 -127 117 -54 10 0

6 -29 56 -54 26 -5 0

-1 5 -10 10 -5 1 0

Let's see how both algorithms - full and partial pivoting - work®.

AlB|lc|D|]E|F]| G H | | J K

A X (full-pivot) err X {partial-pivot) err
5] -15 20 -15 [ -1 1.00000000000001 | §.7E-15 1.00000000000006 GE-14
-15 25 -85 (1] -29 5 2.00000000000003  2.9E-14 2.00000000000020 2E-13
20 -85 146 | 127 56 -10 3.0000000000000%  7.EE-14  3.00000000000045 4 .5E-13
-13 59 127 117 -54 10 4.00000000000017 . 1.7E-153  4.00000000000056  &.6E-13
5] -29 a6 -54 26 -5 5.00000000000036  36E-13 0 5.00000000000145| 1.5E-12
-1 5 -0 10 -5 1 6.00000000000066  66E-13 0 6.00000000000232 2.3E-12
22E13 8.9E-13

-

o o o O = O

[ Y N IR S T T

As we can see, in that problem, partial pivoting is somewhat more accurate than full
pivoting. Why, then, complicate the algorithm with full pivoting? The reason is that the
Gauss-Jordan method, with full pivoting, is generally more stable for a large variety of
matrices. Moreover, its round-off error control is more efficient. And the frequency of
catastrophic mistakes, such as in the earlier comparison of MINVERSE and SysLin, is
greatly reduced with a full-pivoting strategy.

Look at this example: Solve the following system

1 -3 -9 1 38800000012 38800000000

7 1 12300000045 1 0 12300000052
A= 0 1 0 2 2 1

23 12 6 4 1 22

2 0 6 0 1 5

Solving with the Gauss-Jordan algorithm with either partial or full pivoting we note in this
case a loss of accuracy of more than thousand times for partial pivoting.

® Note that, in these problems, we have not inserted the results given by Excel's MINVERSE function, because we will ignore
that algorithm: in a long series of testes, we have found that its results resemble those obtained by a partially pivoting
algorithm).
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A B C ] E F
1 A b
2 1 -3 -9 -1 38800000012 | 38800000000
] 7 -1 12300000045 1 1] 12300000052
4 0 1 0 iy 2 1
5 23 -2 G 4 1 22
B 2 1] -G 1] -1 -5
7
B | partial pivot error full pivot error
9 | 10000019073 1.91E-06 1.0000000000  2.22E-16
10 | 1.0000019073  1.91E-08 1.0000000000  7.F7E-16
11 | 1.0000000000  &5.55E-16 10000000000 0.00E+00
12 | 1.0000000000  0.00E-+00 1.0000000000 0  5.55E-16
13 | 1.0000000000  0.00E-+00 1.0000000000 1 0.00E+00
14 7 .B3E-07 3.11E-16

We can observe that, in general, partial pivoting becomes inefficient for matrices that have
large values in their right side. In that case, the round-off errors grow sharply. Full pivoting
avoids this rare - but heavy - loss of accuracy.

Solution stability

Sometimes, coefficients of a linear system cannot be known exactly. Often, they derive from
experimental results, and can therefore be affected by experimental errors. We are
interested in investigating how the system solution changes with such errors. Many
important studies have demonstrated that the solution behavior depends on the matrix of
system coefficients. Some matrices tend to amplify the errors of the coefficients or the
constant terms, so the solution will be very different from that of the "exact" system. When
this happens we call it an "ill-conditioned" or "unstable" linear system.

Example: show that the following linear system, with the Wilson matrix, is very unstable

110x + 7%, +8%;, + 7%, =32 o y i
1 7%, +5Xx, +6x, +5x, = 23 5 »
£8x, +6x, +10x, +9x, =33 6 10 9 33

5 9 10 31

§ 7%, +5x, +9x, +10x, =31

The solution of the exact system is x = (1,1,1,1). Now give some perturbations to the
constant terms. For simplicity we give

b'=b + Db with b = 0.1

The solution of the perturbed system is how

AX' =b' X' =X + Dx

Defining the system sensitivity coefficient as
S= (Dx %) /(Db %)= (IDx|/|x[|)/(IDo|/|b])

We find S @400.
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A B (¥ ] E F (] H
1 | System perturbation  =SysLin(22D5E2ES) | |{=SvsLin(A2:D5,E2:E5)}I
% Wilzon matrix {=E5:E8+G11}|
4 A{4x4) b X 1} X /
5 10 7 g 7 32 1 32.1 0.2
E 7 5 B 5 23 1 231 3
7 8 B 10 a 3 1 331 05
B 7 5 10 3 1 311 13
9
10 detipyd 1| Ab | Ax | Ab%  Ax% S
11 [ o4 | 13136 | 047% | 6% | 342 |

12
13 | =hAbaHYHT)-MAhaF3FE) I/’

14
15 | D11 mansEsEs)  [{=E11/MAks(FSFE)

| |=G11.l'F11 I

Even worse stability is found in the following linear system

117 85 127 118 447
97 70 103 97 367
A= 74 53 71 64 262
62 45 65 59 231

A B C D

E F €} H

1 System perturbation

% Wilzon matrix

4 A{dx4) 1] X 13 e

o 117 g5 127 118 447 1 447 1 305
5] a7 7o 103 a7 367 1 3669 -504 4
7 74 a3 71 G4 252 1 2621 1339
a = 45 E5 =8 231 1 23089 -79.4
9

10 |det{A) Ab AX Ab% | AX% s

07,6539 | 0.015% | 30383% | 2052807 |

EE [ o1
1]

A high value of S means
high instability. In fact in
this system, for a small
perturbation of about
0.2% of the constant
terms, we have the
solution

-0.2,3,05,1.3

, Which is completely
different from the exact
one,

1,1,1,1
Note that Det =1

For a very small
perturbation of
about 0.01% of the
constant term, the
system solution
values are moved
far away from the
point

(1,1,1,1)

Note the very high sensitivity coefficient S of this problem, and the wide spread of the

solution point, even for very small perturbations.

Note also that, in both problems, the determinant was unitary (Det = 1). So we cannot

discover the instability simply by considering the determinant.
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The Condition Number

One popular measure of instability matrix uses its eigenvalues
Sl = || |ma></|| |min

But, unfortunately, eigenvalues are not very easy to compute

A more practical index is based on the singular value decomposition (see the SVDD )
function). Extracting the largest and smallest singular values of the diagonal matrix D we
define the measure of instability, commonly called the condition number, as:

K= d max/d min

For the above matrix the eigenvalues are | | = | 323.98| -5.72328| -l.256573| 0.000429

So we have:

S| =324.0/0.000429 @754861

while the SVD gives 340.9215 0 0 0
0 7.879412 0 0

k = 340.9/0.000308 @1106504 0 0 1.208233 0
0 0 0 0.000308

It is also possible to compute directly the condition number with MCond and MpCond
functions

Apart theory, the condition number has a useful, practical meaning: in system solving, it
indicates how many significant digits will be lost. See this example
Taking the last Wilson system, we perturb the vector b with a small random error:

b'=b(@+e:R) where e=1E-12 and R is a uniform random variable between 0 and 1.

For each set of b values, we register the average error of the solution obtained with the
formula x = Ah

Alesl e | D] EJ]F] 6 | H [ 1 ]

1 A b Ab% X A X%
2 17 &5 127 118 447 | 88E-13 | 1000000329 | 3.3E-07
3| 97 70 103 a7 367 | 11E-13 | 09999399453 | 5.5E-07
A T4 53 71 [ 262 | 85E-13 | 1.000000144 | 1.4E-07

] 52 45 5 £9 231 | 276413 | 0999999913 | 8.7E-08

5
F-_'_ B = | -5.044_|=Mpchd(Az:DSJ

As we can see the average error of x is
about 1E-7, just 6 digits less then the LE-1 b %
precision of the b vector. TR ——x %
The precision leakage roughly corresponds (E.05

to the decimal log of condition number .
pk = -logio(k) @ 6 1E-03 ; i P
1E-1

1E-12 * * +
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Complex systems

Complex systems are very common in applied science. Matrix.xla has a dedicated function
SysLinC to solve them.
We shall learn how it works with a practical example from Network theory.

Example - Analysis of a lattice network. For all nodes, find the voltages and phase angles,
at the frequencies: f = 10, 50, 100, and 400 Hz.

R R2 R3 Components values

R1=100 W Cl=15nF

R2 =120 W Cl=22nF
TCl T°2 T& R2=120 W Cl=22nF
* ! ! G=25sin(2pft)

We use the notation v(t) =Vsinwt+q) U V =Vel! =V_+jV,
The Nodal Analysis provides the solution through the following complex matrix equation

[Y]v =1 (1)

where the real matricies G and B are called conductance and susceptance respectively;
they form the complex admittance matrix Y. These matrices depend on the angular
frequencyw=2pf

Using the worksheet, the problem can be solved by calculating, first of all, the frequency w,
the two real matrices G and B, and the input current vector. Then, we build the complex
system (1).

A B [ D E F ] H | J K
1 |Lattice Network Analysis
2 |Components conductance matrix susceptance matrix currents
3 R 100 | okm 001833 | -0.0083 0 3.8E-03 0 0 0025 0
4 R2 120 | obhm -0.0083 | 001667 | -0.0033 0 5.5E-03 0 0 0
5 |R3 120 | obhm I -0.0033 | 0.00533 0 0 5.5E-03 0 0
B |1 1 5E-06 F
§ocz 22E-06 F Hode voltages Module | phase
a8 |C3 22E-06 F vl = 1.39368 -0.658 154122 253
9 |G 25 vl = 0.36373 -08172 089452 -66.0
10 |f 400 Hz w3 = -01239 0735 074537 -996
11 |t 2513274 radiz {=8SysLinC(D3:048, J3: K80}

SysLinC provides the vector solution in complex form; to convert it into magnitude (modulo)
and phase we have used the formulas

img

V=V )P +(V. ) ,DV:ataEV
VI= v+ ) e

Note that we have added an imaginary column to the current vector, even though the input
currents are purely real quantities. Complex matrices and complex vectors must be always
be specified with both their real and imaginary parts. Consequently they must always have
an even numbers of columns.

In the above example there are many Excel formulas that we couldn't shown for clarity. To
more fully explain the example, copy the following formulas (in blue) in your worksheet.
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Al B G ] E F B} H I J K
1 |Lattice Network Analysis
2 |Components conductance matrix susceptance matrix currents
3 R 100 obm | =1/83+184 =-1/B4 0 =B11*B6 I a =B983 0
4 Rz 120 | okm =-1/B4 =1/B4+1/85 =-1/85 0 =B11*B7 a I 0
o R3 120 | okm 0 =-1/B5 =1/85 0 I =B11*B5 I 0
B |C1 1.5E-06 F
72 22E-06 F Hode voltages Modulo phase
8 |C3 2.2E-06F vl = =mAbs(ESFE) =ATAMZ(ES Fa=50RI0)
9 | 25 v2=  [I=SyslinC{D3U5J3KE =MabsESFS =ATAMED FI* 80P
10 | 400 |Hz w3 = =mAbsETDF10) =ATAMNZ(E10,F100*1 3010
11 2513.3 radfs

See also the function MAdm for admittance matrix.

Example - Solve the following complex system

1@+ jV2) x+(@1- jV2) y- z=-1+]
?- V2x+y+(2- j)z=+2-2

'T"x+y+z=\@—1- ]

The system is equivalent to the following complex matrix equation

7

D:D> D ('D)Q

+jiV2 1- V2 -1 Uexy é -1+
V21 (2 pdi=g Ve
1 1 1 Uezg a2-1

! N —

[eoxYen Y ey e

With the SysLinC function it is simple to find the solution of such a complex matrix system.
We have only to separate the real and imaginary parts.

A, B G ] E F G H JK L
1 |Complex matrix Constant solution
2 1 1 -1 14142 | 1414 I -1 1 14142 | -2E-16 |
3 | 1414 1 1.4142 0 0 1 -0.586 ] 1E-16 -1 ’
4 1 1 1 0 0 I 24142 1 -1E-16
5
5 {=SBysLinCiaZ Fa4 HZ: 140}
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About the complex matrix format

Matrix.xla supports 3 different complex matrix formats: 1) split, 2) interlaced, 3) string

1) Split format 2) Interlaced format 3) String format
112010113 1 012 1108 3 1 2| 3
131102 013 271 A1 R
o1 4j0(-2(0 o 0|1 214 0 0 |-1-2i| 4

Each format has its advantages and drawbacks.

In the split format the complex matrix [ Z ] is split into two separate matrices: the first one
contains the real values, and the second the imaginary values. This is the default format

In the interlaced format, each complex value is written in two adjacent cells, so that a single
matrix element occupies two cells. The number of columns is the same as in the first format,
but the values are interlaced: one real column is followed by an imaginary column and so on.
This format is useful when elements are returned by complex functions as, e.g, by the
Xnumbers.xla add-in

The last format is the well known “complex rectangular format”. Each element is written as a
string "a+ib" so that a square matrix is still square. It appears to be the most compact and
intuitive format, but this is true only for integer values. For long decimal values the matrix
elements become illegible. We should also point out that the elements, being strings, cannot
be formated as other Excel numbers, or even used in subsequent computations without
conversion from text strings to numbers.
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Determinant

In contrast to the solution of linear system, the matrix determinant changes with the reduction
operations of the Gauss-Jordan algorithm. In fact the final reduced matrix is the identity matrix
that has always determinant = 1. But the determinant of the original matrix can be computed with
the following simple rules

When we multiply a matrix row by a number k, the determinant must be
multiplied by the same number

When we exchange two rows, the determinant changes its sign but
retains its magnitude

Gaussian elimination
With these simple rules it is easy to calculate the matrix determinant. It is sufficient to track of all
pivot multiplications and rows swappings performed during the Gauss-Jordan process

There also another rule, useful to reduce the computing effort.

A triangular matrix and a diagonal matrix with the same diagonal have
the same determinant

So, in order to compute the determinant, we can reduce the given matrix to a triangular matrix
instead of a diagonal one, saving half of the computation effort. This is called the Gauss algorithm
or Gaussian elimination.

The determinant of a diagonal matrix is the product of all elements

&, 0 Ou
det(A) =detg0 @, 0 =358, 8y
80 0 auf

The determinant of a triangular matrix is the product of all elements

é,; a, asu
det(A)=deth ax azlgzaﬂxazzxaes
g0 0 auf
And:
@, 0 0
det(A) = detgazl a, 0 H: 8y 9,5, A3
B & gl

The example below shows how to compute, step by step, the determinant with the Gauss
algorithm

Det(A) = ?

4 1 0 ‘
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R2=R1+2*R2 (* 9)
4 1 o p © The formula
Al= 0 -3 2 R Det(Al) = 2 Det(A) R2 =R1 + 2*R2
1 2 is a compact way for describing the
following operations:
1) Multiply the 2™ row for 2.
o I R3 =R1 + (- 4)*R3 2) Add the 2™ row and the 1% row
3) substitute th It to the 2"
A2= 0 3 2 Det(A2) = -8 Det(A) ) substitute the result to the 2™ row
0 -4
0
A3= 0 9 -8 KKswap Det(A3) = 8 Det(A)
0 -3 2 [Kswap
4 1 0 R3=R2 + 3*R3
Ad4= 0 9 8 N1 Det(A4) = 24 Det(A)
0 2
0 Det(A4) = 24 Det(A)
Ad= 0 9 -8 Det(A4) = 4*9*(-2) = -72
0 2

The final matrix A4 is triangular. So its determinant is readily computed as -72
But it is also:

Det(A4) = 24 Det(A)
Substituting, we have:

-72 = 24 Det(A) P Det(A)=-24/72=-3

Ill-conditioned matrix

Of course there are functions such as MDet in Matrix.xla and MDETERM in Excel to compute
the determinant of any square matrix. Both are very fast and efficient, covering most cases. But,
sometimes, they can fail because of the round-off error introduced by the finite precision of the
computer. It usually happens for large matrices but, sometimes, even for small matrices. Look at
this example.

Compute the determinant of this simple (3 x 3) matrix

A B C D |
127 507 245 17 507 245
-507 2025 -987 =07 025 957
245 987 553 - r
245 -957 553

1.204E-09 =mDet(B2:04)
-6.865E-10 | =MDETERM{B2:D4)

20| ~d| 3| (M | Cd| B —

Both functions return a very small, but non-zero value, quite different from each other.
If you repeat the calculation with another numerical routine in a 32 bit operating system you
will get similar results.

The given matrix is singular and its determinant is 0. We can easily verify this by hand with
exact fractional numbers, or by using the GJstep function with integer algorithm, as shown
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below.

127 -507 245  |<swap -507 2025 -987  |-127
-507 2025 -987  |<swap 127 -507 245  |-507
245 -987 553 245 -087 553
Det(Al) = -1 Det(A) Det(A2) = 507 Det(A)
-507 2025 987  |-245 -507 2025 -987
0 -126 1134 0 -126 1134 |<swap
245 -987 553 |-507 0 4284 38556  |< swap
Det(A3) = -257049 Det(A) Det(A4) = 257049 Det(A)
-507 2025 -987  |-476 241332 0 -8205288
0 4284 -38556  |225 0 4284 -38556 |1
0 -126 1134 0 -126 1134 |34
Det(A5) = -122355324 Det(A) Det(A6) = -4160081016 Det(A)
241332 0 -8205288 The last row is all zero. This means that
0 4284 -38556 the matrix is singular and its determinant
0 0 0 is zero.
Det(A6)=0 ==> Det(A) = 0

In this case it was easy to analyze the matrix, but for a larger matrix do you know what
would happen? Before one accepts any results - especially for large matrices, one has to
perform some extra tests, such as the singular value decomposition.

Example. Compute the determinant of the following (20 x 20) sparse matrix

0 0 0 0 0 0 0 0 0| 0.7 0] 13 0 o 7.2 0 0 0 0 0

0| -05 0 -4 0 0 0| 5.9 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0 0 0 0| 18] -0.7 0 0 0 0 0| -42 0 0 0 1 0 0 0
0 0 0| 47 0] -8.1 0 0 0 8 0 0 0 0 1 0 0 0 0 0

0 0 0 0 o 49 11 0 0| 10.2 0 0 0 0 0 0 0 0 0
0] -10 0 8.4 0 0 0 0 0 6.7 0 1 0 0 0 0 0 0] 25
0 0 0 0| -25 1 4 8 0 0 0 1 0 0| -96 0 0 0 0

0 0 0| 91 0 0 0 0 ) 0 0 0 1 0 0 0 0 0 0 0
0 0| 85 0 0 0 0| 0.5 0 4 0 1 0| -98 0 0 0 0 0

0| 6.6 0] 41 0 0 0 0 0 0 0 0 1 0 0| -9.6 0 0 0| 33
0 0 0 0 0 0 0 0| 45 0 7.8 0 1 -6 9 0 0| 103 | 6.7 0

0| 32 0 0 0 0| 27 0 7 0 0 0 1 0 0] 51 0 0 0 0

0 0| 64| -86 0 0 0 0 0 0 ol 0 1 3 0 0 0 0 0 0

0 0| -10 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0
0 0 0 0 0 0| 9.1 0 0 o -1.2 0 1 0 0| 82 0 0 0 0

0 o] 1.9 0| -2.7 0 0 0 0 0 8.7 0 1 0 0 0 0 0 0 0

0 0 0| -7.6 0 0 0 0 0 0 0 0 1] 24 0 0 0 0 0 0
-1.1 0 0| 6.3 0 0| 93| -1.6 0 0| -35 0 1 0 0 0 0 0 0 0
0 0 0| 27 0 0 0 0 0 0 0 0 0 0 0| -87| 9.7 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] -09

Select the above matrix and paste it in a worksheet starting from the cell Al. Using the Excel
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MINVERSE we get the determinant of about Det(A) @0.14259

If we try to change one element by a little amount - for example, the element K5 from 10.2 to 10.3
- we get a complete different result Det(A) @ 0.123 . Note that the determinant even changes its
sign. It would be sufficient for suspecting of a large round-off error.

In fact, if we compute the determinant by the function MDet (that uses the Gauss algorithm with
full-pivot) with have the result Det(A) = 0. This means that the matrix is singular.

We can check that result with the SVD algorithm. Using the function SVDD we get the singular
value matrix: the minimum value, less then 1E-15, fully confirms that the matrix is singular.
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Laplace's expansion

Expansion by minors is another technique for computing the determinant of a given square
matrix. Although efficient for small matrices (practically for n = 2, 3), techniques such as Gaussian
elimination are much more efficient when the matrix becomes large. Laplace's expansion
becomes competitive when there are rows or columns with many zeros.

The expansion formula is applied to any row or column of the matrix. The choice is arbitrary. For
example, the expansion along the first row of a 3x3 matrix becomes.

n
o 4+ _
|[AFa (- 1)+ |A1j |a1] =[Anlay- [ A lapt]Ag|ags
i=1
where |A | are the minors, that is the determinant of the sub matrix extracted from the original
matrix eliminating the row i and the column j. The minors are taken with sign + if the sum of (i+)) is
even,; or with the minus sign if (I14}) is odd.

Many authors call the term: (-1)"?|A ;| a cofactor.

Let's see how it works with an example

Example - Calculate the determinant of the given 3x3 8 -4
matrix with the Laplace’s expansion. 1 1 2
2 -3

We use the function MExtract to get the 2x2 minor sub matrix; we use also the INDEX function to
get the a; element

A B C DIE FIGIH I[J KL M N
; ﬁ inde
i ;. ; 23 . pivot I—Slt__f|='NDEHE$A$2:$C$4,F2,GQJ I
E ;,,.,::' o {=MEdract(A2C4F262); |
s 3 3

Completing the worksheet with the other minors and the cofactor terms we have

AlBlCc|/D|IE|/F|IGIH I J]lKILIMIN O P Q
1 A i i i i i i
2842 indeed 1 01 [0 T 21 3]
301 |4]2
41213 ]|-= vt [ 8] [ 4] [ -2]onOExipagzscss 2wz
5
B minod 1 2 [ 1 201
7 332 312 3 li=MEdracttAZC4 2K}
g =SOMMATGE: KD
9 = &2 cofactor | -24] [ -28] [ -10]=(-11"(J2+K2 K4 MDet{JE: KT

Tip. We can use the row (or column) expansion in order to minimize the computing effort. Usually
we choose the row or column with the largest number of zeros (if any).

27



Simultaneous Linear Systems

The function SysLin can give solutions for many linear systems having the same incomplete
coefficient matrix and different constant vectors.

Example: solve the following matrix equation

AX=B @
Where:
1 3 -4 59 -19
A= 2 3 5 1 B = 3 20
2 -1 4 10 58 24
0 -1 1 0 -1 6
The solution is
X=A'B 2)

You can get the numerical solution in two different ways. The first is the direct application of the
formula (2); the second is the resolution of the simultaneous linear system (1)

A B C D E F (] H I J K L il
A{dxd) Bi{d x 2} Solution X Solution X

1 3 -4 9 59 -18 1 3 1 3

2 3 g 1 3 20 2E-14 -2 -2E-14 -2

2 -1 4 10 a8 24 -1 4 -1 4

1] -1 1 0 -1 [ g 0 g -2E-14

MMOLTEMINYERSEr A 2. D51 F 2:G5)} K'|{=SYSLIN(A2:D5,F2:GSJ} I

1w Rt | Y [ S N N

From the point of view of accuracy, both methods are substantially the same; in terms of
efficiency, the second is better, especially for large matrices

Inverse matrix

Simultaneous systems solving is used to find the inverse of a matrix. In fact, if B is the identity
matrix, we have:

AX=| b X=A'l1= At

You have the function MINVERSE in Excel or the function Minv in Matrix.xla to invert a square
matrix.

Example: find the inverse of the 4 x 4 Hilbert matrix 1 12 13 1/4
Hilbert matrices are a known class of ill-conditioned matrices, very | 12 13 1/4 1/5
easy to generate: 1/3 1/4 1/5 1/6

a(i, j) = 1(i+j -1) va  us e 17

The inverse of a Hilbert matrix is always integer. So, if any decimals appear in the result, we can
be sure that they are due to round off errors, and we can consequently estimate the accuracy of
the result. You can easily generate these matrices by hand or with the function MHilbert
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A B C ] E F (] H I J K L fl il
1
5 1 | 1 | 13 | 4 16 | 420 | 240 40 TEA3] BEA2] ZEA1] AEAT
B | 12 | 15 14 | s 420 | 1200 | -2700 1880 BE42) 1EAD| 2E40] 26D
AR-EECEERCEET: 240 | 2700 | Bds0 4300 | 2641 2610 eE-10 -4E-10
8| 14 | s 1m | am 140 1680 4200 2800 e 2E10 4E10 3EAD
E 7
1? |{=MINVERSE(AS.DE)} I/ -ROLND(FEM-F& |

Round-off error

As you can see, Excel hides the round-off error and the result seems to be exact. But this is not
true. In order to show the error without formatting the cells with 10 or more decimals we can use
this simple trick:: extract only the round-off error from each aj value by the following formula:

Error = ROUND(aj, 0) - aj

Applying this method to the above inverse matrix, we see that there are absolute round-off errors
from 1E-13 to 1E-10.

There is another method to estimate the accuracy of the inverse matrix: multiplying the given
matrix by its approximate inverse we get a "near" identity matrix. The off-diagonal values
measure the errors. If we compute the mean of their absolute values we have an estimation of
the round-off error.

