Matrices and Linear Algebra
Index

About Matrix.xla .. 6
 Matrix.xla ... 6

Array functions .. 7
 What is an array function .. 7
 How to insert an array function ... 7

How to get help on line ... 11

MATRIX installation .. 12
 How to install .. 12
 Update to a new version ... 13
 How to uninstall ... 13

About complex matrix formats ... 14

Functions Reference .. 16
 Function MAbs(V) .. 17
 Function MAbsC(V, [Cformat]) .. 17
 Function MAdd(A, B) ... 17
 Function MAddC(A, B, [Cformat]) ... 18
 Function MBAB(A, B) .. 18
 Function MDet(Mat, Mat, [IMode], [Tiny]) .. 18
 Function MDetC (Mat, [Cformat]) .. 19
 Function MDet3(Mat3) .. 20
 Function MDetPar(Mat) ... 20
 Function MInv(Mat, [IMode], [Tiny]) .. 21
 Function MPseudoInv (A) .. 21
 Function MPow(A, n) ... 22
 Function MPowC(A, n, [Cformat]) ... 22
 Function MExp(A, [Algo], [n]) ... 22
 Function MExpErr(A, n) ... 22
 Function MProd(A, B, ...) ... 23
 Function MMultS(Mat, k) ... 23
 Function MMultSC(Mat, scalar, [Cformat]) .. 24
 Function MMult3(Mat3, Mat) ... 24
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function MMultTpz(tpz, v)</td>
<td>25</td>
</tr>
<tr>
<td>Function MSub(A1, A2)</td>
<td>25</td>
</tr>
<tr>
<td>Function MSubC(A1, A2, [Cformat])</td>
<td>26</td>
</tr>
<tr>
<td>Function MTrace(Mat)</td>
<td>26</td>
</tr>
<tr>
<td>Function MDiag(Diag)</td>
<td>26</td>
</tr>
<tr>
<td>Function MDiagExtr(Mat, [Diag])</td>
<td>26</td>
</tr>
<tr>
<td>Function MT(Mat)</td>
<td>27</td>
</tr>
<tr>
<td>Function MTC(Mat, [Cformat])</td>
<td>27</td>
</tr>
<tr>
<td>Function MTH(Mat, [Cformat])</td>
<td>27</td>
</tr>
<tr>
<td>Function MRank(A)</td>
<td>28</td>
</tr>
<tr>
<td>Function MIdem(n)</td>
<td>28</td>
</tr>
<tr>
<td>Function ProdScal(v1, v2)</td>
<td>28</td>
</tr>
<tr>
<td>Function ProdVec(v1, v2)</td>
<td>29</td>
</tr>
<tr>
<td>Function VectAngle(v1, v2)</td>
<td>29</td>
</tr>
<tr>
<td>Function MEigenvalJacobi(Mat, Optional MaxLoops)</td>
<td>30</td>
</tr>
<tr>
<td>Eigenvalues problem with Jacobi, step by step</td>
<td>31</td>
</tr>
<tr>
<td>Function MRotJacobi(Mat)</td>
<td>32</td>
</tr>
<tr>
<td>Function MBlock(Mat)</td>
<td>32</td>
</tr>
<tr>
<td>Function MBlockPerm(Mat)</td>
<td>33</td>
</tr>
<tr>
<td>Function MEigenvalQR(Mat)</td>
<td>34</td>
</tr>
<tr>
<td>Function MEigenvalQRC(Mat, [Cformat])</td>
<td>35</td>
</tr>
<tr>
<td>Function MEigenvec(A, Eigenvalues, [MaxErr])</td>
<td>35</td>
</tr>
<tr>
<td>Function MEigenvecC(A, Eigenvalue, [MaxErr])</td>
<td>36</td>
</tr>
<tr>
<td>Function MEigenvecJacobi(Mat, Optional MaxLoops)</td>
<td>37</td>
</tr>
<tr>
<td>Function MEigenSortJacobi(EigvalM, EigvectM, [num])</td>
<td>37</td>
</tr>
<tr>
<td>Function MEigenvalQL(Mat3, [IterMax])</td>
<td>37</td>
</tr>
<tr>
<td>Function MEigenvalTTpz(n, a, b, c)</td>
<td>38</td>
</tr>
<tr>
<td>Function MEigenvecT(Mat3, Eigenvalues, [MaxErr])</td>
<td>39</td>
</tr>
<tr>
<td>Function MChar(A, x)</td>
<td>40</td>
</tr>
<tr>
<td>Function MCharC(A, z, [Cformat])</td>
<td>40</td>
</tr>
<tr>
<td>Function MCharPoly(Mat)</td>
<td>41</td>
</tr>
<tr>
<td>Function MCharPolyC(Mat, [CFormat])</td>
<td>41</td>
</tr>
<tr>
<td>Function PolyRoots(poly)</td>
<td>42</td>
</tr>
<tr>
<td>Function MEigenvalMax(Mat, [IterMax])</td>
<td>42</td>
</tr>
<tr>
<td>A global localization method for real eigenvalues</td>
<td>42</td>
</tr>
<tr>
<td>Function MEigenvecMax(Mat, [Norm], [IterMax])</td>
<td>43</td>
</tr>
<tr>
<td>Function MEigenvalPow(Mat, [IterMax])</td>
<td>44</td>
</tr>
<tr>
<td>Function MEigenvecPow(Mat, [Norm], [IterMax])</td>
<td>44</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Function MEigenvecInv(Mat, Eigenvalue)</td>
<td>44</td>
</tr>
<tr>
<td>Function MEigenvecInvC(Mat, Eigenvalue, [CFormat])</td>
<td>45</td>
</tr>
<tr>
<td>About perturbed eigenvalues</td>
<td>45</td>
</tr>
<tr>
<td>Matrix Generator</td>
<td>47</td>
</tr>
<tr>
<td>Function GJstep(Mat, [Typ], [IntValue], [tiny])</td>
<td>50</td>
</tr>
<tr>
<td>Function SysLin(A, b, [IMode], [Tiny])</td>
<td>52</td>
</tr>
<tr>
<td>Function SysLin3(Mat3, y)</td>
<td>53</td>
</tr>
<tr>
<td>Function SysLinIterG(A, b, x0, [Nmax], [w])</td>
<td>53</td>
</tr>
<tr>
<td>Function SysLinT(Mat, b, [typ], [tiny])</td>
<td>54</td>
</tr>
<tr>
<td>Function SysLinIterJ(A, b, x0, [Nmax])</td>
<td>55</td>
</tr>
<tr>
<td>Function SysLinSing(A, b, [MaxErr])</td>
<td>55</td>
</tr>
<tr>
<td>Function SysLinTpz(A, b)</td>
<td>57</td>
</tr>
<tr>
<td>Function TraLin(A, x, [B])</td>
<td>58</td>
</tr>
<tr>
<td>Matrix Geometric action</td>
<td>58</td>
</tr>
<tr>
<td>Function MOrthoGS(A)</td>
<td>59</td>
</tr>
<tr>
<td>Gram-Schmidt Orthogonalization</td>
<td>60</td>
</tr>
<tr>
<td>Function MCholesky(A)</td>
<td>61</td>
</tr>
<tr>
<td>Function MLU(A, optional Pivot)</td>
<td>61</td>
</tr>
<tr>
<td>Function MQR(Mat)</td>
<td>63</td>
</tr>
<tr>
<td>Function MQRiter(Mat, [MaxLoops])</td>
<td>64</td>
</tr>
<tr>
<td>Function MQH(A, b)</td>
<td>65</td>
</tr>
<tr>
<td>Function MExtract(A, i_pivot, j_pivot)</td>
<td>65</td>
</tr>
<tr>
<td>Function PathFloyd(G)</td>
<td>66</td>
</tr>
<tr>
<td>Function PathMin(G)</td>
<td>66</td>
</tr>
<tr>
<td>Graphs theory recalls</td>
<td>66</td>
</tr>
<tr>
<td>Shortest path</td>
<td>69</td>
</tr>
<tr>
<td>Singular Value Decomposition</td>
<td>71</td>
</tr>
<tr>
<td>Condition Number</td>
<td>72</td>
</tr>
<tr>
<td>Function MMopUp(M, [ErrMin])</td>
<td>74</td>
</tr>
<tr>
<td>Function MCovar(A)</td>
<td>74</td>
</tr>
<tr>
<td>Function MCorr(A)</td>
<td>74</td>
</tr>
<tr>
<td>Function RegrL(Y, X, [Intcpt])</td>
<td>75</td>
</tr>
<tr>
<td>Function RegrP(Degree, Y, X, [Intcpt])</td>
<td>77</td>
</tr>
<tr>
<td>Function RegrCir(X, Y)</td>
<td>78</td>
</tr>
<tr>
<td>Function MCmp(Coeff)</td>
<td>79</td>
</tr>
<tr>
<td>Function MCplx([Ar], [Ai], [Cformat])</td>
<td>79</td>
</tr>
<tr>
<td>Function PolyRootsQR(poly)</td>
<td>80</td>
</tr>
<tr>
<td>Function PolyRootsQRC(Coefficients)</td>
<td>80</td>
</tr>
<tr>
<td>Function MRot(n, theta, p, q)</td>
<td>81</td>
</tr>
<tr>
<td>Function VarimaxRot(FL, [Normal], [MaxErr], [MaxIter])</td>
<td>82</td>
</tr>
</tbody>
</table>
Function VarimaxIndex(Mat, [Normal]) ... 83
Function MNormalize(Mat, [NormType], [Tiny]) .. 83
Function MNormalizeC(Mat, [NormType], [Cformat], [Tiny]) 83
Function MNorm(v, [NORM]) .. 84
Function MMultC(M1, M2, [Cformat]) .. 85
Function MinvC(A, [Cformat]) .. 86
Function ProdScalC(v1, v2,) ... 86
Function SysLinC(A, b, [Cformat]) ... 87
Function Simplex(Funct, Constraint, [Opt]) ... 88
Function MPerm(Permutations) .. 90
Function MHessenberg(Mat) ... 90
Function MAdm(Branch) .. 91

Linear Electric Network .. 91
Thermal Network .. 92

Function MLeontInv(ExTab, Tot) .. 94

Input Output Analysis .. 94

Matrix Tool ... 95

The Matrix toolbar ... 95
Selector tool ... 95
Matrix Generator .. 98

Macro stuff .. 102
Matrix operations .. 102
Sparse Matrix operations ... 103
Complex Matrix operations ... 104
Macro Gauss-step-by-step ... 105
Macro Shortest-Path ... 106
Macro Draw Graph ... 106
Macro Block reduction ... 107

References ... 108

Credits ... 109
About Matrix.xla

Matrix.xla

Matrix.xla is an Excel add-in that contains useful functions for matrices and linear Algebra:

- Generation of a random matrix with given eigenvalues or of given Rank or Determinant. Generation of useful matrices: Hilbert's, Householder's, Tartaglia's, Vandermonde's.

This tutorial is divided into two parts. The first part is the reference manual of Matrix.xla. The second part explains with practical examples how to solve several basic problems in matrix theory and linear algebra.

Why Matrix.xla has the same functions as Excel?

Yes, The same functions, such as determinant, inversion, multiplication, and transpose, are in both Excel and Matrix.xla. They perform the same tasks. And in many case they return the same values. But they are not exchangeable in every situation.

The main difference lies in the algorithms used; in other words, in the way in which the functions are implemented. In Matrix.xla, the algorithms are open, and people can verify how each function works. The function that performs matrix inversion in Excel and in Matrix.xla, for example, can give different results, especially in high-accuracy calculations. Their main difference is that the Matrix.xla Inversion function uses the popular Gauss-Jordan algorithm - explained in many books and web pages - while the Excel built-in functions are written in inaccessible, proprietary code. In a few other cases we have simply created new functions to avoid the original, verbose names (MTRANSPOSE(), or MATR.TRASPOSTA () in Italian version, are substituted by the more handy MT()).
Array functions

What is an array function

A function that returns multiple values is called an "array function". Matrix.xla contains lots of these functions. All functions that return a matrix are array functions. Inversion, multiplication, sum, vector product, etc. are examples of array functions. On the contrary, Norm and Scalar product are scalar functions because they return only one value.

In a worksheet, an array function returns always a rectangular (n x m) range of cells. To insert this function, select before the (n x m) range where you want to insert the function, then, you must use the keys sequence CTRL+SHIFT+ENTER:. The sequence must be used just after inserting the function parameters. Keep down both CTRL and SHIFT keys (the order of depressing them doesn't matter) and then press ENTER.

If you miss this sequence or use only the ENTER key, the function only returns the first cell of the array

How to insert an array function

The following example explains, step-by-step, how it works

System solution

Assume that you have to solve a 3x3 linear system. \(\mathbf{A} \mathbf{x} = \mathbf{b} \)

\[
\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}
\]

The function **SysLin** returns the solution \(\mathbf{x} \); but to see all the three values you must preselect the area where you want to insert these values.

Now insert the function by menu, or by clicking on the icon

Select the area where you want to paste the result
Select A5:C7 as the area of matrix \(A \) "A5:C7", and E5:E7 as the constant vector \(b \) "E5:E7"

Now - attention! - give the "magic" keys sequence CTRL+SHIFT+ENTER
That is:
- Press and keep down the CTRL and SHIFT keys
- Press the ENTER key

All values will fill all the cells that you have selected.

