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About this tutorial 
About this Tutorial 
Matrix.xla 
Matrix.xla is an Excel add-in that contains useful functions and macros for 
matrix and linear Algebra:  

Norm. Matrix multiplication. Similarity transformation. Determinant. Inverse. 
Power. Trace. Scalar Product. Vector Product.  

Eigenvalues and Eigenvectors of symmetric matrix with Jacobi algorithm. 
Jacobi's rotation matrix.  Eigenvalues with QR and QL algorithm. 
Characteristic polynomial. Polynomial roots with QR algorithm. Eigenvectors 
for real and complex matrices 

Generation of random matrix with given eigenvalues and random matrix with 
given Rank or Determinant. Generation of useful matrix: Hilbert's, 
Houseolder's, Tartaglia's, Vandermonde's 

Linear System. Linear System with iterative methods: Gauss-Seidel and 
Jacobi algorithms. Gauss Jordan algorithm step by step. Singular Linear 
System.  

Linear Transformation. Gram-Schmidt's Orthogonalization. Matrix 
factorizations: LU, QR, QH, SVD and Cholesky decomposition.   

 
The main purpose of this document is to show how to work with matrices and vectors in Excel, 
and how to use matrices for solving linear systems. This tutorial is written with the aim to teach 
how to use the Matrix.xla functions and macros. Of course it speaks about math and linear 
algebra, but this is not a math book.  You rarely find here theorems and demonstrations. You can 
find, on the contrary, many examples that explain, step by step, how to reach the result that you 
need. Just straight and easy. And, of course, we speak about Microsoft Excel but this is not a 
tutorial for Excel. Tips and tricks for Excel can be found ion many Internet sites.  

This tutorial is divided into two parts. The first part is the reference manual of Matrix.xla. The 
second part explains with practical examples how to solve basic topics about matrix theory and 
linear algebra. 

 

 
 

Chapter 

1 
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Linear Systems 
 

This chapter explains how to solve linear systems of 
equations with the aid of many examples. They cover the 
major part of cases: systems with a single as well as with, 
infinitely many solutions, or none at all. Several algorithms 
are shown: Gauss-Jordan, Crout's LU factorization, SVD  

Linear System 
Example 1. Solve the following  4x4 linear system 

 

 

 

 

 

 

Square matrix. If the number of unknowns and the number of equations are the same, the system 
has surely one solution if the determinant of the matrix A is not zero. That is, if A is non-singular. 
In that case we can solve the problem with the SysLin function. 

 

 
 

The determinant can be computed with the MDet function or with Excel's built-in function 
MDETERM.  

Chapter 

2 

1 9 -1 4 
2 0 1 1 
1 2 -4 0 
1 5 1 1 

18 
-2 
17 
7 

A x = b 
 
Where A and b are: 



 7 

The Gauss-Jordan algorithm 
The Gauss and Gauss-Jordan algorithms are probably the most popular approaches for solving 
linear systems. Functions SysLin and SysLinSing of Matrix.xla use this method with pivoting 
strategy. Ancient, solid, efficient and - last but not least - elegant. 

The main goal of this algorithm is to reduce the matrix A of the system A x = b to a triangular1 or 
diagonal2 matrix with all diagonal elements  equal to 1 by using a few row operations: linear 
combination, normalization, and exchange. 

Let's see how it works 

Example: The following 3x3 system has the solution x1 = −1 ; x2 = 2 ; x3 = 1, as you can verify it by 
direct substitution. 

 

 

 

 

Let's begin to build the complete matrix (3x4) with the matrix coefficients and the constant vector 
(gray) as shown on the right. Our goal is to reduce the matrix coefficients to the identity matrix. 

Choose the first diagonal element  a11 ; it is called the "pivot" element 

1. Normalization step: if pivot ≠ 0 and pivot ≠1 then 
divide all first row elements by the value of the 
pivot,  4.  

2. Linear combination: if a21 ≠ 0 then substitute the 
second row with the difference between the 
second row itself and the first row multiplied by 
a21 

3. Linear combination: if a31 ≠ 0 then substitute the 
second row with the difference between the 
second row itself and the first row  

 

As we can see the first column has all zeros except for the diagonal element, which is 1. 
Repeating the process for the second column - with pivot a22 - and for the third column - with pivot 
a33 - we will perform the matrix "diagonalization"; the last column will contain, at the end, the 
solution of the given system 

In Excel, we can perform these tasks by using the power of array functions. Below is an example 
of the resolution of a system by the Gauss-Jordan algorithm 

Note that all the rows are obtained by array operations {...}. You must insert them with the 
CTRL+SHIFT+ENTER key sequence. 

                                                      
1 Properly called Gauss algorithm 
2 Properly called Gauss-Jordan algorithm 

4 1 0 -2 
-2 -2 1 -1 
1 -2 2 -3 

1 0.25 0 -0.5 
0 -1.5 1 -2 
1 -2 2 -3 

1 0.25 0 -0.5 
-2 -2 1 -1 
1 -2 2 -3 

1 0.25 0 -0.5 
0 -1.5 1 -2 
0 -2.25 2 -2.5 









−=+−
−=+−−

−=+

322
122

24

321

321

21

xxx
xxx

xx
⇔ 
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We see in the last column the solution (-1 ; 2 ; 1). The formulas used for computing each row are 
shown on the right 

If one pivot is zero we cannot normalize the corresponding row. In that case we 
will swap the row with another row that has no zero in the same position. This 
operation does not affect the final solution at all; it is equivalent to reordering the 
algebraic equations of the given system 

Example: The following 3x3 system has the solution x1 = 5 ; x2 = −3 ; x3 = 7. 
 

 

Note that the first pivot, a11, is zero. We 
cannot normalize this row 
In this case we swap the first row with 
the second one .  

Now the new pivot is 2 and the 
normalization can be done. 

Note that the second row now has the 
element  a21 = 0, so we simply leave 
that row unchanged. The linear 
combination isn't needed in this case 

 

The pivoting strategy 
Pivoting can always be performed. In the above example we have exchanged one zero pivot with 
any other non-zero pivot in order to continue the Gauss algorithm. But there is another reason for 
which the pivoting method is adopted: to minimize round off errors. 

The Gaussian elimination algorithm can have a large number of operations. If 
we count the operations for the resolution of one system of n simultaneous 
equations, we will discover that it requires of the order of n3/3 computer 
operations, i.e.., additions, subtractions, multiplications, and divisions. So, if the 
number of equations and unknowns doubles, the number of operations 

increases by a factor of 8. If n = 200, then there are more than two million operations! Certainly, 
one might begin to worry about the accumulation of round off errors. One method to reduce such 
round off errors is to avoid division by small numbers, and this is known as row pivoting or partial 
pivoting , the strategy of the Gaussian elimination algorithm.  

Swap rows 

Pivoting can 
reduce round 
off errors 
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Let's see the following remarkable example of a 2x2 system 

Its solution is (x1 , x2) = (1 , 1), as we can easily verify by substitution  

 

 

 

If we apply the Gauss-Jordan algorithm, with a numerical precision of 15  digits, we have: 

 

The pivot = 1 

 

 

 

The solution has an error of about 1E-7 

 

 
On the contrary, if we simply exchange the order of the algebraic equations, so that the second 
row becomes the first one, we have 

 
 
Pivot = 123456789 >> 1 
 
 
The solution is now much better, with 
an error of less than 1E-15 
 
 
 
 

 
As we can see, this little trick can improve the general accuracy.  
The standard Gauss-Jordan algorithm always searches the element below it for the maximum 
absolute value, to be used as pivot. If that maximum value is greater then that of the current pivot, 
then the row of the pivot and the row of the maximum value are exchanged. 
 

 

 

 

 

 

 

 

1 987654321 987654322 

123456789 -1 123456788 

1 a12 a13 a14 a15 a16 

0 1 a23 a24 a25 a26 

0 0 a33 a34 a35 a36 

0 0 a43 a44 a45 a46 

0 0 a53 a54 a55 a56 

0 0 a63 a64 a65 a66 

Not all elements can be used as pivot 
exchange. In the matrix to the right we 
could use as pivot a33 only the element 
a33, a43, a53, a63 (yellow cells).  
 For example: 

if |a63| =max( |a33|, |a43|, |a53|, |a63| ) 

then rows 6 and 3 are swapped, and 
the old element a63 becomes the new 
pivot a33 
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Full Pivoting 
In order to extend the area  in which to search  for a maximum pivot we could exchange rows and 
columns. But when we swap two columns, the corresponding unknown variables are also 
exchanged. So, in order to rebuild the final solution in the original given sequence, we have to 
perform all the permutations, in reverse order, that we have  made. This makes the final algorithm 
a bit more complicated, because we now have to store all columns permutations. 

 

 

 

 

 

 

 

 

The functions SysLin and SysLinSing of Matrix.xla use the Gauss-Jordan algorithm with full 
pivoting strategy 

 

Integer calculation 
In the above examples we have seen that the Gauss elimination steps introduce non-integer 
numbers - and round off errors -, even if the solutions and coefficients of the system are integers.  

Is there a way to avoid such decimal round off errors and preserve the global accuracy? The 
answer is yes, but in general, only for integer matrices. 

This method - a variant of the original Gauss-Jordan approach - is very similar to the one that is 
sometimes performed manually by students. It is based on the "minimum common multiple" 
MCM  (also LCM Least Common Multiple) and it is conceptually very simple 

Assume that we have the following two rows: the pivot row, and the row that has to be reduced.  

Pivot is a11 = - 6  

The element to set zero is a21 = 4  

mcm = MCM(6 , 4) = 12 

Multiply the first  row by mcm / a21 = 12/4 = 3   

And the second row by −mcm /a11 = −12/(−6) = 2 

 

 

-12 0 10 18         now, add the two rows 
12 9 0 30  
     

-6 0 5 9   <== the first row remains unchanged 
0 9 10 48   <== add the first row to the second row 

 
In this way we can reduce a row only using integer numbers 
Let's see how it works, step by step, in the function GJ_setp of Matrix.xla. 
 

1 a12 a13 a14 a15 a16 

0 1 a23 a24 a25 a26 

0 0 a33 a34 a35 a36 

0 0 a43 a44 a45 a46 

0 0 a53 a54 a55 a56 

0 0 a63 a64 a65 a66 

-6 0 5 9  <== pivot row; multiply for 2 
4 3 0 10  <== for reducing; multiply for 3 

The full pivoting method extends the 
search area for the maximum value 

For example, if the pivot is element a33, 
then the algorithm searches for the 
absolute maximal value in the yellow 
area below and to the right of a33. If  a 
maximum value is found at a56, then 
rows 5 and 3 are swapped and, 
thereafter,  columns 5 and 3 are 
exchanged. 
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Note the 3rd parameter setting the integer algorithm. If "false", the 
operations will use standard floating point operations using real (i.e., 
not necessarily integer) numbers. 
Only the last step can introduce decimal numbers; the previous steps 
are always exact. Unfortunately, this method cannot be adopted in 
general, even for matrices containing only integers, because the values 
grow at each step and can become large enough to cause overflow  

The function used are: 
{=GJstep(A5:D7,,True)} inserted in the range A9:D11 
{=GJstep(A9:D11,,True)} inserted in the range A13:D15 
{=GJstep(A13:D15,,True)} inserted in the range A17:D19 
{=GJstep(A17:D19,,True)} inserted in the range A21:D23 
{=GJstep(A21:D23,,True)} inserted in the range A25:D27 
 

 

The above example can be quickly reproduced. After inserting the function in the 
range A9:D11, give the CTRL+C command to copy the range still selected; highlight 
cell A13 and paste the new matrix with the instruction CTRL+V. Repeat this simple 

step still you reach the final 3x3 identity matrix. The sought solution will be in the last column. 

This sequence shows how to do it. 

 
Given a complete system matrix in range B2:E4, select 
the range A6:E8, just below the given matrix (leaving a 
free row for separation) 

 
Insert the array function GJstep with the CTRL+SHIFT+ENTER key 
sequence and the given parameter  

You should see the modified matrix after the first step. Leave the 
selected  range and give the copy command (CTRL+C) 

 

 
Select cell B10, under the 1st step matrix. Make sure that the 
range below is empty. 

 

Now, simply give the paste command (CTRL+V) and the 2nd 
step matrix will appear 

 
Repeating the above steps you can get all the intermediate Gauss-Jordan matrices, either in 
floating or in integer mode (at your option). 

Tip 
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Several ways to use the Gauss-Jordan algorithm 
The matrix reduction method can be used in several ways. Here are some basic cases: 
 
Solving a non-singular linear system 
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The complete matrix (3 x 4) is  
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At the end, the last column is the solution of  the given system; the original matrix A is 
transformed into the identity matrix. 
 
Solving m simultaneous linear systems 
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The complete matrix (3 x 3+m) is: 
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At the end, the solutions of the m system are found in the last m columns of the complete 
matrix 
 
Inverse matrix computing  
 
This problem is similar to the one above, except that the matrix B is the identity matrix. In 
fact, by definition: 
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The complete (3 x 6) matrix is: 
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At the end, the inverse matrix is found in the 3 last columns of the complete matrix 
 
Determinant computing 
 
For this problem we need only reduce the given matrix to the triangular form. 
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after which the determinant can be computed readily as  
 

332211)( tttADet ⋅⋅=  
 
Linear independence checking 
 
A linearly independent set of vectors S = {v1, v2...vn}  is this in which no vector is a 
combination of the others. Gauss algorithm can evidence how many linear dependent 
vectors there are in a given set. For that simply perform the triangularization of the matrix in 
which the columns are the vectors of the set. 
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The number of zero rows at the bottom of the triangularized matrix coincides with the linearly 
dependent vectors: i.e., one zero row, one dependent vector; two zero rows, two dependent 
vectors, and so on. Of course, no zero row means that the columns of the matrix form a 
linearly independent set. 
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Non-singular Linear system 
The function SysLin finds the solution of a non-singular linear system using the Gauss-Jordan 
algorithm with full pivoting strategy. 

Example: solve the following matrix equation 

 A x = b               (1) 

The solution is  

 x = A-1 b             (2) 

You can get the numerical solution in two different ways. The first is the direct application of the 
formula (2); the second is the resolution of the simultaneous linear system (1) 

Example: Find the solution of the linear system having the following A (6 x 6) and b (6 x 1)  
 
 
 
 
 
 
 
 
We solve this linear system with both methods: by using Excel's MINVERSE  and our SysLin  
function. In both cases we find the unitary solution (1, 1, 1, 1, 1, 1)  (Note that the algebraic 
sum of terms in each row is equal to the corresponding constant term b) 
 

 
Note also that the methods give similar - but not equal - results, because their algorithms are 
different. In this case both solutions are very accurate (≈1E-15) but this is not always true.  
 
Round-off errors 
Sometimes, the round-off errors decrease the obtainable maximum accuracy  
Look at the following system: 
 
 
 
 
 
 
 
 
The exact solution is, again, the unitary solution (1, 1, 1, 1, 1, 1).  
In order to measure the error, we use the following formula  
=ABS(x-ROUND(x, 0))     where x is one approximate solution value 

-10 93 6.7 5 -47 0 
-0.5 -28 1 7 0 0 

0 0 1 8 35 -47 
45 0 -13 3 -23 -59 
65 0.1 3 32 0 0 
-7 4 -1.5 -1 0 4.9 

47.7 
-20.5 

-3 
-47 

100.1 
-0.6 

-151 386 -78 -4 234 

-76 194 -39 -2 117 

-299994 599988 3 -2 299994 

2 -4 0 2 0 

-100000 200000 0 0 100001 

387 

194 

599989 

0 

200001 
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The total error is calculated with 
=AVERAGE(H2:H6)  total error for SysLin function 
=AVERAGE(J2:J6)  total error for MINVERSE function 

 

 
 
As we can see the total errors of these solutions are more than a thousand times greater 
that that in the previous example. 
 
Sometimes, round-off errors are so large that they can give totally wrong results. Look at this 
example. 
 
 
 
    A = 
 
 
 
 
As we can easily see by inspection, the matrix is singular because the first and last columns 
are equal. So there is no solution for this system. But if you try to solve this system with the 
MINVERSE function you will get a totally different (and clearly wrong) result. This error is 
particularly sneaky because, if we try to compute the determinant, we also get a wrong, non-
zero result 

MDETERM(A) = -0.0082 

 
As the algorithms used by Excel and Matrix.xla are not equal, we can compute an alternative 
solution with SysLin  and the determinant with MDet . In this case, the full pivot strategy of 
Gauss-Jordan is used, and gives us the right answer. 
 

 
 
 
 
Full pivoting or partial pivoting? 
The full-pivoting strategy reduces the round-off errors, so we might expect that its accuracy 
is greater than with a partial-pivoting method. But this is not always true. Sometimes it can 

3877457 -3 -347 -691789 3877457 

-3773001 0 34 46 -3773001 

-286314 1 0 -2 -286314 

-377465 -12 6 4 -377465 

-1 0 -6 0 -1 

387 

194 

599989 

0 

200001 
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happen that the full strategy gives an error similar to or even greater than the one obtained 
by the partial strategy.  
In Matrix.xla we can perform the partial Gauss-Jordan algorithm using the didactic function 
GJstep.  
Example: Solve the following linear system. The matrix is the inverse of the 6x6 Tartaglia 
matrix. The exact system solution is the vector [1, 2, 3, 4, 5, 6] 
 
 
 
 
   A =  
 
 
 
 
Let's see how both algorithms - full and partial pivoting  - work3. 
 

 
 
As we can see, in that problem, partial pivoting is somewhat more accurate  than full 
pivoting. Why, then, complicate the algorithm with full pivoting? The reason is that the 
Gauss-Jordan method, with full pivoting, is generally more stable for a large variety of 
matrices. Moreover, its round-off error control is more efficient. And the frequency of 
catastrophic mistakes, such as in the earlier comparison of MINVERSE and SysLin, is 
greatly reduced with a full-pivoting strategy.  
Look at this example: Solve the following system  
 
 
 
A = 
 
 
 
Solving with the Gauss-Jordan algorithm with either partial or full pivoting we note in this 
case a loss of accuracy of more than thousand times for partial pivoting. 
 

                                                      
3 Note that, in these problems, we have not inserted the results given by Excel's MINVERSE function, because we will ignore 
that algorithm: in a long series of testes, we have found that its results resemble those obtained by a partially pivoting 
algorithm). 

6 -15 20 -15 6 -1 

-15 55 -85 69 -29 5 

20 -85 146 -127 56 -10 

-15 69 -127 117 -54 10 

6 -29 56 -54 26 -5 

-1 5 -10 10 -5 1 

0 

1 

0 

0 

0 

0 

1 -3 -9 -1 38800000012 
7 -1 12300000045 1 0 
0 1 0 -2 2 

23 -12 6 4 1 
2 0 -6 0 -1 

38800000000 
12300000052 

1 
22 
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We can observe that, in general, partial pivoting becomes inefficient for matrices that have 
large values in their right side. In that case, the round-off errors grow sharply. Full pivoting 
avoids this rare - but heavy - loss of accuracy. 
 
 
Solution stability 
Sometimes, coefficients of a linear system cannot be known exactly. Often, they derive from 
experimental results, and can therefore be affected by experimental errors. We are 
interested in investigating how the system solution changes with such errors. Many 
important studies have demonstrated that the solution behavior depends on the matrix of 
system coefficients. Some matrices tend to amplify the errors of the coefficients or the 
constant terms, so the solution will be very different from that of the "exact" system. When 
this happens we call it an "ill-conditioned" or "unstable" linear system. 
 
Example: show that the following linear system, with the Wilson matrix, is very unstable 
 
 
 
 
 
 
 
 
The solution of the exact system is x = (1,1,1,1). Now give some perturbations to the 
constant terms. For simplicity we give  

b' = b + ∆b  with b = 0.1 

The solution of the perturbed system is now 

A x' = b'  x' = x + ∆x 

Defining the system sensitivity coefficient as 

S =  (∆x %) / (∆b %) = (| ∆x| / | x |) / (| ∆b| / | b |) 

We find S ≅ 400.   
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A high value of S means 
high instability. In fact in 
this system, for a small 
perturbation of about 
0.2% of the constant 
terms, we have the 
solution 

-0.2, 3, 0.5, 1.3 

, which is completely 
different from the exact 
one, 

1, 1, 1, 1 

Note that Det =1 
 
 

 
 
Even worse stability is found in the following linear system  
 
 
 
  A= 
 
 

 

For a very small 
perturbation of 
about 0.01% of the 
constant term, the 
system solution 
values are moved 
far away from the 
point  
(1, 1, 1, 1) 
 

 
 Note the very high sensitivity coefficient S of this problem, and the wide spread of the 
solution point, even for very small perturbations. 
Note also that, in both problems, the determinant was unitary (Det = 1). So we cannot 
discover the instability simply by considering the determinant. 
 