A, B & ] E F = H | J b L i

1 Matrix A Matrix A"

2 1 102 113 14 145 106 36 -B30 | 3360 | -7SE0 | TSEO | -2TER
3| 1z 143 174 145 115 1407 630 | 14700  -88200 211680 -2E+05 | 83160
4 | 153 114 115 105 117 148 3360 | -58200 SE4450 AE+05  2E+06 | -BE+0S
5 | 14 145 155 147 118 1/ STSED 21680 -1E+06 | 4E+06 | -4E+06 | 2E+06
B | 15 105 117 18 1M 1M0 7560 | -2E+05 | 2E+06 | -4E+06  4E+06 | -2E+06
7 E 147 115 1/ M0 1M1 S2772 | 83160 | -GE+05 | 2E+05 | -2E+06 G95544
g

9

Matrix A A" |
10 1 4E-12 | 1E-11  1E-10 0 3E-11

1; -EE-14 1 E-11 3E-11 | -1E-10 -1E-11 ‘_//J{zhﬂPde{AE:FT,HE:MT}}I

f=MInv(aZ:F 71} |

-GE-14 4E1Z 1/ 1E-10 BE-11| 1E-11
13| 1E-13 -2E12| TE-12 1| -6E-11 1]
14 0 -2612 2E11) 3E-11 1/-1E-11
15 | -3E-14 ZE12| YE12 0 ] 1

The "diagonalization" accuracy measures the global error due to the following three step:
Global error = Input matrix error + Inversion + multiplication

The first step needs an explanation. Excel can show fractional number as exact as, e.g., 1/3 or
1/7. But, actually, these numbers are always affected by truncation errors of about 1E-15.

Other classes of matrices, such as Tartaglia's matrices, avoid the input truncation errors, because
they are always integer.
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Tartaglia's matrices

Tartaglia's matrices are very useful because they are easy to generate but - this is very important
- the matrix and its inverse are always integer. This comes in handy for measuring round-off
errors.

Tartaglia matrices are defined as

aj=1 forj=1..n (all 1in the first row)
aip=1 fori=1..n (all 1in the first column)

aj= Sjagyj forj=2..n

Here is a 6x6 Tartaglia matrix and its inverse
1 1 1 1 1 1 6 -15 20 -15 6 -1
1 2 3 4 5 6 -15 55 -85 69 -29 5
1 3 6 10 15 21 20 -85 146 -127 56 -10
1 4 10 20 35 56 -15 69 -127 117 -54 10
1 5 15 35 70 126 6 -29 56 -54 26 -5
1 6 21 56 126 252 -1 5 -10 10 -5 1

As we can see, both matrices are integer. Any errors in the inverse matrix must be regarded as a
round-off errors, and are immediately detected.

In the example below we evaluate the global accuracy of the inverse of the 6 x 6 Tartaglia matrix
with two different functions

alelec|p|e|Fle|H| 1t ][s][w]|]L | m[N]o|Pr]|]a|[RrR]|S]|T|
12 Tartaglia's matrix Inverse Tataolia's matrix: f=Mlrm (a3 F et | J/,|=AEISEROUNDEH3,DJ-H3:| I
3 1 1 1 1 1 1 B 15 % a5] & A 0 0 0 0 0 0
4 1 2 ) 4 5 B -15 55 -85 B9 -29 1] 1] 1] 1] 0 i}
5 1 3 =] 10 15 M 200 -85 145 127 56 10 u} u] u} u] u] 0]
5] 1 4 10 20 35 a6 -15 69 127 117 -4 10 1] 1] 1] 1] 0 0
7 1 ) 15 35 00 126 6 -24 56 -54 26 - 1] 1] 1] 1] 0 i}
5] 1 5] 21 56 126 252 -1 5 -0 10 -3 1 o o] o o] u] il
alBlclofeEJFJe[Hlr[J]r[LIm][nN[To[Pr[e[RrR[S][T]
|10 | |{=MINVERSE(A1 ZF17)} I /|=AEIS[ROUND(H1 2 0-H12) I
11
12 1 1 1 1 1 1 5 -15& 20 A5 5 -1 26¢T3] 9E-13[ 1E-12| 2E-12] 8E-13] 2E13
13 1 2 3 4 5 5] -15 55 -85 69 -28 5 8E-13 4E-12 S8E-12 9E12 4E12 SE-13
14 1 3 5] 10 15 21 200 -85 146 127 56 -10 2E-12 S9E12 2BE-11) 2E-11 9E-120 2E-12
15 1 4 10 20 35 56 15 63 127 17 -54 10 2E-12 S9E12 2BE11) 2E11 9E12 2E-12
16 1 5 15 358 0 126 E -29 56 -54 26 -5 9E-13 4E-12 9E-12 8E12 4E12 8E-13
17 1 ] 2 56 126 252 -1 5 10 10 -5 1 JE-13 BE13 2BE12 2E12 8BE13 2E13
17

Excel occasionally compute A even if a matrix is singular. If this happens, your solution will be
wrong.

Let's see this example:

Example: find the inverse of the following matrix

127 -507 245
-507 2025 -987
245 -987 553

As we have seen in a previous example, the given matrix is singular. So, its inverse doesn't exist.
However, if we try to compute the inverse we have the following result
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1 A
2 127 | 507 | 245 S2A2E+14 | 5E1E+13  B.24E+12 -7E-100
3 =507 ) 2025 987 -5 A1E+13 -1 48E+13 -1 BSE+12

4 245 | 987 | 553 B24E+12 1 B5SE+12  -1.83E+11

5

iy |{=MINVERSE(EIE:D4)} | |=MDETERM(E|2:D4)

Tip. You should always examine the determinant before attempting to calculate the inverse. If the
determinant is close to zero, you should try to verify the solution with other methods. For instance,
you can always try to solve the inverse by the function Minv (in this case, with the integere
option), or by GJstep function, or with SVD (see later).

How to avoid decimals
An inverse matrix is not always integer; usually it contains decimals. If the given matrix is integer,
we can obtain the fractional expression of its inverse with this little trick

Example

A, B ¢ |b] E _F | G [H I J K
1 A A’ B= det* A"
2 2 5 -1 00667 | -01167 | -0.2833 4 7 17
3 i 2 3 0z 0.1 0.1 12 £ 5
4 -4 -2 -1 01333 02667 -0.0667 & 16 4
2. 4
? -G0 [=MDETERM A2 C4) |{=M|NVERSE(EED4)} I
a

Note the compact format of matrix multiplication by a scalar {=A6*E2:G4} in the last matrix
instruction

Multiplying the inverse by the determinant we get a matrix B of integer values. Thus, the inverse
can be put in the following fractional form

¢4 7 174
a1 g lé, g gl
det(A) 606 a

68 -16 4§
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Homogeneous and Singular Linear Systems
A linear system
Ax=b

with A an (n x m) matrix and with b = 0 we call a homogeneous linear system. . Such a system

always has the trivial solution x = 0. But we are interested in knowing if the system also has other
solutions.

Assume A is a square matrix of the following system

iX+2y-2z=0

1 - 1 2 -1
- X+4y+5z2=0 1 4 :
1. 2x- 4y+2z=0 2 4 2

We note that the last row can be obtained by multiplying the first row by -2. So, having two rows
that are linearly dependent, the given matrix is singular, with a zero determinant. One of the two
rows can be eliminated; we choose to eliminate the last row, and obtain the following system

One of the three variables can be freely chosen and it can
X+2y-2z=0 be regarded as a new independent variable. Assume, for
- x+4y+5z=0  €xample, z as the independent parameter; the other
variables x, y can then be expressed as function of the
"independent"” parameter z

\I
e
~

i X+2y=2
%- X+4y=-5z

w(~

wihv N

iXx=
i @
Ty=-3%z

The system of linear equations (1) expresses all the solutions of the given system, an infinite
number of them. Geometrically speaking it is a line in the space R®

It can be also be regarded as a linear transformation

garde ! X €0 0 0 éxt
that moves a generic point P(x, y, z) of the space into g ﬂ §0 3205 ﬂ
another point P'(x, y, z) of the subspace. In this case, N 0 - 30780
the subspace is a line, and the dimension of this &zH g) 0 1 H &zH
subspace is R*
If we assume, on the contrary, x as independent
parameter, the other variables y, z can be expressed e, A
as functions of the “independent" parameter x éxa €1 0 Ouexu
That is represented by the linear transformation at the U =€ 2 u.geu
= o a3 S X
. _ o, €z &7 O O ez
!2y—2——x ly=-2x
| :
14y +5z2=X }z=%x

This matrix transformation is useful for finding the parametric form of the linear function (mapping
function)
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Parametric form

The linear transformations of the above example give relations between points in space. A
common form for handling this relation is the parametric form. It is easy to pass from the
transformation matrix to its parametric form

Having the transformation matrix, we

7 \' 4 l N 7 AY i ) ye ~ Ve 1 N
ext & 0 FUEXU  gearch for the variable that has 1 in éxu e jtu
gylil = ‘?0 0 - glﬂxgyk' the diagonal element, z in this case. ?yl,J: € étl,J
e’u e 3u u Setti _ d f . h &'~ é 30
a2 g) 0o 1 l‘fl &zf etting z =t, and performing the &z g t H
G multiplication, we have the parametric

function

Geometrically specking the parametric function is a line with the direction vector: D

Note that \/@ is

< 70 R ] .
r g 33 1 g 73 1 ¢ 0889 3 the norm of the
D=g 3 ey -6 Zu"ﬁ @g— 0.256; first vector

= o 2P +(2 e _u € J

gly (3) +(3) +1 g3 803814

You can study the entire problem with the function SysLinSing of Matrix.xla. Here is an example:

A B C ] E F G H I
15 A B Direction
16| 1 2 -1 i 0 | 23333 0.889
17| - 4 5 0 0 | -0687 -0.254
18| -2 -4 2 0 ] 1 0.351
19
20 0 |-MDETERM(&16:C13) | {=SysLinSing(A 60180 I
%; | =161 6 MALs( 6 G181} I

SysLinSing solves a singular linear system, returning the transformation matrix of the solution, if
one exists. The determinant is calculated only to show that the given matrix is singular. It is not
used in the calculation. SysLinSing automatically detects if a matrix is singular or not. If the matrix
is not singular (Det* 0), the function returns all zeros.

From the transformation matrix we can extract the
direction vector by normalization of the third column
of matrix B. To get the norm of the vector we have
used the function MAbs. Note that both expression
must be inserted as array functions { }

In a 3D space, the function represents a line passing
trough the origin, having for direction the vector D, as
shown in the figure.
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Rank and Subspace

In the above example we have seen that, if the matrix of a homogeneous system is singular, then
there are an infinite number of solutions of the system; those solutions represent a subspace.
After that we have found a solution, and we have seen that the subspace was a line and its
dimension was 1.

Is there a way to know the dimension of the subspace without resolving the system? The answer
is yes, knowing the rank of the matrices. But we have to say that this is easy only for low matrix
dimensions; it becomes very difficult for high matrix dimensions.

The rank of a square matrix is the maximum number of independent rows (or
columns) that we can find in the matrix.

For a 3 x 3 matrix the possible cases are collected in the following table

Independent Rank Linear System Subspace
rows Solution
3 3 0 Null
2 2 y! Line
1 1 ¥ ? Plane

The function MRank of Matrix.xla calculates the rank of a given matrix. In the following example
we calculate the determinant and the rank of three different matrices

A, B c D E F 5 H I J K L
A B C

2 2 -1 1 2 -1 1 2 -1

-1 4 -1 4 -G -12 G
-4 2 -2 -4 2 -2 -4 2

25 [=MDETERM(AZC4) 0 |=MDETERM{EZ:Z4) 0 |=MDETERM(IZkK4)
3 |FMRankiAZIC4) 2 |=MRankiEZ:G4) 1 |=MRankilZ:k4)

A=l M = L b —

Note that the determinant is always 0 when the rank is less then the matrix dimension n.
Solving homogeneous systems with the given matrices, we will generate in a 3D space
respectively the following subspaces: a null space, a line, and a plane.

Let's test the last matrix, solving its homogeneous system.

A, B C ] E F = H | J
15 A B Direction
16 1 2 - 0 2z 1 _0.894] 07071
17 =& 12 & 0 1 0 0.4472 0
18] 2 -4 2 0 0 1 a| 0.7071
19
20 0 |=MDETERM(A16:C15
517 :MRank{;ﬂE:ma; /|{=F1E:F1BIMAbs(F1E:F1B}}(‘/
%% |{:Ev5LinBing|{A1 Bis1aEnt I :{=G1 B:G18S MAbs(G16:G1 B]I}]

Consequently, the transformation matrix has two columns, indicating that the subspace has 2
dimensions, thus is a plane.

In order to get the parametric form of the plane we observe that the transform matrix: variables y
and z have both the diagonal element 1 (a,, = 1, az3 = 1) . These can be assumed to be
independent parameters.
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Lety=tand z = s, then we have

(
& O -2 Wew ey & A+sy
e u _ u.e u e u_e u
@i b % P eite '
gz & O 1gezy ez € s H

Eliminating both parameters we get the normal equations of the plane
X=-2y+z b x+2y-z=0 (2

The linear equation (2) express all the infinite solutions of the given system. Geometrically
speaking it is a plane in the space R®

Rank for a rectangular matrix

Differently form the determinant, the rank can be computed also for a non-square matrix.
Example: find the rank of the following 3 x 5 matrix

A B C D E

1 2 9 10 7 5

; i ; % 3 a1 2 9 10 -7
11 1 2 -1 0 3
12 2 4 -5 -3 q
13

14 | 2 |=MRankid1 GE1Z)
L=

By inspection we see that there are 2 independent rows and 2 independent columns.
In fact, column c2 is obtained multiplying the first column by 2; column c4 = c1 + ¢3; and column
c5= c2- c3.Sotherankis: rank=2

One popular theorem - due to Kronecker - says that if the rank = r , then all the square sub-
matrices (p x p) extracted from the given matrix, having p > r, are all singular

In other words: all 3 x 3 matrices extracted from the matrix in the above example have
determinant = 0. You can enjoy finding yourself all the 10 matrices of 3 dimensions. Here are 5 of
them.

1 2 9 1 9 10 2 9 7 1 2 10 1 9 7
1 2 1 1 1 0 2 -1 3 1 2 0 1 1 3
2 4 5 2 5 3 4 5 9 2 4 3 2 5 9
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General Case - Rouché-Capelli Theorem

Given a linear system of m equations and n unknowns

fa,X tapX, +..+a, =b

| _
T Ay X tayX, to.tay, =D,
?aglxl +a5,X, +...tay, =h, (1)

€8y, Ay e a, U The matrix A is called the coefficient matrix or
é G incomplete matrix
A(mf n) - éa?l a22 """" a'2n u
€ e u
u
ea'ml amZ """ amn fl
@Ay, 8y e a, b u The matrix B is called complete matrix or
é b a augmented matrix
B(m.n+1) = B By e Ay by
........................................ u
< u
@y Ay e a, by

If the column b only contains zeros, the system is called homogeneous
In order to know if the system (1) has solutions, the following, fundamental theorem is useful
ROUCHE-CAPELLI THEOREM :

A linear system has solutions if, and only if, the ranks of matrices A
and B are equal

Thatis: rank(A) =rank(B) U $ x solution

Among ranks, number of equations and number of unknowns exist important relations. The
following table reviews 12 possible cases: 6 for homogeneous systems, and 6 for full system..
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Homogeneous System Cases

4

Rank of
Case incomplete Non homogengous Example
matrix A system solution
Trivial solution 12x+3y=0
1 rank(A)= m =n i S(0,0
®) (0.0,..0) 1x-3y=0 00
- . 2x+3y+z=10 1
_ ¥"" solutions + S[— zZ,—z z](ml soiutions )
2 rank(A)= m <n trivial solution {x— Fy+dz=10 i
+ 5(0,0,0
- . dx+3p+z=0 —dp -z
¥"" solutions + 3[ ¥ z] ot solutions
3 rank(A)< m <n trivial solution {4x+ by + 2z =10 7 e S )
+ 500,009
x—2y=10 1 .
_ ¥"" solutions + { = [23”, J”:'(m solutions )
4 rank(A)y< m =n trivial solution 2x-4y=1
+ 500,00
1X+2y=0
5 | rank@=n<m | TMESOON 13- 2y=0 S(00)
Ix-y=0
x+2y=10
1 )
5 rank(A)<n <m ¥" solutions + 2x+dy=10 &(-2y, y)eo soltions )

trivial solution

3x+ay=10
+ 500,07

* This table, very clear and well-organized, is due to Marcello Pedone
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Non Homogeneous System Cases

Rank of Non
Case incomplete homogeneous Example
matrix A system solution
. 12x+3y =2
1 rank(A)= m =n One solution | S(1,0)
ix-3y=1
2x+dy+z=1 z-1
2 rank(A)=m <n | ¥"" solutions d 5|1-2,=—, z |(co" soiutions )
x-3y+dz=2 i

2r+3p+=z=1 -3y -
l{x (s 3(13# y,zJ(mi solutions

nr i dr+op+iz=12 7
3 rank(A)< m <n ¥ SO|lit|0ns
If r(B)=r(A) 2x+ip+z=1 _
2 incompatibie (A =B
dr +6p+2z=0
ix-2y=1
Do a S(1- 2y, y)(¥ *soluzioni)

n-r .
4 rank(A)< m =n ¥™ solutions

12x-4y=2

se r(B)=r(A ixX-2y=1
EIIA) | ix-2y=1 atibiler(A) " r(B)
12x- 4y =1
r+2r=1
7 13
[3x-2y=10 5'EE;§)
_ One solution dr+dyp=1
5 rank(A)=n <m It 1(B)=r(A)

r+2p=1
D3x -2y =0 Incompatible (A =r(B)

r-p=1

¥ " solutions

6 rank(A)<n <m It 1(B)=r(A)

r+dy=1
Dd2x+dp =2 801 -2y, soluitions)
3x+6F =3

r+2p=1
dx+4p =0

Ix+dp =3

ncornpatithle

r(A) #r(B)
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Triangular Linear Systems

Solving a triangular linear system is simple, and very efficient algorithms exist for this task.
Therefore, many methods try to decompose the full system into one or two triangular systems by
factorization algorithms.

Triangular factorization

Suppose that, for the linear system

Ax=b 1)
you have gotten the following factorization
A=LU 2

where L is lower-triangular and U upper-triangular. That is:

é, a, a; a,u ey 0 0 O u ébll b, by b14lzl
e u ue u
& & A By %21 a, 0 O U 0 b, by b24(|
éa, a, a, a,U @, a, a, O0UE0 0 by byl
e u e ue u
@y Ay Ay A @a Qp A, Auped O 0 bug

In that case, we can split the linear system (1) into two systems:
Ax=b P (LUx=b P L{Ux)=b
Setting: y =U X we can write:
Ly=b (3 Ux=y 4)

The triangular systems (3) and (4) can now be solved with very efficient algorithms

Forward and Backward substitutions

The method proceeds in two steps: at the first, it solves the lower-triangular system (3) with the
forward-substitution algorithm; then, with the vector y used as constant terms, it solves the upper-
triangular system (4) with the back-substitutions algorithm. Both algorithms are very fast.

Let' see how it works
Having the following factorization LU = A, solve the linear system Ax =b

A b L R
6 5 1 19 1 0 0 6 5 1
12 8 6 46 2 2 0 0 1 2
-6 6 5 -3 -1 1 1 0 0 4

In Matrix.xla we can use the function SysLinTthat applies the efficient forward/backward algorithm
to solve triangular systems.

This function has an optional parameter to switch the algorithm to the upper (Typ = "U") or lower
(Typ ="L") triangular matrix. If omitted, the function automatically finds the matrix type
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AlBlc|D|E|JF[G[H]IT[JIK]L The original system is
1 A broken into two triangular
2 B 5 | {=SysLinT(D7:F9,J7:97} | systems
d 128 | B
4 | 6| -6 5 {=SysLinT(A7:C9 HT:HA} _
B L u b \ y X Ly=b
7oA o o |68 |51 19 18 1
B2 2 oo a2 45 4 2 Ux=y
9] 1|1 1 o o4 -3 12 3

We can prove that the vector x = (1, 2, 3) is the solution of the original system Ax=b

LU factorization

This method, based on Crout's factorization algorithm, splits a square matrix into two triangular
matrices. This is a very efficient and popular method to solve linear systems and to invert
matrices. In Matrix.xla this algorithm is performed by the MLU function. This function returns both
factors in an (n x 2n) array.

But there are same things that should be pointed out. We may believe that, once we have the LU
decomposition of A, we can solve as many linear systems as we want, simple changing the
vector b. This is not completely true.

Look at this example..

A b
AXx=b where: 0 5 4 22
2 4 2 16
-8 0 9 -35

If we compute the LU factorization we have:

Al Bl Cc| DI E]JF]G|IH] I ] J]
! A L 0 Note that you must
210 5 to0o o8 08 select (3x6) cells if
3|2 4 0 1 0 5 4 you want to get the
4| -8 0 ] 025 08 1 0 -345 factorization of a
5 (3x3) matrix
5 | [=MLUAZ: C4))

The Crout algorithm has returned the following triangular matrices:

L U
1 0 0 -8 0 -9
-0 1 5 4
-0.25 0.8 1 0 -345

Now solve the system (3) and (4) in order to have the final solution

Ly=b (3 Ux=y (4)
We have

b y=L"b x=U'y

22 22 -16.54348

16 16 -6.608696

-35 423 12.26087

The exact solution of the original system (1) is x = (1, 2, 3), but the LU method has given a
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different result. Why? What's happened?
The fact is that LU algorithm does not give the exact original matrix A, but a new matrix A" that is
a row permutation of the given one. This is due to the partial pivoting strategy of Crout's
algorithm. You simple prove it by multiplying L and U.
So the correct factorization formula is:
A=PLU
where P is a permutation matrix
The process to solve the system is therefore:
b'=P'b (5 Ly=b' (6) Ux=y 7

We have shown that only the information of the two factors L and U insufficient to solve the
general system. We also need the P matrix.

But how can we get the permutation matrix? This matrix is provided by the algorithm itself at the
end of the factorization process. Most LU routines do not give us the permutation matrix, because
formula (5) is applied directly to the vector b passed to the routines. But the concept is
substantially the same: for solving a system with LU factorization we need, in generally, three
matrices P, L, and U.

A | B | C | D E F 1 &G H I The original system is broken
1 P L u into two triangular systems
2 0 1 0 1 0 0 -5 0 -8
3| 0 0 1 -0 1 0 0 5 4 Ax=b
4| 1 a 0 |-02s o0& | 1 a 0 |-345
S b'=P"b
E b b v X '
7= 35 35 1 Ly=b
8| 16 22 22 2 -
9 35 16 04 3 Ux=y
10
1; [(=8ysLinT(D2F4,CT:CO)

13| [i=MMOLTOMT(AZ:CH) AT 220 li=5ysLinT(G2:14,E7:ED)]

The permutation matrix can be obtained by comparing the original A matrix with the matrix
obtained from the product A' = LU. Let' see how.
The base vectors u; , us, Uz are:

6Ly €0y €00
u, = gog , U, = glg , Uy = gog
€0l €0l el

We examine now the matrix rows of the two matrices A' and A.
The row 1 of A' comes from row 3 of A, P pl=u3 A=LU
The row 2 of A' comes fromrow 1 of A, P p2=ul -8
The row 3 of A' comes from row 2 of A, P p3 =u2

IS =1
oo
M OB o
L=
o = o
o bk

So the permutation matrix will be:

€ 1 0
P=(p P, Pg) = (Us 0, U) =0 0 1y
e 0 0y

Clearly this process can be very tedious for larger matrices. Fortunately the permutation matrix is
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supplied by the function MLU as the third, optional part of its output. For a 3x3 matrix you should
therefore select a range of 9 (rather than the usual 6) columns to see the permutation matrix.

MLU(A) returns (L ,U , P)arrays
That gives the decompositon A=PL U

Example - Perform the exact LU decomposition for a 5x5 Tartaglia matrix

A B c/D/E F Gg|H[I]J]K[L][m][N]JO[P]a|R]S]T][U]

1 A L 1] P

B 1 1 1 1 1 o o o o1 5 15 35 70| 0 1 o o 0
3|1 23 4 5 1 1 o o o|o0o 4 14 34 B0 0 0O A1 ]
4 1 3 E 10 15 1 05 1 ] 0 ] o -2 &8 -M(0 0 1 0 ]
5 1 4 10 20 35 1 08 08 1 0 ] 0 o 035 24| 0 0 ] 0 1

6 1 2 15 3 70 1 03 08 -1 1 0 0 0 o - 1 0 0 0 0
g | (=MLUA2: EB))

If we form the matrix product P L U (here the MProd function is useful) we obtain finally the
given original matrix. (Note that the last matrix P must be the first of the matrix product)
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Overdetermined Linear System

If the matrix has more rows than columns, then the linear system is said to be
overdetermined. Often in an overdetermined system, there is no solution x that satisfies all
the rows exactly, but there are solutions x such that the residual

r=A:x-b

is a vector of "small values" that are within working accuracy.
The solution x minimizing the norm of the residual vector

I =y&, o =r'r

is the least squares solution of the linear system. In this case the system has a unique
solution specified by the least squares criterion.