The solution appears in the selected area
Note that Excel shows the function within two curvy brackets \(\{ \} \). These symbols indicate that the function returns an array. You cannot insert them by yourself.

The output of an array function acts as a single unit. No part of the output array, can be modified or deleted. To modify or delete the output of an array function, you must select all the array cells.
Adding two matrices

The CTRL+SHIFT+ENTER rule is valid for any function or operation when the result is a matrix or a vector.

Example - Adding two matrices

\[
\begin{bmatrix}
1 & -2 \\
2 & 1
\end{bmatrix} + \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

We can use the MAdd() function of Matrix.xla but we can also directly use the addition operator "+".

In order to perform this addition, follow these steps.

1) Enter the matrices into the spreadsheet.
2) Select empty cells so that a 2 × 2 range is highlighted.
3) Write a formula that adds the two ranges. Either write =B4:C5+E4:F5 directly or write "=",
then select the first matrix; then write "+" and select the second matrix. Do not press Enter. At this point the spreadsheet should look something like the figure below. Note that the entire range B8:C9 is selected.

4) Press and hold down CTRL + SHIFT
5) Press ENTER.

If this procedure is followed correctly, the spreadsheet should now look something like this

This trick can work also for matrix subtraction and for the scalar-matrix multiplication, but not for the matrix-matrix multiplication.

Let's see another useful examples
Linear combination of two vectors

The following example shows how to calculate the linear combination of two vectors

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>v1</td>
<td>v2</td>
<td>v3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>34</td>
<td>-2</td>
<td>22</td>
<td>1</td>
<td>-45</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>-1</td>
<td></td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar product of two vectors

The following example shows how to calculate the scalar product of two vectors

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>v1</td>
<td>v2</td>
<td>v1*v2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(=SUM(C3:E5)*E3:E5))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to get help on line

Matrix.xla provides help on line that can be recalled in the same way as any other Excel function. When you have selected the function that you need in the function wizard, press the F1 key.

Note that all the functions of this add-in appear under the category "Matrix" in the Excel function wizard.

Of course you can call the help on-line also by double clicking on the Matrix.hlp file or from the starting pop-up window or from the "Matrix Tool" menu bar.
MATRIX installation

MATRIX add-in for Excel is a zip file composed of the following files:

- MATRIX.XLA Excel add-in file
- MATRIX.HLP Help file
- MATRIX.CSV Function information (only for XNUMBERS add-in)
- FUNCUSTOMIZE.DLL Dynamic Library for add-in

How to install

Unzip and place all the above files in a folder of your choice. The add-in is contained entirely in this directory. Your system is not modified in any other way. If you want to uninstall this package, simply delete its folder - it's as simple as that!

To install, follow the usual procedure for installing an Excel add-in:

1) Open Excel
2) From the Excel menu toolbar select "Tools" and then select "Add-in".
3) Once in the Add-in Manager, browse for "Matrix.xla" and select it
4) Click OK

After the first installation, matrix.xla will be added to the Add-in list manager.

If all goes OK you should see the welcome popup of matrix.xla the first time you activate Matrix.xla in the Add-in Manager dialog box. Afterwards, when Excel automatically loads Matrix.xla, this popup remains hidden.

The Matrix Icon is added to the main menu bar. By clicking on it, the Matrix Toolbar appears

The Matrix category. All the functions contained in this add-in will be visible in the Excel function wizard under the Matrix category.

1 FUNCUSTOMIZE.DLL appears by courtesy of Laurent Longre (http://longre.free.fr)
Update to a new version
When you update to a new version you must replace the older files with the new version. Do not keep two different versions on your PC, and, in general, never load two different versions, because Excel would make a mess of it.

How to uninstall
This package never alters your system files
If you want to uninstall this package, simply delete its folder. Once you have canceled the Matrix.xla file, remove the corresponding entry in the Add-in Manager list, by following these steps:

1) Open Excel
2) Select <Add-in...> from the <Tools> menu.
3) Once in the Add-in Manager, click on the Matrix.xla
4) Excel will inform you that the add-in is missing, and ask you if you want to remove it from the list. Answer "yes".
About complex matrix formats

Matrix.xla supports 3 different complex matrix formats: 1) split, 2) interlaced, and 3) string

<table>
<thead>
<tr>
<th>Split format</th>
<th>Interlaced format</th>
<th>String format</th>
</tr>
</thead>
</table>
| 1 2 0 0 -1 3
-1 3 -1 0 2 -1
0 -1 4 0 2 0 | 1 0 2 -1 0 3
-1 0 3 2 -1 -1
0 0 -1 -2 4 0 | 1 2-i 3i
-1 3+2i -1-i
0 -1.2i 4 |

As we can see, in the first format the complex matrix \(\mathbf{Z} \) is split into two separate matrices: the first contains the real values, and the second one the imaginary values. This is the default format.

In the second format, the complex values are written as two adjacent cells, so that each individual matrix element occupies two adjacent cells. The number of columns is the same as in the first format, but the values are interlaced, so that each real column is followed by an imaginary column and so on. This format is useful when the elements are returned by complex functions.

The last format is the well known “complex rectangular format”. Each element is written as a text string “a + bi” or “a + bj”; therefore the square matrix is still square. This is the most compact and intuitive format for integer values. For non-integer values the matrix may become illegible. We must also point out that these elements, being strings, cannot be formatted with the standard tools of Excel, but must be converted back to numbers with the Excel commands IMREAL and IMAGINARY.
Functions Reference

This chapter lists all functions of the MATRIX.XLA add-in. It is the printable version of the on-line help file MATRIX.HLP.

GJstep
MAbs
MAbsC
MAdd
MAddC
MAddm
Mat_Hesse
MAAB
MBlock
MBlockPerm
MChar
MCharC
MCharPoly
MCharPolyC
MCholesky
MCmp
MCond
MCorr
MCovar
MCpix
MDet
MDet3
MDetC
MDetPar
MDiag
MDiagExtr
MEigenvJacobi
MEigenvMax
MEigenvPow
MEigenvalQL
MEigenvalQR
MEigenvalQRC
MEigenvalTTpz
MEigenvec
MEigenvecC
MEigenvec
MEigenvecC
MEigenvecInv
MEigenvecInvC
MEigenvecJacobi
MEigenvecMax
MEigenvecPow
MEigenvecT
MExp
MExpErr
MExtract
MHiibert
MHiibertInv
MHouseholder
MIdde
MInv
MInvC
MLeontInv
MLU
MMopUp
MMult3
MMultC
MMultS
MMultsC
MMultTpz
MNorm
MNormalize
MOrthoGS
MpCond
MPerm
MPow
MPowC
MPod
MPsuedoinv
MOH
MQR
MQRiter
MRank
MRnd
MRndEig
MRndEigSym
MRndRank
MRndSym
MRot
MRotJacobi
MSub
MSubC
MT
MTartaglia
MTC
MTCH
MTrace
MVandermonde
PathFloyd
PathMin
PolyRoots
PolyRootsQR
PolyRootsQRC
ProdScal
ProdScalC
ProdVec
RegrCir
RegrL
RegrP
Simplex
SVDD
SVDU
SVDV
SysLin
SysLin3
SysLinC
SysLinIterG
SysLinIterJ
SysLinSing
SysLinT
SysLinTpz
TraLin
VarimaxIndex
VarimaxRot
VectAngle
Function MAbs(V)

Returns the absolute value $||V||$ (Euclidean Norm) of a vector V

$$||V|| = \sqrt{\sum v_i^2}$$

The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix

$$\|A\|_F = \sqrt{\sum a_{ij}^2}$$

Function MAbsC(V, [Cformat])

Returns the absolute value $||V||$ (Euclidean Norm) of a complex vector V

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string

The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix

The optional parameter $Cformat$ sets the complex input format (default = 1)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vector</td>
<td>matrix</td>
<td>matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>re</td>
<td>in</td>
<td>re</td>
<td>im</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>2 + j</td>
<td>-j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3 + j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-5</td>
<td>4</td>
<td>=MAbsC(C3:G4)</td>
<td>4</td>
<td>=MAbsC([3,4], 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.71e- =MAbsC(A3:B6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See About complex matrix format

Function MAdd(A, B)

Returns the sum of two matrices

$C = A + B$

according to the definition:

$c_{ij} = a_{ij} + b_{ij}$

For example, the sum of (2 x 2) matrices is

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

Note: EXCEL has a simply way to perform the addition of two arrays. For details see How to insert an array function...
Function MAddC(A, B, [Cformat])

Returns the sum of two complex matrices

\[C = A + B \]

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex input/output format (default = 1)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 + j</td>
<td>-1</td>
<td>0 + 2j</td>
<td>1</td>
<td>10 + 3j</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3 + j</td>
<td>2 + j</td>
<td>j</td>
<td>2 + i</td>
<td>3 + 2i</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function MBAB(A, B)

Returns the product:

\[C = B^{-1} A B \]

This operation is also called the "similarity transform" of matrix A by matrix B
Similarity transforms play a crucial role in the computation of eigenvalues, because they leave the eigenvalues of the matrix A unchanged.

For real symmetric matrices, B is orthogonal. The similarity transformation is also called "orthogonal transform".

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-9</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Function MDet(Mat, Mat, [IMode], [Tiny])

Returns the determinant of a square (n x n) matrix.
IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false.
Use IMODE only with integer matrices of moderate size.
Tiny (default is 0) sets the minimum round-off error; any value with an absolute value less than Tiny will be set to zero.

For n = 1

\[\det[a_{11}] = a_{11} \]

For n = 2

\[\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21} \]

For n = 3

\[\det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} \]
TUTORIAL FOR MATRIX.XLA

Clearly, the computation of the determinant of a large matrix is one of the most tedious of all Math. Fortunately we have Numeric Calculus...!

Example - The following matrix is singular, but only the integer computation can give the exact answer

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>127</td>
<td>-507</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-507</td>
<td>2025</td>
<td>-987</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>245</td>
<td>-987</td>
<td>553</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function MDetC (Mat, [Cformat])

This function computes the determinant of a complex matrix. The argument Mat is an array (n x n) or (n x 2n), depending of the format parameter. This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string the.

The optional parameter Cformat sets the complex input/output format (default = 1). A complex split or interlaced matrix must always have an even number of columns.

The example shows how to compute the determinant of a complex matrix written in three different formats.

The first complex matrix is in the split format (default): real and imaginary values are in two separated matrices.

The second example shows the same matrix in interlaced format: imaginary values are adjacent to real parts.

The last example shows the rectangular string format.
Function MDet3(Mat3)

This function computes the determinant of a tridiagonal matrix.
The argument Mat3 is an $(n \times 3)$ array representing the $(n \times n)$ matrix.

A triangular matrix is:

\[
\begin{bmatrix}
 b_1 & c_1 & 0 & 0 \\
 a_2 & b_2 & c_2 & 0 \\
 0 & a_3 & b_3 & c_3 \\
 0 & 0 & a_4 & b_4 \\
 0 & 0 & 0 & a_5 & b_5
\end{bmatrix}
\]

In order to save space we handle only the three diagonals.

Example: to find the determinant of a 18x18 tridiagonal matrix we pass to the function only 54 values (the first cell of the column a and the last of the column c are always 0) instead of 324 values.

Function MDetPar(Mat)

Computes the parametric determinant $D(k)$ of a $(n \times n)$ matrix containing a parameter k.

This function returns the polynomial string $D(k)$ or its vector coefficients depending on the range selected. If you have selected one cell the function returns a string; if you have selected a vertical range, the function returns a vector. In that last case you have to insert the function with the ctrl+shift+enter key sequence.

The function accepts one parameter.

Any matrix element can be a linear function of k:

\[
a_{ij} = q_{ij} + m_{ij} \cdot k
\]

The maximum degree of the polynomial $D(k)$ is 9.
Function MInv(Mat, [IMode], [Tiny])

Returns the matrix inverse of a given square matrix

\[B = A^{-1} \]

IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false. Integer computation is intrinsically more accurate for integer matrices but also more limited because it may easily reaches the overflow error. Use IMODE only with integer matrices of low size.

Tiny (default is 0) sets the minimum round-off error; any absolute value less than Tiny will be set to zero.

If by this chosen criterion the matrix is singular, the function returns "singular".

If the matrix is not square the function returns "?"