117 85 127 118 

97 70 103 97 

74 53 71 64 

62 45 65 59 

447 

367 

262 

231 
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The Condition Number 
 
One popular measure of instability matrix uses its eigenvalues 

S λ = | λ |max / |λ |min  

But, unfortunately, eigenvalues are not very easy to compute 
A more practical index is based on the  singular value decomposition (see the SVDD )  
function). Extracting the largest and smallest singular values of the diagonal matrix D we 
define the measure of instability, commonly called the condition number, as: 

κ =  d max / d min    

For the above matrix the eigenvalues are  

So we have: 

S λ = 324.0 / 0.000429 ≅ 754861 

 
while the SVD gives 

κ  =  340.9 / 0.000308 ≅ 1106504 

 
It is also possible to compute directly the condition number with MCond and MpCond 
functions 
 
Apart theory, the condition number has a useful, practical meaning: in system solving, it 
indicates how many significant digits will be lost. See this example 
Taking the last Wilson system, we perturb the vector b with a small random error: 

R)1(' ⋅+= εii bb    where ε = 1E-12 and R is a uniform random variable between 0 and 1. 
For each set of b values, we register the average error of the solution obtained with the 
formula  x = A-1⋅b 
 

 
 
 
As we can see the average error of x is 
about 1E-7, just 6 digits less then the 
precision of the b vector.   
The precision leakage roughly corresponds 
to the decimal log of condition number  

pκ = -log10(κ) ≅ -6 
 

 
 

λ= 323.98 -5.72328 -1.256573 0.000429 

340.9215 0 0 0 
0 7.879412 0 0 
0 0 1.208233 0 
0 0 0 0.000308 
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Complex systems 

Complex systems are very common in applied science. Matrix.xla has a dedicated function 
SysLinC to solve them. 
We shall learn how it works with a practical example from Network theory. 
 
Example - Analysis of a lattice network. For all nodes, find the voltages and phase angles, 
at the frequencies: f = 10, 50, 100, and 400 Hz. 
 
 
 
 
 
 
 
 We use the notation  

The Nodal Analysis provides the solution through the following complex matrix equation 

 
 
 
where the real matricies G and B are called conductance and susceptance respectively; 
they form the complex admittance matrix Y. These matrices depend on the angular 
frequency ω = 2 π f  
 
Using the worksheet, the problem can be solved by calculating, first of all,  the frequency ω,  
the two real matrices G and B, and the input current vector. Then, we build the complex 
system (1). 
 

 
 
SysLinC provides the vector solution in complex form; to convert it into magnitude (modulo) 
and phase we have used the formulas 
 
 
 
 
Note that we have added an imaginary column to the current vector, even though the input 
currents are purely real quantities. Complex matrices and complex vectors must be always 
be specified with both their real and imaginary parts. Consequently they must always have 
an even numbers of columns. 
 
In the above example there are many Excel formulas that we couldn't shown for clarity. To 
more fully explain the example, copy the following formulas (in blue) in your worksheet. 
 

C1 C2 C3
G

R2R1 R3 Components values 
R1 = 100 Ω C1 = 1.5 µF 
R2 = 120 Ω C1 = 2.2 µF 
R2 = 120 Ω C1 = 2.2 µF 
G = 2.5 sin(2π f t) 
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See also the function MAdm  for admittance matrix. 
 
 
Example - Solve the following complex system 
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The system is equivalent to the following complex matrix equation 
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With the SysLinC function it is simple to find the solution of such a complex matrix system. 
We have only to separate the real and imaginary parts. 
 

 
 
 



 22 

About the complex matrix format 
 
Matrix.xla  supports 3 different complex matrix formats: 1) split, 2) interlaced, 3) string 
 

1) Split format 2) Interlaced format 3) String format 

   
 
Each format has its advantages and drawbacks. 
 
In the split format the complex matrix [ Z ] is split into two separate matrices: the first one 
contains the real values, and the second the imaginary values. This is the default format 
 
In the interlaced format, each complex value is written in two adjacent cells, so that a single 
matrix element occupies two cells. The number of columns is the same as in the first format, 
but the values are interlaced: one real column is followed by an imaginary column and so on. 
This format is useful when elements are returned by complex functions as, e.g, by the 
Xnumbers.xla add-in 
  
The last format is the well known “complex rectangular format”. Each element is written as a 
string "a+ib"  so that a square matrix is still square. It appears to be the most compact and 
intuitive format, but this is true only for integer values. For long decimal values the matrix 
elements become illegible. We should also point out that the elements, being strings, cannot 
be formated as other Excel numbers, or even used in subsequent computations without 
conversion from text strings to numbers. 
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Determinant 
In contrast to the solution of linear system, the matrix determinant changes with the reduction 
operations of the Gauss-Jordan algorithm. In fact the final reduced matrix is the identity matrix 
that has always determinant = 1. But the determinant of the original matrix can be computed with 
the following simple rules 

• When we multiply a matrix row by a number k, the determinant must be 
multiplied by the same number 

• When we exchange two rows, the determinant changes its sign but 
retains its magnitude 

 

Gaussian elimination 
With these simple rules it is easy to calculate the matrix determinant. It is sufficient to track of all 
pivot multiplications and rows swappings performed during the Gauss-Jordan process 

There also another rule, useful to reduce the computing effort. 

• A triangular matrix and a diagonal matrix with the same diagonal have 
the same determinant 

So, in order to compute the determinant, we can reduce the given matrix to a triangular matrix 
instead of a diagonal one, saving half of the computation effort. This is called the Gauss algorithm 
or Gaussian elimination. 

The determinant of a diagonal matrix is the product of all elements 
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The determinant of a triangular matrix is the product of all elements 
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The example below shows how to compute, step by step, the determinant with the Gauss 
algorithm 

 
 4 1 0   

A= -2 -2 1  Det(A) = ? 
 1 -2 2   
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 4 1 0 1 R2 = R1 + 2*R2  (*) 

A1= 0 -3 2 2 Det(A1) = 2 Det(A) 
 1 -2 2   

 

 4 1 0 1 R3 = R1 + (– 4)*R3   
A2= 0 -3 2  Det(A2) = -8 Det(A) 

 0 9 -8 -4  
 

 4 1 0   
A3= 0 9 -8 < swap Det(A3) = 8 Det(A) 

 0 -3 2 < swap  
 

 4 1 0  R3 = R2 + 3*R3   
A4= 0 9 -8 1 Det(A4) = 24 Det(A) 

 0 0 -2 3  
 

 4 1 0  Det(A4) = 24 Det(A) 
A4= 0 9 -8  Det(A4) = 4*9*(-2) = -72 

 0 0 -2   
 

The final matrix A4  is triangular. So its determinant  is readily computed as -72 

But it is also:  

 Det(A4) = 24 Det(A) 

Substituting, we have: 

 -72 = 24 Det(A) ⇒    Det(A) = -24 / 72 = -3 

 
 
Ill-conditioned matrix 
Of course there are functions such as MDet  in Matrix.xla and MDETERM  in Excel to compute 
the determinant of any square matrix. Both are very fast and efficient, covering most cases. But, 
sometimes, they can fail because of the round-off error introduced by the finite precision of the 
computer. It usually happens for large matrices but, sometimes,  even for small matrices. Look at 
this example. 
 
Compute the determinant of this simple (3 x 3) matrix 
  

127 -507 245 
-507 2025 -987 
245 -987 553 

 
 
Both functions return a very small, but non-zero value, quite different from each other. 
If you repeat the calculation with another numerical routine in a 32 bit operating system you 
will get similar results. 
 
The given matrix is singular and its determinant is 0. We can easily verify this by hand with 
exact fractional numbers, or by using the GJstep function with integer algorithm, as shown 

(*)  
The formula 
R2 = R1 + 2*R2 
is a compact way for describing the 
following operations: 

1) Multiply the 2nd  row for 2. 
2) Add the 2nd  row and the 1st row 
3) substitute the result to the 2nd row 
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below. 
 

127 -507 245 < swap  -507 2025 -987 -127 
-507 2025 -987 < swap  127 -507 245 -507 
245 -987 553   245 -987 553  

         
Det(A1) = -1 Det(A)    Det(A2) = 507 Det(A)  

         
         

-507 2025 -987 -245  -507 2025 -987  
0 -126 1134   0 -126 1134 < swap 

245 -987 553 -507  0 4284 -38556 < swap 
         

Det(A3) = -257049 Det(A)   Det(A4) = 257049 Det(A)  
         
         

-507 2025 -987 -476  241332 0 -8205288  
0 4284 -38556 225  0 4284 -38556 1 
0 -126 1134   0 -126 1134 34 

         
Det(A5) = -122355324 Det(A)   Det(A6) = -4160081016 Det(A)  

         
         

241332 0 -8205288   
0 4284 -38556   
0 0 0   

     

The last row is all zero. This means that 
the matrix is singular and its determinant 
is zero. 

Det(A6) = 0    ==> Det(A) = 0      

 
In this case it was easy to analyze the matrix, but for a larger matrix do you know what 
would happen? Before one accepts any results - especially for large matrices, one has to 
perform some extra tests, such as the singular value decomposition. 
 
Example. Compute the determinant of the following (20 x 20) sparse matrix 
 

0 0 0 0 0 0 0 0 0 0.7 0 1.3 0 0 7.2 0 0 0 0 0 

0 -0.5 0 -4 0 0 0 5.9 0 0 0 0 0 0 0 0 0 0 0 0 

0.2 0 0 0 0 1.8 -0.7 0 0 0 0 0 -4.2 0 0 0 1 0 0 0 

0 0 0 -4.7 0 -8.1 0 0 0 8 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 4.9 11 0 0 10.2 0 0 0 0 0 0 0 0 0 

0 -10 0 0 8.4 0 0 0 0 0 6.7 0 1 0 0 0 0 0 0 2.5 

0 0 0 0 0 -2.5 1 4 8 0 0 0 1 0 0 -9.6 0 0 0 0 

0 0 0 9.1 0 0 0 0 5 0 0 0 1 0 0 0 0 0 0 0 

0 0 8.5 0 0 0 0 0 0.5 0 4 0 1 0 -9.8 0 0 0 0 0 

0 6.6 0 4.1 0 0 0 0 0 0 0 0 1 0 0 -9.6 0 0 0 3.3 

0 0 0 0 0 0 0 0 4.5 0 7.9 0 1 -6 9 0 0 10.3 6.7 0 

0 3.2 0 0 0 0 2.7 0 7 0 0 0 1 0 0 -5.1 0 0 0 0 

0 0 -6.4 -8.6 0 0 0 0 0 0 7.7 0 1 3 0 0 0 0 0 0 

0 0 -10 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 

0 0 0 0 0 0 9.1 0 0 0 -1.2 0 1 0 0 3.2 0 0 0 0 

0 0 1.9 0 -2.7 0 0 0 0 0 8.7 0 1 0 0 0 0 0 0 0 

0 0 0 -7.6 0 0 0 0 0 0 0 0 1 2.4 0 0 0 0 0 0 

-1.1 0 0 6.3 0 0 9.3 -1.6 0 0 -3.5 0 1 0 0 0 0 0 0 0 

0 0 0 2.7 0 0 0 0 0 0 0 0 0 0 0 -8.7 -9.7 0 0 0 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 -0.9 

 
Select the above matrix and paste it in a worksheet starting from the cell A1. Using the Excel 
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MINVERSE we get the determinant of about Det(A) ≅ 0.14259 
If we try to change one element by a little amount - for example, the element K5 from 10.2 to 10.3 
- we get a complete different result  Det(A) ≅ -0.123 . Note that the determinant even changes its 
sign. It would be sufficient for suspecting of a large round-off error. 
In fact, if we compute the determinant by the function MDet (that uses the Gauss algorithm with 
full-pivot) with have the result Det(A) = 0. This means that the matrix is singular. 
We can check that result with the SVD algorithm. Using the function SVDD we get the singular 
value matrix: the minimum value, less then 1E-15, fully confirms that the matrix is singular. 
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Laplace's expansion 
Expansion by minors is another technique for computing the determinant of a given square 
matrix. Although efficient for small matrices (practically for n = 2, 3), techniques such as Gaussian 
elimination are much more efficient when the matrix becomes large.  Laplace's expansion 
becomes competitive when there are rows or columns with many zeros.  

The expansion formula is applied to any row or column of the matrix. The choice is arbitrary. For 
example, the expansion along the first row of a 3x3 matrix becomes. 

 

 

where  |A ij|  are the minors, that is the determinant of the sub matrix extracted from the original 
matrix eliminating the row i and the column j. The minors are taken with sign + if the sum of (i+j) is 
even; or with the minus sign if (I+j) is odd.  

Many authors call  the term: (-1)(i+j)|A ij| a cofactor. 

Let's see how it works with an example 

 

 

 

We use the function MExtract  to get the 2x2 minor sub matrix; we use also the INDEX function to 
get the aij element 
 

 
 
Completing the worksheet with the other minors and the cofactor terms we have 
 

 
 
Tip. We can use the row (or column) expansion in order to minimize the computing effort. Usually 
we choose the row or column with the largest number of zeros (if any). 
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Example - Calculate the determinant of the given 3x3 
matrix with the Laplace’s expansion. 



 28 

Simultaneous Linear Systems 
 
The function SysLin can give solutions for many linear systems having the same incomplete 
coefficient matrix and different constant vectors. 

Example: solve the following matrix equation 

 A X = B          (1) 
Where: 

 

 

 

The solution is  

 X = A-1 B             (2) 

You can get the numerical solution in two different ways. The first is the direct application of the 
formula (2); the second is the resolution of the simultaneous linear system (1) 
 

 
 
From the point of view of accuracy, both methods are substantially the same; in terms of 
efficiency, the second is better, especially for large matrices 
 
Inverse matrix 
Simultaneous systems solving is used to find the inverse of a matrix. In fact, if B is the identity 
matrix, we have: 

 A X = I           ⇒    X = A-1 I =  A-1          

You have the function MINVERSE in Excel or the function MInv in Matrix.xla to invert a square 
matrix.  
 
Example: find the inverse of the 4 x 4 Hilbert matrix  
Hilbert matrices are a known class of ill-conditioned matrices, very 
easy to generate: 
      a(i, j) = 1/(i+j -1) 
 
The inverse of a Hilbert matrix is always integer. So, if any decimals appear in the result, we can 
be sure that they are due to round off errors, and we can consequently estimate the accuracy of 
the result. You can easily generate these matrices by hand or with the function MHilbert  

 

1 3 -4 9 
2 3 5 1 
2 -1 4 10 
0 -1 1 0 

59 -19 
3 20 
58 24 
-1 6 

1 1/2 1/3 1/4 
1/2 1/3 1/4 1/5 

1/3 1/4 1/5 1/6 

1/4 1/5 1/6 1/7 

B = A = 



 29 

 
  

Round-off error  
As you can see, Excel hides the round-off error and the result seems to be exact. But this is not 
true. In order to show the error without formatting the cells with 10 or more decimals we can use 
this simple trick:: extract only the round-off error from each aij value by the following formula: 

 Error = ROUND(aij , 0) - aij      

Applying this method to the above inverse matrix, we see that there are absolute round-off errors 
from 1E-13 to 1E-10. 
 
There is another method to estimate the accuracy of the inverse matrix: multiplying the given 
matrix by its approximate inverse we get a "near" identity matrix. The off-diagonal values  
measure the errors. If we compute the mean of their absolute values we have an estimation of 
the round-off error.  
 

 
 

The "diagonalization" accuracy measures the global error due to the following three step: 

  Global error = Input matrix error + Inversion + multiplication 

The first step needs an explanation. Excel can show fractional number as exact as, e.g., 1/3 or 
1/7. But, actually, these numbers are always affected by truncation errors of about 1E-15. 

Other classes of matrices, such as Tartaglia's matrices, avoid the input truncation errors, because 
they are always integer. 
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Tartaglia's matrices 
Tartaglia's matrices are very useful because they are easy to generate but - this is very important 
- the matrix and its inverse are always integer. This comes in handy for measuring round-off 
errors. 

Tartaglia matrices are defined as  

 a 1j = 1   for j =1 ...n (all 1 in the first row) 
 a i1 = 1 for i =1 ...n (all 1 in the first column) 

 aij =  Σ j a (i-1) j for j = 2 .. n 

Here is a 6x6 Tartaglia matrix  and its inverse 
1 1 1 1 1 1  6 -15 20 -15 6 -1 

1 2 3 4 5 6  -15 55 -85 69 -29 5 

1 3 6 10 15 21  20 -85 146 -127 56 -10 

1 4 10 20 35 56  -15 69 -127 117 -54 10 

1 5 15 35 70 126  6 -29 56 -54 26 -5 

1 6 21 56 126 252  -1 5 -10 10 -5 1 

 
As we can see, both matrices are integer. Any errors in the inverse matrix must be regarded as a 
round-off errors, and are immediately detected.  
In the example below we evaluate the global accuracy of the inverse of the 6 x 6 Tartaglia matrix 
with two different functions 
 

 
 

 
 
Excel occasionally compute A-1 even if a matrix is singular. If this happens, your solution will be 
wrong.  
Let's see this example: 
Example: find the inverse of the following matrix 
 

127 -507 245 
-507 2025 -987 
245 -987 553 

 
As we have seen in a previous example, the given matrix is singular. So, its inverse doesn't exist. 
However, if we try to compute the inverse we have the following result 
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Tip. You should always examine the determinant before attempting to calculate the inverse. If the 
determinant is close to zero, you should try to verify the solution with other methods. For instance, 
you can always try to solve the inverse by the function MInv (in this case, with the integere 
option), or by GJstep function, or with SVD (see later). 

 

How to avoid decimals 
An inverse matrix is not always integer; usually it contains decimals. If the given matrix is integer, 
we can obtain the fractional expression of its inverse with this little trick 

Example 

 
 
Note the compact format of matrix multiplication by a scalar  {=A6*E2:G4}  in the last matrix 
instruction 
 
Multiplying the inverse by the determinant we get a matrix B of integer values. Thus, the inverse 
can be put in the following fractional form 
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Homogeneous and Singular Linear Systems 
A linear system  

A x = b 
with A an (n x m) matrix and with b = 0 we call a homogeneous linear system. . Such a system 
always has the trivial solution x = 0. But we are interested in knowing if the system also has other 
solutions.  

Assume A is a square matrix of the following system 

 

 

 

 

We note that the last row can be obtained by multiplying the first row by -2. So, having two rows 
that are linearly dependent, the given matrix is singular, with a zero determinant. One of the two 
rows can be eliminated; we choose to eliminate the last row, and obtain the following system 

 

 

 

 

 

 

 

The system of linear equations (1) expresses all the solutions of the given system, an infinite 
number of them. Geometrically speaking it is a line in the space R3  

It can be also be regarded as a linear transformation 
that moves a generic point P(x, y, z) of the space into 
another point P'(x, y, z) of the subspace. In this case, 
the subspace is a line, and the dimension of this 
subspace is R1 
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If we assume, on the contrary, x as independent 
parameter, the other variables y, z can be expressed 
as functions of the "independent" parameter x 
That is represented by the linear transformation at the 
right 
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This matrix transformation is useful for finding the parametric form of the linear function (mapping 
function) 
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One of the three variables can be freely chosen and it can 
be regarded as a new independent variable. Assume, for 
example, z as the independent parameter; the other 
variables x, y can then be expressed as function of the 
"independent" parameter z 
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Parametric form 
The linear transformations of the above example give relations between points in space. A 
common form for handling this relation is the parametric form. It is easy to pass from the 
transformation matrix to its parametric form 

 

 

 

 

 

Geometrically specking the parametric function is a line with the direction vector: D
r

 
 

 

 

 

 

You can study the entire problem with the function SysLinSing of Matrix.xla. Here is an example: 

 

 
 

SysLinSing solves a singular linear system, returning the transformation matrix of the solution, if 
one exists. The determinant is calculated only to show that the given matrix is singular. It is not 
used in the calculation. SysLinSing automatically detects if a matrix is singular or not. If the matrix 
is not singular (Det ≠ 0), the function returns all zeros. 