Example. Solve the following linear system with the least squares criterion

2% +4x, =35 62 4 00 &350
T _ é a., ~ é,l
{X1+2X2+X3 —18 él 2 10?)(13 §18|;|
.|'-X1+X2-2X3:'8 g‘l l '23@292283
.:.3x1+3x3 =26 e3 0 38l &2y
§5X, - X =33 g5 0 -1f 833

The normal equation
One way to resolve the given linear system is by transforming the rectangular system matrix
into a square matrix using the so called normal equation transformation.

Axx=b b ATAx=A"» b Bxx=c

The normal matrix B = AT A is square and symmetric. So the last system can be resolved
with the usual methods (B?, LR, LL, Gauss, etc.). The solution of the normal system is also
the least squares solution of the overdetermined system

é2 4 0u é35(
@ 1 -1 3 5u§1 2 19 @0 9 7y € 1 -1 3 5089 sy
B:§4 2 10 O 1 -23:e9 21 Ou A4 2 1 0 0 >«e—8u gegu
80 -2 3 19 g3 0 3y &7 0159 @1-23 1|9|26u g79¢
g5 0 -1f £33
Al B | c|Dp|E|F[]G|H] I ]|J]|K,I
| 1 |Dwverdetermined system tarmal system
2 |A(5%3) b B3 x 3] c
13| 2 4 D 35 40 g 7 339
4| 1 2 1 15 g 21 i 168
15| - 1 2 -5 7 D 15 79
(6] 3 | o xw | A
7| s 0 1 35 |{=MMULT(TRANSPOSE(A3:u::?), AS:C?}‘} |
8 [{(=MMULT(TRANSPOSE(A3:CT), EXET)} |
a

Solving the normal system we find the solution [x; = 7, X, =5, X3 = 2]

The residual vector can be easily computed as
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Ale el |E|F |6 |HI[I]|J[K]
1 |Overdetermined system  [(=MMULT(AZ:C7, GI.GE)}EZET} | [=MAbs(I37) |
2 |aExd b % ¢ F
&3] 2 4 0 35 7 - [2sasl
4| 1 2 1 18 5 1
5| A 1 -2 . 2 2
B | 3 ] 3 2 1
7| = o - 33 0

Note that only the last equation is exactly satisfied ( residual zero).

Remark. Many books warm us of using the normal equation for solving these problems.
They point out that, generally, the transformed system is worse conditioned than the original
system and so the numerical solution may be error prone. This is conceptually true in
general. But we should not emphasize this aspect too much. We have seen that, for systems
of low-to-moderate size this method gives reasonably good solution accuracy. This method
is also quick and easy to apply. Another advantage of this method is that the transformed
matrix is symmetric positive definite, and thus we can adopt several efficient algorithms (e.g.
Cholesky decomposition) to solve the system. Last but not least, if the original matrix is
integer, the normal matrix is still integer.

QR decomposition

Another way to resolve a rectangular linear system is performing the QR factorization of the
matrix system. As know, the QR factorization can be applied also to a rectangular matrix.
The transformation is:

Axx=b P QXRx=b P Rx=Q P Rx=Q"*
Remember that R is triangular and Q is orthogonal and unitaryso Q' =Q"

The given rectangular linear system is transformed into a triangular linear system that can be
solved efficiently with the back-substitution algorithm. Let's see.

L | B | ¢ | D | E | F | & | H ] U | 4| K | L | M |
1 A5 3) Q5x3) R(3x3) b QT
2 2 4 0 0316 0815 0015 6325 1423 1107 35| 53601
3 1 2 1 0158 0407 0263 0 4356 -0.362 18[ 21.057
4 -1 1 2 -0158 0281 -0.467 0 0 36394 -3 73876
s 3 i 3 0474 -0155 0635 0 0 0 26
3 s ] 1 0791 -0.258 -0.533 0 0 0 33
7
] |{=MGR(A2:CEJ} [/|{=MMULT(TRANSPOSE(E2:GEJ,Lz:uaj} |

Now the (3 x 3) triangular linear system can easily be solved

| o | | a | R | 8 | T |70 Note that we have only used the first 3
R(3x3) b rows of the R matrix returned by the QR
5-323 1;32 1.;.'132; 313321? ; factorization algorithm in order to set the
0 0 3694 7 3476 5 (3 x 3) system matrix.

e
|{=SysLinT{02:Q4,52:54)} |

This method is in general more accurate and stable than the normal equation for solving large
linear systems. On the other hand, the QR method requires - for m >> n - about twice as much
work as the normal equation. We note also that integer values are never conserved by the QR
factorization
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SVD and the pseudo-inverse matrix
The most general way for solving an overdetermined linear system is

Axx=b b x=A"

The matrix A" is called the "pseudo-inverse" of A and, for a square matrix, coincides with the
inverse A™. The pseudo-inverse always exists, whether or not matrix is square or has full rank.
For a rectangular matrix A(n x m), it is defined as

A" =(ATA)'AT

We note that the normal matrix (A" A) appears in this definition
We can avoid computing the normal matrix directly by using the singular value decomposition

Axx=b P UDV'x=b

where, setting p = min(n, m), U is a (n x p) orthogonal® matrix, V is an (m x p) orthogonal matrix
and D is a (p x p) diagonal matrix. For semplicity assume here n > m. In that case D and V are
both square with dimension (m x m).

Multiplying both sides by U™ and remembering that: UT U =1 , we have.

U'UDV'x=U'b P DV'x=U"b
The matrix DV is square so, taking its inverse, we have.
DV'x=U"b b x=DVT)'Ub b x=(V')'D'Ub
Because V' =V !, we have finally:
x=VD'U'b P x=A"D
Therefore, the pseudo-inverse can be computed by the following stable formula
A"=V DU

In Matrix.xla this computation is performed by the function MPseudoinv

ale|lc|lolE | Fl e | H]T 1T | 4] KL |mM
1 A0S %3 b A (3 x5 X
2 2] 4] 0 35 0009 001 -002 0048 0166 7
3 201 13 0187 0093 0054 -002 -0.07 5
4| - 1 -2 -8 A 0 0071 -013 0477 -0414 2

-

% g g 13 gg [=MPseudoinvip2:CE} | ;
i |{=r-.-1ru1LILT(G2:K4,E2:EEj}
&

Note that the pseudo-inverse of a (5 x 3) matrix is a (3 x 5) matrix. The solution is the product of
the pseudo-inverse and the vector b

® The terms orthogonal here implies the concept of column-orthogonal: A matrix A (n x m), with n = m, having all
its columns mutually orthogonal is called column-orthogonal matrix.
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Underdetermined Linear System

If the matrix has less rows than columns, then the
linear system is said to be underdetermined.

If the rank of the incomplete and the complete
matrix is equal then there are infinite solutions x

o
@, a, a; a, algn; QU
L By A By agsu*exgu—goz“

> ('Eé,m)

B, A A & Al ex4u &.4
éxf

In that case the matrix equations AXx =0 or A x=Db define an implicit Linear Function -
also called Linear Transformation - between the vector spaces, that can be put in the
following explicit form

that satisfie the given system

y=Cx+d (1)

where C is the transformation matrix and d is the known vector; C is a square matrix having
the same columns of A, and d the same dimension of b

Example. Find the solutions (if any) of the following (2 x 3) system
1X+X+X% =3
i
1% 4% =1

The given rectangular system can be conceptually transformed into a square singular system
simply adding a zero row (for example, at the bottom)

éx, 0 6l 1 10éxu &0

ell luog g _&u 8 ab, G_8&u
§X2u &l il 0 - 4pgegT gy

€@ 0 0fecH &4

The rank of this system is 2, therefore there are infinite solution that can be put in the form (1)
The solutions, in that case, can be easily find by hand or by SysLinSing

AlBlc|D|E[F[G|H]I]J]K]
1 2x3 C d
2 1 1 3 o 0 4 |1
3 1 4 1 o o -5 2
Fa o0 1 @
5 | [ {=SysLinSing(B2:03 F2F3)}

—

Note that is not necessary to add the zero row because the function automatically does it.
The solutions can be written, after the substitution x; = t, as:

éy,u & 0 4uexlu élu iy, =4+l
é L'J_“ a u o I, __
gy EI g) 0 1H@tl?] @H 1Y =t

Note that the parametric form is not unique: substituting, for example the expression xs = (t - 1)/4,
we get another parametric form representing the same subspace.

Example. Find the solutions (if any) of the following (3 x 4) system
1% +2%, +3%,+3%X, =4
}2)(1+4x2+x3+3x4 =5
13x +6x, +x, +4x, =7
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The rank r of the matrix A and the augmented matrix [A, b] are equal

AlBIC|D|E[F[G|H]| I ]|J]
1 b
2 1 2. 3] 4 2 |=MRank(A2:D4)
3| 2 1 3| s
E 1 4] 7] [ 2 [=MRankia2:E4)
oy

Therefore the system has surely infinite solutions. The matrix [C, d] returned by SysLinSing is

AlBICIDIEIF[G|[H] I TJ]IK]IL][M]N]
14| A b C d
15| 1 2] 2] 3 4 o 2 0 -] 2
16| 204 1 73 5 o 1 0 0
17 3 6 1 4 7 o o o -1 1
18] o o0 o0 0 0 0 0 o0 1 0
19
20| | {=SysLinSing(B15:E18,615:618)) |

that can be written in parametric form, after the substitution x, =t, x4 = s, as:

éy,0 & -2 0 -1uéxu & iy, =-2t-5+2
ey u Gé, u éu . I, _
éyzﬂ:g) 1 0 Ol])ét l:|+g)l:| U %yz_t

G, @ 0 0 -Wegl &l jy=-s

e u e ue_ u eu .

&.0 & 0 0 lgésg &a ty.=s

Note that, as m =4 , r = 2, the subspace generates by the solutions has dimension: m - r = 2; and
therefore there are two parameters in the solution set.

Example. Find the solutions (if any) of the following (3 x 4) system

1% +2x, +3%x; +3%, =4
%2x1+4x2 +X, +3X, =5

}3x1+6x2 +X;+4x, =0

A|lB|C|D|E|F[G|[H] I [J]
A b

2 | =MRank(A2:D4)
3 | =MRank(A2:E4)

1 220 3 4
24 1 i 5
i b 1 4 0O

148 || kD —

This system, apparently very similar to the above one, cannot be solved because the rank r of the
matrix A and the augmented matrix [A, b] are different.
In this case SysLinSing would return "?"

Minimum module solution

As we have seen, an undetermined linear system have generally infinite solutions. We wander if,
among the infinite solutions, there is one having the minimum module. For homogenous systems
this solution surely exists because the trivial solution x = 0 has the minimum module.

The non-homogeneous case is more interesting. Recalling the example

1% % +%, =3
1% 4% =1
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we have found in a previous example that all its solutions can be represented by the following
parametric equation.

x=[4t-1,-5t+2,t]
Computing the square module of x:
X" = X2 +x2 + X2 = (4t- ?(- 5t +2)2 +1° = 42t - 12t +5
Taking its derivative, and solving, we have:

%(42t2-12t+5)20 p 84t-12=0 b t=%

Thus for t = 1/7 the solution x* = [11/7, 9/7, 1/7] has minimum module
For large systems this method becomes quite difficult, but we can obtain the minimal module
solution of the undetermined system A x = b in a very quick way by the following matrix equation

x=A"C'Db
where the square matrix C = (AA")

In the previous example we have

41 1041 1

°*5 0 4

and the final solution is

ao187 3
283 34

o
]
N
[ e anid

a 1y 1
15 “dd7 wen 154
= v O'Xé Xa n=— <9~
28 083 PHLT7e0

g -4y glg

X

The following worksheet shows a possible solution arrangement

A|lB|lec|Db|E]F | 6 | H |1 ]| 4 |
1 & b
2 1 1 1 5
=T o 1 li=MProdif6:B8,GEHT EZE3)
4
5 |aT c=paaT (o ATC"bp/
B 1 1 3 -3 04043 00714 1.57143
7 1 u} -3 17 0.0714 00714 128571
] 1, 4 A I 0.14286
g - : : — ;
= =MProd{a2:03 4609 =MInw(DE:ET
10 |[{=MTrAZ C3Y |{ rodi : :'}”{ ¢ n
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Parametric Linear System

Sometimes the system matrix may contain a parameter, for example "k", and we may have to
study the system solutions as a function of this parameter.

Generally speaking this is not a truly numerical problem, and the matrix cannot be inverted or
factorized with the usual numerical methods. This problem can be solved using symbolic
computational systems or, alternatively, by hand.

The function MDetPar in Matrix.xla computes the parametric determinant for matrices of low
dimension. It returns the determinant D(k) as a polynomial in the variable k.

Then, with the aid of the Cramer's rule, we can obtain the solutions of the parametric system in
the form of polynomials fractions.

Cramer's rule
Given a linear system: [Alx=b 0] [a;, @z, ... a)]x=b
The single element x; of the solution vector x, can be found taking the fraction of the determinants
of two matrices: the first matrix is obtained from the system matrix replacing the column a; with
the vector b; the second matrix is the system matrix itself.
That is, in formulas:

D, =det[ay, ay...ai1, b, @js1... @

D =det[ay, ay...ai1, @}, Qjs1... &)

X; = D /D

Repeating for i=1, 2...n, we find the solution vector.
Example. Solve the following system containing the real parameter k

TKXX +2X, + X, =7 )
.'L.5X1+X2'kxx3:7 0 5 1k
13% +ko%x, +3x, =12 3 k 3 12

For the first, we build the 4 matrices and compute theirs determinants

& | | ¢ || E|F e | H] 1| J]K|L|M|HN][]o]|PF]|:
L
17 k 2 1 2 1 7o 2 7
5 1 -k 1 -k -k 5 1
8 k 3 12 | k| 3 3 12 | 3 3 k12
A0
1 D= -33+2k+k"3 01 = -33-17k+Th"2 D2 = | -BE+12k"2 D3 = | -99+47k-7h"2
12
E [ =MDetFar(B7:09) | [=MDetParFT:HE) | [=MDetPard7:L9y | [=MDetParin7:Pa) |
The zeros of the determinant Al B [ c]ot
D - '33+2k +k3 l L= =33+ 2k+k"3
_ 12 | {PolyRoots(C11); |
can be found by the PolyRoots function. 13 3 i
Two roots are complex, and one is real: k = 3. E 15 ooE
A5 | SR |

Thus the system has solutions for k * 3, that are:

_ - 33-17k+7K? w =" 66 +12k” _ - 99+47k - 7K?
- 33+ 2k +Kk® 2 . 33+2k+k° T T a3 kK
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Block-Triangular Form

Square sparse matrices, i.e., matrices with several zero elements, can under certain conditions be put
in a useful form called “block-triangular” (or “Jordan’s form”) by simple permutations of rows and
columns

1 2 1 0 0 O

2 1 5 0 0 O A, 0
1 -1 3 0 0 O

6 5 3 1 1 2

1 3 2 1 -1 -2 Az A,
9 7 1 1 2 1

The block-triangular form saves a lot of computational effort for many important problems of linear
algebra: linear system, determinants, eigenvalues, etc.

We have to point out that each of these tasks has a computing cost that grows approximately with N°.
Thus, reducing for example the dimension to N/2, the effort will decrease 8 times. Clearly it's a great
advantage.

Linear system solving
For example, the following (6 x 6) linear system

Ax =b
2 1 0 0 o0 X1 b,
5 0 0 0 X2 b,
1 3 0 0 O X3 b,
6 5 3 1 1 2 Xs | = | bs
i -3 2 1 -1 =2 X5 bs
9 7 1 1 2 1 X be

It could be written as

A1 X1 :bl

Ay X; =by-c;

where the vector ¢, is given by: c,= A, Xg

Practically, the original system (6 x 6) is split into two (3 x 3) sub-systems

X1 b

2 X2 b,

-1 3 X3 bs
1 2 X4 b, 6 5 X1
1002 X5 bs - 1 -3 X2
1 2 1 X6 bs -9 7 X3

Computing the determinant

Determinant computing also takes advantage of the block-triangular form

For example, the determinant of the following (6 x 6) matrix is given by the product of the
determinants of the two (3 x 3) matrices A; and A, .
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1 0 0 O
2 5 0 0 O = 3
-1 3 0 0 0= 18 -1
6 5 3 1 1 2 1 2
1 38 2 1 -1 -2 -1 21 = 6
9 7 1 1 2 1 2 1

Permutations

Differently form the other factorization algorithms (Gauss, LR, etc.), the block-triangular reduction
uses only permutations of rows and columns. Formally a permutation can be treated as a similarity
transformation. For example, given a (6 x 6) matrix, exchanging rows 2 and 5, followed by exchanging
columns 2 and 5, can be formally (but only formally!) written as.

B=P AP . where the permutation matrix is P = (ey, €s, €3, €4, €2, €)
A P P'AP
1 0 0 1 2 O 1 0 0 O 0 O 1 2 0 1 0 O
1 1 1 2 -3 -2 0O 0 0 O 1 O 2 1 0 5 0 O
6 1 1 3 5 2 0 0 1 0 0 O 6 5 1 3 1 2
1.0 0 3 -1 0 0 0 0 1 0 O 1 -1 0 3/0 O
2 0 0 5 1 o0 0O 1 0 0O 0 O 1 3 1 2 -1 -2
-9 2 1 1 7 1 0O 0 0O O 0 1 9 7 1 1 2 1

Remark. Matrix multiplication is a very expensive task that should be avoided whenever possible; we
use instead the direct exchange of rows and columns or, even better, the exchange of their indices.

Note that the similarity transform keeps the original eigenvalues. Consequently the eigenvalues of the
matrix A are the same as those of the matrix B

Eigenvalue Problems

The eigenvalue problem takes advantage of the block-triangular form.
For example, the following (6 x 6) matrix A has the eigenvalues:

| =[-7,-1,1,2,3,5]

A | A |,

-15 0 -16 O 0 -7 15 0 -16

10 2 11 0 0 -1 10 2 11 2

8 0 9 0 0 1 8 9 A, -7 | 5
3 5 3 0 -4 2 0 -4 -1

2 6 2 5 4 3 2 5 4 3

-4 9 -3 -6 -6 -1 5 -6 -6 -1

The set of eigenvalues of the (6 x 6) matrix A is the sum of the eigenvalue setof A; [1,2,-7] and
the eigenvalue set of A, [-1,3,5].

Several kinds of block-triangular form
Up to now the matrices that we have seen are only one kind of block-triangular form; but there are
many other schemes having blocks with mutually different dimensions. At last, all blocks can have
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unitary dimension as in a triangular matrix.
Below are shown some examples of block-triangular matrices (blocks are yellow)

Xx x|0 0 0 O Xx x x|0 0 O x/0 0O O O O
Xx x|0 0 0 O Xx x x[|0 0 O x| x|0 0 0 O
Xx x| x]0 0 O X x x|0 0 O Xx x|x|0 0 O
X x x| x|0 0 X x x|x|[0 O X x x|x|[0 O
X X X X | X X X X X x|x]|0 X X X x|x]|0
X X X X | X X X X X X X|X X X X X X |Xx
Xx x x|0 0 O x x|0 0 0 O x|0 0 0O 0 O
X x x|0 0 O X x|0 0 0 O X[ X X X X X
X X x|0 0 O X X | X X X X X | X X X X X
X X X | X X X X X[ X x x X X | X X X X X
X X X | X X X X X[ X X x X X | X X X X X
X X X | X X X X X | X X X X X | X X X X X

Remark. The effort of reduction is high when the dimension of the maximum block is low. In the first
matrix the dimension of the maximum block is 2; in the second matrix it is 3; in the third matrix the
dimension is 1, showing the best-effort reduction that would be possible.

On the contrary, the last two matrices give a quite poor effort reduction.

Permutation matrices

Is it always possible to transform a square matrix into a block-triangular form? Unfortunately not.
The chance for block-triangular reduction depends of course on the zero elements. So only sparse
matrices could be block-partitioned. But this is not sufficient. It depends also on the configuration of
the zeros in the matrix.

Two important problems arise:

1. To detect if a matrix can be reduced to a block-triangular form
2. To obtain the permutation matrix P

Several methods have been developed in the past for solving these problems. A very popular one is
the Flow-Graph method.

Matrix Flow-Graph
Following this method, we draw the graph of the given matrix following these simple rules:

the graph consists of nodes and branches

the number of nodes is equal to the dimension of the matrix

the nodes, numbered from 1 to N, represent the elements of the first diagonal a;
for all elements a; * 0 we draw an oriented branch (arrow) from node-i to node-j

Complicated? Not really. Let's have a look at this example.
Given the (4 x 4) matrix A

4 2 3 1
0 -1 0 1
3 1 -1 2
0 1 0 1

The flow-graph G(A) associated, looks like the following (see the macro Graph Draw for automatic
drawing)
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where:

node 1 is linked to nodes 2, 3, 4;
node 2 is linked to node 4;
node 3 is linked to nodes 1, 2, 4;
node 4 is linked to node 2.

We observe that from node 2 there is no path linking to
node 1 or to node 3

The same happens if we start from node 4

It is sufficient to say that the graph is not strongly
connected

Flow-Graph rule. If it is always possible for each node to find a path going through all other nodes,
then we say that the graph is strongly connected

An important theorem of Graph Theory states that if the flow-graph G(A) is strongly connected, then
the associated matrix is not reducible to block-triangular form, and vice versa.

On the contrary, if the flow-graph G(A) is not strongly connected then there always exists a
permutation matrix P that reduces the associated matrix to block-triangular form. Synthetically:

G(A) strongly connected g matrix A irreducible

G(A) not strongly connected 0] matrix A block reducible

This approach is quite elegant and very important in Graph theory. But from the point of view of
practical calculus it has several drawbacks:

it becomes laborious for larger matrices
the software coding is quite complicated
it does not provide directly the permutation matrix P

In the above example, we observe that for P = [ e;, e4, €1, €3], the similarity transform gives a block-
triangular form B =P'AP

A P PTAP
4 2 3 1 0 0 1 O 11 0 O
0 -1 0 1 1 0 0 O 1 1 0 O
3 1 -1 2 0 0 0 1 2 1 4 3
0 1 0 1 0 1 0 O 1 2 3 -1

For matrices larger than (4 x 4) the effort of searching for and testing all possible permutations grows
sharply. For example, it requires much work for matrices like the following one. For this reason the
flow-graph method becomes practically useless for matrices of dimension (7 x 7 ) or higher

0 0 1 2 O
1 -1 1 2 -3 -2
6 1 1 3 5 2
1 0 0 3 -1 O
2 0 0 5 1 O
-9 2 1 1 7 1

The score-algorithm
In this chapter we shall introduce a heuristic technique for efficiently reducing a sparse matrix to a
block-triangular form. The method is both simple and very efficient, and can be applied also to
medium-to-large matrices. It consists of an iterative process having as its main goal to group zeros
near the upper-right corner of the matrix using only rows and columns exchanges.

This algorithm was first implemented as an automatic program, but thanks to its simplicity it can also
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be performed by hand, at least, for low-to-moderately dimensioned matrices.
Let's see how it works

Given, e.g., the (6 x 6) matrix shown just above,

we begin by initializing the permutation vector L2 o © & ¢

e, € e3 e, €5 €p

The main goal is to bring to the upper triangular (grey) area)

1 D*—+—-+F the largest possible number of zeros.
11 ——=— Let’s begin to search all non-zero elements above the first
5 1 1 €—s—al diagonal. The searching must start from the first row and from
10 0 3 «—pl right to left: thus from the element ay; ; if zero, we jump to the
o0 &5 1. O neighboring element a;s and so on till we have reached a,.
Then we repeat along the second row, from as to azs.
S2/ 1171 And so on till the last row
2 5 In this example, the first non-zero element is a;s;
1.0 0 112 o Let’s find, if exists, the first zero on the same row, beginning
1 1 1 2 -3 2 from left to right.
The first 0 is the element a;,. We shall exchange columns 2
16 (1) é g 51 S and 5 and, thereafter, rows 2 and 5
2 0 0 5 1 0
9 2 1 1 7 1

After the permutation (2, 5), the matrix will be the following:

1 5 3 4 2 6
A P P'AP

1.0 0 1 2 0 10 0 0 0 O 1 2 0 1 0 O
1 -1 1 2 -3 -2 0 00 0 1 0 2 1.0 5 0 0
6 1 1 3 5 2 0 01 0 0 O 6 5 1 3 1 2
10 0 3 1.0 0 001 0 O 1 -1 0 3 0 0
2.0 0 5 1 0 01 0 0 0 O 1 31 2 -1 -2
9 2 1 1 7 1 0 00 0 0 1 9 7 1 1 2 1

We observe the zero grouping close to the upper-right corner.

3 4 Now the first non-zero element starting from the right is
1 2 0ol1 0 o ai4. The first 0, starting from left, is ajs.
> 105 0 0 Thus we permute 3 and 4
6 5 1 3 1 2
110 3 0O
131 2 -1 -2
9 7 1 1 2 1

After permutation 3, 4 we have:

1 2 4 3 5 6
A P PTAP

1 2.0 1 0 0 100 0 0 O 1 2 1.0 0 O
2 1.0 5.0 0 01 0 0 0 O 2 150 0 0
6 5 1 3 1 2 000 1 00 113 0 0 0
1 1.0 3.0 0 0 01 00O 6 5 3 1 1 2
1 31 2 1 =2 0 00 0 1 0 1 32 1 -1 -2
9 7 1 1 2 1 00 00 0 1 9 7 1.1 2 1

All zeros are now positioned in the upper-triangular area. The matrix is partitioned in two (3 x 3)

54



blocks. The process ends. The finally permutation matrix is

1 2 3 4 5 6
el e5 e4 e3 e2 eb

As shown, with only 2 permutations we were able to reduce a (6 x 6) matrix to block-triangular form.
We have to emphasize that we worked only by hand. This method also keeps a good efficiency with
larger matrices.