Example: the following matrix is singular but only the MInv function with integer computation can give the right answer

\[
\begin{array}{cccccccc}
1 & 127 & -507 & 245 & -2E+14 & -6E+13 & -6E+12 \\
2 & -507 & 2025 & -997 & -6E+13 & -1E+13 & -2E+12 \\
3 & 245 & -987 & 553 & -6E+12 & -2E+12 & -2E+11 \\
4 & & & & & & (=\text{MINVERSE(A2:C4)}) \\
5 & & & & & & \text{singular} \\
6 & 9.7E+13 & 2.6E+13 & 2.8E+12 & \text{singular} & \text{singular} & \text{singular} \\
7 & 2.6E+13 & 6.8E+12 & 7.5E+11 & \text{singular} & \text{singular} & \text{singular} \\
8 & 2.6E+12 & 7.5E+11 & 6.4E+10 & \text{singular} & \text{singular} & \text{singular} \\
9 & \{=\text{MInv(A2:C4)}\} & (=\text{MInv(A2:C4,TRUE)}) & & & & \\
\end{array}
\]

Function MPseudoInv (A)

Computes the Moore-Penrose pseudo-inverse of a (n x m) matrix

Def: the minimum-norm least squares solution x to a linear system

\[Ax = b \quad \Rightarrow \quad \min_x \| Ax - b \| \]

is the vector

\[x = (A^T A)^{-1} A^T b \]

The matrix \(A^+ \) is called the pseudo-inverse of A

If the matrix A has dimension (n x m), its pseudo-inverse has dimension (m x n)

One of the most important applications of SVD decomposition is

\[A = U \cdot D \cdot V^T \quad \Rightarrow \quad A^+ = V \cdot D^{-1} U^T \]

Note: the pseudo-inverse coincides with the inverse for non-singular square matrices.
Function MPow(A, n)

Returns the integer power of a square matrix

\[B = A^n = A \cdot A \cdot A \ldots A \]

Function MPowC(A, n, [Cformat])

Returns the integer power of a complex square matrix

Use CTRL+SHIFT+ENTER to insert this function

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string

Optional parameter Cformat sets the complex format of input/output (default = 1)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>n</td>
<td></td>
<td>A^n</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-j</td>
<td>6</td>
<td>-171-56j</td>
<td>-40+40j</td>
</tr>
<tr>
<td>3</td>
<td>4-j</td>
<td>-1</td>
<td></td>
<td>-200-120j</td>
<td>-51+54j</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>{-MPow(A2;B3,C2,3)}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function MExp(A, [Algo], [n])

This function approximates the exponential of a given square matrix \([A]\)

\[e^{[A]} = I + \sum_{n=1}^{\infty} \frac{1}{n!} A^n \]

This function uses two alternative algorithms: the first one uses the popular power series

\[EXP(A,n) = I + A + \frac{1}{2} A^2 + \frac{1}{6} A^3 + \ldots + \frac{1}{n!} A^n + err \]

For \(n\) sufficiently large, the error becomes negligible, and the sum approximates the exponential matrix function. The parameter "n" fixes the max term of the series. If omitted the expansion continues until convergence is reached; this means that the norm of the \(n\)th matrix term becomes less than \(Err = 1E^{-15}\).

\[\| A^n \|^\infty < Err \]

When using this function without \(n\), especially for a large matrix, the evaluation time can be very long.

The second, more efficient, method uses the Padé approximation\(^1\). It is recommendable especially for large matrices.

We can switch the algorithm by the optional parameter Algo. If "P" (default) the function uses the Padé approximation, otherwise it uses the power series

Function MExpErr(A, n)

This function returns the truncation \(n\)-th matrix term of the series expansion of a square matrix \([A]\).

It is useful to estimate the truncation error of the series approximation

\[EXP(A,n) = \left| \frac{1}{n!} A^n \right| \]

\(^1\) This routine was developed by Gregory Klein, who kindly consented to add it to this package
Function MProd(A, B, ...)

Returns the product of two or more matrices

\[C = A \cdot B \]

As known, the product is defined as:

\[c_{ik} = a_{ij} b_{jk}, \]

Where \(j \) is summed over for all possible value for \(i \) and \(k \)

Dimension rule: If \(A \) is \((n \times m)\) and \(B \) is \((m \times p)\), then the product is a matrix \((n \times p)\)

\[(n \times m)(m \times p) = (n \times p),\]

Note: If \(A \) and \(B \) are square \((n \times n)\) matrices, the product is also a square \((n \times n)\) matrix.

Matrix multiplication is associative. Thus:

\[A \cdot (B \cdot C) = (A \cdot B) \cdot C \]

But, generally, it is not commutative:

\[A \cdot B \neq B \cdot A \]

The function MProd can perform the product of several matrices, even with different dimensions.

\[Y = \prod_j A_j = A_1 \cdot A_2 \cdot ... \]

Note. If you multiply matrices with different dimensions, pay attention to the dimension rules above. This function does not check it. The function will return #VALUE if this rule is violated.

Function MMultS(Mat, k)

Multiplies a matrix by a scalar

\[
\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot k = \begin{pmatrix} k \cdot a_{11} & k \cdot a_{12} \\ k \cdot a_{21} & k \cdot a_{22} \end{pmatrix}
\]

It can be nested in other function. For example, if the range A1:B2 contains the 2x2 matrix [1 , 2, / -3 , 8]

MDet(MMultS(A1:B2; 3)) returns the determinant 126 of the matrix [3 , 6, / -9 , 24]

Tip: EXCEL has a simply way to perform the multiplication of an array by a scalar. For details see "How to insert an array function..."
Function MMultSC(Mat, scalar, [Cformat])

Multiplies a complex matrix by a complex scalar

\[
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
 k \\
 k
\end{pmatrix}
\begin{pmatrix}
 a_{11}k & a_{12}k \\
 a_{21}k & a_{22}k
\end{pmatrix}
\]

The parameter Mat is a (n x m) complex matrix or vector.
The parameter scalar can be a complex or real number, in split or string format.
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string.
The optional parameter Cformat sets the complex input/output format (default = 1).
See About complex matrix format.

Example. Performs the following complex multiplication

\[
C = (2-j) \begin{pmatrix}
 4+5j & 5 & -30j \\
 -17+4j & -5-5j & 14 \\
 -9j & -4j & 10j
\end{pmatrix}
\]

We can use either the split or string format

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td>-30</td>
</tr>
<tr>
<td>3</td>
<td>-17</td>
<td>-4</td>
<td>14</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>30</td>
<td>-30</td>
<td>6</td>
<td>35</td>
<td>-60</td>
</tr>
<tr>
<td>9</td>
<td>-30</td>
<td>-3</td>
<td>20</td>
<td>25</td>
<td>14</td>
<td>-14</td>
</tr>
<tr>
<td>10</td>
<td>-9</td>
<td>-4</td>
<td>10</td>
<td>-18</td>
<td>-8</td>
<td>20</td>
</tr>
</tbody>
</table>

\[
C = (2-j) \begin{pmatrix}
 4+5j & 5 & -30j \\
 -17+4j & -5-5j & 14 \\
 -9j & -4j & 10j
\end{pmatrix}
\]

This function also multiplies a complex vector and a complex number

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
C = (2-j) \begin{pmatrix}
 4+5j & 5 & -30j \\
 -17+4j & -5-5j & 14 \\
 -9j & -4j & 10j
\end{pmatrix}
\]

Function MMult3(Mat3, Mat)

This function performs the multiplication of a tridiagonal matrix and a vector or a rectangular matrix.
Mat3 is a (n x 3) array.
Mat can be a vector (n x 1) or even a rectangular matrix (n x m).
The result is a vector (n x 1) or a matrix (n x m).
This function is useful when you have to multiply a tridiagonal matrix larger than 256 x 256 and a vector because pre-2007 Excel cannot manage matrices larger than 256 columns wide.

Example. The diagonal and sub-diagonals are passed to the function as vertical vectors

\[A \cdot x = \begin{bmatrix} b_1 & c_1 & 0 & \ldots & 0 & 0 \\ a_1 & b_2 & c_2 & \ldots & 0 & 0 \\ 0 & a_2 & b_3 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & b_{15} & c_{15} \\ 0 & 0 & 0 & \ldots & a_{15} & b_{16} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{15} \\ x_{16} \end{bmatrix} \]

Note how compact and efficient this input is. This is true especially for large matrices

Function MMultTpz(tpz, v)

Perform the multiplication between a Toeplitz matrix and a vector

Parameter *tpz* is a Toeplitz matrix written in the compact vector form (2n-1). See Toeplitz matrices for further details

Parameter *b* is the vector (n) of constant terms

Of course this function came in handy when the Toeplitz matrix is written a compact form. Otherwise you can use the M_MULT or the built-in MMULT Excel function as well

Function MSub(A1, A2)

Returns the difference of two matrices

\[C = A_1 - A_2 \]

Tip: EXCEL has a simply way to perform the multiplication of an array by a scalar. For details see "How to insert an array function..."
Function MSubC(A1, A2, [Cformat])

Returns the difference of two complex matrices

\[C = A_1 - A_2 \]

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex input/output format (default = 1)

Example.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2+j</td>
<td>-1</td>
<td>3+2j</td>
<td>1</td>
<td>-6-j</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3+j</td>
<td>2+j</td>
<td>j</td>
<td>-2</td>
<td>3</td>
</tr>
</tbody>
</table>

Function MTrace(Mat)

Returns the trace of a square matrix, i.e., the sum of the elements of the first diagonal

\[\text{trace}(A) = \sum a_{ii} \]

Example.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-9</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function MDiag(Diag)

Returns to standard (expanded) form the diagonal matrix having the vector "Diag" as its diagonal

Example.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diagonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Function MDiagExtr(Mat, [Diag])

This function extracts the diagonals of a matrix
The optional parameter Diag selects the diagonal to extract.
Diag = 1 (default) extracts the first diagonal; Diag = 2 extracts the secondary one.

Example.

1 (Thanks to an idea of Giacomo Bruzzo)
Function MT(Mat)

Returns the transpose of a given matrix, that is the matrix with rows and columns exchanged.

This function is identical to TRANSPOSE() Excel built-in function.

Function MTC(Mat, [Cformat])

Returns the transpose of a complex matrix, that is the matrix with rows and columns exchanged.

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string.

Optional parameter Cformat sets the complex input/output format (default = 1).

Use CTRL+SHIFT+ENTER to insert this function.

Example. Transpose the following (3 x 2) complex matrix.

Function MTH(Mat, [Cformat])

Returns the transpose-conjugate of a complex matrix.

This function is identical to TRANSPOSE() Excel built-in function.
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string

Function `MRank(A)`

Returns the rank of a given matrix.

Examples:

When \(\text{Det} = 0 \) the Rank is always less then the max dimension \(n \).

Differently from the determinant, rank can be computed also for rectangular matrices. In that case, the rank can't exceed the minimum dimension; that is, for a 3x4 matrix the maximum rank is 3.

Function `MIde(n)`

Returns the identity square matrix.

This function is useful in nested expressions.

Example: Compute the matrix \(\mathbf{A} - \lambda \mathbf{I} \) for the parameter \(\lambda = 1 \).

Note that we have used the power array arithmetic of Excel.

But we could use the following nested expression:

\[
\text{=MAdd(A10:C12, D10*MId}(3)\}
\]

Function `ProdScal(v1, v2)`

Returns the scalar product of two vectors

\[
\mathbf{V}_1 \cdot \mathbf{V}_2 = \sum_{i} v_{1,i} \cdot v_{2,i}
\]

Note that if \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \) are the same vectors, this function returns the square of its module.

1 (Thanks to the original routine developed by Bernard Wagner.)
Note that if \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \) are perpendicular, their scalar product is zero. In fact, another definition of scalar product is:

\[
\mathbf{V}_1 \cdot \mathbf{V}_2 = |\mathbf{V}_1| \cdot |\mathbf{V}_2| \cdot \cos(\alpha_{12})
\]

Vectors can be in vertical or horizontal format as well.

Function ProdVect(v1, v2)

Returns the vector product of two vectors

\[
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{bmatrix}
 v_{11} & v_{12} & v_{13} \\
 v_{21} & v_{22} & v_{23} \\
 v_{31} & v_{32} & v_{33}
\end{bmatrix}
\]

Note that if \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \) are parallels, the vector product is the null vector.

Vectors can be in vertical or horizontal form as well.

Function VectAngle(v1, v2)

Computes the angle between the two vectors \(\mathbf{V}_1, \mathbf{V}_2 \).