From the transformation matrix we can extract the 
direction vector by normalization of the third column 
of matrix B. To get the norm of the vector we have 
used the function MAbs.  Note that both expression 
must be inserted as array functions { }  

In a 3D space, the function represents a line passing 
trough the origin, having for direction the vector D, as 
shown in the figure. 
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7' Having the transformation matrix, we 

search for the variable that has 1 in 
the diagonal element, z in this case. 
Setting z = t, and performing the 
multiplication, we have the parametric 
function 
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Rank and Subspace 
In the above example we have seen that, if the matrix of a homogeneous system is singular, then 
there are an infinite number of solutions of the system; those solutions represent a subspace. 
After that we have found a solution, and we have seen that the subspace was a line and its 
dimension was 1. 

Is there a way to know the dimension of the subspace without resolving the system? The answer 
is yes, knowing the rank of the matrices. But we have to say that this is easy only for low  matrix 
dimensions; it becomes very difficult for high matrix dimensions.  

• The rank of a square matrix is the maximum number of independent rows (or 
columns) that we can find in the matrix.  

 
For a 3 x 3 matrix the possible cases are collected in the following table 

Independent 
rows 

Rank Linear System 
Solution 

Subspace 

3 3 0 Null 

2 2 ∞ 1 Line 

1 1 ∞ 2 Plane 

 

The function  MRank of Matrix.xla calculates the rank of a given matrix. In the following example 
we calculate the determinant and the rank of three different matrices 

 

Note that the determinant is always 0 when the rank is less then the matrix dimension n. 
Solving homogeneous systems with the given matrices, we will generate in a 3D space 
respectively the following subspaces: a null space, a line, and a plane. 

Let's test the last matrix, solving its homogeneous system. 

 

Consequently, the transformation matrix has two columns, indicating that the subspace has 2 
dimensions, thus is a plane. 

In order to get the parametric form of the plane we observe that the transform matrix: variables y 
and z have both the diagonal element 1 (a22 = 1 , a33 = 1) . These can be assumed to be 
independent parameters.  
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Let y = t and z = s, then we have 

 

Eliminating both parameters we get the normal equations of the plane 

02        2 =−+⇒+−= zyxzyx  

The linear equation (2) express all the infinite solutions of the given system. Geometrically 
speaking it is a plane in the space R3  

 

Rank for a rectangular matrix 
Differently form the determinant, the rank can be computed also for a non-square matrix. 
Example: find the rank of the following 3 x 5 matrix 
  

1 2 9 10 -7 
1 2 -1 0 3 
2 4 -5 -3 9 

 
 
By inspection we see that there are 2 independent rows and 2 independent columns.  
In fact, column c2 is obtained multiplying the first column by 2; column c4 =  c1 + c3; and column 
c5 =  c2 − c3 . So the rank is:  rank = 2 
 

One popular theorem - due to Kronecker - says that if the rank = r , then all the square sub-
matrices (p x p) extracted from the given matrix, having p > r , are all singular 

In other words: all 3 x 3 matrices extracted from the matrix in the above example have 
determinant = 0. You can enjoy finding yourself all the 10 matrices of 3 dimensions. Here are 5 of 
them. 

1 2 9  1 9 10  2 9 -7  1 2 10  1 9 -7 
1 2 -1  1 -1 0  2 -1 3  1 2 0  1 -1 3 
2 4 -5  2 -5 -3  4 -5 9  2 4 -3  2 -5 9 
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General Case - Rouché-Capelli Theorem 

Given a linear system of m equations and n unknowns 
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The matrix A is called the  coefficient matrix or 
incomplete matrix 
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The matrix B is called complete matrix or 
augmented matrix 

 

 

If the column b only contains zeros, the system is called homogeneous 

In order to know if the system (1) has solutions, the following, fundamental theorem is useful 

ROUCHÈ-CAPELLI THEOREM : 
 

A linear system has solutions if, and only if, the ranks of matrices A 
and B are equal  

That is:     rank(A) = rank(B)   ⇔ ∃ x solution 
 

Among ranks, number of equations and number of unknowns exist important relations. The 
following table reviews 12 possible cases: 6 for homogeneous systems, and 6 for full system.. 
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Homogeneous System Cases 
4 
 
Case 

Rank of 
incomplete 

matrix A 
Non homogeneous 

system solution Example 

1 rank(A)= m =n Trivial solution 
(0,0,..0) 
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2 rank(A)= m <n ∞n-m solutions + 
trivial solution 

 

 

3 rank(A)< m <n ∞n-r solutions +  
trivial solution 

 

 

4 rank(A)< m =n ∞n-r solutions +  
trivial solution 

 

 
 

5 rank(A)= n <m Trivial solution 
(0,0,..0) 

 

)0,0(
0

023
02

S
yx

yx
yx









=−
=−

=+

 
 

6 rank(A)<n <m ∞n-r solutions +  
trivial solution 

 

 
 

 
 

                                                      

4 This table, very clear and well-organized, is due to Marcello Pedone 
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Non Homogeneous System Cases 
 
 
Case 

Rank of 
incomplete 

matrix A 

Non 
homogeneous 

system solution 
Example 

1 rank(A)= m =n One solution 
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2 rank(A)= m <n ∞n-m solutions 

 

 
 

3 rank(A)< m <n ∞n-r solutions 
If  r(B)=r(A) 

 

 

4 rank(A)< m =n ∞n-r solutions 
se  r(B)=r(A) 
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5 rank(A)= n <m One solution 
If  r(B)=r(A) 

 

 
 

6 rank(A)<n <m ∞n-r solutions 
If  r(B)=r(A) 
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Triangular Linear Systems  
Solving a triangular linear system is simple, and very efficient algorithms exist for this task. 
Therefore, many methods try to decompose the full system into one or two triangular systems by 
factorization algorithms. 

 

Triangular factorization 

Suppose that, for the linear system 

 A x = b (1) 
you have gotten the following factorization   

 A = LU (2) 

where L is lower-triangular and U upper-triangular. That is: 
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In that case, we can split the linear system (1) into two systems: 

 A x = b   ⇒    (LU) x = b     ⇒    L (U x ) = b 
Setting:   y = U x   we can write: 

 L y = b       (3) U x = y           (4) 

The triangular systems (3) and (4) can now be solved with very efficient algorithms 
 
 
Forward and Backward substitutions  
The method proceeds in two steps: at the first, it solves the lower-triangular system (3) with the 
forward-substitution algorithm; then, with the vector y used as constant terms, it solves the upper-
triangular system (4) with the back-substitutions algorithm. Both algorithms are very fast. 

Let' see how it works 

Having the following factorization LU = A, solve the linear system A x = b 
 A   b 

6 5 1  19 
12 8 6  46 
-6 -6 5  -3 

 

In Matrix.xla we can use the function SysLinTthat applies the efficient forward/backward algorithm 
to solve triangular systems. 

This function has an optional parameter to switch the algorithm to the upper (Typ = "U") or lower  
(Typ = "L") triangular matrix. If omitted, the function automatically finds the matrix type  

 

 L   R  
1 0 0 6 5 1 
2 2 0 0 -1 2 
-1 1 1 0 0 4 
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The original system is 
broken into two triangular 
systems 
 
A x = b 

L y = b 

U x = y 
 

 
We can prove that the vector x = (1, 2, 3) is the solution of the original system A x = b 
 
LU factorization 
This method, based on Crout's factorization algorithm, splits a square matrix into two triangular 
matrices.  This is a very efficient and popular method to solve linear systems and to invert 
matrices. In Matrix.xla this algorithm is performed by the MLU function. This function returns both 
factors in an (n x 2n) array. 

But there are same things that should be pointed out. We may believe that, once we have the LU 
decomposition of A, we can solve as many linear systems as we want, simple changing the 
vector b. This is not completely true. 

Look at this example.. 
 
 A x = b      where: 
 
 
If we compute the LU factorization we have: 
 

 
 
The Crout algorithm has returned the following triangular matrices: 
 

 L   U  

1 0 0 -8 0 -9 

-0 1 0 0 5 4 

-0.25 0.8 1 0 0 -3.45 
 
Now solve the system (3) and (4) in order to have the final solution  

 L y = b       (3) U x = y           (4) 

We have 
b  y = L-1 b  x = U-1 y 
22  22 -16.54348
16  16 -6.608696
-35  -42.3 12.26087

 
 
The exact solution of the original system (1) is x = (1, 2, 3), but the LU method has given a 

 A   b 
0 5 4  22 
2 4 2  16 
-8 0 -9  -35 

Note that you must 
select (3x6) cells if 
you want to get the 
factorization of a 
(3x3) matrix 
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different result. Why?  What's happened? 

The fact is that  LU algorithm does not give the exact original matrix A, but a new matrix A'  that is 
a row permutation of the given one. This is due to the partial pivoting strategy of Crout's 
algorithm. You simple prove it by multiplying L and U. 

So the correct factorization formula is: 

A = PLU 
where P is a permutation matrix 

The process to solve the system is therefore: 

 b' = PTb       (5) L y = b'           (6) U x = y           (7) 

We have shown that only the information of the two factors L and U insufficient to solve the 
general system. We also need the P matrix. 

But how can we get the permutation matrix? This matrix is provided by the algorithm itself at the 
end of the factorization process. Most LU routines do not give us the permutation matrix, because 
formula (5) is applied directly to the vector b passed to the routines. But the concept is 
substantially the same: for solving a system with LU factorization we need, in generally, three 
matrices P, L, and U. 
 

 

The original system is broken 
into two triangular systems  
 
A x = b 

b' = PT b 
L y = b'   

U x = y 
 

 
The permutation matrix can be obtained by comparing the original A matrix with the matrix 
obtained from the product  A' = LU. Let' see how. 
The base vectors u1 , u3 , u3  are:         
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We examine now the matrix rows of the two matrices A' and A.  

The row 1 of A' comes from row 3 of A, ⇒  p1 = u3 
The row 2 of A' comes from row 1 of A, ⇒  p2 = u1 
The row 3 of A' comes from row 2 of A, ⇒  p3 = u2 
  
So the permutation matrix will be: 
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Clearly this process can be very tedious for larger matrices. Fortunately the permutation matrix is 
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supplied by the function MLU  as the third, optional part of its output. For a 3x3 matrix you should 
therefore select a range of 9 (rather than the usual 6) columns to see the permutation matrix. 

MLU(A)  returns   ( L  , U  , P) arrays 

That gives the decomposition     A = P L U     .  

 

Example - Perform the exact LU decomposition for a 5x5 Tartaglia matrix 

 

 
 

If we form the matrix product   P L U   (here the MProd function is useful) we obtain finally the 
given original matrix. (Note that the last matrix  P  must be the first  of the matrix product) 
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Overdetermined Linear System 
If the matrix has more rows than columns, then the linear system is said to be 
overdetermined.  Often in an overdetermined system, there is no solution x that satisfies all 
the rows exactly, but there are solutions x such that the residual 

bxr −⋅= A  
is a vector of "small values" that are within working accuracy.  
The solution x minimizing the norm of the residual vector 

rrrr T
i i == ∑ 22   

 
is the least squares solution of the linear system. In this case the system has a unique 
solution specified by the least squares criterion.  
 
Example. Solve the following linear system with the least squares criterion 
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The normal equation 
One way to resolve the given linear system is by transforming the rectangular system matrix 
into a square matrix using the so called normal equation transformation. 
 

cxbxbx =⋅⇒⋅=⋅⇒=⋅ BAAAA                    TT
 

 
The normal matrix B = AT A is square and symmetric. So the last system can be resolved 
with the usual methods (B-1, LR, LL, Gauss, etc.). The solution of the normal system is also 
the least squares solution of the overdetermined system 
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Solving the normal system we find the solution [x1 = 7, x2 = 5, x3 = 2] 
 
The residual vector can be easily computed as 
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Note that only the last equation is exactly satisfied ( residual zero).  
 
Remark. Many books warm us of using the normal equation for solving these problems. 
They point out that, generally,  the transformed system is worse conditioned than the original 
system and so the numerical solution may be error prone. This is conceptually true in 
general. But we should not emphasize this aspect too much. We have seen that, for systems 
of low-to-moderate size this method gives reasonably good solution accuracy. This method 
is also quick and easy to apply. Another advantage of this method is that the transformed 
matrix is symmetric positive definite, and thus we can adopt several efficient algorithms (e.g. 
Cholesky decomposition) to solve the system. Last but not least, if the original matrix is 
integer, the normal matrix is still integer. 
 
 
QR decomposition 
Another way to resolve a rectangular linear system is performing the QR factorization of the 
matrix system. As know, the QR factorization can be applied also to a rectangular matrix. 
The transformation is: 

bxbxbxbx T ⋅=⋅⇒⋅=⋅⇒=⋅⋅⇒=⋅ − QRQRRQA                       1
 

 
Remember that R is triangular and Q is orthogonal  and unitary so  TQQ =−1  
The given rectangular linear system is transformed into a triangular linear system that can be 
solved efficiently with the back-substitution algorithm. Let's see. 
 

 
 
Now the (3 x 3) triangular linear system can easily be solved 
 

 

Note that we have only used the first 3 
rows of the R matrix returned by the QR 
factorization algorithm in order to set the 
(3 x 3) system matrix. 

 
This method is in general more accurate and stable than the normal equation for solving large 
linear systems. On the other hand, the QR method requires - for m >> n - about twice as much 
work as the normal equation. We note also that integer values are never conserved by the QR 
factorization 
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SVD and the pseudo-inverse matrix 
The most general way for solving an overdetermined linear system is  

bxbx ⋅=⇒=⋅ +AA          
The matrix A+ is called the "pseudo-inverse" of A and, for a square matrix, coincides with the 
inverse A-1. The pseudo-inverse always exists, whether or not matrix is square or has full rank. 
For a rectangular matrix A(n x m), it is defined as 

( ) TT AAAA 1−+ =  
We note that the normal matrix (AT A) appears in this definition  
We can avoid computing the normal matrix directly by using the singular value decomposition 

bxbx T =⇒=⋅ UDVA         
 
where, setting p = min(n, m), U is a (n x p) orthogonal5 matrix, V is an (m x p) orthogonal matrix 
and D is a (p x p) diagonal matrix. For semplicity assume here n > m. In that case D and V are 
both square with dimension (m x m). 
Multiplying both sides by UT and remembering that:  UT U = I  , we have. 

bxbx TTTTT UDVUUDVU =⇒=         

The matrix TDV  is square so, taking its inverse, we have. 

( ) ( )                   111 bxbxbx TTTTTT UDVUDVUDV −−−
=⇒=⇒=  

Because 1−= VVT ,  we have finally: 

bbx T +− =⇒= AUDV    x     1
 

Therefore, the pseudo-inverse can be computed by the following stable formula 
 

TUDVA 1 −+ =  
 
In Matrix.xla this computation is performed by the function MPseudoinv 
 

 
 
Note that the pseudo-inverse of a (5 x 3) matrix is a (3 x 5) matrix. The solution is the product of 
the pseudo-inverse and the vector b 
 

                                                      
5 The terms orthogonal here implies the concept of column-orthogonal:  A matrix A (n x m), with n ≥ m, having all 
its columns mutually orthogonal is called column-orthogonal matrix.  
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Underdetermined Linear System 
If the matrix has less rows than columns, then the 
linear system is said to be underdetermined.  

If the rank of the incomplete and the complete 
matrix is equal then there are infinite solutions x 
that satisfie the given system  
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In that case the matrix equations  0=x A   or  bx A =  define an implicit Linear Function - 
also called Linear Transformation - between the vector spaces, that can be put in the 
following explicit form 

dCxy +=         (1) 

where C is the transformation matrix and d is the known vector; C is a square matrix having 
the same columns of A, and d the same dimension of  b 
 
Example. Find the solutions (if any) of the following (2 x 3) system 





=−
=++

14
3

31

321

xx
xxx

   

The given rectangular system can be conceptually transformed into a square singular system 
simply adding a zero row (for example, at the bottom) 
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The rank of this system is 2, therefore there are infinite solution that can be put in the form (1) 
The solutions, in that case, can be easily find by hand or by SysLinSing 
 

 
 
Note that is not necessary to add the zero row because the function automatically does it. 
The solutions can be written, after the substitution x3 = t, as: 
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Note that the parametric form is not unique: substituting, for example the expression x3 = (t -1)/4, 
we get another parametric form representing the same subspace. 
 
Example. Find the solutions (if any) of the following (3 x 4) system 









=+++
=+++
=+++

7463
5342
4332

4321

4321

4321

xxxx
xxxx
xxxx
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The rank r of the matrix A and the augmented matrix [A, b] are equal 
 

 
 
Therefore the system has surely infinite solutions. The matrix [C, d] returned by SysLinSing is 
 

 
 
that can be written in parametric form, after the substitution x2 = t, x4 = s, as: 
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Note that, as m = 4 , r = 2, the subspace generates by the solutions has dimension: m - r = 2; and 
therefore there are two parameters in the solution set. 
 
Example. Find the solutions (if any)  of the following (3 x 4) system 








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5342
4332
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xxxx
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This system, apparently very similar to the above one, cannot be solved because the rank r of the 
matrix A and the augmented matrix [A, b] are different. 
In this case SysLinSing would return "?" 
 
Minimum module solution 
As we have seen, an undetermined linear system have generally infinite solutions. We wander if, 
among the infinite solutions, there is one having the minimum module. For homogenous systems 
this solution surely exists because the trivial solution x = 0 has the minimum module. 
The non-homogeneous case is more interesting. Recalling the example 
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we have found in a previous example that all its solutions can be represented by the following 
parametric equation. 

[ ]Ttttx  , 25 , 14 +−−=  
Computing the square module of x: 

2
3

2
2

2
1

2 xxxx ++=  = 222 )25()14( ttt ++−−  = 5 12 42 2 +− tt  

Taking its derivative, and solving, we have: 

0)5 12 42( 2 =+− tt
dt
d        ⇒   01284 =−t      ⇒  

7
1

=t  

Thus for t = 1/7 the solution x* = [11/7, 9/7, 1/7]  has minimum module 
For large systems this method becomes quite difficult, but we can obtain the minimal module 
solution of the undetermined system A x = b in a very quick way by the following matrix equation  

x = AT C-1 b 

where the square matrix C = (A⋅AT)  
 
In the previous example we have 
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and the final solution is 
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The following worksheet shows a possible solution arrangement 
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Parametric Linear System 
Sometimes the system matrix may contain a parameter, for example "k", and we may have to 
study the system solutions as a function of this parameter. 
Generally speaking this is not a truly numerical problem, and the matrix cannot be inverted or 
factorized with the usual numerical methods. This problem can be solved using symbolic 
computational systems or, alternatively, by hand. 
The function MDetPar in Matrix.xla computes the parametric determinant for matrices of low 
dimension. It returns the determinant D(k) as a polynomial in the variable k. 
Then, with the aid of the Cramer's rule, we can obtain the solutions of the parametric system in 
the form of polynomials fractions.  
 
Cramer's rule 
Given a linear system: [A] x = b    ⇔   [a1, a2, ... an] x = b 
The single element xi of the solution vector x, can be found taking the fraction of the determinants 
of two matrices: the first matrix is obtained from the system matrix replacing the column  a i  with 
the vector b; the second matrix is the system matrix itself. 
That is, in formulas: 
 Di = det [a1, a2...a i-1, b, a i+1... an] 
 D = det [a1, a2...a i-1, a i, a i+1... an] 
 xi = Di / D 

Repeating for  i = 1, 2...n, we find the solution vector. 
Example. Solve the following system containing the real parameter k 
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 ⇔ 

 

k 2 1  7 
5 1 -k  7 
3 k 3  12 

 
For the first, we build the 4 matrices and compute theirs determinants 

 
 
The zeros of the determinant  

D = -33+2k +k3  

can be found by the PolyRoots function. 
Two roots are complex, and one is real: k = 3. 
 