Let's have a look at another example. Reduce, if possible, the following (6 x 6) matrix

K] )
3 1 -1 1 -5I2 The first element * 0, from right, is: aze
o 1/0 10 o The first element = 0, from left, is: ay;.
5 1 1 2 -3 4 So the pivot columns are 1 and 6
0O 0 0 1 0 O
1 1 7 9 13 1
0 1 0 -6 0 1

* L he f | f h

The first element * 0, from right, is: a4

1 1 0xemo 0 The first element = 0, from left, is: ays.
0170 1700 So the pivot columns are 3 and 4
4 1 1 2 -3 5
0O 0 O 1 0 O
1 1 7 -9 13 1
2 1 -1 1 -5 3
K] K]
1 1% 0 0 0 The first element * 0, from right, is: a;3
0 1 1 0 0 0 The first element = 0, from left, is: a,;.
0 0 1 0 0 0 So the pivot columns are 1 and 3.
4 1 2 1 -3 5
1 1 -9 7 13 1
2 1 1 -1 -5 3

Finally we get the block-triangular matrix.

110 0 0 O O The matrix has been block-partitioned:
11-110 0 0 O There are 3 blocks (1 x 1) and one block (3 x 3)
6 1(1|/0 0 O

2 1 4|1 -3 5

9 1 1|7 13 1

1 1 2|1 -5 3

We observe that this algorithm does not provide any information about the success of the process.

It simply stops itself when there are no more elements to permute. At the end of the process, if the
resulting matrix is in block-triangular form, then the original matrix is reducible. Otherwise, it means
that the original matrix is irreducible and its flow graph is strongly connected.

The Score Function

The matrices used up to now had all zero elements completely filled moved into the upper-triangle
area. Now let's see what happens if the matrix has more zeros than those strictly necessary for block
partitioning (spurious zeros). In that case not all permutations will be useful for grouping zeros. Some
of them will be useless, and some others even worse. Thus, it is necessary to measure the goodness
of each permutation. By simple inspection it is easy to select the “good” permutations from “bad”
permutations. But in an automatic process it is necessary to choose a function for evaluating the
permutation goodness: the score- function is the measure adopted in this algorithm.
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The score function counts the zeros in the upper triangle area (grey)
before (A) and after (B) the permutation, returning the difference.

X
XX
_ 98 - o -
score=g W(i, j)- a W, J) Xoox X
B A

¥O0X x| X

The score will be positive if the permutation will be advantageous; P R T P

otherwise it will be negative or null. N IV IRV I AV

The zeros do not all have the same weight: the zeros nearest to the upper-right corner have a higher
weight, because a matrix filled with zeros close to the upper-right corner is better than one with zeros
close to the first diagonal.

X X 0 X 0 0 X X X X X X

X X X X 0 0 X X 0 X X X

X X X X X X X X X 0 X X

X X X X X X X X X X 0 X

X X X X X X X X X X X 0

X X X X X X X X X X X
better worse

Apart from this concept, the weight function w(i,j) is arbitrary. One function that we have tested with
good result is the following

300 a0

W(I,J)_Jf(n_i+1)2xj2 U] a, =0

Weight function for an (n x n) matrix

For each recognized permutation, the algorithm measures the score. If positive, the permutation is
performed, otherwise the permutation is rejected and the algorithm continues to find a new
permutation. After some loops the disposition of zeros will reach the maximum score possible; every
other attempt of permutation will produce a negative or null score. So the algorithm will stop the
process.

Some examples
Now let's see the algorithm in practical cases

—~

A PAP
1 2 0 20 O 1 3/{]0 0 0 O
0 1 2 0 -3 .0 1 3/0 0 0 O
0O 0 1.0 5 3 5 3[1]0 0 O
0 3 1 1 0 O -3 0 2[1]0 O
0O 0 0 0 1 3 0O 0 1 3|1]0
0O 0 0 0o 1 3 0O 0 0 2 21

P =[e5, €6, e3, e2, e4, el]
Accepted permutations = 6
Rejected permutations = 4
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P'AP
2/0 0 0 0 0 0 0O

0O 0 0 0o 0O 0 0 O

0 0 0 0 O

1 0|0 O

1
1

5 0|0 0 0 O O

1

1

1

5

04 3 3|0 0 0 O O

2

3 0|6 4

5 6 2 6

8 0 8 1
1

7

3 0

7

5 0

1

9 10 0 10 1

3 0 4

2

3 0 0 0 0 O

1 0 0 0 1 0 O O
1 7
10 1 10 5/ 0 0 9

0

0
5

0 O

0
3
0 0 O

1

2 0 0 0 1

0
4 0 0 0 O O 3

0

1

9 4 -1 3 0

1
5 0 5 0 0 0 0 0 0O

1

9

[e7,e3,el10, el, e8, e2, e4, 6, €9, e5 ]

Accepted permutations

Rejected permutations = 10

P

P'AP
10 0 00 00 O0O0O

0 0 0 0 0O 0O 0 O

0O 0 0 0 0 0 O
4 3 0 0 0 0 0 O
0 4

1

1 0 0 0 0 O

1

0O 0 0 O

0 0 O

0 0 0 0 0 0 O
1

1

0

0 O

1

10 0 1
0 0 O
0 4 0

1
1

1 0 0 O
1 3 0 O

0
0

4 0 1

1

0O 0 0 0 0 0O

-
1

[e3, e7, e5, e8, €10, el, €6, e4, €9, e2 ]

Accepted permutations

P=

Rejected permutations

308 0 0 3.0 3 00 0G6 O0O0OO0OT148 0 7 0
4 4.0 0 0 6060 0 3 900 02 0 0104

00 3 00 O0OOOOO0OO0OO0OO0OO0OTO0OO0OU 30 20

0 0 17 10 10 O 10/ 0 10,0 O 15/ 0 10 10 O 17 10 16 O
4 9 16 9 9 11 9 11 9 9 8 14 9 9 9 30 0 9 15 9
00 0 O0OOT11O0UO0O0OTO0O04 00 01100 02 0
0 0 2020 0 O 1320 0 20 12 0 O 13 13 38 20 13 0 13
00 0 0 0 2 0 2 000200 0 00 7 0 6 0
4 11 18 0 20 13 11 13 11 11 10 16 11 11 11 34 18 0 17 11

205 0 0 O 7 00O 500000 O

1 0 11 5

4.0 90 0 0 04001 0 0O O0Z20 0 8 0

00 40 0 00 OOO0OO0OD2 0O0O0O040 30

4 6 130 0 8 0 8 0 6 511 6.0 0 0 0 0 12 6
0O 7 140 0 90 9 0 7 2012 7 7.0 0 0 0 13 0

4.0 19 12 12 14 12 1412 0 0 17 O 12 12 36 19 12 18 O

0 05 00O0O0O0OO0OTO0OUO0OU 3O0O0O0SB8 5 0 40

00 0 O0OO0OOOUOOOO OO OO OO OTO OO

1 0 0 O

4 8 150 0 10 0 10 0 8 7 13 8 8 0 0O O 8 14 8

0 0 0 O0OO0OOUOOOTU OO OO OTU OO OTUOOUOTZ2o0

0

1

4. 0 100 0 5 0 5 0 0 2 8/0 0 018 0 0 0 3
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11
12
13
17
15
0
16
14

0 00O O O OOUO OO OO OOTOTUO0OTG OO
0 0 00O 0O O O OOOTUO OO OTUOTU OTUOSTOo
0 00O O O OOUOUOOOTOTUO0OTG OO
0 00O O O OUOUOUO OO OOOTUO0OTG OO
8 0 0 OO OOOOOOOOTUOTU OGO
101 0 0 O 0 OO OOOOOTU OO OO
0220 0 0 O0OOO0OOUOO0OO0OTO0OTUO0OTO
143 3 3 0 0 0 O OO O OOUOTO0ODOWO
200 4 41 0 0 0O OO O OO OTO0OTO
185 5 4 2 3 0O0O0O0O0O0O0O0OO0OTDO
206 6 4 3 4 4.0 0 0 0 0 O O 0 O
07 020 0 5 5 5 0 0 0 0 0O O O O
0 8 8 45 6 6 6 60 0 0 0 0 0 O
09 9 02 0 7 7 7 7,0 0 0 0 O O
01010 4 7 8 8 8 8 8 8 0 0 0 0 O
36 1414 4 0 0 O O 0 12 12|12 12 12 12 12
00 00 O O O O O 10 10|10 10 10 10 10
383 0 20 0 12 13 0 20 O 13 13|13 20 13 0 O
34 13 13 4 10 11 11 11 11 11 O |11 O 11 11 20
301111 4 8 9 9 9 9 9 9|9 9 9 9 9

P =[el7,el19, e3, el2, el6, €6, €8, el, ell, e20, €2, 10, €13, el4, el8, el5, e4, e7, €9, €5 |
Accepted permutations = 18
Rejected permutations = 237

As we can see, also for larger matrices the number of permutations remains quite limited.
Regarding this, and the fact that the permutation is much faster then any other arithmetic operation in
floating point, we can guess the high speed of this algorithm

In Excel, with Matrix.xla, it is very easy to study the matrix permutations.

A simple arrangement of (6 x 6) matrices is shown in the following example. We have used the function
MPerm . When you change the permutation numbers, also the permutation matrix changes and,
consequently the final, transformed matrix

AlB[C[D[E[F[G[H]I]J[K[LIM[N[O[P|Q|R|S|TU]

1 Permutations
2| 5 B 3 2 401
3 A P P'AP
41120 200 oo oo o1 13 0 0 0 0
s /01 Z20-30 ooo 1 00 13 0 0 0 0
L= T A B oo 1 000 5 3.1 0 0 0
70 31100 oo oot o 30 201 00
g|/00oo1 3 1 0/0/0 00 oo 1 3 1'0
9000013 01 0000 oono 221
® \
% f=matPermiH2 2]} |{=M_PROD(M_T(H4:M9);A4:FQ;H4:M9)} |
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The Shortest Path algorithm

The above algorithm does not say if the matrix is irreducible. For that the shortest-path matrix, built by
the Floyd's algorithm, comes in handy. In Matrix.xla you can perform this by the function PathFloyd or
by the macro "Macros>Shortest Path"

Example. Say if the given matrix is reducible

1 1] 1] 1 2 1] 1] 1 1]
1 -1 1 2 -3 -2 e I s T 1 R
51 1 3 2 1001 o /-9 /10 -1
1 1] 1] i A 1] 1 oA
2 1] 1] 3 1 1] 2 3 1]
4 2 1 1 v 1 4 2 1 -5 80

A
\—‘ Shortest Path I— —

The shortest-path matrix show the presence of empty elements. For example, the element a, is null,
meaning that there is no path reaching node 2 from node 1. This is sufficient for saying that the given
matrix is not strongly connected and thus, reducible.

Example. Prove that, on the contrary, the following matrix is irreducible

1] 1] 1] o - 1] 14 -89 -5 -7 |13 17
3 1] 4 2 210 -19 14 10 12| -20 -22
-3 3 0 1] 1] S22 A7 13 15| 23 25
70 0 a B | -2 -2 16 12 14 22 M
0 4 0 1] o -4 15 100 -6 | -5 16 -18
1 0 1 1 0 1 -2l 16 12 14 22 24

+
Shortest Path —

The shortest-path matrix is dense, meaning that every node can be reached from any other. By
definition, the given matrix is strongly connected and thus, irreducible
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Limits in matrix computation

One recurrent question about matrix computation is: - what is the maximum dimension for a
matrix operation, for example for the determinant, or for inversion?

Well, the right answer should be: it depends. Many factors, such as hardware configuration,
algorithm, software code, operating system and - of course - the matrix itself, contribute to
limit the maximum dimension. One sure thing is that the limit is not fixed at all.

In the past, the main limitation was memory and evaluation speed, but nowadays these
factors no longer constitute a limit. We can say that, for the standard PC, the main limitation
is due to the 32-bit arithmetic and to the matrix itself.

Suppose you have a dense matrix (n x n) with its elements a; randomly distributed from -k

to k. With this hypothesis the determinant grows roughly as:

Log(|D|) @n Log(k) + 0.0027n> @n Log(k)

where Log is decimal logarithm, n is the dimension of the matrix, k its max value
In 32 bit double precision the max value allowed is about 1E+300, 1E-300. So if we want to
avoid the overflow/underflow error, we must constrain:

300 3 n Log(k) (1)

If we plot this relation for all points (k, n) we have the area for computing (blue area in the
graph below). On the other hand, the dangerous error area is the remaining (white) area

350

300 | M Limit of matrix computing

250
200 A

150

overflow

1007 n Log(k) = 300

50 {1 computing

0 T T T T T T T T T T T T T k
1.E+01 1.E03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15

How does it work?

Simple. If you have to compute the determinant of a (80 x 80) matrix having values no larger
than 1000, the point (1000, 80) falls into the blue area; so you will be able to performs this
operation. On the contrary, if you have a (80 x 80) matrix having values up to 1E+7, the
point (1E+7, 80) falls within the white area; so you will probably get an overflow error

From this graph we see that matrices of dimension (25 x 25) or less, can be evaluated for all
values, while matrices of size (100 x 100) or more can be computed only if their values are
less that 1000

Of course this result is valid only for generic, dense matrices that are not ill-conditioned. If
the matrix is ill-conditioned you could get an overflow/underflow error even for low-to-
/moderate matrix dimensions. Fortunately, there are also special kinds of matrices that can
be evaluated even if the constraint (1) is false. We speak about diagonal, tridiagonal,
sparse, block matrices, etc.

We have to say that avoiding the overflow error is not sufficient to get a good result. We
have to take care, especially for large matrices, of the round-off errors. They are very tricky
and difficult to detect. Sometime the result of inverting a large matrix is taken as valid even
if it is completely wrong!
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Sparse Linear Systems

We have seen that finite arithmetic and memory storage both limit the maximum dimension
of the matrix, and thus the associated linear system. In pre-2007 Excel, for example, the
absolute maximum dimension for a linear system would be about (250 x 250). This limitation
is due to the maximum number of the spreadsheet columns. But rarely we can solve such
large systems because with 15 digits finite arithmetic the round-off errors often overwhelms
the results.

There is a situation that allows one to successfully solve larger systems, of dimension
greater than 250. It happens when the systems matrix is sparse. A system of linear
equations is called sparse if only relatively few of its matrix elements [ a; ] are nonzero. If we
store only these values, we can save a large amount of storage. For example, a (300 x 300)
matrix with 10% nonzero elements requires only 9,000 cells of storage, just about the same
as a dense (95 x 95) matrix.

Of course we have to choose a new arrangement to store these values. In the past, several
ingenious and efficient schemes, tightly related to the hardware/software of the machine,
were developed for this purpose. Here we adopt the sparse coordinate format (or Yale
scheme)

This scheme is surely not one of the most efficientones, but it is conceptually simple,
compact and adaptable to a spreadsheet implementation.

Specifically, the first 2 columns contain the integer coordinates i i aij
while the last column contains the element values. 1 1 an
The sparse matrix of the previous example requires 9000 rows q 2 ap
and 3 columns for a total of 27.000 cells. 1 T ans
We note that this array can easily be arranged in a 5 1 -

spreadsheet while, on the contrary, its associated (300 x 300)
standard matrix cannot be written, except with Excel 2007.

The coordinate text format provides a simple and portable method to exchange sparse
matrices. Any language or computer system that understands ASCII text can read this file
format with a simple read loop. This makes these data accessible not only to users in the
Fortran community, but also to developers using C, C++, Pascal, or Basic environments.

Filling factor and matrix dimension
The filling factor measures how much "dense" a matrix is. In this paper, the filling factor is
defined as

F=1- Naero N zero = NUMber of zero elements
Ny N ot = total number of matrix elements

There is a simple relation between the factor F and the maximum dimension of the system
that can be solved in Excel. Remembering that the maximum number of rows of the pre-
2007 spreadsheet are 2*°, we have

28
F

The corresponding limit in Excel 2007, with 2%° rows, is a factor of 100 larger.

F>N?£2° p N£
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The relation of N, versus Noa
the filling factor shows that, F N 1400
for sparse matrices having 0.1 810 1200 -
0.1<E<04 0.2 572 1000 -
. ) 0.3 | 467 800 |
the max pre-2007 cﬁm_ensmn 04 | a05 500 |
of the system matrix is about 05 362 200
400 < Npax < 800 200 | .
That is a great improvement 0 | | | | F
with respect to the standard 0 02 04 06 08 1

matrix format

The following pictures show 2 random sparse matrices having different filling factors

(100 x 100) F = 0.1 (100 x 100) F = 0.3

Usually, large sparse matrices in applied science have a factor F less then 0.2 (20%)

The dominance factor

Storing a matrix system does not automatically mean "solving" the system. As we have seen
in the previous chapters, the round off errors may overwhelm the final result if the matrix is
badly conditioned. For very large linear system the results can be acceptable only if the
system matrix is well conditioned. It has been demonstrated that this happens for row-
diagonal dominant matrices.

A matrix is called row diagonal dominant if each diagonal absolute element |a;| is greater
then the sum of the other absolute elements of the corresponding row. That is, in formula
form:

n
o]
la, > ala;| fori=1,2.n
j=1, i

This criterion guarantees the convergence of iterative algorithms such as those of Gauss-
Seidel and Jacobi. Moreover, it assures the complete Cholesky LL" factorization, and a
general good behavior against the propagation of round-off error. The row dominance
criterion is sufficient but not necessary. That means that also non-dominant matrices may
converge with a reasonable accuracy. On the other hand, there are matrices satisfying this
criterion but in practice converging very slowly.
For these reasons it is convenient to define a row dominance factor measuring how much a
matrix is "diagonal dominant". In this paper, it is defined, for a non-empty row, as
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D-: |a1I| - di n
dla| 4S8 d=al  S=alal

= ‘

The row dominance factor D; is always between 0 and 1

Case Description

Di=0 The diagonal element is zero: a; =0

0<D;<05 The row is dominated: d;< S;

Di=05 The row is indifferent: d, = S;

05<D;<1 The row is dominant: d; > S;

D=1 The row contains only the diagonal element: S; =0

Therefore, the above criterion can be simply expressed as: D;>0.5 fori=1, 2...n
With all due caution, we define the statistics D, Dy, Dy

i
i=1

D,=min{D} D, =max{D,}

These are a kind of matrix dominance factors summarizing the global dominance behaviors
of the matrix itself. Note that D can be greater than 0.5 even if some rows are less than 0.5
or even 0.

Algorithms for sparse systems
Now we examine the algorithms suitable for solving large sparse systems: they can be direct
and iterative algorithms.

Direct algorithm

Most direct system-solving algorithms operate a transformation on the system matrix and
thus change the number of the zero elements. Unfortunately, none of these algorithm
maintains the initial filling factor.

For example, starting with a (30 x 30) sparse | Algorithm Final matrix
matrix with F = 15 %, the average behavior Gauss F =23%
of the most popular factorization algorithms LR F = 46%
are shows in this table. Clearly, we should LL" (Cholesky) F = 23%
give our preference to those algorithms that OR F =750

minimize the filling factor.

The Gauss algorithm with partial pivot and back substitution still appears to be the right
choice for a general system. For symmetric dominant systems, the Cholesky factorization is
preferable for its efficiency

Those algorithms have a computational effort proportional to n®, where n is the dimension of
the linear system.

The following graph shows two typical factorization-time curves® performed by the Gauss
algorithm for solving sparse linear systems having F = 20% with increasing dimension.

® Pentium 4, 1.8 GHz, 256 MB RAM
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The time is measured in seconds. 18
The upper curve is obtained for sparse 16 -
system matrices that are uniformly 141 [o narrow
distributed, while the lowest curve is obtained | 2| |4 spread
for matrices concentrated around the first 101
diagonal. As we can see, at the same
dimension, the latter save more than 30% of
the factorization time.

For symmetric sparse matrices the Cholesky
factorization saves even more than 50%.

sec

O N B~ O ©
TR

0 50 100 150 200 250 300

Iterative algorithms

But the truly strong reduction of effort is exhibited by iterative algorithms like the Successive
Relaxation Gauss-Seidel algorithm or, better yet, the ADSOR method (Adaptive Successive
Over-Relaxation).

When the system matrix is well-conditioned, for example for a diagonal dominant matrix,
these methods converge to the solution with the best accuracy possible, in very few
iterations, typically less then 100 steps. Unfortunately, not all sparse systems can be solved
by an iterative procedure. But when they can, the time savings in factorization are
remarkable

The following graph shows the factorization time of a direct method and an iterative method
for diagonally dominant sparse linear systems (F = 20%) of increasing dimension

n Time (sec) Time (sec) 1
Gauss ADSOR sec e ADSOR
50 0.22 0.02 0.8 - Gauss
100 0.6 0.05
150 1.7 0.09 061
200 4.2 0.15 04|
250 8.6 0.22
300 15.6 0.31 0.2 -
350 25.7 0.41 o N
400 39.6 0.53 0 100 200 300 400 500

We see that the factorization time remains less then one second even for very large
systems. How can we justify this brilliant result? There are three facts:

1) Iterative algorithms operate in a very straightforward way, using only matrix-
vector multiplications; for sparse matrices, this operation is very efficient, requiring
only F-n? elementary operations (multiplications + additions).

2) Iterative algorithms do no transform the system matrix, so its sparse factor F does
not increase along the iterative process.

3) The number of steps Ns required for converging to a fixed precision is
substantlially independent of the dimension; it mostly depends on the dominance
factor of the matrix and, for the ADSOR algorithm, is usually less then 50-100.

The factorization time Ti of an iterative algorithm is proportional to the number of operations
for each step, thatis Ti » Ns:F-n?. The elaboration time Td of a direct method is proportional
ton®,ie,Td»n®.

Therefore the efficiency gain defined as G = Td / Ti will be: G » n/(Ns-F).

That gain is directly proportional to the dimension and inversely proportional to the filling
factor. Example, for a real large sparse matrix of n = 400, with F = 20%, the gain G =75.
The gain reaches more than 150 if F is less then 10%.
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Sparse Matrix Generator

Of course, sparse matrices come from problems, and should not be generated. However
sometimes we need to generate a sparse matrix for algorithm testing, time measuring, etc.
On the internet there are some resources that can generate many type of matrices, including
sparse matrices’. Matrix.xla also has a little tool for generating sparse matrices.

Random sparse matrix [aij] is generated with
Random Sparse : : the following constraints:
. enerate . .
Matrix Max: value: upper limit of aij
_ Min: value: lower limit of aij
Starting from | $ag1 I Dim: matrix dimension (n x n)
— Feremeiens E(I)ImF _:?om]icnatnceFfacF?r: (I)D V\llzith (1) <Db«<1
ill: Filling factor F, wi <F<
Dirn: I 100 Dom: I 066 [ Sym Spread: Spreading factor S, with0<S <1
Sym: check it for symmetric matrix
2] L Fill: I ] m o Int: check it for integer matrix.
Starting from: left-top matrix corner
i -10 Spread:| 0.2 g P
Output format
 Output Format Coordinates: generates a (k x 3) matrix in
' coordinates W e sparse coordinate format: [, j, au_] )
Square: generates a square matrix [ aij ]
rant 2466

This macro can output a matrix in standard or coordinate format. Of course the coordinate
format is the only possible one on pre-2007 Excel for matrices greater then (256 x 256).

Here are some patterns generated for different parameters F and S

F=0.3,S=0.05 F=03,S=02 F=03,S=0.6

" NIST MatrixMarket has one of the most useful and complete tools, called "Deli", for generating a wide range of
matrices with several output formats: http://math.nist.gov/MatrixMarket/deli/Random/
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How to solve sparse linear systems

Assume that you have to solve a sparse (200 x 200) system A x = b, where the system
matrix "A" is in the range Al: GR200 and the vector "b" is in the range GT1:GT200

First we analyze the dominance. Select one cell inside the matrix, for example Al; call the
macro "Macros > Sparse matrix Operations..." from the menu, and select the operation
"Dominance"

I LT T S L T T T ey T o P T o e e

The macro returns the
dominance factors of each
row and the average, the

e il max and the min of all
o Ml e dominance factors.
©mIT] ™ Gyt dece b i e In this case we have
- " popnars wormy obtained
b, e e i g Dmin > 0.5 with an average of
. e g -
—— o e R D = 0.66.

T AT This indicates that the
PR bt - " system is diagonally

: ol | 4241 T dominant and well-
conditioned. We can use
both iterative and direct
methods

e e S

Select one cell inside the matrix, for example Al; call the macro "Sparse matrix
Operations..." from the menu, and select the operation "System (Gauss)"

e e e s The input A matrix is already filled
Cyssitions with the system matrix. Move the
™ Tranepose e  Sviemnc - blDRR] TR cursor inside the field "vector b"

" Ootominent T A F svemminb (oo | and select the range GT1:GT200.
" Conwert At LI {Choley)
:_ m UABATEL syem e m b (Trideg.) Tip: You can select only the first
" Bommance mprong cell GT1 and then click the smart
_ selector at the right: the correct
Mt ] vecko & (200 % 200) Wi b Al range wi_II now be selected
T 2l o] || Memasien 2o automatlcally. But make sure that
the vector b is surrounded by
Tt empty cells.
=0 Flshoration end. Tee = 3,00 sa
auitg 5 Then_choose the output range,
| and click "Run"

After a while (9 seconds in this example), the macro returns the solution vector of the system
with a very high global relative accuracy (1E-14) .