The angle is defined as:

\[
\alpha = \arccos \left(\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| \cdot |\mathbf{v}_2|} \right)
\]

Example.
Function MEigenvalJacobi(Mat, Optional MaxLoops)

This function performs the Jacobi sequence of orthogonal similarity transformation and returns the last
matrix of the sequence. It works only for symmetric matrices.
The optional parameter MaxLoops (default=100) sets the max number of steps of the sequence.
The Jacobi algorithm can be used to find both eigenvalues and eigenvectors of symmetric matrices
\[A_i = P_i^T \cdot A \cdot P_i \]
\[A_{i+1} = P_{i+1}^T \cdot A \cdot P_{i+1} = P_{i+1}^T \cdot P_i^T \cdot A \cdot P_i \cdot P_{i+1} \]
\[A_n = P_n^T \cdot A_{n-1} \cdot P_n = P_n^T \cdot P_{n-1}^T \cdot P_{n-2}^T \cdot \ldots \cdot P_1^T \cdot A \cdot P_1 \cdot \ldots \cdot P_{n-1} \cdot P_n \]

For \(n \) sufficiently large, the sequence \(\{A_i\} \) converges to a diagonal matrix, thus
\[\lim_{n \to \infty} A_n = [\lambda] \]
while the matrix
\[U_n = P_n \cdot P_{n-1} \cdot \ldots \cdot P_1 \cdot P \]
converges to the eigenvectors of \(A \).
All these matrices \(A, U, P \) can be obtained by the functions: MEigenvalJacobi, MEigenvecJacobi, MRotJacobi

Example: Solve the eigenvalue problem of the following symmetric matrix
\[A = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix} \]

As we can see, the Jacobi method has found all Eigenvalues and Eigenvectors with few iterations (10
loops). The function MEigenvalJacobi returns in the range A7:C9 the diagonal matrix of the eigenvalues.
Note that elements beyond the first diagonal have an error of less than 1E-15.
At the right side - in the range D7:F9 - the function MEigenvecJacobi returns the orthogonal matrix of the
eigenvectors.
Compare with the exact solution
\[A = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}, \lambda = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{bmatrix}, U = \begin{bmatrix} 2/3 & 1/3 & -2/3 \\ -2/3 & 2/3 & -1/3 \\ 1/3 & 2/3 & 2/3 \end{bmatrix} \]

Note that you can test the approximate results by the similarity transformation
\[\lambda = U^{-1} \cdot A \cdot U \]
You can use the standard matrix inversion and multiplication functions or the MBAB function also in this
package, as you like. Note that - only in this case - the matrix inversion is very simple, because:
\[U^{-1} = U^T \]
Eigenvalues problem with Jacobi, step by step

Suppose you want to study each step of the Jacobi method. The functions MEigenvalJacobi, MEigenvecJacobi and MRotJacobi are useful if you set the parameter MaxLoop=1. In this case, they return the first step of Jacobi's iteration. Here is how they work.

\[\begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix} = A \]

A1 = MEigenvecJacobi(A)
A2 = MEigenvecJacobi(A1)
A3 = MEigenvecJacobi(A2)
......
A10 = MEigenvecJacobi(A9)

Each matrix is one step of Jacobi's Iterative method.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Symmetric matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.323064</td>
<td>0</td>
<td>-1.2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.323064</td>
<td>0</td>
<td>-1.2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>7.5516</td>
<td>1.5764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to quickly obtain the above iterations follow these simple steps:
- At the first time, insert in range A7:C9 the function MEigenvalJacobi(A3:A7).
- Give the "magic" key sequence CTRL+SHIFT+ENTER to paste an array function.
- Leave the range A7:C9 selected and copy it (CTRL+C).
- Select the next range A11, and paste (CTRL+V).
- Copy it (CTRL+C).
- Select the next range A15, and paste again (CTRL+V), etc.

By the sequence of copying and pasting, you can perform all Jacobi iterations, as you like.

In the middle, we see the Jacobi's rotation matrices sequence. We can easily obtain these it by the function MRotJacobi() in the same way as the eigenvalues matrix.

P1 = MRotJacobi(A), P2 = MRotJacobi(A1), P3 = MRotJacobi(A2), etc.

This function searches for the max absolute values of off-diagonal elements, and generates an orthogonal matrix in order to reduce it to zero by similarity transformation:

\[A_i = P_i^T \cdot A \cdot P_i \]

Finally, at the right, we see the iterations of eigenvectors matrix. It can be derived from the rotation matrix by the following iterative formula:

\[U_{i+1} = P_i \cdot U_i \]

\[U_n = P_n \cdot U_{n-1} \]
Function MRotJacobi(Mat)

This function returns Jacobi orthogonal rotation matrix of a given symmetric matrix. This function searches for the max absolute values out of the first diagonal, and generates an orthogonal matrix in order to reduce it to zero by similarity transformation

\[A_1 = P_1^T A \cdot P_1 \]

Where: \(P_1 = \text{MRotJacobi}(A) \)

For further details see Function MEigenvalJacobi(Mat, Optional MaxLoops)

Example - find the rotation matrix that makes zero the highest non-diagonal element of the following symmetric matrix.

\[
\begin{pmatrix}
-5 & -4 & -1 & -3 & 4 \\
-4 & -6 & 0 & -2 & 5 \\
-1 & 0 & 5 & 4 & 8 \\
-3 & -2 & 4 & -5 & 1 \\
4 & 5 & 8 & 1 & -10
\end{pmatrix}
\]

The highest absolute values are \(a_{35} = a_{35} = 8 \) (in red)

The similarity transformation with the rotation matrix will make just these elements zero.

The rotation matrix, in that case is

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \cos(\alpha) & 0 & \sin(\alpha) \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\sin(\alpha) & 0 & \cos(\alpha)
\end{pmatrix}
\]

where the angle \(\alpha \) is given by the formula:

\[
\alpha = \frac{1}{2} \tan\left(\frac{2a_{35}}{a_{35} - a_{11}}\right)
\]

Function MBlock(Mat)

Transforms a sparse square matrix \((n \times n)\) into a block-partitioned matrix.

From theory we know that, under certain conditions, a square matrix can be transformed into a block-partitioned form (also called block-triangular form) by similarity transformation.

\[
B = P^T A P
\]

where \(P \) is a \((n \times n)\) permutation matrix.
For returning the permutation matrix see the function MBlockPerm.

Note that not all matrices can be transformed in block-triangular form. From theory we know that it can be done if, and only if, the graph associated to the matrix is not strongly connected. On the contrary, if the graph is strongly connected, we say that the matrix is irreducible. A dense matrix without zero elements, for example, is always irreducible.

Example:

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & -1 \\
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
\end{pmatrix}
\]

\[
P \begin{pmatrix}
A
\end{pmatrix} P^T =
\]

Function MBlockPerm(Mat)

Returns the permutation matrix that transforms a sparse square matrix (n x n) into a block-partitioned matrix. Under certain conditions, a square matrix can be transformed into a block-partitioned form (also called block-triangular form) by similarity transformation.

\[
B = P^T A P
\]

where P is a permutation matrix (n x n).

This function returns the permutation vector (n); for transforming it into a permutation matrix use the Function MPerm.

Example. Find the permutation matrix that transforms the given matrix into block-triangular form.

Note that not all matrices can be transformed into block-triangular form. If the transformation fails, the function returns "?". This usually happens when the matrix is irreducible.
Also this matrix has several zeros (one more than the matrix of the previous example). But in this case does not exist any permutation that transform it into a block-partitioned matrix. Therefore the function returns "?".
We say that the matrix is "irreducible".

Function MEigenvalQR(Mat)

Approximates real or complex eigenvalues of a real matrix by the QR method, returns an \((n \times 2)\) array.

The example below shows that the given matrix has two complex conjugate eigenvalues and only one real eigenvalue.

Example. Find the eigenvalues of the following symmetric matrix. Being symmetric, there are only \(n\) real distinct eigenvalues. So the function returns only an \((n \times 1)\) array.

1 This function uses a reduction of the EISPACK FORTRAN HQR and ELMHES subroutines (April 1983)
HQR and ELMHES are the translation of the ALGOL procedure.
Function MEigenvalQRC(Mat, [Cformat])

Approximates real or complex eigenvalues of a real matrix by the QR method. This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string. Optional parameter Cformat sets the complex input/output format (default = 1). See About complex matrix format.

Example. Find the eigenvalues of the following complex matrix.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>-4</td>
<td>5</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-2</td>
<td>4</td>
<td>-2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-3</td>
<td>3</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The matrix could also be passed in compact string format.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4+3j</td>
<td>-2-4j</td>
<td>4+5j</td>
<td>5-4j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1+2j</td>
<td>2</td>
<td>1+5j</td>
<td>2-3j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-2+4j</td>
<td>4+2j</td>
<td>-2+2j</td>
<td>2+5j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3-3j</td>
<td>-3-3j</td>
<td>1-3j</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the result is always in split format.

Function MEigenvvec(A, Eigenvalues, [MaxErr])

This function returns the eigenvector of a matrix A (n x n) associated with the given eigenvalue

\[A \mathbf{x} = \lambda \cdot \mathbf{x} \]

If "Eigenvalues" is a single value, the function returns a (n x 1) vector. Otherwise if "Eigenvalues" is a vector of eigenvalues, the function returns the (n x n) matrix of eigenvectors. The optional parameter MaxErr is useful when the eigenvalues are affected by round-off error. In that case the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix. If omitted, the function tries to detect by itself the suitable MaxErr for the approximate eigenvalues.

This function uses a reduction of the EISPACK FORTRAN COMQR and CORTH subroutines (April 1983) COMQR is a translation of the ALGOL procedure MATH. 12, 369-376(1968) by Martin and Wilkinson.
Function MEigenvecC(A, Eigenvalue, [MaxErr])

This function returns the complex eigenvector associates with a complex eigenvalue of a real or complex matrix A (n x n). The function returns an array of two columns (n x 2): the first column contains the real part, the second column the imaginary part.

It returns an array of four columns (n x 4) if the eigenvalue is double. The first two columns contain the first complex eigenvector; the last two columns contain the second complex eigenvector. And so on.

The optional parameter MaxErr (default 1E-10) is useful only if your eigenvalue has an error. In that case the MaxErr should be proportionally increased (1E-8, 1E-6, etc.). Otherwise the result may be a NULL matrix.

Look at this example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matrix A</td>
<td>Complex Eigenvalues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-6</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-3</td>
<td>4</td>
<td>-1</td>
<td>5</td>
<td>-1</td>
</tr>
</tbody>
</table>

The given matrix has 3 eigenvalues:

2, 5+j, 5−j

For each eigenvalue, the function MEigenvecC returns the associate eigenvector that, in general, will be complex.

Note that for the real eigenvalue 2, the function returns a real eigenvector

Note also that for conjugate eigenvalues will get also conjugate eigenvectors

The function works also for complex matrices. Example: assume to have to find the eigenvector of the following matrix for the given eigenvalue

\[
A = \begin{bmatrix}
-1+3j & 5+j \\
-1+5j & 8-3j
\end{bmatrix}, \quad \lambda = 5 - j
\]

Thus, the eigenvector for \(\lambda = 5 - j \) is

\[
u = \begin{bmatrix}
1-j \\
-2j
\end{bmatrix}
\]
Function MEigenvecJacobi(Mat, Optional MaxLoops)

This function performs Jacobi orthogonal similarity transformation sequence and returns the last orthogonal matrix. It works only for symmetric matrices. The optional parameter MaxLoops (default=100) sets the max steps of the sequence.

This function returns the orthogonal matrix U_n that transforms to a diagonal form the symmetric matrix A, for n sufficiently high

$$[\lambda] = U_n^T A U_n$$

The matrix U_n is composed by eigenvectors of A

For further details see Function MEigenvalJacobi

Function MEigenSortJacobi(EigvalM, EigvectM, [num])

This function\(^1\) sorts the eigenvalues and returns the first eigenvector associated to the absolute highest eigenvalue.

EigvalM is the diagonal eigenvalues (n x n) matrix and EigvectM is the (n x n) eigenvector unitary matrix as returned by MatEigenValue_Jacobi and MatEigenVector_Jacobi.

The optional parameter num (default num = n) sets the number of the vectors returned

Example

Function MEigenvalQL(Mat3, [IterMax])

This function returns the real eigenvalues of a tridiagonal symmetric matrix. It works also for an asymmetrical tridiagonal matrix having all real eigenvalues.

The optional parameter Itermax sets the max number of iteration allowed (default Itermax =200).

This function uses the efficient QL algorithm

If the matrix does not have all-real eigenvalues, this function returns "?"

This function accepts tridiagonal matrices in both square (n x n) and (n x 3) rectangular formats.

\(^1\) This function appears thanks to the courtesy of Carlos Aya
Example. Find all eigenvalues of the following 19 x 19 matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0.2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0.1 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0.1 & 1 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0.1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0.1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0.1 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0.1 & 1
\end{bmatrix}
\]

Note that all 19 eigenvalues are close to each other, in a short interval

\[0.8 < \lambda < 1.2\]

Other algorithms have difficulty in this pathological case. On the contrary the QL algorithm works fine, giving a high general accuracy.

Function MEigenvalTTpz(n, a, b, c)

Returns the eigenvalues of a tridiagonal toeplitz (n x n) matrix.

\[
\begin{bmatrix}
\begin{array}{cccc}
\ b & a & 0 & 0 \\
\ a & b & c & 0 \\
\ 0 & a & b & c \\
\ 0 & 0 & a & b \\
\ \vdots & \vdots & \vdots & \vdots \\
\end{array}
\end{bmatrix}
\]

It has been demonstrated that:

- for n even - all eigenvalues are real if \(a>c\); all eigenvalues are complex otherwise.
- for n odd - all n-1 eigenvalues are real if \(a>c\); all n-1 eigenvalues are complex otherwise. The last n eigenvalue is always b.

For the toeplitz tridiagonal matrices, there is a nice close formula giving all eigenvalues for any size of the matrix dimension. See chapter “Tridiagonal toeplitz matrix”.

Example:

find the eigenvalues of the 40 x 40 tridiagonal toeplitz matrix having \(a = 1, b = 3, c = 2\).

Because \(a*c = 2 > 0\), all eigenvalues are real.
Find the eigenvalues of the 40 x 40 tridiagonal toeplitz matrix having a = 1, b = 3, c = -2. Because a*c = -2 < 0, all eigenvalues are complex.

Function MEigenvecT(Mat3, Eigenvalues, [MaxErr])

This function returns the eigenvector associated with the given eigenvalue of a tridiagonal matrix $A\mathbf{x} = \lambda \cdot \mathbf{x}$.

If Eigenvalues is a single value, the function returns a (n x 1) vector. Otherwise if the parameter Eigenvalues is a vector of all eigenvalues of matrix A, the function returns a matrix (n x n) of eigenvectors.

Note: the eigenvectors returned by this function are not normalized.

The optional parameter MaxErr is useful only if your eigenvalues are affected by an error. In that case the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix. If omitted, the function tries to detect by itself the best error parameter.