 
 
Thus the system has solutions for k ≠ 3, that are: 
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Block-Triangular Form 
Square sparse matrices, i.e., matrices with several zero elements, can under certain conditions be put 
in a useful form called “block-triangular” (or “Jordan’s form”) by simple permutations of rows and 
columns 
 

                
 1 2 1 0 0 0             
 2 1 5 0 0 0     A 1    0   
 1 -1 3 0 0 0             
 -6 5 3 1 1 2                
 1 -3 2 1 -1 -2     A 21     A 2    
 -9 7 1 1 2 1                
                

 
The block-triangular form saves a lot of computational effort for many important problems of linear 
algebra: linear system, determinants, eigenvalues, etc. 
We have to point out that each of these tasks has a computing cost that grows approximately with N3. 
Thus, reducing for example the dimension to N/2, the effort will decrease 8 times. Clearly it’s a great 
advantage. 
 
Linear system solving 
For example, the following (6 x 6) linear system 
 
A x  = b 
 

1 2 1 0 0 0  x 1  b 1 
2 1 5 0 0 0  x 2  b 2 
1 -1 3 0 0 0  x 3  b 3 
-6 5 3 1 1 2  x 4 = b 4 
1 -3 2 1 -1 -2  x 5  b 5 
-9 7 1 1 2 1  x 6  b 6 

 
It could be written as 

 A1 x1  = b1 

 A2 x2  = b2 − c2      

where the vector  c2  is given by:   c2 = A21 x1 
 
Practically, the original system (6 x 6) is split into two (3 x 3) sub-systems  
 
 1 2 1  x 1  b 1        
 2 1 5  x 2 = b 2        
 1 -1 3  x 3  b 3        
               
 1 1 2  x 4  b 4  -6 5 3  x 1  
 1 -1 -2  x 5 = b 5 − 1 -3 2  x 2  
 1 2 1  x 6  b 6  -9 7 1  x 3  
 
 
Computing the determinant 
Determinant computing also takes advantage of the block-triangular form 
For example, the determinant of the following (6 x 6) matrix is given by the product of the 
determinants of the two (3 x 3) matrices A1 and A2 . 
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 1 2 1 0 0 0     1 2 1      

 2 1 5 0 0 0     2 1 5 = 3    

 1 -1 3 0 0 0 = 18   1 -1 3      

 -6 5 3 1 1 2        1 1 2   

 1 -3 2 1 -1 -2        1 -1 -2 = 6 

 -9 7 1 1 2 1        1 2 1   

                   
 
Permutations 
Differently form the other factorization algorithms (Gauss, LR, etc.), the block-triangular reduction 
uses only permutations of rows and columns. Formally a permutation can be treated as a similarity 
transformation. For example, given a (6 x 6) matrix, exchanging rows 2 and 5, followed by exchanging 
columns 2 and 5, can be formally (but only formally!) written as. 
 
             B = PT A P      ,      where the permutation matrix is  P = (e1, e5, e3, e4, e2, e6) 
 

  A        P        PTA P    
1 0 0 1 2 0   1 0 0 0 0 0   1 2 0 1 0 0  
1 -1 1 2 -3 -2   0 0 0 0 1 0   2 1 0 5 0 0  
-6 1 1 3 5 2   0 0 1 0 0 0   -6 5 1 3 1 2  
1 0 0 3 -1 0   0 0 0 1 0 0   1 -1 0 3 0 0  
2 0 0 5 1 0   0 1 0 0 0 0   1 -3 1 2 -1 -2  
-9 2 1 1 7 1   0 0 0 0 0 1   -9 7 1 1 2 1  

                       
 
Remark. Matrix multiplication is a very expensive task that should be avoided whenever possible; we 
use instead the direct exchange of rows and columns or, even better, the exchange of their indices. 
 
Note that the similarity transform keeps the original eigenvalues. Consequently the eigenvalues of the 
matrix A are the same as those of the matrix B 
 
Eigenvalue Problems 
The eigenvalue problem takes advantage of the block-triangular form. 
For example, the following (6 x 6) matrix A has the eigenvalues: 

 λ = [-7 , -1 , 1 , 2 , 3 , 5 ] 

 
   A     λ   A1      λ1   
 -15 0 -16 0 0 0  -7  -15 0 -16     1   
 10 2 11 0 0 0  -1  10 2 11     2   
 8 0 9 0 0 0  1  8 0 9  A2   -7 λ2  
 1 3 5 3 0 -4  2     3 0 -4   -1  
 2 6 1 2 5 4  3     2 5 4   3  
 -4 9 -3 -6 -6 -1  5     -6 -6 -1   5  
                    

 
The set of eigenvalues of the (6 x 6) matrix A is the sum of the eigenvalue set of A1 [ 1 , 2 , -7 ]   and 
the eigenvalue set  of A2   [-1 , 3 , 5 ]. 
 
Several kinds of block-triangular form 
Up to now the matrices that we have seen are only one kind of block-triangular form; but there are 
many other schemes having blocks with mutually different dimensions. At last, all blocks can have 



 52 

unitary dimension as in a triangular matrix. 
Below are shown some examples of block-triangular matrices (blocks are yellow) 
 
                      
 x x 0 0 0 0  x x x 0 0 0  x 0 0 0 0 0  
 x x 0 0 0 0  x x x 0 0 0  x x 0 0 0 0  
 x x x 0 0 0  x x x 0 0 0  x x x 0 0 0  
 x x x x 0 0  x x x x 0 0  x x x x 0 0  
 x x x x x x  x x x x x 0  x x x x x 0  
 x x x x x x  x x x x x x  x x x x x x  
                      
 x x x 0 0 0  x x 0 0 0 0  x 0 0 0 0 0  
 x x x 0 0 0  x x 0 0 0 0  x x x x x x  
 x x x 0 0 0  x x x x x x  x x x x x x  
 x x x x x x  x x x x x x  x x x x x x  
 x x x x x x  x x x x x x  x x x x x x  
 x x x x x x  x x x x x x  x x x x x x  
                      

 
Remark. The effort of reduction is high when the dimension of the maximum block is low. In the first 
matrix the dimension of the maximum block is 2; in the second matrix it is 3; in the third matrix the 
dimension is 1, showing the best-effort reduction that would be possible. 
On the contrary, the last two matrices give a quite poor effort reduction. 
 
Permutation matrices 
Is it always possible to transform a square matrix into a block-triangular form? Unfortunately not. 
The chance for block-triangular reduction depends of course on the zero elements. So only sparse 
matrices could be block-partitioned. But this is not sufficient. It depends also on the configuration of 
the zeros in the matrix.  
Two important problems arise: 

1. To detect if a matrix can be reduced to a block-triangular form 
2. To obtain the permutation matrix P 

 
Several methods have been developed in the past for solving these problems. A very popular one is 
the Flow-Graph method. 
 
Matrix Flow-Graph 
Following this method, we draw the graph of the given matrix following these simple rules: 

• the graph consists of nodes and branches 
• the number of nodes is equal to the dimension of the matrix 
• the nodes, numbered from 1 to N,  represent  the elements of the first diagonal aii 
• for all elements aij  ≠ 0  we draw an oriented branch (arrow) from node-i  to node-j 

Complicated? Not really. Let’s have a look at this example.  
Given the (4 x 4) matrix A  
 

4 2 3 1 
0 -1 0 1 
3 1 -1 2 
0 1 0 1 

 
The flow-graph G(A)  associated,  looks like the following (see the macro Graph Draw for automatic 
drawing)  
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where: 

node 1 is linked to nodes  2, 3, 4; 
node 2 is linked to node  4; 
node 3 is linked to nodes  1, 2, 4; 
node 4 is linked to node  2. 
 
We observe that from node 2 there is no path linking to 
node 1 or to node 3 
The same happens if we start from node 4 
It is sufficient to say that the graph is not strongly 
connected 

 
Flow-Graph rule. If it is always possible for each node to find a path going through all other nodes, 
then we say that the graph is strongly connected 
 
An important theorem of Graph Theory states that if the flow-graph G(A) is strongly connected, then 
the associated matrix is not reducible to block-triangular form, and vice versa. 
On the contrary, if the flow-graph G(A) is not strongly connected then there always exists a 
permutation matrix P that reduces the associated matrix to block-triangular form. Synthetically: 
 

G(A) strongly connected ⇔ matrix A irreducible 

G(A) not strongly connected ⇔ matrix A block reducible 

 
This approach is quite elegant and very important in Graph theory. But from the point of view of  
practical calculus it has several drawbacks: 

• it becomes  laborious for larger matrices   
• the software coding is quite complicated 
• it does not provide directly the permutation matrix P  

 
In the above example, we observe that for P = [ e2, e4, e1, e3 ], the similarity transform gives a block-
triangular form    B = PT A P       
 

  A     P     PT A P   
 4 2 3 1  0 0 1 0  -1 1 0 0  
 0 -1 0 1  1 0 0 0  1 1 0 0  
 3 1 -1 2  0 0 0 1  2 1 4 3  
 0 1 0 1  0 1 0 0  1 2 3 -1  

 
For matrices larger than (4 x 4) the effort of searching for and testing all possible permutations grows 
sharply. For example, it requires much work for matrices like the following one. For this reason the 
flow-graph method becomes practically useless for matrices of dimension (7 x 7 ) or higher 
 
 
 
 
 
 
 
 
 
 
 
The score-algorithm 
In this chapter we shall introduce a heuristic technique for efficiently reducing a sparse matrix to a 
block-triangular form. The method is both simple and very efficient, and can be applied also to 
medium-to-large matrices. It consists of an iterative process having as its main goal to group zeros 
near the upper-right corner of the matrix using only rows and columns exchanges. 
This algorithm was first implemented as an automatic program, but thanks to its simplicity it can also 

1 0 0 1 2 0 
1 -1 1 2 -3 -2 
-6 1 1 3 5 2 
1 0 0 3 -1 0 
2 0 0 5 1 0 
-9 2 1 1 7 1 

1 

2 

3 

4 
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be performed by hand, at least, for low-to-moderately dimensioned matrices. 
Let’s see how it works 
 
Given, e.g., the (6 x 6) matrix shown just above, 
we begin by initializing the permutation vector 

 

 
1 2 3 4 5 6 
e1 e2 e3 e4 e5 e6 

 

The main goal is to bring to the upper triangular (grey) area) 
the largest possible number of zeros. 
Let’s begin to search all non-zero elements above the first 
diagonal. The searching must start from the first row and from 
right to left: thus from the element a16 ; if zero, we jump to the 
neighboring element a15 and so on till we have reached a12.  
Then we repeat along the second row, from  a26 to a23.  
And so on till the last row 

 
 2   5    
1 0 0 1 2 0   
1 -1 1 2 -3 -2   
-6 1 1 3 5 2   
1 0 0 3 -1 0   
2 0 0 5 1 0   
-9 2 1 1 7 1   

In this example, the first non-zero element is a15 ;  
Let’s find, if exists, the first zero on the same row, beginning 
from left to right.  
The first 0 is the element  a12.  We shall exchange columns 2 
and 5 and, thereafter, rows  2 and 5 
 

 
After the permutation  (2, 5),  the matrix will be the following: 
 

        1 5 3 4 2 6         
  A        P        PTA P   

1 0 0 1 2 0   1 0 0 0 0 0   1 2 0 1 0 0 
1 -1 1 2 -3 -2   0 0 0 0 1 0   2 1 0 5 0 0 
-6 1 1 3 5 2   0 0 1 0 0 0   -6 5 1 3 1 2 
1 0 0 3 -1 0   0 0 0 1 0 0   1 -1 0 3 0 0 
2 0 0 5 1 0   0 1 0 0 0 0   1 -3 1 2 -1 -2 
-9 2 1 1 7 1   0 0 0 0 0 1   -9 7 1 1 2 1 

 
We observe the zero grouping close to the upper-right corner. 
 
  3 4     
1 2 0 1 0 0   
2 1 0 5 0 0   
-6 5 1 3 1 2   
1 -1 0 3 0 0   
1 -3 1 2 -1 -2   
-9 7 1 1 2 1   

Now the first non-zero element starting from the right is  
a14. The first 0, starting from left, is a13.  
Thus we permute  3 and 4 
 

 
After permutation  3, 4  we have: 
 

        1 2 4 3 5 6         
  A        P        PTA P   
1 2 0 1 0 0   1 0 0 0 0 0   1 2 1 0 0 0 
2 1 0 5 0 0   0 1 0 0 0 0   2 1 5 0 0 0 
-6 5 1 3 1 2   0 0 0 1 0 0   1 -1 3 0 0 0 
1 -1 0 3 0 0   0 0 1 0 0 0   -6 5 3 1 1 2 
1 -3 1 2 -1 -2   0 0 0 0 1 0   1 -3 2 1 -1 -2 
-9 7 1 1 2 1   0 0 0 0 0 1   -9 7 1 1 2 1 

 
All zeros are now positioned in the upper-triangular area. The matrix is partitioned in two (3 x 3) 
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blocks. The process ends. The finally permutation matrix is  

1 2 3 4 5 6 
e1 e5 e4 e3 e2 e6 

 

 
As shown, with only 2 permutations we were able to reduce a (6 x 6) matrix to block-triangular form. 
We have to emphasize that we worked only by hand. This method also keeps a good efficiency with 
larger matrices. 
 
Let’s have a look at another example. Reduce, if possible, the following (6 x 6) matrix 
 

⇓   ⇓    
3 1 -1 1 -5 2  
0 -1 0 1 0 0  
5 1 1 2 -3 4  
0 0 0 1 0 0  
1 1 7 -9 13 1  
0 1 0 -6 0 1  

 
The first element ≠ 0, from right, is:  a16  
The first element = 0, from left, is:  a21.  
So the pivot columns are 1 and 6 
 

 
  ⇓ ⇓    

1 1 0 -6 0 0  
0 -1 0 1 0 0  
4 1 1 2 -3 5  
0 0 0 1 0 0  
1 1 7 -9 13 1  
2 1 -1 1 -5 3  

 
The first element ≠ 0, from right, is:  a14  
The first element = 0, from left, is: a13.  
So the pivot columns are 3 and 4 
 

 
⇓  ⇓     
1 1 -6 0 0 0  
0 -1 1 0 0 0  
0 0 1 0 0 0  
4 1 2 1 -3 5  
1 1 -9 7 13 1  
2 1 1 -1 -5 3  

 
The first element ≠ 0, from right, is: a13  
The first element = 0, from left, is: a21.  
So the pivot columns are 1 and 3. 
 

 
Finally we get the block-triangular matrix. 
 

1 0 0 0 0 0  
1 -1 0 0 0 0  
-6 1 1 0 0 0  
2 1 4 1 -3 5  
-9 1 1 7 13 1  
1 1 2 -1 -5 3  

The matrix has been block-partitioned: 
There are 3 blocks (1 x 1) and one block (3 x 3) 
 

 
We observe that this algorithm does not provide any information about the success of the process.  
It simply stops itself when there are no more elements to permute. At the end of the process, if the 
resulting matrix is in block-triangular form, then the original matrix is reducible. Otherwise, it means 
that the original matrix is irreducible and its flow graph is strongly connected. 
 
The Score Function 
The matrices used up to now had all zero elements completely filled moved into the upper-triangle 
area. Now let’s see what happens if the matrix has more zeros than those strictly necessary for block 
partitioning (spurious zeros). In that case not all permutations will be useful for grouping zeros. Some 
of them will be useless, and some others even worse. Thus, it is necessary to measure the goodness 
of each permutation. By simple inspection it is easy to select the “good” permutations from “bad” 
permutations. But in an automatic process it is necessary to choose a function for evaluating the 
permutation goodness: the score- function is the measure adopted in this algorithm. 
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The score function counts the zeros in the upper triangle area (grey) 
before (A) and after (B) the permutation, returning the difference.  

∑∑ −=
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The score will be positive if the permutation will be advantageous; 
otherwise it will be negative or null. 

 
 
The zeros do not all have the same weight: the zeros nearest to the upper-right corner have a higher 
weight, because a matrix filled with zeros close to the upper-right corner is better than one with zeros 
close to the first diagonal. 
 

 x x 0 x 0 0   x x x x x x  
 x x x x 0 0   x x 0 x x x  
 x x x x x x   x x x 0 x x  
 x x x x x x   x x x x 0 x  
 x x x x x x   x x x x x 0  
 x x x x x x   x x x x x x  
 better   worse  

 
Apart from this concept, the weight function w(i,j) is arbitrary. One function that we have tested with 
good result is the following 
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Weight function for an (n x n) matrix  
. 

 
For each recognized permutation, the algorithm measures the score. If positive, the permutation is 
performed, otherwise the permutation is rejected and the algorithm continues to find a new 
permutation. After some loops the disposition of zeros will reach the maximum score possible; every 
other attempt of permutation will produce a negative or null score. So the algorithm will stop the 
process. 
 
Some examples  
Now let’s see the algorithm in practical cases 
 
   A        PTA P    
 1 2 0 2 0 0   1 3 0 0 0 0  
 0 1 2 0 -3 0   1 3 0 0 0 0  
 0 0 1 0 5 3   5 3 1 0 0 0  
 0 3 1 1 0 0   -3 0 2 1 0 0  
 0 0 0 0 1 3   0 0 1 3 1 0  
 0 0 0 0 1 3   0 0 0 2 2 1  
                
 
P = [e5, e6, e3, e2, e4, e1] 
Accepted permutations = 6 
Rejected permutations = 4 
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     A            PTA P      
 3 0 0 0 0 0 2 3 0 4   1 2 0 0 0 0 0 0 0 0  
 6 1 6 3 0 2 5 1 0 2   1 1 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 1 0 0 0   0 5 1 5 0 0 0 0 0 0  
 8 1 8 1 0 0 7 1 0 0   2 0 4 3 3 0 0 0 0 0  
 10 1 10 5 0 0 9 1 5 0   3 0 6 4 1 0 0 0 0 0  
 0 1 7 4 0 1 6 1 0 3   5 6 2 6 1 1 3 2 0 0  
 0 0 2 0 0 0 1 0 0 0   7 8 0 8 1 1 1 0 0 0  
 4 0 0 0 0 0 3 1 0 6   6 7 3 0 1 1 4 1 0 0  
 9 1 9 4 -1 3 0 1 1 5   0 9 5 9 1 1 4 3 1 -1  
 5 0 5 0 0 0 0 0 0 1   9 10 0 10 1 1 5 0 5 0  
                        
 
P = [ e7, e3, e10, e1, e8, e2, e4, e6, e9, e5 ] 
Accepted permutations = 9 
Rejected permutations = 10 
 
 
     A            PTA P      
 1 0 1 0 1 0 1 6 0 1   1 0 0 0 0 0 0 0 0 0  
 1 1 0 1 1 1 1 1 1 0   1 1 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 0 0 0 0   1 5 1 0 0 0 0 0 0 0  
 1 0 0 1 1 4 1 1 0 1   1 1 4 3 0 0 0 0 0 0  
 0 0 1 0 1 0 5 0 0 0   0 1 0 4 1 0 0 0 0 0  
 1 0 1 0 0 1 1 1 0 0   1 1 1 6 1 1 0 0 0 0  
 0 0 1 0 0 0 1 0 0 0   1 1 0 1 0 1 1 0 0 0  
 0 0 1 0 4 0 1 3 0 0   0 1 1 1 1 1 4 1 0 0  
 1 0 1 3 0 4 1 1 1 1   1 1 0 1 1 1 4 3 1 0  
 0 0 0 0 0 0 1 4 0 1   0 1 1 1 0 1 1 1 1 1  
 
P = [ e3, e7, e5, e8, e10, e1, e6, e4, e9, e2 ] 
Accepted permutations = 7 
Rejected permutations = 1 
 