Now we solve the same problem with the iterative algorithm ADSOR. The procedure is the
same as above, except that we have to set the iteration limit (the default is 400).

This algorithm returns the vector solution and, in addition, the number of iterations
performed, the average relative error, and the relaxation factor used. In this example, only
0.5 sec and 20 iterations are been necessary to reach an accuracy of about 3E-15.

As we can see the factorization time is much shorter than with the direct Gauss method. The
Gauss method should be utilized only when the sparse matrix is not dominant, or the
diagonal has some nonzero elements.
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How to get the true dimensions

When the system is very large we necessarily have to adopt the coordinate format. For
example, assume to have the matrix system A in the first three columns in the range
A1:C14779. The coordinate format does not show directly the dimensions of the matrix. To
avoid errors it is necessary to get the dimensions of a sparse matrix written in coordinate
form, i.e (rows x columns).

For that, it is convenient to use the A [ B | c [ o]E[] F [ G ]
macro task "Dimension”, which 5}2?? H“";ED CD'”?S; Dﬁm
searches for the maximum number of 1075 '
rows and columns; in addition it returns 0.51

the filling factor of the matrix itself

1

2

_3
4

LR L L

R -Nn2?

How to analyze the dominance

Before solving a large system we have to analyze the conditioning of the system matrix in
order to choose the algorithm and to understand if there is a chance of obtaining an
acceptable result. If the matrix is diagonally dominant (D, > 0.5), iterative algorithms
converge to the solution. The dominance assures also an accurate result.

For that, use the macro task A 1| B 1| 5&33' D | nsiasl Fol DB‘?m'
n H n g o avg -
Dominance”, that computes Ehhe i 2 1257 06237 man | 07241
dominance factor Di of each i"" row 1 31035 0707 min | 04832
and, in addition, computes the 1 4 05 e

1 5 0027 06474

statistics: average, max, and min.

A matrix is totally row-dominant if Dy, > 0.5.

In this example we have a 0.48 < D,,;, < 0.5, so the matrix is not totally row-dominant.
Because D, > 0, all rows have diagonal nonzero elements and this is the only necessary
condition for using the iterative ADSOR method. The total dominance is a sufficient condition
but it is not necessary; the ADSOR algorithm can often converge also for "quasi-dominant"
matrices.

Solving Sparse System in coordinate format

Assume to have the system matrix in the range A1:C14779 and the vector "b" in the range
D1:D300. Select one cell inside the matrix, for example Al. Call the macro "Sparse matrix
Operations..." from the menu, and select the operation "System (ADSOR)"

_,_ﬁ ) T S M ) S The input A matrix is already filled
Fl BT B 3 L1 - . -
L oz D4 - [ with the system matrix

LBl oo ot apertions | A1:C14779. Move the cursor to

: the field "vector b" and select the
. iperations

: .

& e s E e e e range D1:D300.

¥ e e [ ool mb (Ganel | O . .

z et Cam L {cheasih The time for solvmg_a

Bl COnesom  CAM(M) C Syoemaceb (Tadag) (300 x 300) system is about 1 sec
Bl e =

= [ snoe Mg

5 The macro outputs the solution
L M mdwd (473 Yot B 005 1] yector pI'us some useful

= BAEL T4 87T =i §E41 P00 2l =] information, such as the number
o of iterations, the estimated

B ety T = ol relative error, and the relaxation
] ng

prown cals | 9341 | factor.
= L
e

Note that the Gauss algorithm would need about 30 sec to solve this system
Note also that this system cannot be solved directly in pre-2007 Excel
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How to check the result
A quick way for testing a linear system solution is to compute the residuals vector:

r=b- AxX

We have to point out that a low residuals vector does not automatically mean an accurate
solution, but it is always a good and cheap test.

[pl=belulubslx belsleelulafe]< [l =lel=Elvblrlebp

-l S u it - [ - B P o0l B =8 (SR s i Bl [
1 i axisn L st 1 [k
1 = DAEr VPRT ST 3 AT
i T A ARGy a 2
1 a SR A N ] R
- 3
[= e
T - Ave 1~ Sgstam fe mb [AOS0R] e e
C Deerminat AR " Spem b wh (G | "0
™ Comet = A ™ LU (chols)
T Clmereions I'..!.H;.:ﬁﬂ.} Pi‘ﬁlﬂﬂﬁ'ﬁ'hﬂrﬁﬂ]d
I Dumsinsrce
=
Makrie | wachor & {14763 = ) veerns b [ELIERH
| a1 4cia7mn =T T =)
Cuftpie
(300 1] Elatron ation el Toes =113 s |
o —| s
o gl z
el

In the previous example we have
the sparse matrix A in A1:C14779
, the b vector in D1:D300 and the
x solution in G1:G300. First of all,
we form the product A-x , putting
the result in the range 11:1300.
For this task we call the macro
"Sparse matrix operations",
selecting the product operation
A*b.

The matrix-vector product is a
very fast operation on sparse
matrices.

After that, we compute the residual vector r as the difference between the b vector and the
product A*b.

el el b

L = (=S =] E F (] H T ¥ Tk
] 1 ZARTE TILACHEE [ TINATEN TITE
1 B AT W T kS T -
1 a S oF NS E or i5em
' i £ Fmd ) - i T

Crper atione -
T Transpose i Ackdition

7 Wrearss 4 i Subtrackion
™ Datarminant " ukiplesion
" Systes i mB 1 Scalw mltip,

i [ vacker @ (300 % 1)

I am

™ Hessemberg
L oty B ap
0l (Choskyd T Posudoinvers
gk

ki | Vestar B (300 1)

=

.
o —

=

| 4t seam

=15

Elabeorision end. Tirw =10 vec

=] |

%

We can compute the difference
between two vectors simply by
selecting the range K1:K300 and
inserting the array function
{=E1:E300-11:1300} with the
ctrl+shift+enter keys sequence.

Or, alternatively, by using the
macro "Matrix operations”,
selecting the "subtraction" task

The result is in the range K1:K300

The relative residual error can be computed as Erres = |r |/ | b |
The norm can be computed with the MAbs function or with the Excel formula
=SQRT(SUMSQ(K1:K300))
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Solving Sparse System with Gauss

Often the linear system cannot be solved with the fast ADSOR algorithm. This happens, for
example, when the system matrix has some zeros on the first diagonal, or has a low
dominance factor. In these cases we have to go back to the Gauss reduction algorithm,
adapted for sparse matrices

For example, assume to have a system with some
diagonal zero elements.

The dominance factor analysis gives us the following
factors

Davg = | 0.295
Dmax = 0.4
Dmin = 0

The presence of zero diagonal elements is revealed
by Dnin = 0.

In that case we cannot adopt ADSOR and we have to use the Gauss algorithm.
Always remember to check the result because, in that case, the round-off error may
completely obscure the solution obtained.

How to improve the dominance

In some cases the dominance of a linear system can be improved simply reordering the
equations.

For example, the following system is not diagonal dominant

111x +3X, + 7%, =22 7
I -

Il4X2' 9X3 +15X4 —'52 |:| |:| _9 15 '48

- 8% X, +21x, +2X, =29 C - )
§x +20x, +7x,- 4x, =3 120 7 3

7 n 22

But it becomes diagonal dominant simply exchanging the 2™ and 4™ equations.

Of course for large system the manual rows exchanging is prohibitive. For this task comes
useful the macro "Dominance improving". Starting from the system matrix A and the vector
b, the macro tries to improve the dominance by rows exchanging and returns a new system
matrix A and a new vector b.

Using the system of the above example we get the -
following new matrix. The dominance factors are ——

now:

Davg = 0.4

Dmax = 0.45 - | :
Dmin= | 0.33 S i ey,

As we can see the average dominance is improved
but the best result is that no zero element appears in
the diagonal (Dmin > 0).

That system can be efficiently solved with iterative algorithms.
Note that ADSOR con converge to the solution even if the system is not row-dominant
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The relaxation parameter w
The convergence of iterative methods can be improved introducing a relaxation parameter w
Thus, the iteration schema, called SOR (Successive Over-Relaxation) can be modified as:

XD = (1 w) x® + wxaD

where Xgs is the vector generated by the Gauss-Seidel algorithm. Usuallyis 0 <w < 2.
Generally, it is not simple to find the adaptive parameter for the fastest convergence.

In the ADSOR (ADaptive Successive Over-Relaxation) the parameter is chosen by the
algorithm itself.

Example. Appling the ADSOR algorithm to the following system, we have the solution with
an error of less then 1E-14, in about 80 iterations. We note also that this result is reached
with the relaxation parameter w= 0.7

AlBf[c|p[EJF[e[H[ 1 [J[r[L][M[NT]OI|

1

2| A b X

3 B5 | 63 | 12 | B | 0 | 5 B76 1 tter &0

4 90 108 80 0 & 0O | -10 -040 2 Errar | SE-15

5 | A9 77 1000 4 27 | A0 RE 3 Omega 07

B | 8| 0 |45 45 -2 | 0 265 4

7| 4|8 o|-g[21]4 301 21

8 | 6 | 0 | 0 100 1 | @2 7447 85

g

If we repeat the calculation using the Gauss-Seidel algorithm (w = 1) we need about twice as
many iterations.
The following graph shows the accelerating effect of the relaxation parameter

Residual Error

100

0.01 —— ADSOR

0.0001 -

1E-06
1E-08 -
1E-10 4

1E-12 -
steps

1E14

0 50 100 150 200
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How to solve tridiagonal systems
Tridiagonal systems are a subclass of sparse systems. Thanks to their particular structure
they can be efficiently written in a very compact 3-column format.

The first column contains the lower subdiagonal;

The second column contains the diagonal

The third column contains the upper subdiagonal

A|B|C|DJE|F|G|H[I[J|[K][L|M|M[O|P|[G[R[S] T [U]

13
4 2 4 o000/ 0/ololo 0 1 R 1
5| | 4 4 0 0 0 0 0 0@ -5 04 A -5
& 0 & 4 2 0/ 0/ololo 0 g 6 4 2 g
17 olo 3 3w o0/o0lo0olo 0 95 38 W 95
8 ololo 7 4 3 0lo0olo o0 -15 I 15
18 ololo/ 0o & & 7 0lo0 0 127 -6 -8 7 -127
N olololo 0 7 0 -8 0 0 -3 7 om -8 -6
=N ololol 0 00 0@ 4 0 45 0 omo4 45
| ololol o ol olo @ 7 A 133 w7 oA 133
= ol olo 0 0000 2 o2 2 2 20 | g

24

The space saving is evident. Note that the first element of the first column and the last
element of the third column do not really exist. Usually they are set to zero, but their values
are irrelevant because the macro does not read them.

Large linear tridiagonal systems can be solved efficiently using the macro "Sparse Matrix
Operation"

In this example the system matrix is contained in A1:C1000, and the b vector is in E1:E1000
As we can see, only 0.1 sec is sufficient for solving a (1000x 1000) system. Usually the
accuracy is very high for a dominant system.
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Eigen-problems

This chapter explains how to solve common problems
involving eigenvalues and eigenvectors, with the aid of
many examples and different methods.

Eigen-problems

Eigenvalues and Eigenvectors

These problems are very common in math, physics, engineering, etc. Usually they consist of
solving the following matrix equation

Ax=I| X 1)

where A is an n x n matrix, and the unknowns are | and X, respectively called eigenvalue and
eigenvector. Rearranging equation (1) we have:

(A-1 1)x=0 (2)

This homogeneous system can have non-trivial solutions if its determinant is zero. That is:

A-11]=0 ®)

Characteristic Polynomial

The left-hand side of (3) is an n" degree polynomial in | , - called characteristic polynomial -
whose roots are the eigenvalues of the matrix A.

For a (2x2) matrix, the system (2) becomes:

éan aizg_ | él Ol‘;'_éan' I &, U
é —é

@y a0 O 1 8 & -l
Computing the determinant we have equation (3) in expanded form

12- (a,+a,) +det(A)=0
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For a (3x3) matrix, the system (2) becomes:

2311' l a, a3 U
@ ay ay, - I Ay 3
@ a3 a3 83 - I H

and its characteristic equation (3) becomes

-3

+ (a11 ta,t ass)l °- (a11a22 - Q8 T ;853 - A58 t 8,85 - azsasz)l + det(A) =0

With a larger matrix the difficulty of computing the characteristic polynomial grows sharply; .
Fortunately there is a very efficient way to compute the polynomial coefficients, using the Newton-
Girard recursive formulas. In Matrix.xla we can get these coefficients with the function
MCharPoly.

Roots of the characteristic polynomial

Apart from the 2nd degree case, finding the roots of a polynomial needs numerical approximation
methods. Matrix.xla has the function PolyRoots that finds all roots - real or complex - of a given
real polynomial, using the Siljak+Ruffini methods. This function is suitable for general
polynomials up to 6" or 7" degree. When possible, the function uses the Ruffini method for
finding small integer roots.

There is also the function PolyRootsQR for finding all polynomial roots. It uses the efficient QR
algorithm and it is adapted for polynomials up to 10" or 12" degree.

For complex polynomials there is the similar function PolyRootsQRC

Case of symmetric matrix

Symmetric matrices play a fundamental role in numerical analysis. They have a feature of great
importance: Their eigenvalues are all real. Or, in other words, its characteristic polynomial has
only real roots. Another important reason for using symmetric matrices is that there are many
straightforward, efficient, and also accurate algorithms for solving their eigen-systems; this is
much more complicated for asymmetric matrices.

Tip. There is a nice, closed formula for generating a symmetric (n x n) matrix having the first n
natural numbers as eigenvalues

i+2)n- 4i+2
o o (i+2n-4i+2

n
aij:ZXrH-l-% &

Below are the first such matricesforn=2, 3, 4,5, 6, 8
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eigenvalues: 1, 2

2 0
0 1
713 213 0 eigenvalues: 1, 2, 3
2/3 6/3 -2/3
0 -2/3 5/3
25 1 05 0 eigenvalues: 1, 2, 3, 4
1 25 0 -0.5
0.5 0 25 -1
0 -0.5 -1 2.5
26 12 08 04 0 eigenvalues: 1, 2, 3,4, 5
1.2 2.8 0.4 0 -0.4
0.8 0.4 3 04 | -0.8
0.4 0 -0.4 3.2 -1.2
0 04 | 08 | -12 34
8/3 a3 33 213 13 0 eigenvalues: 1, 2, 3,4,5, 6
4/3 9/3 2/3 1/3 0 -1/3
3/3 2/3 10/3 0 U3 | -2/3
2/3 1/3 0 11/3 | -2/3 | -3/3
1/3 0 U3 | -2/3 | 1213 | -4i3
0 U3 | 213 | 33 | -4i3 | 1373
275 | 15 | 1.25 1 075 | 05 | 0.25 0 eigenvalues: 1, 2,3, 4,5, 6, 7,8
15 3.25 1 0.75 0.5 0.25 0 -0.25
1.25 1 3.75 0.5 0.25 0 025 | -05
1 075 | 05 4.25 0 -025 | -05 | -0.75
075 | 05 0.25 0 475 | -05 | -0.75 -1
0.5 0.25 0 025 | -05 | 5.25 -1 -1.25
0.25 0 025 | -05 | -0.75 -1 575 | -15
0 025 | -05 | -0.75 -1 -125 | -15 | 6.25
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Example - How to check the Cayley-Hamilton theorem

Regarding the characteristic polynomial P(I ) an important theorem, known as Cayley-Hamilton‘s
theorem - states that the any square matrix A verifies its characteristic polynomial. That is, in
formula:

P(A) =0O (where O is the null matrix)

The above matrix equation can be formally obtained by substituting the variable | with the matrix
A. Let's see how to test this statement with a practical example in Excel.
Given the following (3 x 3) matrix

19 -2 lts characteristic polynomial is:

A= -8 -6 2 _ 2 3
505 2 P(l)=6-11 +6l2- |

After substituting A for| we have
P(A) =6 - 11xA+6xA” - A®

Evaluating this formula by hand is quite tedious, but it is very easy in Excel. Let's see the
following spreadsheet arrangement using the function MPow

Alelc ol E|F|IG | H| I | J]K|IL|WN
1 |Cayley-Hailton test
2
EC."?E.”. Foly. coefficients A FiA)
4 | ap aq az az 11 9 -2 0 0 0
5 6B -1 B | A1 4 | 6 Z a a a
B | 4 4 1 0 0 0
7
8|
9

[ (A5 MIde(3)+B5°F 4:H6+C5 MP ow(F 4:HE 2)+D5"MPow(F4:H6 3} |

Note that we have inserted the P(A) formula as an array function {=....}

Of course it is also possible to compute the matrix powers A, A% with the matrix product.

AlBJCIDIEJF[G|[H]I[J]IKILIMI[N][O]T
1 |Char Paly. coefficients | Cayley-Hailton test
2l a a a a3
26 -1 B -1
4
5 I A A A
B 1 0 0 11 9 -2 4137 R 131 123 -14
7|l 010 a4 6 2 G228 6 104 96 14
80 0 1 4 4 1 16 16 1 52 52 1
g
10 0 |_{MProd(EE:GS,EBGE) | || {=MProd(E6:G8/EKS)} |
110 0 0
121 0O ] ] .|—|{=A3*AE:C8+EIS*EE:GS+CS*IE:KS+D3*ME:08} |
1300 0 0
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Eigenvectors

Logically speaking, once we have found an eigenvalue we can solve the homogeneous system
(2) in order to find the associate eigenvector.

(A-1 )% =0 b x

Normally for each real eigenvalues with multiplicity one, there is only one eigenvector. For
multiplicity 2, we will find two eigenvectors or even only one.

Step-by-step method
The method explained above is general and is valid for all kind of matrices. It is known to every
math student, and it is very popular. For this reasons it is explained in this chapter, despite its
intrinsic inefficiency. As we can see in the following paragraphs, there are other methods that can
compute both eigenvectors and eigenvalues at the same time in a very efficient and fast way.
They are suitable for larger matrices, while the step-by-step method can be applied to matrices of
low dimension (usually from 2x2 , up to 5x5).
But, didactically speaking, this method is still valid, and it can help when other methods fail or
raise doubts.
The step-by-step method, is composed of the following steps:

1. Compute the coefficients of the characteristic polynomial

2. Find their roots, that is, the matrix eigenvalues | ;

3. Foreachroot | ; build the matrix A- | ;I

4. Find the associated eigenvector x; by solving the homogeneous system

Let's see how it works with some examples

Example - Simple eigenvalues
Find all eigenvalues and associated eigenvectors of the following matrix

-4 14 -6 For task 1) we use the function MathCharPoly; for task 2) we use the
-8 19 -8 function PolyRoots; task 3) is performed with the Mlde function which
-5 10 -3 returns the identity matrix.Finally, task 4) uses the function
SysLinSing to find a solution of the singular system.
A | B | c|] D E F = H d I
1 A coeff eigenvalues
2] 4 14 B 42 real | imm
3 -& 19 -& -41 2 a
T 5 10 3 12 3 = {=FalyRoots{EZ:ED)}

5 -1 7 a

5 {=MCharPolyiAZ2:C4)} "f,)

7

g A-il far  A=72 A-nl | for A=3 A-al | for A=7

9 ] 14 ] -7 14 -B -11 14 £

1o -3 17 - - 16 -8 -8 12 5

11 -5 10 5 5 10 -B -5 10 -1d

12

13 || =AZ:C4-F3*Mldei3)} C=AZCA-FAaMIde(3) CA=AZCA-FatMIde(d)

14

15

16, 0 a -1 a 2 a a o 2

17, 0 a -0 a 1 a a o 2

18,0 a 1 a -0 a a ] 1

19

20 {=SysLinSing(a9:C110} {=SwysLinSing(E9:G110} {=8wsLinSing(l9:k113}
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For the given matrix, we have Eigenvector Eigenvalues

found the eigenvalues and x1 X2 x3 1 2

eigenvectors at the right 1 2 2 |2 3
0 1 2 I3 7
1 0 1

Example - How to check an eigenvector
Once we have found the eigenvectors, we can easily verify them by simple matrix multiplication.

u=Ax b

If x is an eigenvector, the vector u must be exactly a |

the worksheet below

u =1, X

multiple of the vector x , as we can see in

A B C D E F ] H I J K L
2B Matrix Eigenvector verify
27 A %1 H2 ®3 utl u2 ul
28 -4 14 o] -1 2 2 -2 B 14
29| -8 19 - 0 1 2 1] 3 14
30| -5 10 -3 1 1] 1 2 0 7
G
32 |Eigenvalues=2,3,7 {=MMULTAZEC30 EZ22:G30))
33

Eigenvectors are not unique. It is easy to prove that any multiple of an eigenvector is also an
eigenvector. This means that if (-1, 0, -1) is an eigenvector, other possible eigenvectors are:

Eigenversor
ul uz uj

-0.70711 | 0.89443| 066667
0 044721| 0EG6G7
0.70711 0] 0.33333

Matrix Eigenvalue Eigenvectors ...

-4 14 6 -0.04 05
-8 19 -8 | =2 0 0
5 10 -3 0.04 0.5

By convention, mathematicians take A, B C

the eigenvector with norm 1, thatis: 49 Eigenvector

[ x| =1. a0 x1 X2 X3

In that case it is called the a1 | A 2 2

eigenversor. 82 o 1 2

Following this rule the eigenvector 53 1 0 1

maitrix becomes as we can see at 54

right 55

Ak

{=A51:2530 MAbs(A51 AS3)]

Sometimes, in order to avoid floating numbers, we normalize only the smallest value of the
vector; for that, we divide all values by the GCD
The SysLinSing function adopts this solution. If you want to get the eigenversors you have to do it

manually.
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Example - Eigenvalues with multiplicity
Find all eigenvalues and associated eigenvectors of the following matrix

A B C ] E F €}

7 -9 9 1 A coeff  eigenvalues
6 8 6 2 -7 - 9 4 real | i
2 2 4 3 6 & 5 -5 1 0
4 2 -2 4 5 2 0
. . ] -1 2 0
For the given matrix we have 5 | [=MCharPolyis2: 41t I""ﬂ‘I
found two roots: 7
8 A-Al | for b= 1 A-hl for b= 2
|l =1, m=1 =) -3 -a a9 -3 -3 g
| =2, m.=2 1m0 & 7 & € g 5
1] -2 -2 3 -2 -2 2
. . . 12
With an eigenvalue with 13 [FAZ.CA-CEMIdeE)] | [(=AzCa-GaMIde@)] |
multiplicity = 1, we get one 14
eigenvector; while with the a 15
second eigenvalue with 16 0 |:| 45 D -1 1
multiplicity = 2, we get two 17 0 0 -3 0 1 -0
eigenvectors 1 g g g 1 g -0 1
20 | {=SysLinSing(As:C113} [ {=SysLinSingE G113} |

Tip: The accuracy of multiple roots is in general lower than that of a singular root. For this reason,
the SysLinSing function sometimes cannot return any solution. In those cases, try to set the
SysLinSing parameter MaxError to less then 1E-15, depending on the eigenvalue accuracy
(usually for a root with m. = 2, we set MaxError = 1E-10)

In the above example the number of eigenvectors corresponds exactly to the eigenvalue
multiplicity. But this is always valid? Does the eigenvalu multiplicity gives the dimension of the
eigenvector subspace? Unfortunately not. There are cases in which the multiplicity doesn't' t
correspond to the associated eigenvectors.

Lets' see the following example.
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Example - Eigenvalues with multiplicity not corresponding to the number of

eigenvectors
Find all eigenvalues and associated eigenvectors of the following matrix

1 > 1 A, B C O E F E;
2 0 2 1 A coeff eiuelwalu_es
1 2 3 2 1 2 1 0 real | im
3 2 0 -2 4 0 D
4 -1 2 ] 4 2 D
i i ] 1 2 D
Forthe given matrix the 5 [EMCharPoliAzCa) |
characteristic polynomial is: -
-13+4%- 4 8 A-rl forh= 0 AWl forh=| 2
g 1 2 1 -1 2 1
That has two roots: 1 a 2 3 2 3
| =0, m=1 1M1 4 2 3 -1 2 1
| =2, m.=2 12
13 [=A2:C4-CHMIde(3)} | [ {=A2:C4-GE"MIde()} ||
With the eigenvalue with multiplicity 1; |
= 1, we get one eigenvector; with the T 5 ; 5 5 ;
second eigenvector, With multiplicity 17 0 0 1 0 0 N
= 2, we get only one eigenvector, not 18 o o 1 0 0 1
two. 19
20 [{=8ysLinSinaiA9:C117) |{:Ey5LinBing(E9:G11}} I

Example - Complex Eigenvalues
Sometimes it happens that not all roots of the characteristic polynomial are real. In that case, the
eigenvectors associated with these complex eigenvalues are complex too.