This function accepts both tridiagonal square (n x n) matrices and (n x 3) rectangular matrices. The second form is useful for large matrices.

Example.

Given the 19 x 19 tridiagonal matrix having eigenvalue $\lambda = 1$, find its associate eigenvector.
Function MChar(A, x)

This function returns the characteristic matrix at the value x.

\[C = A - xI \]

where A is a real square matrix; x is a real number.
The determinant of C is the characteristic polynomial of the matrix A

<table>
<thead>
<tr>
<th>E2</th>
<th>(\lambda)</th>
<th>(A - \lambda I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>14 13 22</td>
</tr>
<tr>
<td>2</td>
<td>15 13 22</td>
<td>14 13 22</td>
</tr>
<tr>
<td>3</td>
<td>-6 -4 -10</td>
<td>-6 -5 -10</td>
</tr>
<tr>
<td>4</td>
<td>-4 -4 -5</td>
<td>-4 -4 -5</td>
</tr>
</tbody>
</table>

Function MCharC(A, z, [Cformat])

This function returns the complex characteristic matrix at the value z.

\[C = A - zI \]

where A can be a real or complex square matrix; z can be a real or complex number.
The determinant of C is the characteristic polynomial of the matrix A

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
The optional parameter Cformat sets the complex input/output format (default = 1)

A complex split or interlaced matrix must always have an even number of columns

Example.: Compute the matrix \(A - \lambda I \) for \(\lambda = 1 - 5j \)
where A is the complex matrix

\[
A = \begin{bmatrix}
3 + 6j & -1 - 2j & 0 \\
1 + 2j & 2 + 4j & 1 + 2j \\
-1 - 2j & 0 & 5 + 10j
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>6</td>
<td>-2</td>
<td>0</td>
<td>(\lambda)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>5</td>
<td>-2</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A - (\lambda I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>11</td>
<td>-2</td>
<td>0</td>
<td>Determinant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>-906</td>
<td>-1370</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>0</td>
<td>4</td>
<td>-2</td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example.: Compute the matrix \(A - \lambda I \) for \(\lambda = 1 + 2j \)
where A is the real matrix
TUTORIAL FOR MATRIX.XLA

\[
A = \begin{bmatrix}
3 & -1 & 0 \\
1 & 2 & 1 \\
-1 & 0 & 5 \\
\end{bmatrix}
\]

Function MCharPoly(Mat)

This function returns the coefficients of the characteristic polynomial of a given matrix. If the matrix has dimension \((n \times n)\), then the polynomial has \(n^{th}\) degree and \(n+1\) coefficients.

As known, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa. This function uses the fast Newton-Girard formulas to find all the coefficients.

\[
\text{det}(A - \lambda I) = -\lambda^3 + 18\lambda^2 - 99\lambda + 162
\]

Solving this polynomial (by any method) can be another way to find eigenvalues.

Note: computing eigenvalues through the characteristic polynomial is in general less efficient than other decomposition methods (QR, Jacobi), but becomes a good choice for low-dimension matrices (typically < 6\(^{th}\)) and for complex eigenvalues. See also Function PolyRoots(Coefficients, [ErrMax])

Function MCharPolyC(Mat, [CFormat])

This function returns the complex coefficients of the characteristic polynomial of a given complex matrix. If the matrix has dimension \((n \times n)\), then the polynomial has \(n^{th}\) degree and \(n+1\) coefficients.

As known, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa. This function uses the Newton-Girard formulas to find all the coefficients.

It supports 3 different matrix formats: 1 = split, 2 = interlaced, 3 = string

The optional parameter CFormat sets the complex input/output format (default = 1)

The function always returns an array of 2 columns

\[
P(z) = z^4 - (5 + 2j)z^3 + (9 + 7j)z^2 - (22 + 2j)z + 8 + 24j
\]
Function PolyRoots(poly)

This function returns all roots of a given polynomial.

poly can be an array of (n+1) coefficients \([a_0, a_1, a_2, \ldots]\) or a string like "a_0+a_1x+a_2x^2+...". This function uses the Siljak+Ruffini algorithm for finding the roots of an n\(^{th}\) degree polynomial. For high accuracy or for stiff polynomials, you can find more suitable rootfinder routines in the Xnumbers.xla add-in.

If the given polynomial is the characteristic polynomial of a matrix (returned, for example, by MCharPoly), this function returns the eigenvalues of the matrix itself. Computing eigenvalues through the characteristic polynomial is in general less efficient than other decomposition methods (QR, Jacoby), but becomes a good choice for low-dimension matrices (typically < 6\(^{th}\)) and/or for complex eigenvalues.

Example: find the eigenvalues of the following matrix:

<table>
<thead>
<tr>
<th>Matrix A</th>
<th>coeff</th>
<th>eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-46</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>-3</td>
<td>-1</td>
</tr>
</tbody>
</table>

Note: we can also use the nested function: \{=PolyRoots(MCharPoly(A))\}

Function MEigenvalMax(Mat, [IterMax])

Returns the dominant eigenvalue of a matrix.

A dominant eigenvalue, if it exists, is the one with the maximum absolute value. Optional parameter: *IterMax* sets the maximum number of iterations allowed (default 1000). This function uses the power iterative method.

Power method - Given a matrix A with n eigenvalues, real and distinct, we have

\[|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n| \]

Starting with a generic vector \(x_0\), we have:

\[
y_k = A^k x_0 \quad \lim_{k \to \infty} \frac{y_k^T y_{k+1}}{y_k^T y_k} = \lambda_1 \quad \lim_{k \to \infty} \frac{y_k}{|y_k|} = u_1
\]

Tip. This algorithm is started with a random generic vector. Often it converges, but sometimes not. So if one of these functions returns the error "limit iterations exceeded", do not worry. Simply, re-try it.

A global localization method for real eigenvalues

This method is useful for finding the radius of the circle containing all real eigenvalues of a given matrix.

Example. Find the circle containing all eigenvalues of the following matrix:

\[
A = \begin{pmatrix} 1 & 1 \\ 1 & \infty \end{pmatrix}
\]

\[
x_k = \begin{pmatrix} x_k^T \\ y_k \\ z_k \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
\]

\[
y_k = \begin{pmatrix} x_k^T \\ y_k \end{pmatrix}
\]

\[
\|x_k\| = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

\[
y_k = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

\[
\|y_k\| = \begin{pmatrix} 1 \end{pmatrix}
\]

\[
\frac{y_k^T y_{k+1}}{y_k^T y_k} = \lambda_1
\]

\[
\lim_{k \to \infty} \frac{y_k}{|y_k|} = u_1
\]
The matrix is symmetric so all its eigenvalues are real.

The matrix trace gives us the sum of eigenvalues, so we can get the center of the circle by:

\[
c = \frac{\text{trace}(A)}{n}
\]

We find the dominant eigenvalues \(\lambda_1 \) by the function MEigenvalMax

The radius can be found by the formula: \(r = |\lambda_1| - c \)
We have found the center
\(C = (4.5; 0) \) with a radius \(R = 11.7 \).
If we plot the circle and the roots, we observe a general good result

This method works also for asymmetric matrices, having real eigenvalues.
Example: find the circle containing all eigenvalues of the following matrix

\[
\begin{array}{cccc}
90 & -7 & 0 & 4 \\
-5 & 98 & 0 & 12 \\
-2 & 0 & 95 & 14 \\
9 & 3 & 14 & 102 \\
\end{array}
\]

Function MEigenvMax(Mat, [Norm], [IterMax])

Returns the dominant eigenvector of matrix Mat
The dominant eigenvector is related to the dominant eigenvalue.
Optional parameters are:
IterMax: sets the maximum number of iterations allowed (default 1000).
Norm: if TRUE, the function returns a normalized vector \(|v| = 1 \) (default FALSE)
Remark: This function uses the iterative power method
For further details see the function MatEigenvalue_Max

Function MEigenvalPow(Mat, [IterMax])

This function returns all real eigenvalues of a given diagonalizable matrix.
Optional parameters are:
IterMax: sets the maximum number of iterations allowed (default 1000).
Norm: if TRUE, the function returns a normalized vector $|\mathbf{v}|=1$ (default FALSE)
This function uses the iterative power method. This algorithm works also for asymmetric matrices having real eigenvalues

Example: find all eigenvalues and eigenvectors of the given matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-8</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td></td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td></td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>-3</td>
<td>8</td>
<td>19</td>
<td>9</td>
<td></td>
<td>1</td>
<td>8E-15</td>
<td>-1</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-6</td>
<td>-12</td>
<td>-4</td>
<td></td>
<td>-0.667</td>
<td>-2E-15</td>
<td>1E-14</td>
<td>-0.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

We have used the functions MEigenvalPow and MEigenvecPow. We can see the small values instead of 0. This is due to the round-off errors. If you want to clean the matrix, remove these round-off errors with the function MMopUp

Function MEigenvecPow(Mat, [Norm], [IterMax])

This function returns all eigenvectors of a given diagonalizable matrix.
Optional parameters are:
IterMax: sets the maximum number of iterations allowed (default 1000).
Norm: if TRUE, the function returns normalized vectors $|\mathbf{v}|=1$ (default FALSE)
This function uses the iterative power method. This algorithm works also for asymmetric matrices having real eigenvalues

See also function MEigenvalPow

Function MEigenvecInv(Mat, Eigenvalue)

This function returns the eigenvector associated with an eigenvalue of a matrix \mathbf{A} using the inverse iterative algorithm

$$\mathbf{A} \mathbf{x} = \lambda \cdot \mathbf{x}$$

If Eigenvalues is a single value, the function returns a $(n \times 1)$ vector. Otherwise if Eigenvalues is a vector of all eigenvalues of matrix \mathbf{A}, the function returns a matrix $(n \times n)$ of eigenvector.
The eigenvector is normalized with norm = 2.
This method is adapted for eigenvalues affected by large errors, because it is more stable than the singular system resolution.

Example: Given a matrix \mathbf{A} and its eigenvalues λ_i, find the associated eigenvectors

$$
\text{Function MEigenvecInvC(Mat, Eigenvalue, [CFormat])}
$$

This function returns the eigenvector associated to a complex eigenvalue of a complex matrix \mathbf{A} by the inverse iteration algorithm

$$
\mathbf{A} \mathbf{x} = \lambda \mathbf{x}
$$

If “Eigenvalue” is a single value, the function returns a complex vector. Otherwise if “Eigenvalues” is a complex vector, the function returns the complex matrix of the associated eigenvectors.

The inverse iteration method is adapted for eigenvalues affected by large errors, because it is more stable than the singular system resolution of the function MEigenvectorC.

Example: Find all eigenvectors of the following complex matrix, having the following eigenvalues

$$
\begin{align*}
\lambda &= \{ 4, 1 + 3j, 1, -2j \} \\
\end{align*}
$$

About perturbed eigenvalues

Often we know only an approximation of the true eigenvalue. When the error is large the stability of the algorithm for finding the associate eigenvector plays a crucial role. The above example shows a critical situation because all eigenvalues are very closed to each other, having only a 4% of difference. In this
case a small error in the eigenvalues could cause a large error in the eigenvectors. In this situation the inverse iterative algorithm is handy. It has great stability. Let’s see this example

First of all we define a sensitivity coefficient for measuring the instability.

Instability Sensitivity

\[
S_{u,\lambda} = \frac{\sum_{j} |u_j - u_j^*|}{\|u\|} \cdot \frac{\|\lambda\|}{\|\lambda - \lambda^*\|} = \sum_{i} |\Delta u_i| \cdot \frac{\|\lambda_i\|}{\|\Delta \lambda_i\|}
\]

Where:

- \(\lambda\) = eigenvalue
- \(\lambda^*\) = perturbed eigenvalue
- \(u\) = eigenvector
- \(u^*\) = perturbed eigenvector

Now we compare the response of two different algorithms at the perturbed eigenvalue: the singular linear system solving (traditional method) and the iterative inverse algorithm. The first one is used by MEigenvec() function while the last one is used by the MEigenvec_inv function.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(\lambda)</th>
<th>(\Delta \lambda)</th>
<th>(\Delta \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100.0001</td>
<td>0.0001</td>
<td>100.3</td>
</tr>
</tbody>
</table>

| \(u\) | \(\Delta u\) | \(|u|\) | \(\Sigma |\Delta u|\) |
|-------|-------------|-------|-----------------|
| 1 | 0.99981665 | 1.83E-04 | 1.00000000 |
| 12 | 12.00028336 | 2.36E-05 | 12.00000085 |
| 7 | 7.00005834 | 8.33E-06 | 7.00000046 |
| -3 | -3.00003333 | 1.11E-05 | -3.00000020 |
| -1 | -1.00000000 | 0 | -1.00000007 |

The iterative inverse algorithm returns an eigenvector affected by a very small error even if the error of the eigenvalues is substantial (0.3%). On the other hand, the first method computes a sufficiently accurate eigenvector only if the eigenvalue error is very small (0.0001%). Note that for larger errors the first method fails, returning the null vector.