 
         A           

3 0 8 0 0 3 0 3 0 0 0 6 0 0 0 14 8 0 7 0 
4 4 0 0 0 6 0 6 0 0 3 9 0 0 0 20 0 0 10 4 
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 
0 0 17 10 10 0 10 0 10 0 0 15 0 10 10 0 17 10 16 0 
4 9 16 9 9 11 9 11 9 9 8 14 9 9 9 30 0 9 15 9 
0 0 0 0 0 1 0 0 0 0 0 4 0 0 0 10 0 0 20 0 
0 0 20 20 0 0 13 20 0 20 12 0 0 13 13 38 20 13 0 13 
0 0 0 0 0 2 0 2 0 0 0 20 0 0 0 0 7 0 6 0 
4 11 18 0 20 13 11 13 11 11 10 16 11 11 11 34 18 0 17 11 
20 5 0 0 0 7 0 0 0 5 0 0 0 0 0 0 1 0 11 5 
4 0 9 0 0 0 0 4 0 0 1 0 0 0 0 20 0 0 8 0 
0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0 4 0 3 0 
4 6 13 0 0 8 0 8 0 6 5 11 6 0 0 0 0 0 12 6 
0 7 14 0 0 9 0 9 0 7 20 12 7 7 0 0 0 0 13 0 
4 0 19 12 12 14 12 14 12 0 0 17 0 12 12 36 19 12 18 0 
0 0 5 0 0 0 0 0 0 0 0 3 0 0 0 8 5 0 4 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
4 8 15 0 0 10 0 10 0 8 7 13 8 8 0 0 0 8 14 8 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 
4 0 10 0 0 5 0 5 0 0 2 8 0 0 0 18 0 0 0 3 
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        PTA P           
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 4 5 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 20 0 4 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 6 0 20 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 7 8 6 14 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 
0 8 9 0 20 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 10 8 18 5 5 4 2 3 0 0 0 0 0 0 0 0 0 0 
0 10 0 9 20 6 6 4 3 4 4 0 0 0 0 0 0 0 0 0 
1 11 0 0 0 7 0 20 0 5 5 5 0 0 0 0 0 0 0 0 
0 12 13 11 0 8 8 4 5 6 6 6 6 0 0 0 0 0 0 0 
0 13 14 12 0 9 9 0 20 0 7 7 7 7 0 0 0 0 0 0 
0 14 15 13 0 10 10 4 7 8 8 8 8 8 8 0 0 0 0 0 

19 18 19 17 36 14 14 4 0 0 0 0 0 12 12 12 12 12 12 12 
17 16 17 15 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 
20 0 20 0 38 0 20 0 12 13 0 20 0 13 13 13 20 13 0 0 
18 17 18 16 34 13 13 4 10 11 11 11 11 11 0 11 0 11 11 20 
0 15 16 14 30 11 11 4 8 9 9 9 9 9 9 9 9 9 9 9 

 
P = [ e17, e19, e3, e12, e16, e6, e8, e1, e11, e20, e2, e10, e13, e14, e18, e15, e4, e7, e9, e5  ] 
Accepted permutations = 18 
Rejected permutations = 237 
 
_________________________________________________________________________ 
 
As we can see, also for larger matrices the number of permutations remains quite limited. 
Regarding this, and the fact that the permutation is much faster then any other arithmetic operation in 
floating point, we can guess the high speed of this algorithm 
 
In Excel, with Matrix.xla,  it is very easy to study the matrix permutations. 
A simple arrangement of (6 x 6) matrices is shown in the following example. We have used the function 
MPerm . When you change the permutation numbers, also the permutation matrix changes and, 
consequently the final, transformed matrix 
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The Shortest Path algorithm 
The above algorithm does not say if the matrix is irreducible. For that the shortest-path matrix, built by 
the Floyd's algorithm, comes in handy. In Matrix.xla you can perform this by the function PathFloyd or 
by the macro "Macros>Shortest Path" 
 
Example. Say if the given matrix is reducible 
 

 
 
The shortest-path matrix show the presence of empty elements. For example, the element a12 is null, 
meaning that there is no path reaching node 2 from node 1. This is sufficient for saying that the given 
matrix is not strongly connected and thus, reducible. 
 
Example. Prove that, on the contrary, the following matrix is irreducible 
 

 
 
The shortest-path matrix is dense, meaning that every node can be reached from any other. By 
definition, the given matrix is strongly connected and thus, irreducible  
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Limits in matrix computation 
One recurrent question about matrix computation is: - what is the maximum dimension for a 
matrix operation, for example for the determinant, or for inversion?  
Well, the right answer should be: it depends. Many factors, such as hardware configuration, 
algorithm, software code, operating system and - of course - the matrix itself, contribute to 
limit the maximum dimension. One sure thing is that the limit is not fixed at all. 
In the past, the main limitation was memory and evaluation speed, but nowadays these 
factors no longer constitute a limit. We can say that, for the standard PC, the main limitation 
is due to the 32-bit arithmetic and to the matrix itself. 
Suppose you have a dense matrix (n x n) with its elements aij randomly distributed from -k  
to k. With this hypothesis the determinant grows roughly as:  

     Log(|D|)  ≅ n Log(k) + 0.0027⋅n2  ≅ n Log(k)  

where Log is decimal logarithm, n is the dimension of the matrix, k its max value 
In 32 bit double precision the max value allowed is about  1E+300, 1E-300. So if we want to 
avoid the overflow/underflow error, we must constrain: 

      300 ≥ n Log(k)          (1) 

If we plot this relation for all points (k, n) we have the area for computing (blue area in the 
graph below).  On the other hand, the dangerous error area is the remaining (white) area 
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How does it work? 
Simple. If you have to compute the determinant of a (80 x 80) matrix having values no larger 
than 1000, the point (1000, 80)  falls into the blue area; so you will be able to performs this 
operation. On the contrary, if you have a (80 x 80) matrix having values up to 1E+7, the 
point  (1E+7, 80)  falls within the white area; so you will probably get an overflow error  
From this graph we see that matrices of dimension (25 x 25) or less, can be evaluated for all 
values, while matrices of size (100 x 100) or more can be computed only if their values are 
less that 1000 
Of course this result is valid only for generic, dense matrices that are not ill-conditioned. If 
the matrix is ill-conditioned you could get an overflow/underflow error even for low-to-
/moderate matrix dimensions. Fortunately, there are also special kinds of matrices that can 
be evaluated even if the constraint (1) is false. We speak about  diagonal, tridiagonal, 
sparse, block matrices, etc. 
 
We have to say that avoiding the overflow error is not sufficient to get a good result. We 
have to take care, especially for large matrices, of the round-off errors. They are very tricky 
and difficult to detect. Sometime the result of inverting a large matrix is taken as valid  even 
if it is completely wrong! 
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Sparse Linear Systems 
We have seen that finite arithmetic and memory storage both limit the maximum dimension 
of the matrix, and thus the associated linear system. In pre-2007 Excel, for example, the 
absolute maximum dimension for a linear system would be about (250 x 250). This limitation 
is due to the maximum number of the spreadsheet columns. But rarely we can solve such 
large systems because with 15 digits finite arithmetic the round-off errors often overwhelms 
the results. 
There is a situation that allows one to successfully solve larger systems, of dimension 
greater than 250. It happens when the systems matrix is sparse. A system of linear 
equations is called sparse if only relatively few of its matrix elements [ aij ] are nonzero. If we 
store only these values, we can save a large amount of storage. For example, a (300 x 300) 
matrix with 10% nonzero elements requires only 9,000 cells of storage, just about the same 
as a dense (95 x 95) matrix. 
Of course we have to choose a new arrangement to store these values. In the past, several 
ingenious and efficient schemes, tightly related to the hardware/software of the machine, 
were developed for this purpose. Here we adopt the sparse coordinate format (or Yale 
scheme) 
This scheme is surely not one of the most efficientones, but it is conceptually simple, 
compact and adaptable to a spreadsheet implementation.  

Specifically, the first 2 columns contain the integer coordinates 
while the last column contains the element values. 
The sparse matrix of the previous example requires 9000 rows 
and 3 columns for a total of 27.000 cells. 
We note that this array can easily be arranged in a 
spreadsheet while, on the contrary, its associated (300 x 300) 
standard matrix cannot be written, except with Excel 2007.  
 
The coordinate text format provides a simple and portable method to exchange sparse 
matrices. Any language or computer system that understands ASCII text can read this file 
format with a simple read loop. This makes these data accessible not only to users in the 
Fortran community, but also to developers using C, C++, Pascal, or Basic environments. 
 
Filling factor and matrix dimension 
The filling factor measures how much "dense" a matrix is. In this paper, the filling factor is 
defined as 
 

Tot

zero

N
NF −=1

 

N zero = number of zero elements  
N tot = total number of matrix elements 

 
There is a simple relation between the factor F and the maximum dimension of the system 
that can be solved in Excel. Remembering that the maximum number of rows of the pre-
2007 spreadsheet are 216, we have  

 162 2≤⋅ NF  ⇒  
F

N
82

≤  

The corresponding limit in Excel 2007, with 220 rows, is a factor of 100 larger. 
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The relation of Nmax versus 
the filling factor shows that, 
for sparse matrices having  

     0.1 < F < 0.4 

the max pre-2007 dimension 
of  the system matrix is about  

   400 < Nmax < 800  

That is a great improvement 
with respect to the standard 
matrix format 
 

 
F N 

0.1 810 
0.2 572 
0.3 467 
0.4 405 
0.5 362 
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The following pictures show 2 random sparse matrices having different filling factors  
 

  
(100 x 100) F = 0.1 (100 x 100) F = 0.3 

 
Usually, large sparse matrices in applied science have a factor F less then 0.2 (20%) 
 
The dominance factor  
Storing a matrix system does not automatically mean "solving" the system. As we have seen 
in the previous chapters, the round off errors may overwhelm the final result if the matrix is 
badly conditioned. For very large linear system the results can be acceptable only if the 
system matrix is well conditioned. It has been demonstrated that this happens for row-
diagonal dominant matrices. 
A matrix is called row diagonal dominant if each diagonal absolute element |aii| is greater 
then the sum of the other absolute elements of the corresponding row. That is, in formula 
form: 

 ∑
≠=

>
n

ijj
ijii aa

 ,1
||||      for i = 1, 2...n 

This criterion guarantees the convergence of iterative algorithms such as those of Gauss-
Seidel and Jacobi. Moreover, it assures the complete Cholesky LLT factorization, and a 
general good behavior against the propagation of round-off error. The row dominance 
criterion is sufficient but not necessary. That means that also non-dominant matrices may 
converge with a reasonable accuracy. On the other hand, there are matrices satisfying this 
criterion but in practice converging very slowly. 
For these reasons it is convenient to define a row dominance factor measuring how much a 
matrix is "diagonal dominant". In this paper, it is defined, for a non-empty row, as 
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The row dominance factor Di is always between 0 and 1 
 

Case Description 
Di = 0 The diagonal element is zero: a ii = 0  
0 < Di< 0.5 The row is dominated: di < Si 
Di = 0.5 The row is indifferent: di = Si 
0.5 < Di < 1 The row is dominant: di > Si 
Di = 1 The row contains only the diagonal element: Si = 0 

 
Therefore, the above criterion can be simply expressed as:   Di > 0.5   for i = 1, 2...n 
With all due caution, we define the statistics  D, Dm, DM 

 ∑
=

=
n

i
iD

n
D

1

1
 { }im DD min=  { }iM DD max=  

These are a kind of matrix dominance factors summarizing the global dominance behaviors 
of the matrix itself. Note that D can be greater than 0.5 even if some rows are less than 0.5 
or even 0. 
 
Algorithms for sparse systems 
Now we examine the algorithms suitable for solving large sparse systems: they can be direct 
and iterative algorithms. 
 
Direct algorithm 
Most direct system-solving algorithms operate a transformation on the system matrix and 
thus change the number of the zero elements. Unfortunately, none of these algorithm 
maintains the initial filling factor.  

For example, starting with a (30 x 30) sparse 
matrix with F = 15 %,  the average behavior 
of the most popular factorization algorithms 
are shows in this table. Clearly, we should 
give our preference to those algorithms that 
minimize the filling factor.  

 
Algorithm Final matrix 
Gauss F = 23% 
LR F = 46% 
LLT (Cholesky) F = 23% 
QR  F = 75% 

 
The Gauss algorithm with partial pivot and back substitution still appears to be the right 
choice for a general system. For symmetric dominant systems, the Cholesky factorization is 
preferable for its efficiency 
Those algorithms have a computational effort proportional to n3, where n is the dimension of 
the linear system.  
The following graph shows two typical factorization-time curves6 performed by the Gauss 
algorithm for solving sparse linear systems having F = 20% with increasing dimension. 

                                                      
6 Pentium 4, 1.8 GHz, 256 MB RAM 
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The time is measured in seconds. 
The upper curve is obtained for sparse 
system matrices that are uniformly 
distributed, while the lowest curve is obtained 
for matrices concentrated around the first 
diagonal. As we can see, at the same 
dimension, the latter save more than 30% of 
the factorization time.  
For symmetric sparse matrices the Cholesky 
factorization saves even more than 50%. 
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Iterative algorithms 
But the truly strong reduction of effort is exhibited by iterative algorithms like the Successive 
Relaxation Gauss-Seidel algorithm or, better yet, the ADSOR method (Adaptive Successive 
Over-Relaxation). 
When the system matrix is well-conditioned, for example for a diagonal dominant matrix, 
these methods converge to the solution with the best accuracy possible, in very few 
iterations, typically less then 100 steps. Unfortunately, not all sparse systems can be solved 
by an iterative procedure. But when they can, the time savings in factorization are 
remarkable 
The following graph shows the factorization time of a direct method and an iterative method 
for diagonally dominant sparse linear systems (F = 20%) of increasing dimension 

n Time (sec) 
Gauss 

Time (sec) 
ADSOR 

50 0.22 0.02 
100 0.6 0.05 
150 1.7 0.09 
200 4.2 0.15 
250 8.6 0.22 
300 15.6 0.31 
350 25.7 0.41 
400 39.6 0.53  
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We see that the factorization time remains less then one second even for very large 
systems. How can we justify this brilliant result? There are three facts:  

1) Iterative algorithms operate in a very straightforward way, using only matrix-
vector multiplications; for sparse matrices, this operation is very efficient, requiring 
only F·n2 elementary operations (multiplications + additions). 

2) Iterative algorithms do no transform the system matrix, so its sparse factor F does 
not increase along the iterative process. 

3) The number of steps Ns required for converging to a fixed precision is 
substantlially independent of the dimension; it mostly depends on the dominance 
factor of the matrix and, for the ADSOR algorithm, is usually less then 50-100. 

 
The factorization time Ti of an iterative algorithm is proportional to the number of operations 
for each step, that is  Ti ≈ Ns·F·n2 . The elaboration time Td of a direct method is proportional 
to n3 , i.e., Td ≈ n3 .  
Therefore the efficiency gain defined as G = Td / Ti  will be:  G ≈ n / (Ns·F) .   
That gain is directly proportional to the dimension and inversely proportional to the filling 
factor. Example, for a real large sparse matrix of n = 400, with F = 20%,  the gain G  = 75. 
The gain reaches more than 150 if F is less then 10%. 
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Sparse Matrix Generator 
Of course, sparse matrices come from problems, and should not be generated. However 
sometimes we need to generate a sparse matrix for algorithm testing, time measuring, etc. 
On the internet there are some resources that can generate many type of matrices, including 
sparse matrices7. Matrix.xla also has a little tool for generating sparse matrices. 
 

 

Parameters: 
Random sparse matrix [aij] is generated with 
the following constraints: 

Max: value: upper limit of aij 
Min: value: lower limit of aij 
Dim: matrix dimension (n x n) 
Dom: Dominance factor D, with 0 < D < 1 
Fill: Filling factor F, with 0 < F < 1 
Spread: Spreading factor S, with 0 < S < 1 
Sym: check it for symmetric matrix 
Int: check it for integer matrix.  
Starting from: left-top matrix corner 
 
Output format 
Coordinates: generates a (k x 3) matrix in 
sparse coordinate format: [ i, j, aij ] 
Square: generates a square matrix [ aij ] 
 

 
This macro can output a matrix in standard or coordinate format. Of course the coordinate 
format is the only possible one on pre-2007 Excel for matrices greater then (256 x 256). 
 
Here are some patterns generated for different parameters F and S 
 

   
F = 0.1, S = 0.05 F = 0.1, S = 0.2 F = 0.1, S = 0.6 

   
F = 0.3, S = 0.05 F = 0.3, S = 0.2 F = 0.3, S = 0.6 

 

                                                      
7 NIST MatrixMarket has one of the most useful and complete tools, called "Deli",  for generating a wide range of 
matrices with several output formats:  http://math.nist.gov/MatrixMarket/deli/Random/  

 

http://math.nist.gov/MatrixMarket/deli/Random/
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How to solve sparse linear systems 
Assume that you have to solve a sparse (200 x 200) system A x = b, where the system 
matrix "A" is in the range A1: GR200 and the vector "b" is in the range GT1:GT200 
First we analyze the dominance. Select one cell inside the matrix, for example A1; call the 
macro "Macros > Sparse matrix Operations..."  from the menu, and select the operation 
"Dominance" 
 

 

The macro returns the 
dominance factors of each 
row and the average, the 
max and the min of all 
dominance factors.  
In this case we have 
obtained  
Dmin > 0.5 with an average of  
D = 0.66.  
This indicates that the 
system is diagonally 
dominant and well-
conditioned.  We can use 
both iterative and direct 
methods 

 
Select one cell inside the matrix, for example A1; call the macro "Sparse matrix 
Operations..."  from the menu, and select the operation "System (Gauss)" 
 

 

The input A matrix is already filled 
with the system matrix. Move the 
cursor inside the field "vector b" 
and select the range GT1:GT200. 
 
Tip: You can select only the first 
cell GT1 and then click the smart 
selector at the right: the correct 
range will now be selected 
automatically. But make sure that 
the vector b is surrounded by 
empty cells. 
 Then choose the output range, 
and click "Run" 
 

 
After a while (9 seconds in this example), the macro returns the solution vector of the system 
with a very high global relative accuracy (1E-14)  . 
 
Now we solve the same problem with the iterative algorithm ADSOR. The procedure is the 
same as above, except that we have to set the iteration limit (the default is 400). 
This algorithm returns the vector solution and, in addition, the number of iterations 
performed, the average relative error, and the relaxation factor used. In this example, only 
0.5 sec and 20 iterations are been necessary to reach an accuracy of about 3E-15.  
 
As we can see the factorization time is much shorter than with the direct Gauss method. The 
Gauss method should be utilized only when the sparse matrix is not dominant, or the 
diagonal has some nonzero elements. 
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How to get the true dimensions 
When the system is very large we necessarily have to adopt the coordinate format. For 
example, assume to have the matrix system A in the first three columns in the range 
A1:C14779. The coordinate format does not show directly the dimensions of the matrix.  To 
avoid errors it is necessary to get the dimensions of a sparse matrix written in coordinate 
form, i.e (rows x columns).  

For that, it is convenient to use the 
macro task "Dimension", which 
searches for the maximum number of 
rows and columns; in addition it returns 
the filling factor of the matrix itself  

 
How to analyze the dominance 
Before solving a large system we have to analyze the conditioning of the system matrix in 
order to choose the algorithm and to understand if there is a chance of obtaining an 
acceptable result. If the matrix is diagonally dominant (Dmin > 0.5), iterative algorithms 
converge to the solution. The dominance assures also an accurate result. 

For that, use the macro task 
"Dominance", that computes the 
dominance factor Di of each ith row 
and, in addition, computes the 
statistics: average, max, and min.  
 
A matrix is totally row-dominant if Dmin > 0.5. 
In this example we have a  0.48 < Dmin < 0.5 , so the matrix is not totally row-dominant.  
Because Dmin > 0, all rows have diagonal nonzero elements and this is the only necessary 
condition for using the iterative ADSOR method. The total dominance is a sufficient condition 
but it is not necessary; the ADSOR algorithm can often converge also for "quasi-dominant" 
matrices. 
 
Solving Sparse System in coordinate format 
Assume to have the system matrix in the range A1:C14779 and the vector "b" in the range 
D1:D300. Select one cell inside the matrix, for example A1. Call the macro "Sparse matrix 
Operations..."  from the menu, and select the operation "System (ADSOR)" 
 

 

The input A matrix is already filled 
with the system matrix 
A1:C14779. Move the cursor to 
the field "vector b" and select the 
range D1:D300. 
 
The time for solving a  
(300 x 300) system is about 1 sec 
 
The macro outputs the solution 
vector plus some useful 
information, such as the number 
of iterations, the estimated 
relative error, and the relaxation 
factor. 
 

 
Note that the Gauss algorithm would need about 30 sec to solve this system 
Note also that this system cannot be solved directly in pre-2007 Excel 
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How to check the result 
A quick way for testing a linear system solution is to compute the residuals vector: 

r = b - A·x 

We have to point out that a low residuals vector does not automatically mean an accurate 
solution, but it is always a good and cheap test. 
 