Find all eigenvalues and associated eigenvectors of the following matrix

9 -6 7
A= 1 4 1
-3 4 -1
The characteristic polynomial is: -1%+1212- 46l +50
A, B G ] E F G H | J

Matrix A coeff. Complex Eigenvalues

52| real  imm [ =PotRootsE3 ES)
9 £ 7 AR 2 ]

1
2
3
411 4 1 12511:”/’)
]
G
7

-3 4 -1 1| s -1
'\—| [(=MCharPoly(A3C5)}

The eigenvaluesare | ;=2 ,1 ,=5+j ,| 3=5-j

Matrix.xla does not contain a SysLinSing for solving a complex singular system, but we can
derive a real system from the original complex one:

Separating both eigenvalues and eigenvectors in their real and imaginary parts:

I :|re+j|im X:Xre+jxim
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the homogeneous linear system, becomes

(A-1Dx=0 P (A- (1o * jl i) )X + (%) =0
Rearranging: ((A_ I reI )Xre +1 imI Xim)+ J(_ I imI Xet (A_ I reI )le) =0
The above complex equation is equivalent to the following homogeneous system

i(A' I rel)xre+| imI Xim =0 é(A_ | rel) I imI u éxre':'I

¢ y 1o
l}_ Iiml X"e+(A_ | fel))gm :O g - | imI (A' | reI)Hx%gmH

Let's see how to arrange a solution in Excel
The 6 x 6 homogeneous system matrix is built in four 3x3 sub-matrices.

A B G D E F ] H I J K L h
1 |Matrix & coeff. Complex Eigenvalues
2 52| real | inm
3 9 -6 7 46 2 0
4 1 4 1 12 5 1 complex eigenvectors
5 -3 4 -1 4| s -1 re im re im
B -2 1 -1 2
7 |complex eigenvalue = 0 1 -1 0
8 1 0 0 1
9 |Homogeneus resl system matrix
10/ 4 -G 7 1 0 0 0 0 0 0 -2 -1
11 1 -1 1 0 1 0 0 0 0 0 -0 -1
12 | A3 4 5 0 ] 1 0 0 0 0 1 -0
13 b 0 0 4 -G 7 I 0 I 0 1 -2
14 0 -1 0 1 -1 1 I 0 I 0 1 -0
15 0 L0 -1 -3y 4 -5 I 0 I 0 -0 1
16 i !
17 li=-Dar | | fi=Aacity |
13 [(=A3:C5-DT*MIde(3)} || =E7"Mide(3)) | | =swsLinsingas:F14y |

The solution of the homogeneous system returned by SysLinSing is conceptually divided in two
parts: the upper part contains the real parts of the eigenvectors; the lower part holds the
imaginary parts of the same eigenvectors.

Substituting the conjugated eigenvalues we find conjugated eigenvectors.

The case of real eigenvalue 2 is the same as in the above example, so we do not repeat the
process. Rather, we want to show here how to arrange a check for complex eigenvectors.
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Example - Complex Matrix
Matrix.xla has several functions developed for solving the eigen problem for complex matrices of

moderate dimension.

Following the step-by-step method previous seen, we need the following functions:

MCharPolyC - computes the complex coefficient of the characteristic polynomial
PolyRootsQRC - computes the roots of a complex polynomial
MEigenveclnvC - computes the eigenvectors of a complex matrix

4+3] | 2-4j | 4+5] | 5-4j
1+2j 2 1+2j 24

2+4j | 4+2) | -2+2) | 2+6)
3-3j | -3-3j | 3-3j | 1-3j

A possible arrangement is shown in the following worksheet.

& |lBlc|o|E|F e |H]IT|J]KIL]IM]|N]D]|]
1 resl imay. Coefficients Cigenvalues
24 2z 4 5|3 4 =5 3 8 24 re | im
3|1 21 2|12 o 2z A 22 2 o =2
4|2 4 2 214 2 2 & 9 7 o 1
5|3 3 3 1|3 3 3 =3 5 2 1 3
G | 1 1] 4 0
7 {=h CharPolyCr a2 HS) } f
& |Eigenvectors
o7 oM 05 0 | O O 02 O |{=PolyFootsGRCICTSD19); |
10| 0 0 08 0|0 -0F 02 O
Mg-oroo 0 Aarpne e 802, li=MEinenvecnvCAZHE M3 NE)} |
12| 0 0 05 02| 0 0 018 0E7

Note that the given matrix has distinct eigenvalues: 2 real and 2 complex

This means that its eigenvectors are distinct and we can use the inverse iteration algorithm for
finding them. Note also that, in general, a real eigenvalue does not correspond to a real
eigenvector. Curiously the only real eigenvector corresponds to the imaginary eigenvalue | =-2j
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Example - How to check a complex eigenvector
Given the matrix A and one of its eigenvalues | , prove that the vector x is an eigenvector

9 -6 7 Xre  xim
A= 1 4 1 | =5+ -2
-3 4 -1 -1 0
0 1
The test can be arranged as in the following worksheet
A, E C D E F £ H | J K L ki M 0
1 [Complex eigenvalue 5 1
2 check
3 [ Complex matrix A eigenvector A x hox
4 real part im  part xre | xim xre | xim xre | xim
5| 9 B 7 a 1] 1] -1 -2 -3 -1 -3 -1
6| 1 4 1 a 1] 1] -1 1] A0 - A0 -
7 -3 4 -1 1] 1] 1] 0 1 -1 ] -1 5
g
9 o
10 {=RMUCAS FT HE |{=H5:HT*E1-I5:IT*F1}
1; |{=H5:HT*F1+I5:IT*E1}

We have used the function M_MAT_C of Matrix.xla for complex matrix multiplication. Note that
we have to insert the imaginary part of the matrix because those complex functions always

require both parts: real and imaginary.

There is also another way to directly compute the eigenvector of a given eigenvalue: the functions
and MEigenvecC of Matrix.xla return the eigenvector associated with their
eigenvalues; the first function works for real eigenvalues, and the second for complex

MEigenvec

eigenvalues. See the chapter "Function Reference" of Vol. 2 for details

In the following arrangement we have used MEigenvecC for calculating the associated

eigenvectors, and MMultsC for obtaining the complex scalar product

|{=MEigenvec.C(.&2: Fd HZI23}

/"’
| [i=MMutSCKzLe H2I) |

Of course the final result is equivalent

alBlcpD E/F cg/HI1[J ]k LIM[N]Jo]lP |a|R]
1 |Matrix Eigerwvalue  Eigenvector AT LTuU
28 & 7 0 0 0 5 1 -1 -2 -3 -1 -3 -1
31 4 1 0 0 D -1 1l -5 -1 -5 -1
4 |-3 4 -1 0 0 0O | 1] 1 -1 & -1 5
] ~
6
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Similarity Transformation

This linear transformation is very important because it leaves eigenvalues unchanged. Let's see
how it works. Giving a square matrix A and a second square matrix B we generate a third matrix
C with the formula:

C=B'AB
We say: Cis the similarity transform of A by matrix B
Similarity transformations play a crucial role in the computation of eigenvalues, because they

leave the eigenvalues of a matrix unchanged. Thus, eigenvalues of A are the same as those of
C, for any matrix B

It can be easily demonstrated that det(C-I I)=det(A-11)

In fact, remembering that | = B! B, we can write:
det(C-1 )=detB*AB -1 )=detB*AB -1 B'B)

But, rearranging, we have
detB*AB-1 B*B)=det(B*(AB -1 B)) =det(B*(A-1 I)B)) =
=det(B*)det (A-1 I)det (B) =det (A-1 I)det(B™) det (B) =det (A-1 1)

Example - verify that the similarity-transformed matrix of A by the matrix B has the same
eigenvalues.

To prove that eigenvalues are the same it is sufficient that the characteristic polynomials of A and
B are equals. For computing the transformed matrix we can use the function MBAB of Matrix.xla.
But, of course we can use, the standard formula as well.

=MMULT(MMULT(MINVERSE(E3:G5),A3:C5),E3:G5)

For computing the coefficients of the characteristic polynomial we have used the function

MCharPoly

A B © ] E F [ H I J K
2 |Matrix A Matrix B Matrix B'AB
3 1 -2 53 1 2 0 7571 -4 -057
4 1 4 -3 -2 1 -1 1714 2 -1.71
5 -2 -4 5 1 0 -1 -3.43 4 0429
5]
7 |{:oeﬁ' eigenvalues {=MBABCAZCS EGI)) I/ﬂ{:oeff eigenvalues
8 30 [real | im 30 | real | im.
9| -m 2 0 similarity transformation -3 2 0
10 10 3 0 eigenvalues unchanged 10 3 0
11| 5 1] -1 5 1]
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Factorization methods

The heart of many eigensystem routines is to perform a sequence of similarity transformations
until the resulting matrix is nearly diagonal within a small error.

Ar=(P)" A (Py) A %%:® D  Where D is diagonal
Az = (Po)™" A; (P)
As=(Pa)* A (Py) g ., 0 O L,j
-e u
................. D= §0 I, O@
An = (Pn)_l An—l (Pn) @O O I 3H

Eigenvalues of a diagonal matrix are simply the diagonal elements; but, because they are equal
to the matrix A for the similarity property, we have found also the eigenvalues of the matrix A. We
found this strategy in algorithms such as Jacobi' iterative rotations, QR factorization, etc.

Note: This iterative method does not converge for all matrices. There are several convergence
criteria. One of the most popular says that convergence is guaranteed for the class of symmetric
matrices.

Eigen problems versus resolution methods

In the above paragraph we have spoken about the general method for resolving eigen-problems.
It starts form the characteristic polynomial, and builds the solutions step-by-step. It is valid for any
kind of matrix, with real or complex eigenvalues. Unfortunately, this method can be used only for
matrices with low dimensions. When the matrix size is larger than 3, this method becomes quite
tedious, long, and inefficient.

To overcome this, many algorithms have been developed. Generally, they calculate all
eigenvalues and eigenvectors by efficient iterative methods. The price is that those methods are
not general but are specialized for particular types of matrix classes. Very efficient algorithms
exist for the symmetric matrix class, but the same algorithms cannot work, for example, with
complex eigenvalues matrices. So, for a specific eigen-problem, we have to analyze which
method can be applied.

Matrix.xla offers several different methods; their ranges of application are summarized in the
following table

Real eigensystem | Complex eigensystem
Symmetric Real Real Complex
e real matrix matrix matrix matrix
Jacoby yes no no no
QR factorization yes yes yes yes
Power yes yes no no
Characteristic polynomial yes yes yes yes
Inverse iteration yes yes yes yes
Singular system yes yes yes yes

There are also special, highly efficient algorithms for tridiagonal and Toeplitz matrices.
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Jacobi transformation of symmetric matrix
For real symmetric matrices, Jacobi's method is convergent, and gives both eigenvalues and
eigenvectors. It consists of a sequence of orthogonal similarity transformations, each of them —
called a Jacobi rotation - is just a plane rotation that annihilates one of the off-diagonal elements.

Referring to the paragraph "Factorization methods", this method gives us two matrices:

D (eigenvalues) and U (eigenvectors), being:

I
n

imA _, =

®¥

> (D> (D> D

go

1

\ C-\ o\

0

;|

lim RP,..R, P, =U

Example - Solve the eigenproblem for the following symmetric 5x5 matrix

000 |0 e L R =

A,

B CID|E|F|G|H|I|J|K| LM N OIPF| QR
Matrix eigenvalues {Jacobi) eigenvectors (Jacobi)
9 |-26 14 36 24 25| 0 i] -0 u] 06 | 04 -0 04 -0
26014 -4 46 | 14 0o 50 0 0 0 0|04 |06 04 -0
-4 -4 65 -6 -54 0 0|51 -0 -0 04 06 04 -0 04
3|46 6|19 -4 o -0 0 ¥ 0 04 -0 04 06 04
2014 540 40 -1 -0 ] ] o |-Fa -0 /04 -0 04 06

|{=r-.-1 EigenvallacobilB2FE)}

|{=MEigenvecJau:u:uhi(ElE:FE)}

We note how clean this method is. Just plain and straightforward! By default, both functions use
100 iterations to reach this highly accurate result. Sometimes, for larger matrices, you may need
to increase this limit, otherwise you may have to accept a lower precision.

Tip. Jacobi's algorithm returns
eigenvalues in the main diagonal. If
you like to extract them in a vector,
the function MDiagExtr comes in

handy.

AlB c DI E|F |G|
17 | eigenvalues (Jacaki)
18|2s o o 0 0 25
19| o0 s0 0 00 -50
20| 0 o 50 -0 -0 50
210 00 750 75
22|00 0o 0 78 75
23
24 | [{=MDisgE:dr(a1 &E22)} I

86



Example - Compute the first steps Al, A2, ... A6 of Jacobi's algorithm and study the convergence
of the previous example

Each step of Jacobi's rotation method makes zero the two highest off-diagonal values. At
subsequent steps these zeros cannot be preserved, but the off diagonal elements are getting
lower and lower step by step. The diagonalization error indicates this convergence, slow but
inexorable, to zero

A B/ C|D|E|F | G|H | J KJLIM|NJO|P | Q| RIS [T[U|Y W
1 (A matrix at step: 1 matrix at step: 2 matrix at step: 3
29 26|14 36 M q -26 0 27 38 7E4 9 44 0 27 826 TE4 w4 -0 18 |92 089
3 26 14| 4 45 | 14 26 14 13 48 736 -44 30 -8 o 102 0 58 -2 451 (127
4 14 4| B -6 -54 27 13 456 1B 0 XY -8 456 98 0 S8 - 45E 98 0
5 |36 46| & 19 -4 3 | 46 16 19 -7 826 0 -983 EB2E -0 6592 451 98 626 -0
B |24 14|84 -4 N 7EI 736 0 -7 | -B3 7ES 102 0 -0 B3 089 127 0 -0 -B3
7 {=MEigenvalJacobil A2:E6, H1)} {=MEigenvallacabil 8 2E&, P13} {=MEigenvallacoki A2:E6, W11}
8 1
9 Jacobi rotation method matrix at step: 4 matrix at step: 5 matrix at step: G
10 374 -35 18 682 089 249 25 0 -04)-07 249 -28 -03|-03 -07
11 35 -62 0 252 125 -28 | B2 202 252 125 28 -B2 32 035 125
12 1§ -0 4883 0 25 -0 202 623 13 | -25 0.3 321 488 0 8
13 692 252 10 626 -0 04 252 13 B26 -0 0.3 038 0 75 174
14 059 125 25 -0 -63 07 125 25 0 B3 0.7 125 18 174 63
15 {=MEigenvallacokil A2:EE, J21} . {=MEigervallacobilA2:E6, PA1} A=MEigenvalJacobil A2:E6, V9)}
For a symmetric matrix, A B | C|D|E F | G H I J K

convergence is always
guaranteed. In our example,
after 15 steps, we have an
average diagonalization error

A matrix at step: 15
9 | -26 |14 36 24 25 0009 -0 BET | 0.002
2614 -4 46 14 0008 50 -0 | 5E-04 | 0.067

6 5  -54 0 0 50 | -001 0008
of only about 0.01 36 46 -6 19 -4 1E-15 SE-04 00l | 75 | 0
24 |14 | 54| 4 |11 0002 00B7 0006 -0 | -75

~ @ M Wk =
'
L.
.
'
N

1=MEigenvalJacobilA2:EG H1 1}
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Orthogonal matrices
The eigenvector matrix returned by the Jordan algorithm is "orthogonal" with each vector having
norm 1; that is, an "orthonormal" matrix

Indicating the scalar product with the symbol - the normal and orthogonal conditions are:

o In other words, the scalar product of a vector with
P i=] itself must be 1; for any other vector it must be 0. (
b it j d; is called Kroneker's symbol)

X11+ X11 = | X11|2 =1
X113+ X12 = X11° X33 = X113+ X14=0
Orthogonal matrices have also other in
If U is orthogonal, we have U ut=U"
If U is also orthonormal; we have p [det(U)|= 1

Pay attention: the second statement is not invertible. There are matrices with det = 1 that are not
orthogonal at all.

élL 1u The matrix at the left, for example, has det =1 (unitary) but is not
dEt_”gL 2;3 =1 orthogonal. Also, all the Tartaglia matrices, encountered in the
u previous chapters, have always |det| =1, but they are never
orthogonal.

Example - verify the orthogonality of the eigenvector matrix of the above example

ProdScal _
To verify, we can calculate the scalar cross product of

%‘i 8': ‘8: 8'2 ‘8'2 each pair of columns with the help of the function
by ' ' co ProdScal. But this will tedious for a large matrix. It is

04 06 04 -04 04 ; . !
04 -04 04 06 04 faster to use the identity U U™ = |, as shown in the

04 04 -04 04 06 above worksheet.

A B G ] E F E] H I J K L M|N|O|FP|Q
1 |eigenvectors (Jacobi) verify orthonormalization mop-up
2| 06 04 | 04 | 04 04 1 1E-16 -0 -0 1E-16 1 oo 0o a
3 | -04 04 g | 04  -04 1E-16 0 1 -0 -0 1E-16 o1 oo
4 0.4 06 0.4 -0.4 0.4 -0 -0 1 1E-16 -0 ] ] 1 ] 0
5 0.4 -0.4 0.4 0.6 0.4 -0 -0 | 1E-16 1 -0 n] n] 0 1 0
B | -04 0.4 -0.4 0.4 0.6 1E-16 |1E-16 | -0 -0 1 n] n] 0 n] 1
7 {=MProc(22:EG, MT(AZEG} I=hihdoplpG2KET
;
g * |=PrudScaI($.&2:$AE,EIZ:EIE) |
1? \\_{=Prnd5cal[$.&2:$AE,A2:AEj I

Tip. Often, a matrix product generates round-off errors, as in this case. We can sweep them up
with the function MMopUp
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Eigenvalues with the QR factorization method

Another popular algorithm to find all eigenvalues of a matrix is the QR factorization method. Its
heart is the following factorization of a matrix A:

A=QR where Q is orthonormal and R is upper triangular

This factorization is always possible; you can easily perform such factorization in Matrix.xla with
the function MOR .
This method applies the following steps:

1. Factorize the given matrix A=QR

2. Multiply the two factors R and Q obtaining a new matrix A;=R Q

3. Factorize the new matrix A;=Q R and then repeat steps 2 and 3

We have the iterative process, starting with A:
If the eigenvalues all have distinct

A=QR P A1=RQ absolute values:

AEQRe P A ERIQ ol > ol > |1 sl > |1

A=Q:R, P As;=R; Q; and A is symmetric, then the

.................................. matrix A , converges to diagonal
form, where the elements are the

Ac=QpR, P Ap1 =Ry Qp eigenvalues of A

With the function MQRiter it is very easy to test how this process works.

Example - calculate the first 10 and 100 steps of the QR algorithm for the following symmetric
matrix having the eigenvalues 1, 2, 3,4, 5

6 12 o8 o4 o We use the function MQRiter to perform the first 10
12 28 04 0 -04 steps of the QR algorithm. The convergence to the
08 04 3 04 -08 diagonal form is evident, and becomes closer after
0.4 0 04 32 12 100 iterations.
0 04 -08 -12 34 Note the eigenvalues 1, 2, 3, 4, 5 appearing in the
diagonal
AlBlc|p|E|JF|G [ H[1H]J]K,]

1 |Matrix 5 5 iteration 10

2|25 12 08 04 D 49335 00003 | 0042 |01061 | 4E-16

3|12 28 04 0 04 00003 2 1E-06 | 1E-05 | -1E-03

4 |los 04 3 04 08 0.012 | 1E-06 30001 00006 -3E-05

‘5|04 0 D4 32 A2 01061 | 1E-05 | 0.0006 40114 -3E-06

B | 0o | 04 05 12 34 -1E-22 | -1E-03 | -3E-05 | -3E-D6 1

i "

a fteration. 100

9] [=MERjter(42:E5,H1) | 5 2E-10 -4E-16 | 1E-17 | 5E-16

10 -2E10 4 ZE-13 | -8E-14 | -1E-18

1] BE-23 | 2E-13 3 -2E-16 -ZE-1B

12 BE-24 | -BE-14 | EA7 2 ZE-1EB

13 BE-B9 | -3E-44  SE-47 | -BE-31 1

When the given matrix is not symmetric the method works the same; only the final matrix is
triangular instead of diagonal. See the following example.
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Example - calculate the first 10 and 100 steps of the QR algorithm for the following asymmetric
matrix having the eigenvalues 1, 2, 3,4, 5

We use the function MQRiter for performing the first 10

? 2 i 3 _173 step of the QR algorithm. The convergence at the
4 4 3 4 8 triangular form is evident and becomes more close after
11 0 3 2 100 iterations.
-4 4 0 -4 9 Note the eigenvalues 1, 2, 3, 4, 5 appearing in the diagonal
AlBlc|[D|E[F| 6 [H [T | J]K,]
1 |Matrix5x5 iteration 10
2085 34 i T SO0M3 -3612 40841 41655 -2247
3|7 s 4 a9 13 0019 20228 -052 14034 1727
44 4 i 48 00112 0013 3026 0473 1425
5] A 1 0 3 2 003 00363 007 395 -5.349
B 4 4 0o 4 9 SE-08 | -7E-03  1E-07  9E-08 1
7 /"
=] iteration] 100
9 | [|MoRterazESHD | 5 0192 6143229284 [ -2218
o -BE-11 4 08031 | 1.2083  -FE12
N 3E-23  -BE1E 3 0182 5
2 BE-25 | 2E-14 | 1E14 2 1134
13 7E-71 | 4E-G0 | 4E-B0 | BE-45

Does the QR method always converge? There are cases - very rare indeed - where the algorithm
fails. This happens for example when the eigenvalues are equal and opposite. Let's see this
example

Example - The following (3x3) matrix has the eigenvalues | ; =9 ,1,=-9,13=18. Applying the
QR method we get.

-10

11

-10

A | B C 1] E F E} H I
1 |Matrix 3 x 3 Eigenvalues (R} Eigenvalues {Jacobi)
2 5 -5 -10 18 -4E-16 | 4E-16 18 0 1E-3
3 -5 11 -2 | 1E-43  B8EA13 -9 9E-16 9 8E-22
4 A0 -2 2 | -4E-d44 -9 -5E-13 | 3E-16 | 7E-16 -9
: PPl
? |=m1 Eigerval IR A2 Cd) | |=M Eigenvallacobil 42 C4) I

In this simple case QR fails (we note the two -9 off-diagonal elements). It was not able to find the
two opposite eigenvalues = + 9, but it has found only the 18 one. Note that, under the same
conditions, the Jacobi algorithm finds all the eigenvalues, exactly.
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Real and complex eigenvalues with the QR method

Starting from the simple QR method shown above, a more general QR algorithm was developed
with important improvements - shifting for rapid convergence, Hessenberg reduction, etc. The
result is a very robust and efficient general QR algorithm? that can find complex and real
eigenvalues of any real matrix.

This task is performed by the function MEigenvalQR of matrix.xla
Example: find all eigenvalues of the given symmetric matrix

275 15 1.25 1 075 05 025 0 As previous shown, this matrix has
15 3.25 1 075 05 025 0 -0.25 the first 8 natural eigenvalues
1.25 1 375 05 025 0 -025 -05 1,2,3,4,..8
1 075 05 425 0 -025 -05 -0.75
075 05 0.25 0 475 -05 -0.75 -1 We use MEigenvalQR to find all
05 025 0 025 -05 525 -1 -1.25 eigenvalues in a very
025 0 025 -05 075 -1 575 -15 straightforward way
0 025 05 075 -1 -125 -15 625

AlB|Cc|D|E|F|G|H] I | 4 |
1 |Matriz 8 x 8 Eigenval
2 | 275 15 125 1 075 05 025 0 1
3| 15 325 1 075 05 025 0025 &
4 1125 1 375 05 025 0025 05 7
5| 1 075 05 425 0025 05075 2
B |o7s 05 025 0 475 05 075 E
(7| 05 025 0025 05 525 1/-1325 4
8 |02 0025 05075 4 575 A5 3
g 0-025 -05-075 1 -125 -15 625 5
10 A
% |{=MEigenval QR(A1:HE)) |
The function can also return complex 1 05| 0o | o5 o 0
eigenvalues. Let’s see this example 05 | 5 2 1 0 2
This matrix has 2 real and 4 complex 85185112 |45 | 1 | 7
conjugate eigenvalues 0 4 2 2 0o | -2
] ] 7 |17 | 16| -9 | 2 | 14
3,4,2%2,1209 45 |145| 14 | 85 | 1 | -9
Al B|c| D/ E|F |G| H! I | J | K| Notehowclean, easy
1 and fast is the
2|1 (05 0 (05 0 0O eigenvalue _
3 | os | 5 2 1 0 2 computation, even in
4|35 85 12 |45 1 | 7 this case
(5] o |4 |22 |02
[B| 7 |17 |6 | 9 | 2 | 14
F |45 145 14 | 55 | 1 -3
8
19_0 |{=MatEigenva|ue_QR(A2:F?j} |

8 Matrix.xla uses the routines HQR and ELMHES derived from the Fortran 77 EISPACK library
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Complex eigenvalues of a complex matrix with the QR method
The function MEigenvalQRC performs the complex implementation of the QR algorithm for a
general complex matrix
Example. Find the eigenvalues of the following matrix
_é5-14) -77-19ju_é5 -770 . é14 -19u
AS&s 4 u=e a*le u
&%0-4j 80-20j4 &S0 80l ‘§-4 - 20l

Al B |l c|Dp|E|]F|]e ]| _L| M| N|O[|PF]aQa,]|
1 real irm gigenvalues bl artriz re im
2 8 77 14 14 51 6B 5-14j  -77-19j 34 a4
3 a0 a0 -4 20 ,?' 34 34 a0-4j | 80-20j 51, -G8
: /
5 |{=MEiQEWE|@RC(ﬁEZD3)} [ |{:MEigenvaIQRC{ME:NS,Ej} |

This function accepts also the compact rectangular input format "a+bj"
Note that the roots are always returned in split format

How to test complex eigenvalues
This test is conceptually very easy. We have only to compute the determinant of the characteristic
matrix

A-11

For this task the functions MCharC and MDetC are useful

AlB|c|p|E|F|o|H [T o

2 = 3 4 3 1 A= 4 =
14 11 -7 -2 -3 1

| {=MDetC{MCharC(AZ:F4,12.02))) |

When the matrix size becomes larger, round-off errors may mask the final result, and the
eigenvalue check may be not so easy and straightforward.
Just to give you an idea of the problem, let's see the following example

Example. Given the following (10 x 10) real matrix, prove that 1 is an eigenvalue

4569 | -9128 | -9136 | -4556 | -4484 9008 | -9024 | -4348 | -9464 | -9840
2004 | -4003 | -4016| -1996| -1960 3952 | -3976| -1936 | -4200| -4356
68 -136 -127 -76 -76 148 -128 -40 -124 -104
-556 1112 1112 569 552 | -1112 1104 512 1144 1172
316 -632 -632 -316 -299 632 -624 -304 -648 -684
-284 568 568 284 284 -547 576 268 580 648

84 -168 -168 -84 -84 168 -143 -84 -176 -164
144 -288 -288 -144 -144 288 -288 -115 -296 -304
-72 144 144 72 72 -144 144 72 177 152
-36 72 72 36 36 -72 72 36 72 109

We can arrange a worksheet test like that
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A|le | c|Dp|E|F|e|H |1 | 4]
1 |4
| 2 | 4569 -9123) -9136) -4556 -4434 9003 -9024) -4345| -9464 | -9340
| 3 | 2004 -4003) -4016| -1996 1960 3952 -3976| -1936) -4200 | -4356
|4 | &3 138 27 76 .76 143 123 40| 124 104
|5 | -556 1112 1112 569 5520 112 1104 512] 1144 1172
|6 | 316 -632| -632 -316 -299) 632 -624] -304) 645 -634
| 7 | -284 =63 Se8| 284 284 547 57E| 268 S0 G648
|8 | &4 163 168 -84 -84 163 -143] -84 176 164
|9 | 144 233 -285 144 144 283 -283 -115| -296) -304
10|  -72 144 144 T2 72| 144 1a4| 72| 177 152
M| 36 72 72 3% 36 -7z 72 3m 72 109
12
113 | & DET(A - W 1D decimal integer mode
14 | 1 1.325 0
15 | Wl L
16 |=MDETERM(MChar(AE:J1 1,8147) | | =MDetC(MChar(42:11,414) TRUE) |
47T

If we compute the determinant of the matrix A - | |, we see, surprisingly, that it is much more

than zero. What is wrong?