On the contrary, the iterative inverse algorithm tolerates a large amount of error in the eigenvalue. This can be shown by the instability factor

| \(\lambda\) | \(\Delta \lambda\) | \(\Sigma |u|\) | \(\Sigma |\Delta u|\) |
|----------|--------------------|------------|-----------------|
| 100.0001 | 0.0001 | 14.28 | 0.000226 |

| \(\lambda\) | \(\Delta \lambda\) | \(\Sigma |u|\) | \(\Sigma |\Delta u|\) |
|----------|--------------------|------------|-----------------|
| 100.3 | 0.3 | 14.28 | 2.69E-07 |

\[S_1 = 15.85\]

\[S_2 = 6.3E-06\]

As we can see, the difference is quite evident. In the last case the ill-conditioned matrix (with eigenvalues very close to each other) exhibits an instability factor of the iterative inverse algorithm less then \(10^5\) times the other one. Clearly this is a good reason for using it.
Matrix Generator

This is a set of useful tools for generating several types of matrices

Function MRnd \((n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse])\)

Function MRndEig \((\text{Eigenvalues}, [\text{MatInteger}])\)

Function MRndEigSym \((\text{Eigenvalues})\)

Function MRndRank \(n, [\text{Rank}], [\text{Det}], [\text{MatInteger}])\)

Function MRndSym \(n, [\text{Rank}], [\text{Det}], [\text{MatInteger}])\)

Function MHilbert \(n\)

Function MHilbertInv \(n\)

Function MHouseholder \(x\)

Function MTartaglia \(n\)

Function MVandermonde \(x\)

Function MRnd \((n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse])\)

Generates a random matrix

Parameters are:

\(n\) = rows

\(m\) = columns (default \(m = n\))

Typ =
- ALL (default) - fills all cells
- SYM - symmetrical
- TRD - tridiagonal
- DIA - Diagonal
- TLW - Triangular lower
- TUP - Triangular upper
- SYMTRD Symmetrical tridiagonal

MatInteger = True (default) for integer matrix, False for decimal

Amax = max number allowed

Amin = min number allowed

Sparse = decimal, from 0 to 1; 0 means no sparse (default), 1 means very sparse

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>symmetric</td>
<td>diagonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.1</td>
<td>-7</td>
<td>-1</td>
<td>-8</td>
<td>9</td>
<td>0</td>
<td>-7</td>
<td>4</td>
<td>-9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.6</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>-7</td>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>9</td>
<td>-6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>=MRnd(4)</td>
<td>=MRnd(4, “sym”)</td>
<td>=MRnd(4, “dia”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>triangular lower</td>
<td>triangular upper</td>
<td>tridiagonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>-9</td>
<td>-2</td>
<td>-4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-5</td>
<td>-10</td>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>.4</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-8</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>-5</td>
</tr>
<tr>
<td>11</td>
<td>.1</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The generation is random; it’s means that each time that you recalculate this function, you get different values. If you don’t want change the values, preserve them with Edit > PasteSpecial > Values.

Function MRndEig \((\text{Eigenvalues}, [\text{MatInteger}])\)

Returns a general real matrix with a given set of eigenvalues
Function MRndEigSym(Eigenvalues)
Returns a symmetric real matrix with a given set of eigenvalues

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Eigenv. matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.758</td>
<td>0.326</td>
<td>-0.55</td>
<td>0.587</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>1.679</td>
<td>0.316</td>
<td>-0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>1.4</td>
<td>2</td>
<td>0.55</td>
<td>0.316</td>
<td>2.738</td>
<td>0.218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>1</td>
<td>0.587</td>
<td>0.299</td>
<td>0.219</td>
<td>3.826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(=MRndEig(A2:A5))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(=MRndEigSym(A2:A5))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function MRndRank(n, [Rank], [Det], [MatInteger])
Returns a real matrix with a given Rank or Determinant
Note: if Rank < max dimension then always Det = 0

Function MRndSym(n, [Rank], [Det], [MatInteger])
Returns a real symmetric matrix with a given Rank or Determinant
Note: if Rank < max dimension then always Det = 0

Function MRndUni(n, [MatInteger])
Returns an unitary matrix (Det=1)

Function MHilbert(n)
Returns the (n x n) Hilbert's matrix
Note: this matrix is always decimal

Function MHilbertInv(n)
Returns the inverse of the (n x n) Hilbert's matrix.
Note: this matrix is always integer

Hilbert matrices are strongly ill-conditioned and are useful for testing algorithms
In the example below we see a (4 x 4) Hilbert matrix and its inverse.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.12</td>
<td>0.13</td>
<td>0.16</td>
<td>0.16</td>
<td>1</td>
<td>-1.20</td>
<td>3.40</td>
<td>-1.40</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.16</td>
<td>-1.20</td>
<td>1.20</td>
<td>-2.70</td>
<td>6.480</td>
<td>-4.200</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>2.40</td>
<td>-2.700</td>
<td>6.480</td>
<td>-4.200</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>-1.40</td>
<td>1.680</td>
<td>-4.200</td>
<td>2.980</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(=MHilbert(4))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(=MHilbertInv(4))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function MHouseholder(x)
Returns the Householder matrix of a given vector x = (x1, x2, ...xn) by the formula:

$$H = I - 2 \frac{xx^T}{\|x\|^2}$$

This kind of matrices are used in several important algorithms as, for example, the QR decomposition

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>0.758</td>
<td>-0.12</td>
<td>-0.24</td>
<td>0</td>
<td>0.588</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0.12</td>
<td>0.941</td>
<td>-0.12</td>
<td>0</td>
<td>0.294</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>-0.24</td>
<td>-0.12</td>
<td>0.795</td>
<td>0</td>
<td>0.588</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-5</td>
<td>0.536</td>
<td>0.239</td>
<td>0.536</td>
<td>0</td>
<td>-0.479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(=MHouseholder(B1:9;E23))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TUTORIAL FOR MATRIX.XLA

Function MTartaglia(n)
Returns the Tartaglia matrix of order n
This kind of matrix (also called Pascal matrix) is ill-conditioned and is useful for testing of algorithms
In the example below we see a (5 x 5) matrix

\[
\begin{align*}
\text{Definition: Tartaglia's matrix is defined as} \\
a_{ij} &= 1 \\
a_{ij} &= \sum_{k=1}^{j} a_{(j-1)k}
\end{align*}
\]

Function MVandermonde(x)
Returns the Vandermonde matrix of a given vector \(x = (x_1, x_2, \ldots, x_n)\)
This matrix is very common in many field of numeric calculus like the polynomial interpolation
Example: Find the 4th degree polynomial that fits the following table

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>600</td>
</tr>
<tr>
<td>-1</td>
<td>521</td>
</tr>
<tr>
<td>1</td>
<td>423</td>
</tr>
<tr>
<td>4</td>
<td>516</td>
</tr>
<tr>
<td>6</td>
<td>808</td>
</tr>
</tbody>
</table>

The generic 4th degree polynomial is

\[p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4\]

We can find the coefficients \(a = (a_0, a_1, a_2, a_3, a_4)\) solving the linear system

\[V a = y\] Where \(V\) is the Vandermonde's matrix

\[
\begin{align*}
\text{Vandermonde matrix} \\
\begin{array}{cccccc}
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1}
\end{array}
\end{align*}
\]
Function GJstep(Mat, [Typ], [IntValue], [tiny])

This function, also available in macro version, has been developed for its didactic scope. It can trace, step by step, the diagonal reduction or triangular reduction of a matrix by the Gauss-Jordan algorithm. Optional parameter Typ can be "D" for Diagonal or "T" for Triangular; the default is D. Optional parameter IntValue = TRUE forces the function to conserve integer values through all steps. Default is FALSE. Optional parameter tiny set the minimum round-off error. (default 2E-15)

The argument Mat is the complete matrix (n x m) of the linear system

Remember that for a linear system:

\[A x = b \]

Example - Study the Gauss-Jordan algorithm for the following system

\[A = \begin{bmatrix} 0 & -10 & 3 \\ 2 & 1 & 1 \\ 4 & 0 & 5 \end{bmatrix} \quad b = \begin{bmatrix} 105 \\ 17 \\ 91 \end{bmatrix} \]

First of all, put all columns in an adjacent 3x4 matrix, for example the range A1:D3. Select the cells where you want the matrix of the next step, in, e.g., the range A5:D7. Insert the array-function

As we can see, the algorithm has exchanged rows 1 and 3, because the pivot \(a_{11} \) was 0

Now, with the range A5:D7 still selected, copy the active selection with CTRL+C

Move to the cell A9, and give the command CTRL+V. The next step will be performed. Continuing in this way we can visualize each step of the elimination algorithm

\[b = \begin{bmatrix} 105 \\ 17 \\ 91 \end{bmatrix} \]
The process ends when the 3x3 matrix becomes the identity matrix. The system solution appears in the last column (4, -6, 15)

Example. Invert the 3x3 matrix by the Gauss-Jordan method

\[
A = \begin{pmatrix}
 1 & 1 & 1 \\
 1 & 2 & 3 \\
 1 & 3 & 6
\end{pmatrix}
\]

For inversion add the 3x3 identity matrix adjacent to the right.

Thus, the inverse matrix is

\[
A^{-1} = \begin{pmatrix}
 3 & -3 & 1 \\
 -3 & 5 & -2 \\
 1 & -2 & 1
\end{pmatrix}
\]

For further details see: Several ways for using the Gauss-Jordan algorithm
Function SysLin(A, b, [IMode], [Tiny])

This function solves a linear system by the Gauss-Jordan algorithm.

\[A \mathbf{x} = \mathbf{b} \quad \text{or} \quad A \mathbf{X} = \mathbf{B} \]

- **A** is the system square matrix (\(n \times n\))
- **x** is the unknown vector (\(n \times 1\)) or the unknown matrix (\(n \times m\))
- **b** is the vector of constant terms (\(n \times 1\)) or a \((n \times m)\) matrix of constant terms

The optional parameters: IMode (default False) sets the floating point (False) or integer arithmetic (True). Integer computation is intrinsically more accurate when the original matrix \(A\) contains only integer elements, but it is also more limited because it may easily reach the overflow limit. Therefore, use IMode only with integer matrices of low size.

The optional parameter Tiny (default is 1E-15) sets the minimum round-off error; any value in absolute less than Tiny will be set to 0.

If the matrix is singular the function returns “singular”

If the matrix is not square the function returns “?"

As known, the above linear equation has only one solution if - and only if -, \(\text{Det}(A) \neq 0\)

Otherwise the solutions can be infinite or even non-existing. In that case the system is called “singular”. Example.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear System (A \mathbf{x} = \mathbf{b})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>b</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>-2</td>
<td>-256</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-1</td>
<td>10</td>
<td>3</td>
<td>2368</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1148</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>738</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><SysLin(B3:E6,G3:G6)></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The parameter **b** can also be a matrix of \(m\) columns. In that case, SysLin simultaneously solves a set of \(m\) systems.

\[
AX = B \Rightarrow \begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 x_{11} & x_{12} & \ldots & x_{1m} \\
 x_{21} & x_{22} & \ldots & x_{2m} \\
 x_{31} & x_{32} & \ldots & x_{3m}
\end{bmatrix}
= \begin{bmatrix}
 b_{11} & b_{12} & b_{1m} \\
 b_{21} & b_{22} & \ldots & b_{2m} \\
 b_{31} & b_{32} & \ldots & b_{3m}
\end{bmatrix}
\]

Example.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>6</td>
<td>3</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\{=\text{SysLin(A2:D6,B2:G6,TRUE)}\}

Note that in this case we have set the IMode = True, that forces the integer exact algorithm. In floating point the approximate average error of the solution would be about 1E-14
Function SysLin3(Mat3, y)

This function solves a tridiagonal linear system. The argument Mat3 is the array \((n \times 3)\) representing the \((n \times n)\) matrix of the linear system. Remember that for a linear system:

\[A \mathbf{x} = \mathbf{y} \]

- **A** is the system square matrix \((n \times n)\)
- **x** is the unknown vector \((n \times 1)\)
- **y** is the constant terms vector \((n \times 1)\)

As known, the above linear equation has only one solution if - and only if - , \(\det(A) \neq 0\) Otherwise the solutions can be infinite or even non-existing. In that case the system is called "singular".

Example - let' se how to solve a 16 x 16 tridiagonal linear system \(A \mathbf{x} = \mathbf{y}\)

We pass to the function only 46 values (the first cell of **a** and the last of **c** are always 0) instead of 256 values.

Tip: note that this trick allows us to solve systems larger that 256 x 256 (the max square matrix in a pre-2007 Excel worksheet)

Function SysLinIterG(A, b, x0, [Nmax], [w])

This function performs the iterative Gauss-Seidel algorithm with relaxation for solving a linear system, and has been developed for its didactic scope in order to study the convergence of the iterative process.

\[A \mathbf{x} = \mathbf{b} \]

- **A** is the system matrix (range \(n \times n\))
- **b** is the system vector (range \(n \times 1\))
- **x** is the starting approximate solution vector (range \(n \times 1\))
- **Nmax** is the max step allowed (default = 200)
- **w** is the relaxation factor (default = 1)

The function returns the vector after \(Nmax\) steps; if the matrix is convergent, this vector approaches to the exact solution.