 

In the previous example we have 
the sparse matrix A in A1:C14779 
, the b vector in D1:D300 and the 
x solution in G1:G300. First of all, 
we form the product A·x , putting 
the result in the range I1:I300.  
For this task we call the macro 
"Sparse matrix operations", 
selecting the product operation 
A*b. 
 
The matrix-vector product  is a 
very fast operation on sparse 
matrices. 
 
 

 
After that, we compute the residual vector r as the difference between the b vector and the 
product  A*b.  
 

 

We can compute the difference 
between two vectors simply by 
selecting the range K1:K300 and 
inserting the array function 
{=E1:E300-I1:I300} with the 
ctrl+shift+enter keys sequence. 
 
Or, alternatively, by using the 
macro "Matrix operations", 
selecting the "subtraction" task 
 
The result is in the range K1:K300 
 
 
 

 
The relative residual error can be computed as Erres =  | r | /  | b | 
The norm can be computed with the MAbs function or with the Excel formula 
=SQRT(SUMSQ(K1:K300)) 
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Solving Sparse System with Gauss 
Often the linear system cannot be solved with the fast ADSOR algorithm. This happens, for 
example, when the system matrix has some zeros on the first diagonal, or has a low 
dominance factor.  In these cases we have to go back to the Gauss reduction algorithm, 
adapted for sparse matrices 
 
For example, assume to have a system with some 
diagonal zero elements. 
The dominance factor analysis gives us the following 
factors 

Davg = 0.295 

Dmax = 0.4 

Dmin = 0 
 
The presence of zero diagonal elements is revealed 
by Dmin = 0.   

 
In that case we cannot adopt ADSOR and we have to use the Gauss algorithm.  
Always remember to check the result because, in that case,  the round-off error may 
completely obscure the solution obtained. 
 
How to improve the dominance 
In some cases the dominance of a linear system can be improved simply reordering the 
equations. 
For example, the following system is not diagonal dominant 
 











=−++
=+++−

−=+−
=++

34720
292218

521594
227311

4321

4321

432

321

xxxx
xxxx

xxx
xxx

 

 
 
But it becomes diagonal dominant simply exchanging the 2nd and 4th equations. 
Of course for large system the manual rows exchanging is prohibitive. For this task comes 
useful the macro "Dominance improving". Starting from the system matrix A and the vector 
b, the macro tries to improve the dominance by rows exchanging and returns a new system 
matrix A and a new vector b. 
 
Using the system of the above example we get the 
following new matrix. The dominance factors are 
now: 

Davg = 0.4 

Dmax = 0.45 

Dmin = 0.33 
 
As we can see the average dominance is improved 
but the best result is that no zero element appears in 
the diagonal (Dmin > 0).  
 

 

That system can be efficiently solved with iterative algorithms. 
Note that ADSOR con converge to the solution even if the system is not row-dominant 
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The relaxation parameter ω 
The convergence of iterative methods can be improved introducing a relaxation parameter ω 
Thus, the iteration schema, called SOR (Successive Over-Relaxation) can be modified as: 

 x(k+1) = (1 - ω) x(k) + ω xGS
(k+1) 

 
where xGS is the vector generated by the Gauss-Seidel algorithm. Usually is   0 < ω < 2. 
Generally, it is not simple to find the adaptive parameter for the fastest convergence. 
In the ADSOR (ADaptive Successive Over-Relaxation) the parameter is chosen by the 
algorithm itself. 
 
Example. Appling the ADSOR algorithm to the following system, we have the solution with 
an error of less then 1E-14, in about 80 iterations. We note also that this result is reached 
with the relaxation parameter ω = 0.7 
 

 
 
If we repeat the calculation using the Gauss-Seidel algorithm (ω = 1) we need about twice as 
many iterations. 
The following graph shows the accelerating effect of the relaxation parameter 
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How to solve tridiagonal systems 
Tridiagonal systems are a subclass of sparse systems. Thanks to their particular structure 
they can be efficiently written in a very compact 3-column format.  

• The first  column contains the lower subdiagonal; 
• The second column contains the diagonal 
• The third column contains the upper subdiagonal 

 

 
 
The space saving is evident. Note that the first element of the first column and the last 
element of the third column do not really exist. Usually they are set to zero, but their values 
are irrelevant because the macro does not read them. 
 
Large linear tridiagonal systems can be solved efficiently using the macro "Sparse Matrix 
Operation" 
In this example the system matrix is contained in A1:C1000, and the b vector is in E1:E1000 
As we can see, only 0.1 sec is sufficient for solving a (1000x 1000) system. Usually the 
accuracy is very high for a dominant system. 
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Eigen-problems 
 

This chapter explains how to solve common problems 
involving eigenvalues and eigenvectors, with the aid of 
many examples and different methods.  

Eigen-problems 
Eigenvalues and Eigenvectors 
These problems are very common in math, physics, engineering, etc. Usually they consist of 
solving the following matrix equation 

 

 

where A is an n x n matrix, and the unknowns are  λ  and x, respectively called eigenvalue and 
eigenvector. Rearranging equation (1) we have: 

 

 

This homogeneous system can have non-trivial solutions if its determinant is zero. That is: 

 

 

 

Characteristic Polynomial 
The left-hand side of (3) is an nth degree polynomial in λ , − called characteristic polynomial - 
whose roots are the eigenvalues of the matrix A.  

For a (2x2)  matrix, the system (2) becomes: 

 

 

 

Computing the determinant we have equation (3) in expanded form 
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For a (3x3)  matrix, the system (2) becomes: 

 

 

 

 

and its characteristic equation (3) becomes 

 

 

With a larger matrix the difficulty of computing the characteristic polynomial grows sharply; . 
Fortunately there is a very efficient way to compute the polynomial coefficients, using the Newton-
Girard recursive formulas. In Matrix.xla we can get these coefficients with the function 
MCharPoly. 

 

Roots of the characteristic polynomial 
Apart from the 2nd degree case, finding the roots of a polynomial needs numerical approximation 
methods. Matrix.xla has the function PolyRoots that finds all roots - real or complex - of a given 
real polynomial, using the Siljak+Ruffini  methods. This function is suitable for general 
polynomials up to 6th or 7th degree.  When possible, the function uses the Ruffini method for 
finding small integer roots. 

There is also the function PolyRootsQR  for finding all polynomial roots. It uses the efficient QR 
algorithm and it is adapted for polynomials up to 10th or 12th  degree. 

For complex polynomials there is the similar function PolyRootsQRC 

 

Case of symmetric matrix 
Symmetric matrices play a fundamental role in numerical analysis. They have a feature of great 
importance:  Their eigenvalues are all real. Or, in other words, its characteristic polynomial has 
only real roots. Another important reason for using symmetric matrices is that there are many 
straightforward, efficient, and also accurate algorithms for solving their eigen-systems; this is 
much more complicated for asymmetric matrices. 

 

Tip. There is a nice, closed formula for generating a symmetric (n x n)  matrix having the first n 
natural numbers as eigenvalues 

 

 

 

 

Below are the first  such matrices for n = 2, 3, 4, 5, 6, 8 
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2 0 

0 1 
 

7/3 2/3 0 

2/3 6/3 -2/3 

0 -2/3 5/3 
 

2.5 1 0.5 0 

1 2.5 0 -0.5 

0.5 0 2.5 -1 

0 -0.5 -1 2.5 
 

2.6 1.2 0.8 0.4 0 

1.2 2.8 0.4 0 -0.4 

0.8 0.4 3 -0.4 -0.8 

0.4 0 -0.4 3.2 -1.2 

0 -0.4 -0.8 -1.2 3.4 
 

8/3 4/3 3/3 2/3 1/3 0 

4/3 9/3 2/3 1/3 0 -1/3 

3/3 2/3 10/3 0 -1/3 -2/3 

2/3 1/3 0 11/3 -2/3 -3/3 

1/3 0 -1/3 -2/3 12/3 -4/3 

0 -1/3 -2/3 -3/3 -4/3 13/3 
 

2.75 1.5 1.25 1 0.75 0.5 0.25 0 

1.5 3.25 1 0.75 0.5 0.25 0 -0.25 

1.25 1 3.75 0.5 0.25 0 -0.25 -0.5 

1 0.75 0.5 4.25 0 -0.25 -0.5 -0.75 

0.75 0.5 0.25 0 4.75 -0.5 -0.75 -1 

0.5 0.25 0 -0.25 -0.5 5.25 -1 -1.25 

0.25 0 -0.25 -0.5 -0.75 -1 5.75 -1.5 

0 -0.25 -0.5 -0.75 -1 -1.25 -1.5 6.25 
 

eigenvalues: 1, 2, 3, 4 

eigenvalues: 1, 2, 3 

eigenvalues: 1, 2 

eigenvalues: 1, 2, 3, 4, 5 

eigenvalues: 1, 2, 3, 4, 5, 6 

eigenvalues: 1, 2, 3, 4, 5, 6, 7, 8 
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Example – How to check the Cayley-Hamilton theorem 
 
Regarding the characteristic polynomial  P(λ)  an important theorem, known as Cayley-Hamilton‘s 
theorem - states that the any square matrix A verifies its characteristic polynomial. That is, in 
formula: 
 P(A)  = O                      (where O is the null matrix) 

The above matrix equation can be formally obtained by substituting the variable λ  with the matrix 
A. Let’s see how to test this statement with a practical example in Excel. 
Given the following (3 x 3) matrix 
 
  11 9 -2  
 A = -8 -6 2  
  4 4 1  

Its characteristic polynomial  is: 
326116)( λλλλ −+−=P  

 
After substituting  A for λ  we have 

 
326116)( AAAIAP −⋅+⋅−⋅=  

Evaluating this formula by hand is quite tedious, but it is very easy in Excel. Let’s see the 
following spreadsheet arrangement using the function MPow  
 

 
Note that we have inserted the P(A) formula as an array function  {=….} 
 
Of course it is also possible to compute the matrix powers A2, A3 with the matrix product. 
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Eigenvectors 
Logically speaking, once we have found an eigenvalue we can solve the homogeneous system 
(2) in order to find the associate eigenvector.  

 

Normally for each real eigenvalues with multiplicity one, there is only one eigenvector. For 
multiplicity 2, we will find two eigenvectors or even only one. 
 
Step-by-step method 
The method explained above is general and is valid for all kind of matrices. It is known to every 
math student, and it is very popular. For this reasons it is explained in this chapter, despite its 
intrinsic inefficiency. As we can see in the following paragraphs, there are other methods that can 
compute both eigenvectors and eigenvalues at the same time in a very efficient and fast way. 
They are suitable for larger matrices, while the step-by-step method can be applied to matrices of 
low dimension (usually from 2x2 , up to 5x5).  
But, didactically speaking, this method is still valid, and it can help when other methods fail or 
raise doubts. 
The step-by-step method, is composed of the following steps: 

1. Compute the coefficients of the characteristic polynomial 
2. Find their roots, that is, the matrix eigenvalues λ i 
3. For each root  λ i  build the matrix  A − λ i I 
4. Find the associated eigenvector xi  by solving the homogeneous system 

 
Let's see how it works with some examples 
 
Example - Simple eigenvalues 
Find all eigenvalues and associated eigenvectors of the following matrix  

 

-4 14 -6 
-8 19 -8 
-5 10 -3 

For task 1) we use the function MathCharPoly; for task 2) we use the 
function PolyRoots; task 3) is performed with the MIde function which 
returns the identity matrix.Finally, task 4) uses the function 
SysLinSing to find a solution of the singular system. 

 

 

iii xxIA        0)  ( ⇒=−λ
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For the given matrix, we have 
found the eigenvalues and  
eigenvectors at the right 
 
 
 

 

Eigenvector 
x1 x2 x3 
-1 2 2 
0 1 2 
1 0 1 

 
Eigenvalues 

λ1 2 
λ2 3 
λ3 7 

 
 Example - How to check an eigenvector 
Once we have found the eigenvectors, we can easily verify them by simple matrix multiplication.  
 
 
If x is an eigenvector, the vector u must be exactly a  λ  multiple of the vector x , as we can see in 
the worksheet below 
 

 
 
Eigenvectors are not unique. It is easy to prove that any multiple of an eigenvector is also an 
eigenvector. This means that if (-1, 0, -1) is an eigenvector, other possible eigenvectors are:  
 

Matrix   Eigenvalue  Eigenvectors … 
-4 14 -6    -0.04 -0.5 -1 -2 -3 -4 -5 
-8 19 -8  λ =2  0 0 0 0 0 0 0 
-5 10 -3    0.04 0.5 1 2 3 4 5 

 
By convention, mathematicians take 
the eigenvector with norm 1, that is: 
 | x | =1. 
In that case it is called the 
eigenversor.   
Following this rule the eigenvector 
matrix becomes as we can see at 
right 
  
 
Sometimes, in order to avoid floating numbers, we normalize only the smallest value of the 
vector; for that, we divide all values by the GCD  
The SysLinSing function adopts this solution. If you want to get the eigenversors you have to do it 
manually. 

 

xuxAu iiii        λ=⇒=
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Example - Eigenvalues with multiplicity  
Find all eigenvalues and associated eigenvectors of the following matrix  
 

 
 
 
 

 
For the given matrix we have 
found two roots:  
 
 λ = 1 ,  m = 1 
 λ = 2 ,  m. = 2 
 
With an eigenvalue with 
multiplicity = 1, we get one 
eigenvector; while with the a 
second eigenvalue with 
multiplicity = 2, we get two 
eigenvectors 
 
 

-7 -9 9 
6 8 -6 
-2 -2 4 

 
 
Tip: The accuracy of multiple roots is in general lower than that of a singular root. For this reason, 
the SysLinSing function sometimes cannot return any solution. In those cases, try to set the 
SysLinSing parameter MaxError to less then 1E-15, depending on the eigenvalue accuracy 
(usually for a root with m. = 2, we set MaxError = 1E-10) 
 
In the above example the number of eigenvectors corresponds exactly to the eigenvalue 
multiplicity. But this is always valid? Does the eigenvalu multiplicity gives the dimension of the 
eigenvector subspace? Unfortunately not. There are cases in which the multiplicity doesn't' t 
correspond to the associated eigenvectors.  
Lets' see the following example. 
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Example - Eigenvalues with multiplicity not corresponding to the number of 
eigenvectors 
Find all eigenvalues and associated eigenvectors of the following matrix  

 
 
 
 

 
For the given matrix the 
characteristic polynomial is: 
 
 
That has two roots:  
 λ = 0 ,  m = 1 
 λ = 2 ,  m. = 2 
 
With the eigenvalue with multiplicity 
= 1, we get one eigenvector; with the 
second eigenvector, with multiplicity 
= 2, we get only one eigenvector, not 
two. 
 
 

1 2 1 
2 0 -2 
-1 2 3 

 

 
 
Example - Complex Eigenvalues  
Sometimes it happens that not all roots of the characteristic polynomial are real. In that case, the 
eigenvectors associated with these complex eigenvalues are complex too. 

Find all eigenvalues and associated eigenvectors of the following matrix  

 

    A = 

 

The characteristic polynomial is:   

 
 
The eigenvalues are  λ 1 = 2 , λ 2 = 5+ j  , λ 3 = 5 − j 

Matrix.xla does not contain a SysLinSing for solving a complex singular system, but we can 
derive a real system from the original complex one: 
 
Separating both eigenvalues and eigenvectors in their real and imaginary parts: 

imre jλλλ +=          imre jxxx +=  
 

9 -6 7 
1 4 1 
-3 4 -1 

504612 23 +−+− λλλ

λλλ 44 23 −+−
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the homogeneous linear system, becomes 

( )( ) 0)(       0)( =++−⇒=− imreimre jxxIjAxIA λλλ  
 
Rearranging: 
 
The above complex equation is equivalent to the following homogeneous system 
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Let's see how to arrange a solution in Excel 
The 6 x 6 homogeneous system matrix is built in four 3x3 sub-matrices. 
 

 
 

The solution of the homogeneous system returned by SysLinSing is conceptually divided in two 
parts: the upper part contains the real parts of the eigenvectors; the lower part holds the 
imaginary parts of the same eigenvectors. 

Substituting the conjugated eigenvalues we find conjugated eigenvectors. 

The case of real eigenvalue 2 is the same as in the above example, so we do not repeat the 
process. Rather, we want to show here how to arrange a check for complex eigenvectors. 

( ) ( ) 0)(  )( =−+−++− imrereimimimrere xIAxIjxIxIA λλλλ
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Example - Complex Matrix 
Matrix.xla has several functions developed for solving the eigen problem for complex matrices of 
moderate dimension. 
Following the step-by-step method previous seen, we need the following functions: 

• MCharPolyC - computes the complex coefficient of the characteristic polynomial 
• PolyRootsQRC - computes the roots of a complex polynomial 
• MEigenvecInvC - computes the eigenvectors of a complex matrix 

 
4+3j 2-4j 4+5j 5-4j 
1+2j 2 1+2j 2-j 
-2+4j 4+2j -2+2j 2+6j 
3-3j -3-3j 3-3j 1-3j 

 
A possible arrangement is shown in the following worksheet. 
 

 
 
Note that the given matrix has distinct eigenvalues: 2 real and 2 complex 
This means that its eigenvectors are distinct and we can use the inverse iteration algorithm for 
finding them. Note also that, in general, a real eigenvalue does not correspond to a real 
eigenvector. Curiously the only real eigenvector corresponds to the imaginary eigenvalue λ = −2j 
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Example - How to check a complex eigenvector 
Given the matrix A and one of its eigenvalues λ, prove that the vector x is an eigenvector 

 

       A = 

 

 
The test can be arranged as in the following worksheet 
 

 
 
We have used the function M_MAT_C of Matrix.xla for complex matrix multiplication. Note that 
we have to insert the imaginary part of the matrix because those complex functions always 
require both parts: real and imaginary. 
 
There is also another way to directly compute the eigenvector of a given eigenvalue: the functions 
MEigenvec  and MEigenvecC of Matrix.xla return the eigenvector associated with their 
eigenvalues; the first function works for real eigenvalues, and the second for complex 
eigenvalues. See the chapter "Function Reference" of  Vol. 2 for details  
 
In the following arrangement we have used MEigenvecC for calculating the associated 
eigenvectors, and MMultsC for obtaining the complex scalar product 
 

 
 
Of course the final result is equivalent 
 
 
 

9 -6 7 
1 4 1 
-3 4 -1 

xre xim 
-1 -2 
-1 0 
0 1 

λ = 5+j 
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Similarity Transformation 
This linear transformation is very important because it leaves eigenvalues unchanged. Let's see 
how it works. Giving a square matrix A and a second square matrix B we generate a third matrix 
C with the formula: 

C = B-1 A B 
 
We say:  C is the similarity transform of A by matrix B 
Similarity transformations play a crucial role in the computation of eigenvalues, because they 
leave the eigenvalues of a matrix unchanged. Thus, eigenvalues of A are the same as those of 
C, for any matrix B  

It can be easily demonstrated that det(C - λ I) = det(A - λ I) 
In fact, remembering that   I = B-1 B,  we can write:  

det(C - λ I) = det(B-1 A B - λ I) = det(B-1 A B - λ B-1 B) 

But, rearranging, we have 

  det(B-1 A B - λ B-1 B) = det(B-1 (A B - λ B))  = det(B-1 (A - λ I) B)) = 

 = det(B-1 ) det (A - λ I) det (B) = det (A - λ I) det(B-1 ) det (B) = det (A - λ I) 
 
Example - verify that the similarity-transformed matrix of A by the matrix B has the same 
eigenvalues. 

To prove that eigenvalues are the same it is sufficient that the characteristic polynomials of A and 
B are equals. For computing the transformed matrix we can use the function MBAB of Matrix.xla. 
But, of course we can use, the standard formula as well. 
=MMULT(MMULT(MINVERSE(E3:G5),A3:C5),E3:G5) 

 

 
 
For computing the coefficients of the characteristic polynomial we have used the function 
MCharPoly 
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Factorization methods 
The heart of many eigensystem routines is to perform a sequence of similarity transformations 
until the resulting matrix is nearly diagonal within a small error. 

 

A1 = (P1)-1 A (P1) 

A2 = (P2)-1 A1 (P2) 

A3 = (P3)-1 A2 (P3) 

................. 