The fact is that we have computed the determinant with 15 digits floating point arithmetic and the
round-off errors have masked the final true result. If we repeat the computation in integer mode,
for example, with the function MDet with the parameter IMode = True, we get the correct result
Note that, in general, we can have non-integer matrices or we can have non-integer eigenvalues,
S0 we can not always use the trick of exact integer computing.

Perturbed eigenvalue method. In that case we should study the behavior of the determinant
around the given eigenvalue. We can add random little increment e to the eigenvalue, registering
the corresponding absolute value of the determinant. With the aid of the above functions, this
process becomes quite handy. For example, giving incremental steps from 1E-14 to 0.1, we can
easily get the following table and plot

| DET|

1E+11
1E+09
1E+07
100000

1000

10

A_/—‘KV
0.1
114 1E12 1E10 1E08 1E06 0.0001 0.01 1
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How to find polynomial roots with eigenvalues

In a previous example we have shown how to compute eigenvalues by polynomial roots.
Sometimes the contrary happens: we have to find polynomial roots by eigenvalue methods.

Example - Find all the roots of the given 4" degree polynomial

X* +7x3 - 41x% - 147x + 540

We need to get a matrix having as its

v ! : alz) =ap +mz+ ...+ a1z 2"
characteristic polynomial the given

polynomial. The companion matrix is what V¢ oo

we need. It can be easily built by hand or - A= 001 R

even better - by the function MCmp : :
lu 1 -t

When we have the matrix, we can apply a method to find the eigenvalues. As the maitrix is
asymmetric, we choose the QR method.

A|lB|C|D|E[F[G[H]I]J]
1 |Poly coef Companion matrix Eigenvalues :
2 a0 540 i i 0 | -540 -5 0
3 |l 147 1 0 0 147 3 0
A a2 -4 oo oo 40
5 a3 7 0 0 1 -7 4 0
B |ad 1
7]
g_ |{=MCmpn(E|2:E|E)} | |{=r-.-1EigenvaI_QR(D2:GSJ}

Eigenvalues are also the roots of the given polynomial.

Rootfinder with QR algorithm for real and complex polynomials

The QR method is so robust and efficient that it is implemented in the rootfinder function
PolyRootsQR and PolyRootsQRC of Matrix.xla
Thanks to its efficiency, it is especially adapt for higher degree polynomial. Let’ see this example

A B C | D E F | = H | |
1 |Degree Coefficients Zre Zim Degree Coefficients | Zre Zim
2 a0 -39916300 1 0 al 2995500 3 1
3| A 120543540 2 0 a1 -G366150 3 -1
4| a2 150917976 3 0 52 70E0545 3 1
5| a3 105253076 4 0 a3 4321632 3 -1
B | =4 -45995730 5 0 a4 1725716 4 1
7| a3 13339535 6 0 a5 -470295 4 -1
8| = -2B37555 7 0 &k 85445 | 5.99997 0
8| = 357423 g 0 a7 -11318| 6.00003 0
A0 a8 -32670 3 0 ad 942 | 6.99995 0
A1 =9 1925 10 0 ad -45| 7.00002 ]
A2 a0 -6 11 o 10 1
13| an 1 '\
14 [(=PolyRocts GREZET) | |{=PDIanDtsQR(GE:G1 2} |

In the left 11™ degree polynomial all roots are real. The right 10" degree polynomial has both
complex and real roots with double multiplicity. In the first case the general accuracy is about 1E-
9; in the second one is about 1E-6. Even in this difficult case the QR algorithm returns a sufficient
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approximation of all the roots

It is the main advantage of this method, that it has : good stability for all roots configurations and
avoids the disastrous accuracy loss, characteristic of other rootfinding algorithms.

The function PolyRootsQRC works in a similar way for complex polynomials.
Example. find the roots of the following polynomial

X' = 2% - 2xX°+6:X* - 13x°+4x%+2x- 20 + i-(2:X° - 6:X+8X°+4X° - 8X)

& | B | ¢ | 0| E | F |

1 coefficients Roots

2 |degree re im re im
L -20 0 -2 n
4 al 2 -8 -1 0
4 | &z 4 4 a 1
B | a3 -13 8 1 1
7| a4 6 -6 1 il
8| as -2 0 1 e
9| &b -2 2 A 2 il

10| a7 1 0 /
% |{=PnIanntsQRC{EIS:C1EI}} |

The power method

The power method can find the dominant real eigenvalue - the eigenvalue that has the highest
absolute value - and its associated eigenvector of a real matrix. This ancient method, still very
popular, has some advantages:

It is conceptually simple in its first proposition;

It is robust;

It works with both real symmetric and asymmetric matrices
It has an important didactic meaning

With the matrix reduction method it can iteratively find all real eigenvalues and eigenvectors

But let us begin to understand the heart of the algorithm:

For the sake of simplicity we will assume a 3x3 matrix with 3 independent eigenvectors X1, X, X3
and a dominant eigenvalue | 4, i.e., |l 1|>|1 2|>]|I 3| Take an arbitrary vector v, - called the
starting vector - and calculate the Rayleigh quotient (ratio) with the formulas:

T
Vv, V,
v=Ay, P r=—2-L
VO VO
Iterating, we have:
T T
Vv, V. VoV
v,=Ay, b r=——-% ... V.,=Av, b r=-—-_-nd
vi v, Vi Vi,

Under certain conditions, the ratio converges to the dominant eigenvalue for n >> 1 and the
associated eigenvector can be obtained by the formulas:

limr=I p limv(,)"=
ne ¥ 1 n® ¥ a0 %

We shall see how it works in a practical case
Example - Analyze the convergence of the power method for the following matrix

9 2 The matrix has three separate eigenvalues:
|1='3,|2='2 ,|3='1
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Let's see how to arrange the worksheet. First of all, insert the formulas as indicated to the left;
then, select the appropriate range and drag it to the right to iterate the formulas.
Assume the starting vector to be vo=(1, 0, 0)

Insert the formulas in column E

A B o D E F A B © D E

q o = - 1 A wik wl
2 [ s 5 B 1005 21 s | 6 |6 | s

3 4z 2 m | o | 4z | e Dl B I
i s o e o |0 4 10 20 26 0 10
5 [{ZMMULT(3A92:3C54 D204 |7 % A= 5

B r= .5 | 1]

7 |=ProdScal(D2.D4 F2.E4)ProdScaliD2:04 D2:04) 8 | x1
5 o 9| !

9 E 24
10 i :

11 5 12

12 3] n= | o |4

13 n= 0 {1} H '

Select the range E1:E13 and drag it to right

AlBlc|l Do EJ]TF]IGe]JH]TT]J]K][L]MI]N
1 A vl vl v2 v3 v v5 ub vT vl v vl
L -1 2 -2 1 -1 1 -1 1 -1 1 -1 1 -1 1
i -2 -6 3 ] -2 g -26 a0 -242 725 -2186 G360 -19682 59043
4 -2 -4 1 0 -2 i -26 &0 -242 728 -X86 G560 -18682 59048
5|
L r= -1 -3.667 -3.233 -3075 -3.025 -3005 -3.003 -3.001 -3.0003 -3
A
_8 ] wl x2 w3 xd x5 wb xT 3 x9 wii
i 1 0074 003 0041 0004 0004 SE-04 2E-04 SE-05 2E05
1 2 0595 077 08594 0956 08932 09593 0897 0899 1
l 2 0595 077 08594 0956 08932 09593 0897 0899 1
12
13 n=| O 1 2 3 4 5 B 7 5 5 10

As we can observe, the convergence to the dominant eigenvalue |; = -3 and its associated
eigenvector x = (0, 1, 1) is slow but evident.

Rescaling. We note also a first drawback of this method:; the values of vector v become larger
step after step. This could cause an overflow error for a higher number of steps. To avoid this,
the algorithm is modified by inserting a vector-rescaling routine after a fixed number of steps.

v9 v10 v9 v10

-1 1 =} -1E-04 1E-04
-19682 59048 rescaling -1.968 5.905
-19682 59048 dividing for 10000 -1.968 5.905

The value of the rescaling factor is not very important; the magnitude is the main thing.
Note also that the Rayleigh ratio is not affected by rescaling

Finding non-dominant eigenvalues. Once the dominant eigenvalue |, and its associated
eigenvector x; are found, we may want to continue to compute the remaining eigenvalues.
Compute the normalized value of x and the new matrix A; :

U1=X1/|X1| p Ale'IlUUT

The matrix A; has the eigenvalues: 0, |, |3. Now, the dominant eigenvalues of A; is | ,
Therefore we can apply the power method once more.
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Example - reduce the matrix A of the previous example with the eigenvalue I, = -3 and
eigenvector x;=(0, 1, 1). Repeat the power method to find the dominant eigenvector | ,

A B C ] E F ] H I J K

M w1 ul
5 [=MMULT(CT:CO), MT(CT.Can} |

g';g; R|{=EI?:EIEIIMA£JS(EI?:EIEI)}I |{=A2:C4—A?*E2:G4}|

1 A uu’ Al

2 -1 2 -2 i] il i] -1 2 =)
3 = - 3 n ns | 05 2 45 45
4 -2 -4 1 1] ns | 0s 2 25 | 25
g /

5

7

g

9

_3‘

The matrix A; is the new reduced matrix. It should have all the eigenvalues of the original matrix
A, except | ;. Let's see. Repeating the power method we will find its dominant eigenvalues.
Choosing (0, 1, 0) for starting vector, we have something like this:

A| B C O E F G H | J k. L | 1

1 A vl vl w2 v3 v u5 ub uT vl vd vib
i -1 2 2 a 2 -6 14 -30 G2 -126 254 -510 1022 | -2046
i -2 45 45 1 -4.5 5 -6 g -12 20 -36 =123 =132 260

4 -2 25 25 u] =25 1 2 -5 20 -44 92 -188 3580 -764

=)

5] r= 45 123 1806 -2051 | -2058 -2036 -20M9 0 20 2005 -2003

7

8 wl %2 X3 e | 5 ] X7 x8 x9 w10

9 -0.444 4077 -2375 1896 1678 -1.771 18357 -1.915 1937 18973

10 10 3398 1.018 0452 0325 0251 0263 0255 02521 0.2341

11 0556 063 -0339 -0452 -0541 -0619| -0672 -0706 -0.7257 -0737

12

13 n= a 1 2 ) 4 B 5] 7 i 9 10

As we can observe, the convergence to dominant eigenvalue | , = - 2 and its associated
eigenvector x = (-2, 0.25, -0.75) is slow but evident. After 25 steps the error is less than about

1E-6

The process power method + matrix reduction can be iterated for all eigenvalues. We have to
realize that, since the computed eigenvalues are approximations, round-off errors will be
introduced in the next iteration steps; the last eigenvalue could be affected by a considerable
round-off error. In general, the matrix reduction (or matrix deflation) method becomes more
inaccurate as we calculate more eigenvalues, because round-off error is introduced in each result
and accumulates as the process continues.

Does the power method always converge? Although it has worked well in the above
examples, we must say that there are cases in which the method may fail. There are basically
three cases:

The matrix A is not diagonalizable; that means that it does not have n linearly
independent eigenvectors. Simple, of course, but it is not easy to tell by just looking at A
how many eigenvectors there are.

The matrix A has complex eigenvalues

The matrix A does not have a very dominant eigenvalue. In that case the convergence is
so slow that the max iteration limit may have to be extended
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Eigensystems with the power method
In Matrix.xla the power method is implemented by two main functions:

MEigenvecPow returns all eigenvectors
MatEigenvalues_pow returns all eigenvalues

Just simple and straightforward. Let's see
Example - solve the eigenproblem for the following symmetric matrix

A B | C | D E] F 5 H I J K
A5 = 5) eigenvectors (power) e el
1 {power)
226 12 05 D4 0 -0666Y | -0.6667 | -06667 -0.6667 1 5
3 12 28 04 0 | -04 | -0FB67 -0BGET| -0EEET 1| -DEBET 4
4 o0& 04 3 -04 -05 | -06667 -0BGET 1| -0.6BE7 | -06GE7 3
5 04 0 04 32 12| -06E67 1| -0EBE7 | 0667 -0.6867 2
B 0 04 08 12 34 1| -0.6667  -0.6667  -0.6667 -0.6G667 1
7 i 7
g "~ {=MEigenvecPowlA2: ER)} © {=MEigenval Powi A2 EEY}

The function MEigenvecPow has a second parameter: Norm. If TRUE, the function returns
normalized eigenvectors (default FALSE).

Al Bl Cc|D/IE|F | G| H I J K| LI M|IN|O
1 |A {5 x5) U eigenvectors {power) orthogonality test 1= 0 UT
2 26 1.2 0.a 0.4 0 -0.4 -04 -0.4 -0.4 0Eg 1 0 0 0 0
3 1.2 28 04 0 04 [ -04 -04 -0.4 06 -0.4 0 1 0 0 0
4 0.3 0.4 3 04 | 08| -04 -04 0E -0.4 -0.4 0 0 1 0 -0
5 0.4 0 04 0 032 12| 04 06 -0.4 -0.4 -0.4 0 0 0 1 0
5] 0 04 08 12 34 0E -04 -0.4 -04 -0.4 0 0 -0 0 1
7 A /
g | {=MEigenvecPaw(AZ.EG TRUE]}, | | {=MMULT(F2 05, TRANSPOSEF2 J60} |

Because of the symmetry, the eigenvector matrix U is also orthogonal. To prove it, simple check
the relation | = U U™ as shown it the above worksheet.

Example: solve the eigenproblem for the following asymmetric 6x6 matrix.

A B | C D E|F ] H | J K L 1| M
eigen

1 | & (6x6) Eigenvector values error

2 | -2 B5/-12| 41 95 26| 0286 025 0.5 1 1 00385 -15| 53E-15

3 | 43 40| 77 13 40 -8 1 1 -1 1 -1 1 120 11E-14

4 17 47| 25 13 -23 88| -074 -075 1 -1 -2E14 0.7 9 3EBE-14

o 16 16| 32 25 22 64| 0286 0.5 -05 -2E-14| 1E14 03546 -6 TAE-15

B | -26 -26 -52 -26 33 26| 2E-15 -0.25 -2E-14 BE-15 -5E-15 0077 3 0

§ | -28| 25 -8 23 28| 13| 0145 1E-15 -TE-16 -2E-15 -1E-15 00769 -1 18E-13

) {=MEigenvecPows2:F7} {=MEigenvalPow(a2:FTil

This matrix has eigenvalues -1, 3,-6, 9, 12, - 15
The power method works also for asymmetric matrices. In this example we have left the round-off
errors to give an idea of the general accuracy. Eigenvalue errors are shown in the last column.
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Complex Eigensystems

In Matrix.xla the eigen problem of a general complex matrix is solved with the aid of the following
main functions:

MatEigenvalues_QRC returns all the eigenvalues by the complex QR algorithm
MEigenveclnvC returns all distinct eigenvectors by inverse iteration
MEigenvecC returns the eigenvectors of associated eigenvalues

Example 1. Find eigenvalues and eigenvectors of the following complex matrix

2+4j | -143] | 34

14-2j | 11-3j | -7+

-6-2 | -3 | 11+7j

AlB|c|D|E|[F & | H|[[J4 ][ K [|L|[M|N][o]|F |

1 Matriz 03 x 3 Eigenvalues Eigenvectors norm =2
202 a4 3 4 3 1 4 2 0.447 0447 i il il i
3|14 11 7 2 3 1 8 6 089 0 -0E7 0 0 0224
4| 6 3 1.2 4 7 12 4 0 0594 0224 ] 0 067
5 / Eigenvectors, norm = 1
B | [i=MEigenval GRC(AZF4)} | 1 1 0 0 0 0
7 -2 0 ] 0 0 1
g [{=MEigervecinyC(A2:F4 HZ14)} [ s 0 2 1 1] 1] 0
9 /
ETl [{=ihlormalize_CiK2:P4,17} |

In this case the eigenvalues are all distinct, therefore we can quickly obtain the associated
eigenvectors by the inverse iteration algorithm

Note that the eigenvectors returned by the function MEigenvecinvC have always unit
absolute magnitude (norm = 2). For changing the normalization type we can use the function
MNormalizeC.

When the eigenvalues are not all distinct we cannot use the inverse iteration but instead
should use the singular system method performed by the MEigenvecC
Example. The following matrix has only 2 distinct eigenvalues: 2, and |

alelc|lo|E|lFle|H|IT|J]lK|lLIM|nu|lo|r|[a]Er
13 Matrix (3 % 3) Eigenvalues Eigenvectars for A= Eigenvector for =2
A4/ 0 1 2 4 2 A ol 1 A 0 1 2 17 0
15| 0 1 2 -5 3 A ol 20 0§ 1.0
165 -2 1 0 1 3 2.0 1.0 0@ 01
a7 ] /!
£|{=M Eigerrval QRCLAT4:F16)} |
19
0 | |{=MEigervecC(A14F16 H14114)) |
% [(MEigervecC(a 4 FIE BTG - |

Note that the eigenvalue | = | with multiplicity = 2 has two associated eigenvectors returned
in a (3 x 4) array. The eigenvalue | =2 has one associated eigenvector returned in the last
(3 x 2) array
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How to validate an eigen system

Example - Check the real eigen system of the previous example
In order to test an eigenvector matrix U of a given matrix A, we can use the definition

AU:(|1U1,|2U2,... IeUe)

But, before testing, we show how to arrange the eigenvector matrix in order to avoid non-integers.
This is not essential, but it helps the visual inspection.

First of all, we begin with eliminating round off error by using the function MMopUp

A B [ ] E F [E] H | J K L
1 Eigenvectors Eigenvectors {mop-up)
2 | nzasT -0.25 0.5 1 1 0.03846| 0.28571 -0.25 -0.5 1 1| 0.03846
3 1 1 -1 1 -1 1 1 1 = 1 -1 1
4 -0.7143 075 1 -1 -2E-14 0 07308 -0.7143 -0.75 1 -1 0 -0.7305
5 | 0.28571 0.5 05 -ZE-14 1.ZE-14) 0.33462| 0.28571 0.5 -03 1] 0 035462
B 1.8E-15 025 -2E14) BA1E-15| -5E-13 -0.0769 1] -0.25 u] 1] 0 -0.07839
J 014286 98E-16  -VE-16  -2E-15  -1E-15 0.07692| 014256 1] u] 1] 0 007532
=]
g \‘|{=MMUpUp(A2:F?,1E—13)} I/'
1

Now, for each column, we choose the pivot, that is, the absolute minimum value, except the
zeros. Multipling each pivot by the corresponding eigenvector we obtain a new integer vector
that it is still an eigenvector

€] H I d 4 L M| N0 P | Q R
1 Eigenvectors (mop-up) Integer eigenvectors
2 [ 0zs7] 025 05 1 1] 0o38s| 2 1 1 1 1 1
3 1 1 -1 1 - 1 7 -4 2 1 4 |
4 | 0714 075 1 -1 o -073| -5 3 B T
A | 0.2as7 05 -0& 0 0 03346 2 5 1 0 o | 10
5 0 025 0 0 o o-0o77| 0 1 0 0 0 -2
7 | 041429 0 ] ] 0 0.07Eg| 1 0 ] ] 0 2
8 [Pivot -r ‘“\\
N ) {=HZH7 MO}
19EI 01423 025 0& 1 1, 00388 [(=HzH7HI} |
A B/ C|D|E|F |G| H| I | J|K|L/| Thematrixon the leftis
1 EIRENEEIOS obtained by multiplying the
2 | A (6x6) ul uz w3 uwd us  ug original matrix by its
3| -2 65 121 -4 95 2E| 2 1 1 1 1 1 eigenvector matrix: A U
4 | 43 40 7T A3 40 85| 7 | 4 2 1 R 9 : :
= 17| 17 28 13 -23] &8 5 3 -2 A 0 -14 ] ] )
E| 16 18 32 =25 22 84| 2 |2 1 0 0 10| The matrix onthe rightis
g -26, -26) -2 -26 3@ 26| 0 1 .0 0 0 -2 obtained by multiplying each
d 26 -28 -5 250 28] 13 _1 0 1] 1] 0 2 eigenvector u; for its
eigenvalues di . |
10 W o 33w e s corresponding eigenvalue.
11 | av 45 12 8 & 3 A .
120 30 12 9 & FEIEETEEE 9 & 7 1| Because the two matrices are
13 105 48| 18 -6 -3 -26/-105 -48 18 -6 -3 -26| jdentical, the eigensystem
14| 73 3 & & 0 18| 73 3| -1& G o 18 (eigenvectors + eigenvalues)
15| 30 -24 9 0 0 -0 -30 -24 9 1] o -10 is correct
| -0 12 -0 -0 0 2 o1z 1] 1] 0 2 )
17 | -5 0o -0 -0 -0 -2 15 0 1] 1] o -2

18 | {=MMULT( A3 FE G3LE))

19

{=GERGEG}

{=HIHF*H11}
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How to generate a random symmetric matrix with given eigenvalues

Many times, for testing algorithms, we need a symmetric matrix with known eigenvalues
For building this test matrix, the following simple method can be useful

First, we generate a random (n x 1) vector, v

Then we generate the Householder matrix H with the vector v

We create a diagonal ( n x n) matrix D with the eigenvalues that we want to obtain.
Finally we make a Similarity Transformation of matrix D by the matrix W.

The result is a symmetric matrix with the given eigenvalues.

Example: Suppose we want a (3 x 3) random symmetric matrix with eigenvalues = (1, 2, 4)
Choose a random vector v, like for example:

=20
v=cl=+
&1y
Build the associated Householder matrix H
é-1/3 -2/3 2/3
v =% 2/3 2/3 w3l
g2/3 1/3 2/3j

vy

H=I1-2

Set the diagonal matrix D

el 0 0y
_é v
D=0 2 0
@ 0 44

Perform the similarity transformation of D by H

é25/9 2/9 10/9y
A=H*AxH :22/9 16/9 8/93
glo/9 8/9 22/9§
Note that, in this case, the inverse of H is the same as H.
The resulting matrix A has the wanted eigenvalues = (1, 2, 4)

If we want to avoid fractional numbers we can multiply the matrix A by 9 and get a new
symmetric matrix B

&5 2 10
_gxa= 6 ¥
B=9xA=g2 16 8Y
g0 8 224

The eigenvalues of B are now multiples of 9; thus 9, 18, 36

As we can see, this method is general, and can be very useful in many cases: for testing
algorithms, formulas, subroutines, etc.