In the example below the 20th iteration step of this iterative method is shown.
As we can see, the values approximate the exact solution \([4, -3, 5]\). Precision increases with an increasing number of steps (of course, for a convergent matrix)

For \(N_{\text{max}}=1\), we can study the iterative method step by step

\[
\begin{align*}
 x_1 &= \text{SysLinIterG}(A, b, x_0) \\
 x_2 &= \text{SysLinIterG}(A, b, x_1) \\
 x_3 &= \text{SysLinIterG}(A, b, x_2) \\
 \vdots \ & \vdots \\
 x_{20} &= \text{SysLinIterG}(A, b, x_{19})
\end{align*}
\]

In the example below we see the trace of the iteration values

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-1</td>
<td>2</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-7</td>
<td>6</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Gauss-Seidel method} \\
x_1 \quad x_2 \quad x_3
\]

\[
\begin{array}{cccc}
 5.18267 & -6.0867 & 7.8333 \\
 2.51110 & -1.1603 & 3.60317 \\
 4.7709 & -3.977 & 5.74039 \\
 3.59037 & -2.4824 & 4.60752 \\
 4.21709 & -3.2744 & 5.20056
\end{array}
\]

Usually, the convergence speed is quite low, but it can be greatly accelerate by the Aitken extrapolation formula, also called as "square delta" extrapolation, or by tuning the relaxation factor \(w\).

Function \(\text{SysLinT(Mat, b, \{typ\}, \{tiny\})}\)

This function solves a triangular linear system by the forward and backward substitution algorithms.

\[
A \; \mathbf{x} = \mathbf{b}
\]

- \(A\) is the triangular - upper or lower - system square matrix \((n \times n)\)
- \(\mathbf{x}\) is the unknown \((n \times 1)\) vector or the \((n \times m)\) unknown matrix
- \(\mathbf{b}\) is a constant \((n \times 1)\) vector or a constant \((n \times m)\) matrix

As known, the above linear system has only one solution if - and only if - \(\det(A) \neq 0\). Otherwise the solutions can be infinite or even non-existing. In that case the system is called "singular".

The parameter \(\mathbf{b}\) can be also a \((n \times m)\) matrix \(\mathbf{B}\). In that case the function returns a matrix solution \(\mathbf{X}\) of the multiple linear system.
Parameter typ = "U" or "L" switches the function from solving for the upper-triangular (back substitutions) or lower-triangular system (forward substitutions); if omitted, the function automatically detects the type of the system.
Optional parameter Tiny (default is 1E-15) sets the minimum round-off error; any absolute value less than Tiny will be set to 0.

Example of (7 x 7) system

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>-10</td>
<td>-5</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-10</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>-7</td>
<td>-10</td>
<td>1</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>-6</td>
<td>0</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

\[(=\text{SysLinT}(\text{A? 0B}, [12:1B])) \]

Function SysLinIterJ(A, b, x0, [Nmax])

This function performs the iterative Jacobi algorithm for solving a linear system and was developed for its didactic scope in order to study the convergence of the iterative process.

\[A \times x = b \]

Parameter \(A \) is the system matrix (range n x n)
Parameter \(b \) is the system vector (range n x 1)
Parameter \(x_0 \) is the starting approximate solution vector (range n x 1)
Parameter \(\text{Nmax} \) is the max step allowed (default = 1)

The function returns the vector at Nmax step; if the matrix is convergent, this vector is closer to the exact solution.

This function is similar to the SysLinIterG function.
For further details see Function SysLinIterG

Function SysLinSing(A, [b], [MaxErr])

Singular linear system can have infinitely many solutions or even none. This happens when \(\text{DET}(A) = 0 \). In that case the following matrix equations:

\[A \times x = 0 \quad \text{or} \quad A \times b \]

define an implicit Linear Function - also called Linear Transformation - between the vector spaces, that can be put in the following explicit form

\[y = Cx + d \]

where \(C \) is the transformation matrix and \(d \) is the known vector; \(C \) is a square matrix having the same columns of \(A \), and \(d \) the same dimension of \(b \)
This function returns the matrix \(C \) in the first n columns; eventually, a last column contains the vector \(d \) (only if \(b \) is not missing). If the system has no solution, this function returns "?"
The optional parameter MaxErr sets the relative precision level; elements lower than this level are forced to zero. Default is 1E-13.
This function solves also systems where the number of equations is less than the number of variables; in other words, \(A \) is a rectangular matrix \((n \times m)\) where \(n < m \).

Example: Solve the following system

\[
\begin{bmatrix}
1 & 8 & 10 \\
0 & 1 & 7 \\
-2 & -16 & -20
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = 0
\]

The determinant of the matrix \(A \) is 0. The system has infinite solution given by matrix \(C \) and vector \(d \).

Example 1: Find the solution of the following homogeneous system

\[
\begin{bmatrix}
1 & 8 & 10 \\
0 & 1 & 7 \\
-2 & -16 & -20
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = 0
\]

Because the determinant is 0, the homogeneous system has always solutions; they can be put in the following form

\[
y = C x
\]

Looking at the first diagonal of the matrix \(C \) we discover a 1 in column 3, row 3. This means that there is only one independent variable; all the others are dependent variables. This means also that the rank of the matrix is 2.

Changing values to the independent variable \(x_3 \) we get all the numerical solution of the given system

Example, setting \(x_3 = 1 \) we have \(y = [46, -7, 1]^T \), \(x_3 = -1 \) we have \(y = [-94, 14, -2]^T \) and so on.

Example 2: Find the solution of the following homogeneous system

\[
\begin{bmatrix}
x_1 + 3x_2 - 4x_3 = 0 \\
13x_1 + 39x_2 - 52x_3 = 0 \\
9x_1 + 27x_2 - 36x_3 = 0
\end{bmatrix}
\]

By inspection of the first diagonal, we see that there are 2 elements different from 0. So the independent variables are \(x_2 \) and \(x_3 \). This means that the rank of the matrix is 1.

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix} =
\begin{bmatrix}
0 & -3 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix} =
\begin{bmatrix}
-3x_2 + 4x_3 \\
x_2 \\
x_3
\end{bmatrix}
\]
TUTORIAL FOR MATRIX.XLA

It is easy to prove that this linear function is a plane in \(\mathbb{R}^3 \). In fact, eliminating the variable \(x_2 \) and \(x_3 \) we get:

\[y_1 = -3y_2 + 4y_3 \]

And substituting the variables \(y_1, y_2, y_3 \) with the usually variables \(x, y, z \), we get:

\[x + 3y - 4z = 0 \]

Example 3: Find the solution of the following non-homogeneous system

\[
\begin{bmatrix}
1 & 8 & 10 \\
0 & 1 & 7 \\
-2 & -16 & -20
\end{bmatrix}
\cdot
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
-4 \\
0
\end{bmatrix}
\]

As we can see, the rank of the given system is 2; so there is one independent variable. The solutions can be written as:

\[y = Cx + d \]

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 46 \\
0 & 0 & -7 \\
0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
+
\begin{bmatrix}
32 \\
-4 \\
0
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
=
\begin{bmatrix}
46x_3 + 32 \\
-7x_3 \\
x_3
\end{bmatrix}
\]

Function SysLinTpz(A, b)

Solves a Toeplitz linear system by Levinson method

Parameter \(A \) is a Toeplitz matrix that can be written as a common square matrix (n x n) or also in a compact and efficient vector form (2n-1). See Toeplitz matrices for further details

Parameter \(b \) is the vector (n) of constant terms

Example:

\[
\begin{array}{|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
A & y & 133 & 22 & 494 & 409 & 208 \\
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
x & 10 & 32 & 30 & 46 & 50 & 50 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
b & 133 & 335 & 494 & 409 & 208 \\
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
x & 10 & 22 & 30 & 46 & 50 & 50 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
Toeplitz matrix & 6 & 4 & 3 & -1 & -1 \\
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
b & 133 & 335 & 494 & 409 & 208 \\
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
x & 10 & 22 & 30 & 46 & 50 & 50 \\
\hline
\end{array}
\]

The SysLinTpz function saves more than 700% of the elaboration time. It is suitable for large matrices. But of course there is a also drawback: not all Toeplitz linear system can be computed. Sometime the algorithm fails and returns "?" even if the Toplitz matrix is not singular. When this happens we have to come back to the SysLin function
Levinson’s method has been demonstrated to be successful when the matrix is diagonal dominant

Function TraLin(A, x, [B])

This function performs the Linear Transformation

\[y = Ax + b \]

Where:
- **A** is the \((n \times m)\) matrix of transformation
- **b** is the \((n \times 1)\) known vector default is the null vector
- **x** is the \((m \times 1)\) vector of independent variables
- **y** is the \((n \times 1)\) vector of dependent variables

This function accepts also matrices for **x** and **b**; in that case the matrix transformation is

\[Y = AX + B \]

Where:
- **A** is the matrix \((n \times m)\) of transformation
- **B** is the known matrix \((n \times p)\); default is the null vector
- **X** is the matrix of independent variables \((m \times p)\)
- **Y** is the matrix of dependent variables \((n \times p)\)

Matrix Geometric action

Linear transformations have a useful geometric interpretation\(^1\).

Take a point \(x(x_1, x_2)\) of the plane and compute the linear transform \(y = [A]x\), where **A** \((2 \times 2)\) is a matrix, \(y(y_1, y_2)\) a point. We wonder if there is a geometrical relation between the points \(x\) and \(y\).

The relation exists, and becomes evident once we perform the transformation of the points belonging to the unitary circle.

In Excel we can easily generate the unitary circle pattern with the formula

\[x = (\cos(k \cdot \Delta \alpha), \sin(k \cdot \Delta \alpha)) \quad \text{for } k = 1, 2 \ldots N \quad \text{where } \Delta \alpha = 2\pi/N \]

If \(x\) is a row-vector it is useful to have the dual Linear Transform for row-vectors

\[y^T = x^T A^T + b^T \]

Here is a possible arrangement.

\(^1\) A smart, cool, geometric description was developed by Todd Will at University of Wisconsin-La Crosse. I suggest to have a look at his web pages [http://www.uwlax.edu/faculty/will/svd/](http://www.uwlax.edu/faculty/will/svd). For those that think that Linear Algebra cannot be amusing. Don’t miss them.
The blue line corresponds to the unitary circle points; the pink line belongs to the transformed y points. Thus, the circle has been transformed into a centred ellipse; if we also add \(b \neq 0 \), we get a translated ellipse. Each point of the unitary circle has been projected on the ellipse.

We have to point out that the projection is not radial but it happens in a very strange way. Look at the image to the right. It shows how a point on the circle moves to the ellipse by the linear transformation. It seems as if the circle would be enlarged (stretched), and then rotated (like a "whirlpool").

Other dimensions
The effect is the same – changing the name – in higher dimension

<table>
<thead>
<tr>
<th>Space</th>
<th>Original pattern</th>
<th>Transf. pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{R}^2)</td>
<td>circle</td>
<td>(\Rightarrow) ellipse</td>
</tr>
<tr>
<td>(\mathbb{R}^3)</td>
<td>sphere</td>
<td>(\Rightarrow) ellipsoid</td>
</tr>
<tr>
<td>(\mathbb{R}^n)</td>
<td>hyper-sphere</td>
<td>(\Rightarrow) hyper-ellipse</td>
</tr>
</tbody>
</table>

Function MOrthoGS(A)

This function performs orthogonalization with the modified Gram-Schmidt method.

Argument \(A \) is a matrix (m x n) containing n independent vectors.

This function returns the orthogonal matrix \(U = [u_1, u_2, \ldots, u_n] \)

\[
U = (v_1, v_2, v_3, \ldots, v_n)
\]

Where:

\[
v_i \cdot v_j = \begin{cases}
1 &\text{if } i = j \\
0 &\text{if } i \neq j
\end{cases}
\]

In this example, we determine an orthogonal basis for the subspace generated by the base-vectors.
Note that we can build the orthogonal basis by two different processes: using the Gram-Schmidt algorithm or the QR factorization.

Gram-Schmidt Orthogonalization

This popular method is used to build an orthogonal-normalized base from a set of \(n \) independent vectors.

\((v_1, v_2, v_3, ..., v_n) \)

The orthogonal basis \(U \) is build with the following iterative algorithm

For \(k = 1, 2, 3...n \)

\[
\begin{align*}
 w_k &= v_k - \sum_{j=1}^{k-1} (u_k \cdot u_j) u_j \\
 u_k &= \frac{w_k}{\|w_k\|}
\end{align*}
\]

Developing this algorithm, we see that the vector \(k \) is built from all \(k-1 \) previous vectors

At the end, all vectors of the bases \(U \) will be orthogonal and normalized.

This method is very straightforward, but it is also very sensitive to the round-off error. This happens because the error propagates itself along the vectors from 1 to \(n \)

The so-called "modified Gram-Schmidt" algorithm, shown here, is a more stable variant

For \(k = 1, 2, 3...n \)

\[
q_k = \frac{v^{(k)}}{\|v^{(k)}\|}
\]

For \(j = k+1, ...n \)

\[
v_j^{(k+1)} = v_j^{(k)} - (v_j^{(k)} \cdot q_k) q_k
\]
Function MCholesky(A)

This function returns the Cholesky decomposition of a symmetric matrix

\[A = L \cdot L^T \]

where \(A \) is a symmetric matrix, \(L \) is a lower triangular matrix

This decomposition works only if \(A \) is positive definite. That is:

\[v \cdot A \cdot v > 0 \quad \forall v \]

or, in other words, when the eigenvalues of \(A \) are all-positive. This function always returns a matrix.