 An = (Pn)-1 An-1 (Pn) 

 

Eigenvalues of a diagonal matrix are simply the diagonal elements; but, because they are equal 
to the matrix A for the similarity property, we have found also the eigenvalues of the matrix A. We 
found this strategy in algorithms such as Jacobi' iterative rotations, QR factorization, etc. 

Note: This iterative method does not converge for all matrices. There are several convergence 
criteria. One of the most popular says that convergence is guaranteed for the class of symmetric  
matrices. 

 
 
Eigen problems versus resolution methods 
In the above paragraph we have spoken about the general method for resolving eigen-problems. 
It starts form the characteristic polynomial, and builds the solutions step-by-step. It is valid for any 
kind of matrix, with real or complex eigenvalues. Unfortunately, this method can be used only for 
matrices with low dimensions. When the matrix size is larger than 3, this method becomes quite 
tedious, long, and inefficient.  

To overcome this, many algorithms have been developed. Generally, they calculate all 
eigenvalues and eigenvectors by efficient iterative methods. The price is that those methods are 
not general but are specialized for particular types of matrix classes. Very efficient algorithms 
exist for the symmetric matrix class, but the same algorithms cannot work, for example, with 
complex eigenvalues matrices. So, for a specific eigen-problem, we have to analyze which 
method can be applied. 

Matrix.xla offers several different methods; their ranges of application are summarized in the 
following table  

  Real eigensystem  Complex eigensystem 

Method Symmetric 
real matrix 

Real 
matrix 

Real 
matrix 

Complex 
matrix 

Jacoby yes no no no 
QR factorization yes  yes  yes yes  
Power yes yes no no 
Characteristic polynomial yes yes yes yes 
Inverse iteration yes yes yes yes 
Singular system yes yes yes yes 

 
There are also special, highly efficient algorithms for tridiagonal and Toeplitz matrices. 
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Jacobi transformation of symmetric matrix 
For real symmetric matrices, Jacobi's method is convergent, and gives both eigenvalues and 
eigenvectors. It consists of a sequence of orthogonal similarity transformations, each of them – 
called a Jacobi rotation - is just a plane rotation that annihilates one of the off-diagonal elements.  

Referring to the paragraph "Factorization methods", this method gives us two matrices: 

 D (eigenvalues) and U (eigenvectors), being: 

 

 

 

 
Example - Solve the eigenproblem for the following symmetric 5x5 matrix 
 

 
 

We note how clean this method is. Just plain and straightforward! By default, both functions use 
100 iterations to reach this highly accurate result. Sometimes, for larger matrices, you may need 
to increase this limit, otherwise you may have to accept a lower precision. 
 
Tip. Jacobi's algorithm returns 
eigenvalues in the main diagonal. If 
you like to extract them in a vector, 
the function MDiagExtr comes in 
handy. 
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Example - Compute the first steps A1, A2, ... A6 of Jacobi's algorithm and study the convergence 
of the previous example 

Each step of Jacobi's rotation method makes zero the two highest off-diagonal values. At 
subsequent steps these zeros cannot be preserved, but the off diagonal elements are getting 
lower and lower step by step. The diagonalization error indicates this convergence, slow but 
inexorable, to zero   
 

 
  

For a symmetric matrix, 
convergence is always 
guaranteed. In our example, 
after 15 steps, we have an 
average diagonalization error 
of only about 0.01 
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Orthogonal matrices 
The eigenvector matrix returned by the Jordan algorithm is "orthogonal" with each vector having 
norm 1; that is, an "orthonormal" matrix 

Indicating the scalar product with the symbol  •   the normal and orthogonal conditions are: 

 

 

 

 

 

Orthogonal matrices have also other interesting features.  

If U is orthogonal, we have   ⇔ U-1 = UT    

If U is also orthonormal; we have  ⇒ |det(U)|= 1  

Pay attention: the second statement is not invertible. There are matrices with det = 1 that are not 
orthogonal at all. 
 

     
1

21
11

det =








 

The matrix at the left, for example, has det =1 (unitary) but is not 
orthogonal. Also, all the Tartaglia matrices, encountered in the 
previous chapters, have always |det| =1, but they are never 
orthogonal. 

 
 
Example - verify the orthogonality of the eigenvector matrix of the above example 

ProdScal   

0.6 0.4 -0.4 0.4 -0.4 
-0.4 0.4 0.6 0.4 -0.4 
0.4 0.6 0.4 -0.4 0.4 
0.4 -0.4 0.4 0.6 0.4 
-0.4 0.4 -0.4 0.4 0.6 

 

 
 
Tip. Often, a matrix product generates round-off errors, as in this case. We can sweep them up 
with the function MMopUp  
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δ

In other words, the scalar product of a vector with 
itself must be 1; for any other vector it must be 0. ( 
δij is called Kroneker's symbol) 

x11 • x11 = | x11|2 = 1 

x11 • x12 = x11 • x13 = x11 • x14 = 0 

To verify, we can calculate the scalar cross product of 
each pair of columns with the help of the function 
ProdScal. But this will tedious for a large matrix. It is 
faster to use the identity  U UT = I, as shown in the 
above worksheet. 
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Eigenvalues with the QR factorization method 
Another popular algorithm to find all eigenvalues of a matrix is the QR factorization method. Its 
heart is the following factorization of a matrix A: 

 A = Q R  where Q is orthonormal and R is upper triangular  

This factorization is always possible; you can easily perform such factorization in Matrix.xla with 
the function MQR . 

This method applies the following steps: 

1. Factorize the given matrix   A = Q R    
2. Multiply the two factors  R  and  Q  obtaining a new matrix   A1 = R Q    
3. Factorize the new matrix   A1 = Q R     and then repeat steps 2 and 3 

 
We have the iterative process, starting with A: 

A = Q R ⇒ A1 = R Q 

A1 = Q1 R1 ⇒ A2 = R1 Q1 

A2 = Q2 R2 ⇒ A3 = R2 Q2 

...................  ............... 

Ap = Qp Rp ⇒ Ap+1 = Rp Qp 

 

With the function MQRiter it is very easy to test how this process works. 
 
Example - calculate the first 10 and 100 steps of the QR algorithm for the following  symmetric 
matrix having the eigenvalues 1, 2, 3, 4, 5 
 

2.6 1.2 0.8 0.4 0 
1.2 2.8 0.4 0 -0.4 
0.8 0.4 3 -0.4 -0.8 
0.4 0 -0.4 3.2 -1.2 
0 -0.4 -0.8 -1.2 3.4 

We use the function MQRiter to perform the first 10 
steps of the QR algorithm. The convergence to the 
diagonal form is evident, and becomes closer after 
100 iterations. 
Note the eigenvalues 1, 2, 3, 4, 5 appearing in the 
diagonal 

 

 
 
When the given matrix is not symmetric the method works the same; only the final matrix is 
triangular instead of diagonal. See the following example. 
 

If the eigenvalues all have distinct 
absolute values: 

   |λ 1| > |λ 2| > |λ 3| >...> |λ n|  

and A is symmetric, then the 
matrix A p converges to diagonal 
form, where the elements are the 
eigenvalues of A 
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Example - calculate the first 10 and 100 steps of the QR algorithm for the following  asymmetric 
matrix having the eigenvalues 1, 2, 3, 4, 5 
  

5 -3 -1 3 -7 
7 -5 -1 9 -13 
-4 4 3 -4 8 
-1 1 0 3 2 
-4 4 0 -4 9 

We use the function MQRiter for performing the first 10 
step of the QR algorithm. The convergence at the 
triangular form is evident and becomes more close after 
100 iterations. 
Note the eigenvalues 1, 2, 3, 4, 5 appearing in the diagonal 

 
 

 
 
Does the QR method always converge? There are cases - very rare indeed - where the algorithm 
fails. This happens for example when the eigenvalues are equal and opposite. Let's see this 
example 
 
Example - The following (3x3) matrix has the eigenvalues  λ1 = 9 , λ2 = −9 , λ3 = 18. Applying the 
QR method we get. 
  

5 -8 -10 
-8 11 -2 
-10 -2 2 

 
 
In this simple case QR fails (we note the two -9 off-diagonal elements). It was not able to find the 
two opposite eigenvalues = ± 9 , but it has found only the 18 one. Note that, under the same 
conditions, the Jacobi algorithm finds all the eigenvalues, exactly. 
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Real and complex eigenvalues with the QR method 
Starting from the simple QR method shown above, a more general QR algorithm was developed 
with important improvements - shifting for rapid convergence, Hessenberg reduction, etc. The 
result is a very robust and efficient general QR algorithm8 that can find complex and real 
eigenvalues of any real matrix. 

This task is performed by the function MEigenvalQR of matrix.xla  

Example: find all eigenvalues of the given symmetric matrix 

2.75 1.5 1.25 1 0.75 0.5 0.25 0 
1.5 3.25 1 0.75 0.5 0.25 0 -0.25 

1.25 1 3.75 0.5 0.25 0 -0.25 -0.5 
1 0.75 0.5 4.25 0 -0.25 -0.5 -0.75 

0.75 0.5 0.25 0 4.75 -0.5 -0.75 -1 
0.5 0.25 0 -0.25 -0.5 5.25 -1 -1.25 

0.25 0 -0.25 -0.5 -0.75 -1 5.75 -1.5 

0 -0.25 -0.5 -0.75 -1 -1.25 -1.5 6.25 
 

 
 

The function can also return complex 
eigenvalues. Let’s see this example 

This matrix has 2 real and 4 complex 
conjugate eigenvalues  

3 , 4 ,  2 ± 2j  , 1 ± 0.5j   

 
1 -0.5 0 0.5 0 0 

0.5 5 2 1 0 -2 

3.5 8.5 12 4.5 1 -7 
0 4 2 2 0 -2 
-7 -17 -16 -9 2 14 

4.5 14.5 14 8.5 1 -9 

 

 

Note how clean, easy 
and fast is the 
eigenvalue 
computation, even in 
this case 

 

 
                                                      
8 Matrix.xla uses the routines HQR and ELMHES derived from the Fortran 77 EISPACK library 

As previous shown, this matrix has 
the first 8 natural eigenvalues 
1, 2, 3, 4, … 8 
 
We use MEigenvalQR to find all 
eigenvalues in a very 
straightforward way 
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Complex eigenvalues of a complex matrix with the QR method 
The function MEigenvalQRC performs the complex implementation of the QR algorithm for a 
general complex matrix 
Example. Find the eigenvalues of the following matrix 
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This function accepts also the compact rectangular input format "a+bj" 
Note that the roots are always returned in split format 
 
How to test complex eigenvalues 
This test is conceptually very easy. We have only to compute the determinant of the characteristic 
matrix 

I A λ−  
 
For  this task the functions MCharC and MDetC are useful 
 

 
 
 
When the matrix size becomes  larger, round-off errors may mask the final result, and the 
eigenvalue check may be not so easy and straightforward.  
Just to give you an idea of the problem, let's see the following example 
 
Example. Given the following (10 x 10) real matrix, prove that  1 is an eigenvalue  
 

4569 -9128 -9136 -4556 -4484 9008 -9024 -4348 -9464 -9840 
2004 -4003 -4016 -1996 -1960 3952 -3976 -1936 -4200 -4356 

68 -136 -127 -76 -76 148 -128 -40 -124 -104 
-556 1112 1112 569 552 -1112 1104 512 1144 1172 

316 -632 -632 -316 -299 632 -624 -304 -648 -684 
-284 568 568 284 284 -547 576 268 580 648 

84 -168 -168 -84 -84 168 -143 -84 -176 -164 
144 -288 -288 -144 -144 288 -288 -115 -296 -304 
-72 144 144 72 72 -144 144 72 177 152 

-36 72 72 36 36 -72 72 36 72 109 
 
We can arrange a worksheet test like that 
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If we compute the determinant of the matrix A − λ I , we see, surprisingly, that it is much more 
than zero. What is wrong? 
The fact is that we have computed the determinant with 15 digits floating point arithmetic and the 
round-off errors have masked the final true result. If  we repeat the computation in integer mode, 
for example, with the function MDet with the parameter IMode = True, we get the correct result 
Note that, in general, we can have non-integer matrices or we can have non-integer eigenvalues, 
so we can not always use the trick of exact integer computing. 
 
Perturbed eigenvalue method. In that case we should study the behavior of the determinant 
around the given eigenvalue. We can add random little increment ε  to the eigenvalue, registering 
the corresponding absolute value of the determinant. With the aid of the above functions, this 
process becomes quite handy. For example, giving incremental steps from 1E-14 to 0.1, we can 
easily get the following table and plot   
 

| DET|

0.1

10

1000

100000

1E+07

1E+09

1E+11

1E-14 1E-12 1E-10 1E-08 1E-06 0.0001 0.01 1
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How to find polynomial roots with eigenvalues 

In a previous example we have shown how to compute eigenvalues by polynomial roots. 
Sometimes the contrary happens: we have to find polynomial roots by eigenvalue methods. 

Example - Find all the roots of the given 4th degree polynomial 

540147417 234 +−−+ xxxx  

We need to get a matrix having as its 
characteristic polynomial the given 
polynomial. The companion matrix is what 
we need. It can be easily built by hand or - 
even better - by the function MCmp 

 

 

 

 
When we have the matrix, we can apply a method to find the eigenvalues. As the matrix  is 
asymmetric, we choose the QR method. 
 

 
 
Eigenvalues are also the roots of the given polynomial.  
 
Rootfinder with QR algorithm for real and complex polynomials 
The QR method is so robust and efficient that it is implemented in the rootfinder function 
PolyRootsQR  and PolyRootsQRC of Matrix.xla  
Thanks to its efficiency, it is especially adapt for higher degree polynomial. Let’ see this example 
 

 
 

In the left 11th  degree polynomial all roots are real.  The right 10th  degree polynomial has both 
complex and real roots with double multiplicity. In the first case the general accuracy is about 1E-
9; in the second one is about 1E-6. Even in this difficult case the QR algorithm returns a sufficient 
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approximation of all the roots 

It is the main advantage of this method, that it has : good stability for all roots configurations and 
avoids the disastrous accuracy loss, characteristic of other rootfinding algorithms. 

The function PolyRootsQRC works in a similar way for complex polynomials. 
Example. find the roots of the following polynomial 

·x)·x+·x+·x·x + i·(·x+·x+·x·x+·x·xx 84862202413622 2346234567 −−−−−−  
 

 
 
 
The power method 
The power method can find the dominant real eigenvalue - the eigenvalue that has the highest 
absolute value - and its associated eigenvector of a real matrix. This ancient method, still very 
popular, has some advantages: 

• It is conceptually simple in its first proposition; 
• It is robust; 
• It works with both real symmetric and asymmetric matrices 
• It has an important didactic meaning 

With the matrix reduction method it can iteratively find all real eigenvalues and eigenvectors 
But let us begin to understand the heart of the algorithm: 
For the sake of simplicity we will assume a 3x3 matrix with 3 independent eigenvectors x1, x2, x3 
and a dominant eigenvalue  λ1,  i.e., | λ 1 | > | λ 2 | > | λ 3 |. Take an arbitrary vector  v0 - called the 
starting vector - and calculate the Rayleigh quotient (ratio) with the formulas: 

00

10
01                  

vv
vvrAvv T
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Iterating, we have: 
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Under certain conditions, the ratio converges to the dominant eigenvalue for n >> 1  and the 
associated eigenvector can be obtained by the formulas: 

   )(  lim              lim 111 xvr n
nnn

=⇒= −

∞→∞→
λλ

 
We shall see how it works in a practical case 
Example - Analyze the convergence of the power method for the following matrix  
 

-1 2 -2 

-2 -6 3 

-2 -4 1 
 

The matrix has three separate eigenvalues: 
λ1 = −3 , λ2 = −2  , λ3 = −1 



 96 

 
Let's see how to arrange the worksheet. First of all, insert the formulas as indicated to the left; 
then, select the appropriate range and drag it to the right to iterate the formulas.  
Assume the starting vector to be   v0 = (1, 0, 0) 
 

  
Insert the formulas in column E Select the range E1:E13  and drag it to right  

 
As we can observe, the convergence to the dominant eigenvalue  λ1 = −3 and its associated 
eigenvector x = (0, 1, 1) is slow but evident.  

Rescaling. We note also a first drawback of this method:; the values of vector v become larger 
step after step.  This could cause an overflow error for a higher number of steps. To avoid this, 
the algorithm is modified by inserting a vector-rescaling routine after a fixed number of steps. 

v9 v10  v9 v10 
-1 1             ⇒ -1E-04 1E-04 

-19682 59048 rescaling -1.968 5.905 
-19682 59048 dividing for 10000 -1.968 5.905 

 
The value of the rescaling factor is not very important; the magnitude is the main thing. 
Note also that the Rayleigh ratio is not affected by rescaling 
 
Finding non-dominant eigenvalues.  Once the dominant eigenvalue λ1 and its associated 
eigenvector x1 are found, we may want to continue to compute the remaining eigenvalues. 
Compute the normalized value of x and the new matrix A1 : 

 u1 = x1 / | x1 |   ⇒ A1 = A - λ1 u uT  

The matrix A1 has the eigenvalues:  0,  λ2,  λ3 . Now, the dominant eigenvalues of A1 is λ2  
Therefore we can apply the power method once more. 
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Example - reduce the matrix A of the previous example with the eigenvalue λ1 = −3 and 
eigenvector x1 = (0, 1, 1).  Repeat the power method to find the dominant eigenvector λ2    
 

 
 
The matrix A1 is the new reduced matrix. It should have all the eigenvalues of the original matrix 
A, except λ1. Let's see. Repeating the power method we will find its dominant eigenvalues. 
Choosing (0, 1, 0) for starting vector, we have something like this: 
 

 
 

As we can observe, the convergence to dominant eigenvalue λ2 = −2 and its associated 
eigenvector x = (-2, 0.25, -0.75) is slow but evident.  After 25 steps the error is less than about 
1E-6 
 
The process power method + matrix reduction can be iterated for all eigenvalues. We have to 
realize that, since the computed eigenvalues are approximations, round-off errors will be 
introduced in the next iteration steps; the last eigenvalue could be affected by a considerable 
round-off error. In general, the matrix reduction (or matrix deflation) method becomes more 
inaccurate as we calculate more eigenvalues, because round-off error is introduced in each result 
and accumulates as the process continues.  
 
Does the power method always converge?  Although it has worked well in the above 
examples, we must say that there are cases in which the method may fail. There are basically 
three cases: 

• The matrix A is not diagonalizable; that means that it does not have n linearly 
independent eigenvectors. Simple, of course, but it is not easy to tell by just looking at A 
how many eigenvectors there are. 

• The matrix A has complex eigenvalues 

• The matrix A does not have a very dominant eigenvalue. In that case the convergence is 
so slow that the max iteration limit may have to be extended 
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Eigensystems with the power method 
In Matrix.xla the power method is implemented by two main functions: 

• MEigenvecPow returns all eigenvectors 
• MatEigenvalues_pow returns all eigenvalues 

 
Just simple and straightforward. Let's see 
Example - solve the eigenproblem for the following symmetric matrix 
 

 
 
The function MEigenvecPow has a second parameter: Norm. If TRUE, the function returns 
normalized eigenvectors (default FALSE). 
 

 
 
Because of the symmetry, the eigenvector matrix U is also orthogonal. To prove it, simple check 
the relation I = U UT as shown it the above worksheet. 
 
Example: solve the eigenproblem for the following asymmetric 6x6 matrix.  
 

 
 
This matrix has eigenvalues −1, 3, −6, 9, 12, −15 
The power method works also for asymmetric matrices. In this example we have left the round-off 
errors to give an idea of the general accuracy. Eigenvalue errors are shown in the last column. 
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Complex Eigensystems 

In Matrix.xla the eigen problem of a general complex matrix is solved with the aid of the following 
main functions: 

• MatEigenvalues_QRC returns all the eigenvalues by the complex QR algorithm 
• MEigenvecInvC returns all distinct eigenvectors by inverse iteration 
• MEigenvecC returns the eigenvectors of associated eigenvalues 

 
Example 1. Find eigenvalues and eigenvectors of the following complex matrix 

2+4j -1+3j 3+j 
14-2j 11-3j -7+j 
-6-2j -3-j 11+7j 

 

 
 
In this case the eigenvalues are all distinct, therefore we can quickly obtain the associated 
eigenvectors by the inverse iteration algorithm 
 
Note that the eigenvectors returned by the function MEigenvecInvC have always unit 
absolute magnitude (norm = 2). For changing the normalization type we can use the function  
MNormalizeC.  
 