In the add-in Matrix.xla, there are functions for generating Householder matrices and
performing the Similarity Transform.
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aAlBlc|DlE[FlG[H[ | J]K]L]
Random Symmetric matrix with given eigenvalues

A

2V D H A

3 2 1 0 -0.335 | -0667 | 0.B6Y 2778 | 0222 111
4 1 0 2 0 |-0667 0667 | 0.333 0222 1775 08539
5 -1 0 4 0667 | 0.333 | D.BE7 1111 | 0889 | 2.444
B 4 4

7| [Seed random || [eigenvalues {=MHousehalder(A3:A5)

] wector setting

9

I=MBAB(CT:ES;F3:Ha)}

-
u

All these actions are performed by the function MRndEigSym

Eigenvalues of a tridiagonal matrix

Tridiagonal matrices are very common in practical numerical computation. These matrices
can be handled with all methods shown before, but there are dedicated algorithms, more
efficient and faster, to solve those specialized eigenvalues problem. We have to consider
that many times a problem involving tridiagonal matrices has a quite large dimension. Also,
the storage of a tridiagonal matrix should be considered. A general full 30 x 30 matrix
requires 900 cells, but for a tridiagonal one with the same dimension we need to store only
90 cells, saving more than 90%. Clearly, paying particular attention to storage is quite
important.

Matrix.xla contains the following specialized functions applicable to tridiagonal matrices:

MEigenvalQL finds all real eigenvalues with the QL algorithm
MEigenvecT computes the eigenvector of a real eigenvalue
MatEigenvalTTpz finds all eigenvalues for a toeplitz tridiagonal matrix

All these function accept the matrix either in standard (n x n) form or in compact (n x 3) form

15 x 15 compact form 15 % 15 tridiagona matrix in standard form
-0s 05 0 1) [u] [u]
-1 5 [u]
-1

2 oo

n
nh L oo oo

FR I T - - S N N T

n
oo o oo oo oooo

=

o b S b woww o m oW st

T T O O T U=
coooooooloooool o
oo oo o oo ooooo b

oo o oo oo oo oo Lo L
oo oo oo oo oo Lo Lo
oooo oo o oo bl sy, oo o

n

oo o oo o o bhoo oo oo
coloo e P wbhooco oo oo
oo oo Lo koo oo oo oo
oo o L Lo o oo oo oo
oo L Lo o oooooooo
L Looooolooooooo
o L oo o oo oooo o oo o

o o000 oo O W
oo oo oo o

=t

For tridiagonal matrices there are several useful lemmas that help us to find the eigenvalues

One rule says that:

If all “perpendicular couples” of elements have the same 2 5 -
sign, than the matrix has only real eigenvalues 04 5 0o
(The condition is sufficient.) o | o 5 2 0o

So we can apply the fast QL algorithm to calculate all 15
eigenvalues of the given matrix
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In the following example we have computed all eigenvalues and the first 4 eigenvectors with
a very good approximation (about 1E-14)

aAlBlc|Dp|] E J[F] g | H [ 1 | J ]
1 |15 x 15 compact form Eigenvalues wi v u3 ud
2 0 5 05 6028785629 1250674 | 460586 -1224.81 599424
3] - 5 1 6757165094 2592281 | -1646287 | 393292 147623
4 5 1 6605526457 147153 2021015 -3864.79 1180671
| 5 2 4 BTEREE2645 2440892 | 1965600 227211 293007 &
B - 4/ 05 3897733747 1329154 745918 105432 572295
7 A 3 A 4 333252289 5113522 -226795 -5109.26 4176333
BB s 5[ 3.4437BESEE S2M9E225 0 1129920 18331 -211545
‘9] os 6 - 2533039289 134591 5 -197878 -186957 1234356
o] A I 1944973107 1136856 992669 104059 10715849
11 o5 a1 9 265043544 176337 204718 199014 119809
i 20 1 10.19392847 4449255 433268 -4351.1 -4262 .98
3] a1 -5 B2654539 291 4016 269.423 275609 3031163
[ T T -3.5961 73049 69.54564 792555 760495 5665307
pS 2 4] 914373019 1402579 147572 -14 6055 -12.5769
16 -1 -G 1] -53.24152854 1 1 1 1
17 Wal
% [ =MEigervalala2.C16)) | | {=MEigervecT(a2:C18 EZES)} |

Note that the eigenvectors returned by MEigenvecT are not normalized. Use for this task the
MNormalize function.

Eigenvalues of a tridiagonal Toeplitz matrix )

In numeric calculus it is common to encounter symmetric, tridiagonal, toeplitz matrices like
the following. For this kind, there is a nice close formula giving all eigenvalues for matrices of
any dimension.

e b 000 08 If the symmetric matrix has n x n dimension, eigenvalues
® ab oo of are:

€ b a b 0 00 2kp o

e u | =a+2b>xcos¢

go 0 bab Og k n+1g

€ 0 0 b a bu

e =

© 00 0 b aa wherek=1,2...n

We make the following observations:
All eigenvalues are real and distinct when the matrix is symmetric
All eigenvalues are symmetric around the point "a"
For n odd there exists the trivial eigenvalue | =a
All roots lie inside the interval a-2b <1, <a+2b

Also the eigenvector matrix can be written in a compact closed form.

(fﬂn Uy, - ulnl\;l If the symmetric matrix has the n x n dimension n x n, the
Q. u u Y elements of the eigenvectors matrix are:
U —-e 21 22 in(
é.. . u
A 2 = sma?>4<
? ';l n +1g
@ Uy - Uy(Q

where i=1,2...n ,k=1,2...n
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The unsymmetrical tridiagonal toeplitz case can be led back to the above one.

We distingue two cases:

1) The sub-diagonals have the same sign. In that case we can demonstrate that all roots are
real and distinct.

ga b 000 3 If the matrix has the dimension n x n, and bc > 0, the
& ab 00 . eigenvalues are:
A_(:EO c ab 0 .0
- So 0 c ab 3 =a+ 2r>co %kp 9
€ 0 0 c a ..U
5. -4 where k=1,2... n

All roots lie within the interval:

a- 2bc <l <a+2Jbc

2) The sub-diagonals have different sign. In that case we can demonstrate that all roots are
complex conjugate for n even; for n odd there exists only one real root,| =a.

If the matrix has the dimension n x n, and bc <0, the
eigenvalues are complex:

I =a+ixy- >cos<; p c-)-a+|d

O O o0 9 T
o 0O 9 T O
O 9 T O O
QQ T O O O

wherek=1,2...n

>

Il
(D> > > > > > > N
OGP Y
(@ Na e e e e e e ]

All roots lie inside the segment:

rel )=a - 2J-bc<im(l,)<2V-bc
Eigenvectors can be computed by the following iterative algorithm
Xk:|k'a where:k=1,2...n,i=1,2...n

1
_ 1 u, =1 , U, =—
Ui _B(Xk U gk - C’“(i-Z)k) e * %

Example Find all eigenvalues of the following tridiagonal toeplitz 8 x 8 matrix

10 1 0 0 0 0
4 10 1 0 0 0 0
0 4 10 1 0 0 0 0
0 0 4 10 1 0 0 0
0 0 0 4 10 1 0 0
0 0 0 0 4 10 1 0
0 0 0 0 4 10 1
0 0 0 0 0 4 10
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We observe that the values of the sub-diagonals in the lower and upper triangles have the
same signs, so that all eigenvalues are real and distinct.
They can be obtained by the following closed formula:
xekp 6
|, =a+2vbcxosg——=
K r Sgn+lg

fork=1,2,...8 wherea=10,b=1,c=4,n=8

giving the following 8 eigenvalues

I, 13.7587704831436
I, 13.0641777724759
| 5 12
| 4 10.6945927106677
ls 9.30540728933228
I 6 8
| 7 6.93582222752409
| g 6.24122951685637

All eigenvalues are contained into within the interval (a — 4, a + 4) = (6, 14)

Example Find all eigenvalues of the following tridiagonal toeplitz 7 x 7 matrix

10 2 0 0 0
-1 10 2 0 0 0
0 -1 10 0 0 0
0 0 -1 10 2 0 0
0 0 0 10 2 0
0 0 0 -1 10 2
0 0 0 0 -1 10

We observe that the sub-diagonal values have different signs, and that the dimension n is
odd, so that all eigenvalues are complex conjugate except one real, trivial root at | = 10.
The eigenvalues can be obtained from the following closed formula:

|, =a+ieV- bocoEP 9= a+id,
en+lg

fork=1,2,...7 wherea=10,b=2,c=-1,n=7

giving the following 7 eigenvalues.

real im
| 4 10 2.6131259297528
I, 10 2
| 3 10 1.0823922002924
| 4 10 0
| 5 10 -1.0823922002924
| 6 10 -2
|, 10 -2.6131259297528

Example Find all eigenvalues of the following tridiagonal toeplitz 8 x 8 matrix
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olo|o |k |k |+ |O|O

olo|h |k |k |JO|O |o

olh [k |k |JO|Oo |o |o

ok [k |lo o |o |o |o
|k oo |o|o o |o

o |o|lo|o|o|o |k |+
o |o oo |o |k |k |k
o |lo|o|o |k |k |k |O

We observe that the sub-diagonal values have different signs, and the dimension n is even,
so that no real eigenvalues exist, and all eigenvalues are complex conjugate.
They can be obtained by the following closed formula:

|, =a+iX/- bc >(:os€:e£9=a+idk
ent+lg

fork=1,2,...8 wherea=1,b=1,c=-1,n=8

giving the following 8 eigenvalues.

real im
|4 1 1.8793852415718
1.5320888862380
1
0.3472963553339
-0.3472963553339
-1
-1.5320888862380
-1.8793852415718

P
ls

|4

l's
l's

I 7

(IR I R FEN [RY

ls

Example Find all eigenvalues of the following tridiagonal toeplitz 8 x 8 matrix

o |o|o |o|o|o |+ |
olo|o|o|o |+ b |-
o |lo|o (o |F N |- |o
o |lo|o|r |N |+ |o|o
oo~ N |F |o|o|o
ok |N [P |o |o (o |o
= |- o |o o |o|o
N[k o o |o o o |o

We observe that the matrix is symmetric so all eigenvalues are real and distinct.
They can be obtained by the following closed formula:

zekp 0
en+1ﬁ

fork=1,2,...8 wherea=-2,b=1,c=1,n=8

I, =a+2bxo

giving the following 8 eigenvalues

I, -0.1206147584282
I, -0.4679111137620
l -1
I, -1.6527036446661
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I s -2.34729635533386
| 6 -3
| 7 -3.53208888623796
| g -3.87938524157182

All eigenvalues are contained in the interval (a —2, a + 2) = (-4, 0)
We observe that they are all negative
The eigenvector matrix can be obtained in a very fast way using the formula

e:;sin(a) sin(2a) .. sin(&) u
b =n@xj P 6 U:gsin(za) sn(4a) .. sin(16a)y
! 8 n+lg é U

Sina) Sn6a) .. sin(eda)l

That gives the following approximate eigenvector matrix

0.34202

0.64279

0.86603

0.98481

0.98481

0.86603

0.64279

0.34202

0.64279

0.98481

0.86603

0.34202

-0.34202

-0.86603

-0.98481

-0.64279

0.86603

0.86603

0

-0.86603

-0.86603

0

0.86603

0.86603

0.98481

0.34202

-0.86603

-0.64279

0.64279

0.86603

-0.34202

-0.98481

0.98481

-0.34202

-0.86603

0.64279

0.64279

-0.86603

-0.34202

0.98481

0.86603

-0.86603

0

0.86603

-0.86603

0

0.86603

-0.86603

0.64279

-0.98481

0.86603

-0.34202

-0.34202

0.86603

-0.98481

0.64279

0.34202

-0.64279

0.86603

-0.98481

0.98481

-0.86603

0.64279

-0.34202

Note that the column-vectors are orthogonal.

107




Generalized eigen problem
The matrix equation
Ax=1 Bx (D)

where A and B are both symmetric matrices, and B is positive definite, is called a generalized
eigen problem.

Equivalent asymmetric problem
This problem is equivalent to:

B*A)x=1x b Cx=l x (2
In generally C is not symmetric even when A and B are.

Example: transform a generalized eigen-problem into a standard eigen problem, where the
matrices A and B are

A B
7 0 2 4 2 4
0 5 2 2 17 10
2 2 6 4 10 33

In the following worksheet we have calculated the matrix C=B™A

A, B C D E F =
1 A B
2 7 i] 2 4 2 4
3 1] 5 2 2 17 10
4 2 2 g 4 10 33
5
5] coeff eigenvalues
r C 003 re ifmi
B | 19569 -01413 0.3638 0876 04717 1]
9 | 01538 053225 -0.0075 24194 | 03033 1]
10 043 -002 014 -1 19444 1]

11
1% \ [iEMCharPalyiag:C10)) = F'Dlﬁ,fRnnts(ET E10} |

|{ MMLUILTMIMNVERSEEZ:G4) AZ:C4)} I

As we can see, the matrix C is not symmetric even if A and B are both symmetric. In order to
calculate the eigenvalues we have, before, extracted the characteristic polynomial with the
function MathCharPoly; then approximated its roots with the function PolyRoots. The approximate
eigenvalues are:

[,=01717 1,=0.3033 |5;=1.9444

To solve the eigenvectors we can now follow the step-by-step method shown in the previous
examples. But, we can also transform the given generalized problem into a symmetric one. Let's
see how.
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Equivalent symmetric problem
Given the following matrix equation

Ax=1 Bx @

where A and B are both symmetric matrices and B is positive definite.

In the previous paragraph we have seen how to transform this problem into a standard
eigenproblem by setting C = B?A. But C is not symmetric. Many algorithms only work well for
symmetric matrices. By contrast, there is no equally satisfactory algorithm for the asymmetric
case. So, it is better to convert the problem into a symmetrical matrix, by the Cholesky's
decomposition

B=LL" (2

Where L is a triangular matrix.
Substituting (2) into (1) and multiplying the equation by L™ , we get:

L*Ax=1 (L)L x b L*Ax=1 L x

And, because |=(LN)*L" =(LH'L" , we can write:
LPALH L™x=1 L"x b LYAx=1 L"x

After setting the auxiliary matrix: W equal to L™, and the auxiliary vector d to LT x, we have
WAW' d=Id b Dd=1d (3

Equation (3) is the new eigen problem where D =W A W' is symmetric
Eigenvalues of problem (3) are equivalent to (1) while the original eigenvectors x can be obtained
from the eigenvectors d by the following formula:

d=L"x P x=(LN'd b x=(LHd p x=W'd

That is, eigenvectors of (1) can be obtained by multiplying eigenvectors of (3) by the auxiliary
maitrix W.

Matrix.xla contains everything you need to solve generalized eigen problems: Cholesky
decomposition can be done by the function MCholesky; eigenvectors and eigenvalues of
symmetric matrices can be calculated with Jacoby iterative rotations performed by the two
functions MEigenvalJacobi and MEigenvecJacobi.

Thus, let's see how to arrange a worksheet for solving a generalized eigen-problem, assuming
the matrices A and B of the previous example. The following worksheet contains all formulas
shown before. Formulas used for each matrix are written in blue, under the matrix itself

A B G D E F 5 H | J K
1 A B L
2 7 0 2 4 2 4 2 0 0
3 ] 5 2 2 17 10 1 4 ]
4 2 2 g 4 10 33 2 2 5
g {=MCholeskyE2:G4)}
A | B > ] E F [ H I J K
7 W W' D
a ns o 0s | -0125 015 175 0438 -0325
9 0125 nz2s o o 025 | -04 0438 04219 00563
10| -045 | -0 0.2 ] 1] 0.2 -0.325| 0.0563 02475
11 =il 2: 43} [=MTASC10) {=MProd{A3:210, A2:C4, EGGTO))
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A | B C o E F G | H I J K

13 | Jacobi eigenvalues of D mop-up eigenvalues

14 | 19444 2E-24 3E-33 1.9444 0 0 1.9444

16| 3E-17 03033 7E-18 I 0.3033 0 0.3033

16 | 3E17 -8E-21 04717 1 1] 01717 01717
ﬂ{=MEigenvaIJaCDbi(I8:K1 oy {=tAbdoplpr s 401673 {=MDiacExtriE1 4: G161}
18

19 |Jacobi eigenvectors of D eigenvector x eigenversor u

20 | o&8#a 02126 02603 0534 | 00335 -0.0H 09931 01316 -0.209
21| -0275 09288 02452 -0.05 | 02625 -0032 -0.094 0596839 -0.166
22 -019) -0.303 08339 -0.035  -0.081 01565 -0.071 | -0.223 09637
23 [{=MEinenveclacakills: K100} {=MMULTIES: G10 A200C220 ) {=E200E22 J Mabs(E20:E22)}

Diagonal matrix

The case in which the matrix B is diagonal is particularly simple because L is diagonal too and
can be computed by a simple square root. Also the L™ is quite simple: just take the inverse of
each diagonal element.

N

&, 0 0 éb, 0 o ¢- o od
é l.,] —e u l_Abu 1 L,J
=%0 b, oY L=g0 b, 0y L'=g0 0
e u P > 8 Vb U
B0 0 by §0 0 buj 50 0 g
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Example - How to get mode shapes and frequencies for a structure with multiple
degrees of freedom °

Example 1 - Our problem is an example of the "generalized" eigenproblem:

kf=wm f 1)
where k and m are both symmetric positive definite matrices. In this specific case they were:
Stiffness matrix k: Mass matrix m:
600 -600 0 1 0
-600 1800 -1200 0 15
0 -1200 3000 0 0

This problem is equivalent to a "standard" eigenproblem:
(mik)f=w’f P Cf=wf

The problem is that C is not symmetric. One can work around this problem by converting the
problem to a symmetric one using the Cholesky decompaosition

m=LL"
where L is a triangular matrix. In a case like ours, where m is diagonal, the L matrix is also
diagonal, with each term of L being the square root of the corresponding term in m. Define a
new matrix W as:

w=L"t
Multiplying equation (1) by W, one gets:

WKW (LTf)=w? (LT f)
or, more concisely,

Dv=wv )
where

D=WkW' (3)

The eigenvalues for equation (2) are identical to those of equation (1), and the eigenvalues
of equation (1) can be obtained easily from the eigenvalues of equation (2):

f=(LY'v=wyv (4)

So here is what you do:

Starting with k and m, make L ; then W ; and then D.

® This example comes from a true problem proposed to me by Douglas C. Stahl of the Architectural Engineering
and Building Construction of the Milwaukee School of Engineering. Because it seems to me very interesting also
for other people, | decide to publish it in this tutorial, in the version arranged by Doug and me.
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A B ¥ B E F G H J K
B3 stiffness matrix k: mass matrix m:
55} GO0 -E00 1] 1 1] 1]
70 -G00 1800  -1200 1] 15 1]
71 0 -1200 3000 1] 0 2
72
73 |L W 1]
74 1 0 0 1 0 0 GO0 -450 0
75 0 1.2247 0 0 0.8165 0 -489.9 | 1200 | B92.82
7B ] ] 1.4142 ] ] 0.7071 ] -E92.82 0 1500
77

Calculate the eigenvalues and eigenvectors for D, with the functions matEigenvalue_jacobi
and matEigenvector_jacobi contained in the add-in MATRIX. Allow for a number of
iterations larger than 40. These eigenvalues are the ones you want. These are the correct
squared frequencies for our problem.

A B c B
80 maxloops = a0
g1
82 eigenvalues are diags of this matrix:
83 210.88 0.00 0.00
84 0.00 96396 0.00
85 0.00 0.00 212516

F G H | d
gigenvalues eigenvectors of D
210.68 0.743 -0.636 0.210
953.96 0.580 0.472 -0.655
212516 0.317 0.610 0.726

The eigenvectors must be converted using equation 4. They are the correct mode shapes
for our problem. The eigenvectors are already orthonormalized.

A E C
1 eigenvectors of D
2 0743 | 0B3E 0210
3| 0520 0472 | 0BS5S
4 | 037 | 0F10 0.7
5

Example 2 - Seven inertia torsion system

D

E F £

eigenvectors of given problem

0743 | 0B | 0.210
0452 | 0336 | -0.435
0224 | 0.432 0.513

This example™ shows how to solve a larger torsion system with good accuracy. Assume to have
the following torsion system equation

Kf=wMf (1)
where the matrices K and M are
115.2 0 0 0 0 0 0
0 15.8 0 0 0 0 0
0 0 1.35 0 0 0 0
M= 0 0 0 1.35 0 0 0
0 0 0 0 1.35 0 0
0 0 0 0 0 1.35 0
0 0 0 0 0 0 9.21

1% Thanks to Anthony Garcia

112



9400000  -9400000 0 0 0 0 0
-9400000 24400000 -15000000 0 0 0 0
0 -15000000 49000000 -34000000 0 0 0
K= 0 0 -34000000 68000000 -34000000 0 0
0 0 0 -34000000 68000000 -34000000 0
0 0 0 0 -34000000 106000000 -72000000
0 0 0 0 0 -72000000 72000000

Tip. Scaling the given matrix for a suitable factor may increase the computing accuracy by
several orders. In this case we divide the K matrix for a factor 10°. The eigenvalues are
proportionally scaled by the same factor. In fact, multiplying both sides of equation (1) by the
same scaling factor, we have:

10°K f =10° W M f

K'f=I Mf

where K'=10°K and W= 10°l

9.4 -9.4 0 0 0 0 0
9.4 244 -15 0 0 0 0
0 -15 49 -34 0 0 0
K'= 0 0 -34 68 -34 0 0
0 0 0 -34 68 -34 0
0 0 0 0 -34 106 =72
0 0 0 0 0 -72 72

The Cholesky factorization of M can be computed easily because it is a diagonal matrix

L = [(mll)l/z 1 (m22)1/2 . (m77)l/2]

[L]= Choleski Decompoasition of_[J]=(sqrt[ii]]

107331 0 1] i} 1] 1] 1]
1] 397482 1] i 1] 1] 1]
1] 0 11613 i 1] 1] 1]
1] 0 1] 11613 1] 1] 1]
0 0 0 0 11613 0 0
0 0 0 0 0 11613 0
0 0 0 i} 0 0 30343

The auxiliary matrix is the inverse of the L matrix; but also in this case, it is very easy to
compute the inverse, as

W=L" =[1/Ly, Uloy, ... 1Uly]

[W]=[L]"
0o0gsr | 0 0 0 0 0 0
0| 0EEEs 0 0 0 0 0
0 0 | 0SE0EE. 0 0 0 0
] ] 0 08E0EE 0 ] ]
] ] ] 0 | DEEOEE 0 ]
] ] ] ] 0 | DEE0GE 0
] ] ] ] 0 0| 03295

Now we compute the matrix [D]=[W][K'][W]" by the function MProd
Note that W' = W because W is diagonal.
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[O]=[W]IK "

0.021E

02203 | 15443

-0.2202 0
-3.2473
0 -3.2478 | 362963

1]
1]

-26.185

-20.155 | 503704

1]
1]

0 1] -25.185 | 503704
0 0 0
0 0 0
0 0 i}

1] 1] 1]
1] 1] 1]
1] 1] 1]
-26.185 1] 1]
-25.185 1]
-26.185 | TEEEE | 20413
1] 20419 T.RITES

Applying the Jacoby algorithm or, even better, the QL algorithm, to the symmetric tridiagonal
matrix [D], we get all its real eigenvalues. Multiplying them by the factor 10°, we finally have
the eigenvalues of the given torsion system

Eigenvalues by Jacobi method Eigenwalues
0 0 0 0 0 0 0 0
0 | 123553 0 0 0 0 0 129553333
0 0 | mzza o0 0 0 0 1022289963
0 0 0 | 744826 0 0 0 TH44EZEEE.TF
0 0 0 0 |0z 0 0 30075771
0 0 0 0 0 | w0 0 00334752
0 0 0 0 0 0 | 0277 2TTTEZOTER
Eigenwectors [YWd] of O by Jacobi Method The eigenvectors of D may be
03395 00516 00045 00001 -0.0003 00000 0431 . .
03234 03351 -0.2073 00204 00582 00042 03533 CompUted_ by the ,JaCO*?' algorithm
00963 00742 0636 04631 06483 01288 04729 or by the inverse iteration
00963 00045 05992 0EME 00286 03305 02064 Here we have used the function
00963 -00830 04026 02035 06627 05362 0236 : :
00963 -0I673 004200 04369 03043 07482 02542 MEigenvecJacobi
02505 -0.4924 -03562 04522 -0.2082 00633 06835
Eigenwectors Wa of & obtained by [%Wa] = [W][¥d] Multlplylng the Vd matrix by the
00223 00041 00004 00000 00000 00000 -0.0402 .. . .
00329 020 00521 00051 0047 0000 00956 a!.IXIIIary W matrix we find the
00823 00633 04764 03943 05580 0003 0540 eigenvectors of the given system
00329 00033 0563 05352 00247 02345 01776
00329 00715 03465 00751 05704 -D4E1S 01993
00329 01354 00361 04277 02623 06433 02188
00229 01623 0074 00502 00688 00540 0.2289
hlermalized Eigenuestor=Tia) that can be normalized as we like
0.3780) -0.0451 00005 00000 00000 00000 00857 X )
05780 06T04 -DOGEE 000GD| 004 0002 0.2 by the function MNormalize
03780 02039 05998 04628 0BE7| 00303 0.3399
037800 024 06497 05936 00292 03344 03921
037800 02281 04361 02055 067E4 05424 04393
03780 -04320 00455 050200 0311 07569 0.4523
03780 05178 00477 00539 00814 -00E3S 05007
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