When the eigenvalues are not all distinct we cannot use the inverse iteration but instead 
should use the singular system method performed by the MEigenvecC 
Example. The following matrix has only 2 distinct eigenvalues: 2, and j 
 

 
 
Note that the eigenvalue λ = j with multiplicity = 2 has two associated eigenvectors returned 
in a (3 x 4) array. The eigenvalue λ = 2 has one associated eigenvector returned in the last 
(3 x 2) array 
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How to validate an eigen system 

Example - Check the real eigen system of the previous example 
In order to test an eigenvector matrix U of a given matrix A, we can use the definition 

A U = (λ1 u1, λ2 u2,...  λ6 u6 ) 

But, before testing, we show how to arrange the eigenvector matrix in order to avoid non-integers. 
This is not essential, but it helps the visual inspection. 

First of all, we begin with eliminating round off error by using the function MMopUp  

 
Now, for each column, we choose the pivot, that is, the absolute minimum value, except the 
zeros. Multipling each pivot by the corresponding eigenvector we obtain a new integer vector 
that it is still an eigenvector 
 

 
 

 

The matrix on the left is 
obtained by multiplying the 
original matrix  by its 
eigenvector matrix:  A U. 
 
The matrix on the right is 
obtained by multiplying each 
eigenvector ui for its 
corresponding eigenvalue. 
 
Because the two matrices are 
identical, the eigensystem  
(eigenvectors + eigenvalues) 
is correct. 
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How to generate a random symmetric matrix with given eigenvalues 

Many times, for testing algorithms, we need a symmetric matrix with known eigenvalues 
For building this test matrix, the following simple method can be useful 

• First, we generate a random (n x 1) vector, v 
• Then we generate the Householder matrix H with the vector v 
• We create a diagonal ( n x n) matrix D with the eigenvalues that we want to obtain. 
• Finally we make a Similarity Transformation of matrix D by the matrix W. 

 
The result is a symmetric matrix with the given eigenvalues. 
 
Example: Suppose we want a (3 x 3) random symmetric matrix with eigenvalues = (1, 2, 4) 
Choose a random vector  v, like for example: 
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Build the associated Householder matrix H 
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Set the diagonal matrix D 
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Perform the similarity transformation of D by H 
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Note that, in this case, the inverse of H is the same as H. 
The resulting matrix A has the wanted eigenvalues = (1,  2,  4) 
If we want to avoid fractional numbers we can multiply the matrix A by 9 and get a new 
symmetric matrix B 
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The eigenvalues of B are now multiples of 9; thus 9, 18, 36 
 
As we can see, this method is general, and can be very useful in many cases: for testing 
algorithms, formulas, subroutines, etc. 
 
In the add-in Matrix.xla, there are functions for generating Householder matrices and 
performing the Similarity Transform. 
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All these actions are performed by the function  MRndEigSym  
 
 
Eigenvalues of a tridiagonal matrix 
Tridiagonal matrices are very common in practical numerical computation. These matrices 
can be handled with all methods shown before, but there are dedicated algorithms, more 
efficient and faster, to solve those specialized eigenvalues problem. We have to consider 
that many times a problem involving tridiagonal matrices has a quite large dimension. Also, 
the storage of a tridiagonal matrix should be considered. A general full 30 x 30 matrix  
requires 900 cells, but for a tridiagonal one with the same dimension we need to store only 
90 cells, saving more than 90%. Clearly, paying particular attention to storage is quite 
important.  
Matrix.xla contains the following specialized functions applicable to tridiagonal matrices: 

• MEigenvalQL finds all real eigenvalues with the QL algorithm 
• MEigenvecT computes the eigenvector of a real eigenvalue  
• MatEigenvalTTpz finds all eigenvalues for a toeplitz tridiagonal matrix 

 
All these function accept the matrix either in standard (n x n) form or in compact (n x 3) form  
 

 
 

For tridiagonal matrices there are several useful lemmas that help us to find the eigenvalues 

One rule says that: 

If all “perpendicular couples” of elements have the same 
sign, than the matrix has only real eigenvalues 
(The condition is sufficient.) 
 
So we can apply the fast QL algorithm to calculate all 15 
eigenvalues of the given matrix  
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In the following example we have computed all eigenvalues and the first 4 eigenvectors with 
a very good approximation (about 1E-14) 
 

 
 
Note that the eigenvectors returned by MEigenvecT are not normalized. Use for this task the 
MNormalize function. 
 
 
Eigenvalues of a tridiagonal Toeplitz matrix ) 
In numeric calculus it is common to encounter symmetric, tridiagonal, toeplitz matrices like 
the following. For this kind, there is a nice close formula giving all eigenvalues for matrices of 
any dimension. 
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If the symmetric matrix has n x n dimension, eigenvalues 
are: 


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where k = 1, 2… n   
 

 
We make the following observations: 

• All eigenvalues are real and distinct when the matrix is symmetric 
• All eigenvalues are symmetric around the point "a" 
• For n odd there exists the trivial eigenvalue  λ = a   
• All roots lie inside the interval   a−2b < λκ < a+2b    

 
Also the eigenvector matrix can be written in a compact closed form. 
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If the symmetric matrix has the n x n dimension n x n, the 
elements of the eigenvectors matrix are: 
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where   i = 1, 2… n  , k = 1, 2… n   
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The unsymmetrical tridiagonal toeplitz case can be led back to the above one. 
We distingue two cases: 
1) The sub-diagonals have the same sign. In that case we can demonstrate that all roots are 
real and distinct. 
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If the matrix has the dimension n x n, and bc > 0 , the 
eigenvalues are: 
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where k = 1, 2… n   
 

 
All roots lie within  the interval:  

bcabca k 22 +<<− λ  

2) The sub-diagonals have different sign. In that case we can demonstrate that all roots are 
complex conjugate for n even; for n odd there exists only one real root, λ = a . 
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If the matrix has the dimension n x n, and bc < 0 , the 
eigenvalues are complex: 
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where k = 1, 2… n   
 

 
All roots lie inside the segment:  

are k =)(λ        ( ) bcimbc k −<<−− 22 λ  
 
Eigenvectors can be computed by the following iterative algorithm 
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where : k = 1, 2… n  , i = 1, 2… n   
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Example Find all eigenvalues of the following tridiagonal toeplitz 8 x 8 matrix 
 

10 1 0 0 0 0 0 0 
4 10 1 0 0 0 0 0 
0 4 10 1 0 0 0 0 
0 0 4 10 1 0 0 0 
0 0 0 4 10 1 0 0 
0 0 0 0 4 10 1 0 

0 0 0 0 0 4 10 1 
0 0 0 0 0 0 4 10 

 



 105 

We observe that the values of the sub-diagonals in the lower and upper triangles have the 
same signs, so that all eigenvalues are real and distinct. 
They can be obtained by the following closed formula: 
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for k = 1, 2, …8     where a = 10, b = 1, c = 4, n = 8 
 
giving the following 8 eigenvalues 
 

λ1 13.7587704831436 
λ2 13.0641777724759 
λ3 12 
λ4 10.6945927106677 
λ5 9.30540728933228 
λ6 8 
λ7 6.93582222752409 
λ8 6.24122951685637 

 
All eigenvalues are contained into within the interval (a – 4, a + 4) = (6, 14) 
 
Example Find all eigenvalues of the following tridiagonal toeplitz 7 x 7 matrix 
 

10 2 0 0 0 0 0 
-1 10 2 0 0 0 0 
0 -1 10 2 0 0 0 

0 0 -1 10 2 0 0 
0 0 0 -1 10 2 0 

0 0 0 0 -1 10 2 
0 0 0 0 0 -1 10 

 
We observe that the sub-diagonal values have different signs, and that the dimension n is 
odd, so that all eigenvalues are complex conjugate except one real, trivial root at  λ = 10. 
The eigenvalues can be obtained from the following closed formula: 
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for k = 1, 2, …7    where a = 10, b = 2, c = −1, n = 7 
 
giving the following 7 eigenvalues. 
 

 real im 
λ1 10 2.6131259297528 
λ2 10 2 
λ3 10 1.0823922002924 
λ4 10 0 
λ5 10 -1.0823922002924 
λ6 10 -2 
λ7 10 -2.6131259297528 

 
 
Example Find all eigenvalues of the following tridiagonal toeplitz 8 x 8 matrix 
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1 1 0 0 0 0 0 0 
-1 1 1 0 0 0 0 0 
0 -1 1 1 0 0 0 0 
0 0 -1 1 1 0 0 0 

0 0 0 -1 1 1 0 0 
0 0 0 0 -1 1 1 0 
0 0 0 0 0 -1 1 1 
0 0 0 0 0 0 -1 1 

 
We observe that the sub-diagonal values have different signs, and the dimension n is even, 
so that no real eigenvalues exist, and all eigenvalues are complex conjugate. 
They can be obtained by the following closed formula: 
 

kk ia
n
kbcia δ
π

λ +=







+
⋅−⋅+=

1
cos2

 
 
for k = 1, 2, … 8    where a = 1, b = 1, c = −1, n = 8 
 
giving the following 8 eigenvalues.  
 

 real im 
λ1 1 1.8793852415718 
λ2 1 1.5320888862380 
λ3 1 1 
λ4 1 0.3472963553339 
λ5 1 -0.3472963553339 
λ6 1 -1 
λ7 1 -1.5320888862380 
λ8 1 -1.8793852415718 

 
 
Example Find all eigenvalues of the following tridiagonal toeplitz 8 x 8 matrix 
 

-2 1 0 0 0 0 0 0 
1 -2 1 0 0 0 0 0 
0 1 -2 1 0 0 0 0 
0 0 1 -2 1 0 0 0 

0 0 0 1 -2 1 0 0 
0 0 0 0 1 -2 1 0 
0 0 0 0 0 1 -2 1 
0 0 0 0 0 0 1 -2 

 
We observe that the matrix is symmetric so all eigenvalues are real and distinct. 
They can be obtained by the following closed formula: 









+
⋅+=

1
cos2

n
kbak
π

λ
 

for k = 1, 2, …8     where a = −2, b = 1, c = 1, n = 8 
 
giving the following 8 eigenvalues 
 

λ1 -0.1206147584282 
λ2 -0.4679111137620 
λ3 -1 
λ4 -1.6527036446661 
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λ5 -2.34729635533386 
λ6 -3 
λ7 -3.53208888623796 
λ8 -3.87938524157182 

 
All eigenvalues are contained in the interval (a – 2, a + 2) = (–4, 0) 
We observe that they are all negative 
The eigenvector matrix can be obtained in a very fast way using the formula 
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ααα

ααα
ααα

U

 
 
That gives the following approximate eigenvector matrix 
 

0.34202 0.64279 0.86603 0.98481 0.98481 0.86603 0.64279 0.34202 

0.64279 0.98481 0.86603 0.34202 -0.34202 -0.86603 -0.98481 -0.64279 

0.86603 0.86603 0 -0.86603 -0.86603 0 0.86603 0.86603 

0.98481 0.34202 -0.86603 -0.64279 0.64279 0.86603 -0.34202 -0.98481 

0.98481 -0.34202 -0.86603 0.64279 0.64279 -0.86603 -0.34202 0.98481 

0.86603 -0.86603 0 0.86603 -0.86603 0 0.86603 -0.86603 

0.64279 -0.98481 0.86603 -0.34202 -0.34202 0.86603 -0.98481 0.64279 

0.34202 -0.64279 0.86603 -0.98481 0.98481 -0.86603 0.64279 -0.34202 
 
Note that the column-vectors are orthogonal. 
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Generalized eigen problem 
The matrix equation 

A x = λ B x       (1) 

where A and B are both symmetric matrices, and B is positive definite, is called a generalized 
eigen problem. 

 
Equivalent  asymmetric problem 
This problem is equivalent to: 

(B-1A) x = λ x     ⇒   C x = λ  x      (2) 

In generally C is not symmetric even when A and B are. 
 
Example: transform a generalized eigen-problem into a standard eigen problem, where the 
matrices  A and B are  

 A    B  
7 0 2  4 2 4 
0 5 2  2 17 10 
2 2 6  4 10 33 

 

In the following worksheet we have calculated the matrix   C = B-1 A 
 

 
 
As we can see, the matrix C is not symmetric even if A and B are both symmetric. In order to 
calculate the eigenvalues we have, before, extracted the characteristic polynomial with the 
function MathCharPoly; then approximated its roots with the function PolyRoots. The approximate 
eigenvalues are: 

λ1 = 0.1717 λ2 = 0.3033 λ3 = 1.9444 

 
To solve the eigenvectors we can now follow the step-by-step method shown in the previous 
examples. But, we can also transform the given generalized problem into a symmetric one. Let's 
see how. 
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Equivalent symmetric problem 
Given the following matrix equation 

A x = λ B x       (1) 

where A and B are both symmetric matrices and B is positive definite.  
In the previous paragraph we have seen how to transform this problem into a standard 
eigenproblem by setting  C = B-1A.  But C is not symmetric. Many algorithms only work well for 
symmetric matrices. By contrast, there is no equally satisfactory algorithm for the asymmetric 
case. So, it is better to convert the problem into a symmetrical matrix, by the Cholesky's 
decomposition 

B = L LT        (2) 

Where L is a triangular matrix.  
Substituting (2) into (1) and multiplying the equation by L-1 , we get:  

L-1 A x = λ (L-1L) LT x          ⇒     L-1 A x = λ LT x    

And, because   I = (LT)-1 LT   = (L-1)T LT  , we can write: 

L-1 A (L-1)T LT x = λ LT x          ⇒        L-1 A x = λ LT x    

After setting the auxiliary matrix: W equal to  L-1 , and the auxiliary vector d  to  LT x,  we have 

W A WT d = λ d          ⇒     D d = λ d     (3) 

Equation (3) is the new eigen problem where  D = W A WT  is symmetric 
Eigenvalues of problem (3) are equivalent to (1) while the original eigenvectors x can be obtained 
from the eigenvectors d by the following formula: 

d = LT x     ⇒   x = ( LT)-1 d  ⇒ x = ( L-1)T d   ⇒     x = WT d 

That is, eigenvectors of (1) can be obtained by multiplying eigenvectors of (3) by the auxiliary 
matrix W. 
 
Matrix.xla contains everything you need to solve generalized eigen problems: Cholesky 
decomposition can be done by the function MCholesky; eigenvectors and eigenvalues of 
symmetric matrices can be calculated with Jacoby iterative rotations performed by the two 
functions MEigenvalJacobi and MEigenvecJacobi.  
Thus, let's see how to arrange a worksheet for solving a generalized eigen-problem, assuming 
the matrices A and B of the previous example. The following worksheet contains all formulas 
shown before. Formulas used for each matrix are written in blue, under the matrix itself 
 

 
 

 
. 
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Diagonal matrix 
The case in which the matrix B is diagonal is particularly simple because L is diagonal too and 
can be computed by a simple square root. Also the L-1 is quite simple: just take the inverse of 
each diagonal element. 
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Example - How to get mode shapes and frequencies for a structure with multiple 
degrees of freedom 9 
 

Example 1 - Our problem is an example of the "generalized" eigenproblem: 
 

k φ = ω2 m φ       (1) 
 
where k and m are both symmetric positive definite matrices. In this specific case they were: 
 

Stiffness matrix k:  Mass matrix m: 
600 -600 0  1 0 0 
-600 1800 -1200  0 1.5 0 

0 -1200 3000  0 0 2 
 

This problem is equivalent to a "standard" eigenproblem: 

(m-1 ⋅k) φ = ω2 φ      ⇒     C φ = ω2 φ       

The problem is that C is not symmetric. One can work around this problem by converting the 
problem to a symmetric one using the Cholesky decomposition 

m = L LT    

where L is a triangular matrix. In a case like ours, where m is diagonal, the L matrix is also 
diagonal, with each term of L being the square root of the corresponding term in m. Define a 
new matrix W as: 

W = L-1   

Multiplying equation (1) by W, one gets: 
 

W k WT (LT φ) = ω2 (LT φ) 
 
or, more concisely, 
 
 D v = ω2 v      (2) 
 
where  
 
 D = W k WT       (3) 
 
The eigenvalues for equation (2) are identical to those of equation (1), and the eigenvalues 
of equation (1) can be obtained easily from the eigenvalues of equation (2): 
 
 φ = ( LT)-1 v = W v   (4) 
 
 
So here is what you do:  
 
Starting with k and m, make L ; then W ; and then D.  
                                                      
9 This example comes from a true problem proposed to me by Douglas C. Stahl of the Architectural Engineering 
and Building Construction of the Milwaukee School of Engineering. Because it seems to me very interesting also 
for other people, I decide to publish it in this tutorial, in the version arranged by Doug and me. 
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Calculate the eigenvalues and eigenvectors for D, with the functions matEigenvalue_jacobi 
and  matEigenvector_jacobi contained in the add-in MATRIX.  Allow for a number of 
iterations larger than 40. These eigenvalues are the ones you want. These are the correct 
squared frequencies for our problem. 
 

 
 
The eigenvectors must be converted using equation 4. They are the correct mode shapes 
for our problem. The eigenvectors are already orthonormalized. 
 

 
 
 
 

Example 2 - Seven inertia torsion system 

This example10 shows how to solve a larger torsion system with good accuracy. Assume to have 
the following torsion system equation 
 

 K φ = ω2 M φ       (1) 
 
where the matrices K and M are  
 

 115.2 0 0 0 0 0 0 
 0 15.8 0 0 0 0 0 
 0 0 1.35 0 0 0 0 

M = 0 0 0 1.35 0 0 0 
 0 0 0 0 1.35 0 0 
 0 0 0 0 0 1.35 0 
 0 0 0 0 0 0 9.21 
        

                                                      
10 Thanks to Anthony Garcia 
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 9400000 -9400000 0 0 0 0 0 
 -9400000 24400000 -15000000 0 0 0 0 
 0 -15000000 49000000 -34000000 0 0 0 

K = 0 0 -34000000 68000000 -34000000 0 0 
 0 0 0 -34000000 68000000 -34000000 0 
 0 0 0 0 -34000000 106000000 -72000000 
 0 0 0 0 0 -72000000 72000000 

 
Tip. Scaling the given matrix for a suitable factor may increase the computing accuracy by 
several orders. In this case we divide the K matrix for a factor 106. The eigenvalues are 
proportionally scaled by the same factor. In fact, multiplying both sides of equation (1) by the 
same scaling factor, we have: 
 

 10-6 K φ = 10-6 ω2 M φ        
 
  K' φ = λ M φ        
 
where    K' = 10-6 K   and    ω2 =  106 λ                              
 

 9.4 -9.4 0 0 0 0 0 
 -9.4 24.4 -15 0 0 0 0 
 0 -15 49 -34 0 0 0 

K' = 0 0 -34 68 -34 0 0 
 0 0 0 -34 68 -34 0 
 0 0 0 0 -34 106 -72 
 0 0 0 0 0 -72 72 

 
The Cholesky factorization of M can be computed easily because it is a diagonal matrix  

L  = [ (m11)1/2 , (m22)1/2 , .... (m77)1/2 ] 
 

 
 
The auxiliary matrix is the inverse of the L matrix; but also in this case, it is very easy to 
compute the inverse, as 

W = L-1  = [ 1/L11 , 1/L22 , .... 1/L22
 ] 

 

 
 
Now we compute the matrix [D]=[W][K'][W]T   by the function MProd  
Note that WT = W because W is diagonal. 
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Applying the Jacoby algorithm or, even better, the QL algorithm, to the symmetric tridiagonal 
matrix [D], we get all its real eigenvalues. Multiplying them by the factor 106, we finally have 
the eigenvalues of the given torsion system 
 

 
 

 

The eigenvectors of D may be 
computed by the Jacobi algorithm 
or by the inverse iteration 
Here we have used the function 
MEigenvecJacobi 
 

 

 

Multiplying the Vd matrix by the 
auxiliary W matrix we find the 
eigenvectors of the given system 
 

 

 

that can be normalized as we like 
by the function MNormalize 
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