Inspecting the diagonal elements of the returned matrix we can discover if the matrix is positive definite: if the diagonal elements are all positive then the matrix \(A \) is also positive definite.

Example - Determine if the given matrices are positive definite

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2</td>
<td>1 6 4</td>
</tr>
<tr>
<td>1 6 4</td>
<td>2 4 7</td>
</tr>
</tbody>
</table>

On the left, we see the decomposition of matrix \(A \); the triangular matrix \(L \) has all diagonal elements positive; then the matrix \(A \) is positive definite and the eigenvalues are all positive.

On the contrary, the decomposition of the matrix \(B \) shows a negative number at position \(a_{33} \); then we can say that \(B \) is not positive definite and at least one eigenvalues is negative.

This decomposition is useful also for solving the so-called "generalized eigenproblem"

Function MLU(A, optional Pivot)

This function returns the LU decomposition of a given square matrix \(A \). It uses Crout's algorithm

\[A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \alpha_{21} & 1 & 0 \\ \alpha_{31} & \alpha_{32} & 1 \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ 0 & \beta_{22} & \beta_{23} \\ 0 & 0 & \beta_{33} \end{bmatrix} \]

Where \(L \) is a lower triangular matrix, and \(U \) is an upper triangular matrix

If the square matrix has \((n x n)\) dimension, this function returns a matrix \((n x 2n)\) where the first \(n \) columns are the matrix \(L \) and the last \(n \) columns are the matrix \(U \).

The parameter Pivot (default=TRUE) activates the partial pivoting.

Note: that if partial pivot is active (TRUE) the LU decomposition may refer to a permutation of \(A \).
Note: LU decomposition without pivoting does not work if the first diagonal element of \(A \) is zero.

As we can see, in that case, the matrix product \(B \) is different from the given matrix \(A \).

We will see how to solve the problem by introducing a permutation matrix.

LU and Linear System. The LU decomposition is often used to solve linear system

\[
A \mathbf{x} = \mathbf{b} \quad \Rightarrow \quad \text{LU decomposition} \quad \Rightarrow \quad \text{LU} \mathbf{x} = \mathbf{b} \quad \Rightarrow \quad \text{L} (\text{Ux}) = \mathbf{b}
\]

The original system is now split into two simpler systems.

\[
\text{L} \mathbf{y} = \mathbf{b} \quad \text{(1)} \quad \text{U} \mathbf{x} = \mathbf{y} \quad \text{(2)}
\]

First of all, we solve the vector \(\mathbf{y} \) from the system (1), then, substituting \(\mathbf{y} \) into (2), we solve for the vector \(\mathbf{x} \). Solving a triangular system is quite simple.

For \(i = 1, 2, \ldots N \):

Forward substitution. For lower triangular system like \(\text{L} \mathbf{y} = \mathbf{b} \)

\[
y_j = \frac{1}{a_{ii}} \left(b_j - \sum_{j=1}^{i-1} a_{ij} y_j \right)
\]

For \(i = N, N-1, \ldots, 2, 1 \):

Backward substitution. For upper triangular system like \(\text{U} \mathbf{x} = \mathbf{y} \)

\[
x_i = \frac{1}{\beta_{ii}} \left(y_i - \sum_{j=i+1}^{N} \beta_{ij} x_j \right)
\]

For a good and accurate explanation of this method see [2]

When pivoting is activate the right decomposition formula is \(A = P \text{LU} \), where \(P \) is a permutation matrix

This function can return also the permutation matrix in the last \(n \) columns

Globally, the output of MLU function will be:

\[
\text{Columns 1, n} \quad \text{Matrix} \text{L} \\
\text{Columns n+1, 2n} \quad \text{Matrix} \text{U} \\
\text{Columns 2n+1, 3n} \quad \text{Matrix} \text{P}
\]

Example: find the factorization of the following 3x3 matrix \(A \)
Example: find the factorization of matrix A with $a_{11} = 0$

Note that the permutation matrix is returned in the last 3 columns just for practical reason. Often the user is not interested in the matrix P (for example if the pivot = false then $P =$ identity matrix). Selecting only the first 6 columns and pasting the function MLU, the P matrix stays hidden.

Remember that, in the matrix product PLU, the permutation matrix must always be the first (see image).

Function MQR(Mat)

This function performs the QR decomposition of a square ($n \times n$) matrix $A = Q \cdot R$

A is a rectangular ($m \times n$) matrix, with $m \geq n$.

Q is an orthogonal ($m \times n$) matrix.

R is an upper triangular ($n \times n$) matrix.

This function returns a matrix ($m \times (n + n)$), where the first ($m \times n$) block is Q and the first n rows of the second ($m \times n$) block is R. The last $m - n$ rows of the second block are all zero.

The QR decomposition forms the basis of an efficient method for calculating the eigenvalues. See also the function MEigenvalQR(Mat, Optional MaxLoops, Optional Acc)

Example 1°: Perform the QR decomposition for the given square matrix

1 Thanks to Ola Mårtensson for the rectangular version of QR algorithm
Example 2° Perform the QR decomposition for the given rectangular matrix

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>(5 x 3)</td>
<td>B</td>
<td>(5 x 3)</td>
<td>C</td>
<td>(3 x 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>0.32</td>
<td>0.546</td>
<td>-0.68</td>
<td>-3.16</td>
<td>2.86</td>
<td>1E-16</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-0.63</td>
<td>-0.47</td>
<td>-0.17</td>
<td>0</td>
<td>1.703</td>
<td>1.174</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0.316</td>
<td>-0.059</td>
<td>-0.36</td>
<td>0</td>
<td>9E-17</td>
<td>2.573</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0.587</td>
<td>0.509</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-0.63</td>
<td>0.117</td>
<td>0.335</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Function MQRiter(Mat, [MaxLoops])

This function performs the diagonalization of a symmetric matrix by the QR iterative process. The heart of this method is the iterative QR decomposition

\[A = QR \Rightarrow A = RQ \]
\[A_1 = QR_1 \Rightarrow A_1 = RQ_1 \]
\[A_2 = QR_2 \Rightarrow A_2 = RQ_2 \]
\[A_3 = QR_3 \Rightarrow A_3 = RQ_3 \]
\[A_n = QR_n \Rightarrow A_n = RQ_n \]

If the matrix \(A \) has: \(| \lambda_1 | > | \lambda_2 | > | \lambda_3 | > ... > | \lambda_n | \), then the sequence converges to the diagonal matrix of eigenvalues

\[\lim_{n \to \infty} A_{n+1} = [\lambda] \]

If the matrix is not symmetric the process gives a triangular matrix where the diagonal elements are still the eigenvalues. Optional parameter \(MaxLoops \) (default 100) sets the max iteration allowed.

Example.
Function MQH(A, b)

This function performs the QH decomposition of the square matrix A with the vector b. The function returns a matrix \((n \times 2n)\), where the first \((n \times n)\) block contains \(Q\) and the second \((n \times n)\) block contains \(H\).

\[
A = QHQ^T
\]

where \(Q\) is an orthogonal matrix and \(H\) is a Hessenberg matrix. If \(A\) is symmetric, \(H\) is a tridiagonal matrix.

This function uses the Arnoldi-Lanczos algorithm.

Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-1</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Matrix } Q\) \[
\begin{bmatrix}
0.71 & -0.47 & -0.27 & 0.45 & 5 & 5.67 & 0.28 & 2.97 \\
0 & 0.71 & -0.6 & 0.37 & 6 & 1.58 & -0.47 & -1.8 \\
0.71 & 0.47 & 0.27 & -0.45 & 0 & 4.19 & 0.88 & -3.9 \\
0 & 0.24 & 0.7 & 0.67 & 0 & 3 & 3.1 & 5.58
\end{bmatrix}
\]

\(\text{Matrix } H\)

Function MExtract(A, i_pivot, j_pivot)

Returns the sub-matrix extracted from \(A\) by eliminating one row and one column.

i_pivot = row to eliminate

j_pivot = column to eliminate

Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>i_pivot= 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>-4</td>
<td>j_pivot= 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-2</td>
<td>-1</td>
<td>-20</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Extract(B2,E5,H2,H3)}\)
Function PathFloyd(G)

This function, now available also in macro version, returns the matrix of all shortest-path pairs of a graph. This is an important problem in Graph Theory and has applications in several different fields: transportation, electronics, space syntax analysis, etc. The all-pairs shortest-path problem involves finding the shortest paths between all pairs of vertices in a graph that can be represented as an adjacency matrix \([G]\) in which each element \(a_{ij}\) - called node - represents the "distance" between element \(i\) and \(j\). If there is no link between two nodes, we leave the cell blank or we can set any non-numeric symbol you like: for example "x".

This function uses Floyd sequential algorithm.

Example. - A simple directed graph and its adjacency matrix \(G\)

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
1 & 0 & 1 & x \\
2 & x & 0 & 1 & 3 \\
3 & x & x & 0 & x \\
4 & 3 & x & 4 & 0 \\
\end{array}
\]

Function PathMin(G)

Returns a vector containing the shortest paths of a graph; the row and column of the cell

This function uses the PathFloyd() function to find the all-pairs shortest paths of the given graph \(G\).

PathMin(G) => \{ path_min, i_min ; j_min \}

Graphs theory recalls

Find the shortest distance between 6 sites drown in the following road map

The map can be expressed in the following matrix
In the cell 1,2 we fill the distance between city 1 and city 2, that is 18 Km;
In the cell 1,3 we fill "x" because there is not a direct way between city 1 and city 3.
And so on...
We observe that the matrix is symmetric because the distance \(d_{ij} \) is the same of \(d_{ji} \); so we really have to compute only half the matrix.
The above "adjacent matrix" reports only the direct distances between each pair of cities.
But we can join, for example, city 1 and city 3 in several different paths:
city 1 - city 2 - city 3 = 18 + 15 = 33 Km
city 1 - city 4 - city 6 - city 3 = 10 + 24 + 8 = 42 Km etc.
The first one is the shortest distance path for city 1 and city 3
We can repeat this search for any other pair, and find the shortest path for all pairs of cities. But it will tedious. The Floyd algorithm automates just this task. Applying this algorithm to the above matrix we get the following matrix

<table>
<thead>
<tr>
<th>city 1</th>
<th>city 2</th>
<th>city 3</th>
<th>city 4</th>
<th>city 5</th>
<th>city 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>city 1</td>
<td>0</td>
<td>18</td>
<td>x</td>
<td>10</td>
<td>x</td>
</tr>
<tr>
<td>city 2</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>city 3</td>
<td>x</td>
<td>15</td>
<td>0</td>
<td>x</td>
<td>9</td>
</tr>
<tr>
<td>city 4</td>
<td>10</td>
<td>10</td>
<td>x</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>city 5</td>
<td>x</td>
<td>8</td>
<td>9</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>city 6</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>24</td>
<td>5</td>
</tr>
</tbody>
</table>

This matrix reports the shortest distance between each couple of city pair of cities
For example the shortest distance between city 1 and city 5 is 26 Km
For example the shortest distance between city 3 and city 4 is 25 Km

<table>
<thead>
<tr>
<th></th>
<th>city 1</th>
<th>city 2</th>
<th>city 3</th>
<th>city 4</th>
<th>city 5</th>
<th>city 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>city 1</td>
<td>0</td>
<td>18</td>
<td>33</td>
<td>10</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>city 2</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>city 3</td>
<td>33</td>
<td>15</td>
<td>0</td>
<td>25</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>city 4</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>0</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>city 5</td>
<td>26</td>
<td>8</td>
<td>9</td>
<td>18</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>city 6</td>
<td>31</td>
<td>13</td>
<td>8</td>
<td>23</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

As we can see, finding the shortest paths is simple for a low set of nodes, but becomes quite difficult for a larger set of nodes.

The problem is more difficult if the paths are "oriented"; for example if one or more ways are only one-directional

Let see this example

The adjacent matrix is built in the same way; the only difference is that in this case the matrix is asymmetric.

For example between the node 1 and node 2 there is a direct path of 1 km, but the reverse is not true

<table>
<thead>
<tr>
<th></th>
<th>node 1</th>
<th>node 2</th>
<th>node 3</th>
<th>node 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>node 1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>node 2</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>node 3</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>node 4</td>
<td>3</td>
<td>x</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Applying the Floyd algorithm we get the following matrix
Reading this matrix is simple:

To go from node 1 to the node 2 there's the shortest path of 1 km; to return from node 2 to node 1 there's the shortest path of 6 km.

We note that from node 3 there is no path to reach any other nodes. The row of node 3 has all "x"s (meaning no paths) except for itself. But it can be reached from all other nodes.

Let's see how use this array function in Excel

Shortest path

First of all, write the adjacent matrix (we have also shown column and row headers but they are dispensable)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>city 1</td>
<td>0</td>
<td>18</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>city 2</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>6</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>city 3</td>
<td>x</td>
<td>15</td>
<td>0</td>
<td>x</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>city 4</td>
<td>10</td>
<td>10</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>city 5</td>
<td>x</td>
<td>6</td>
<td>9</td>
<td>x</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>city 6</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>24</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now choose the site of the shortest-path matrix; that is the matrix returned by function PathFloyd. It must be inserted as an array function. That returns a 6 x 6 matrix.

Example. Assume that you choose the area below the first matrix: select the area B10:G15 and now insert the function PathFloyd(). Now you must input the adjacent matrix; select the area B2:G7 of the first matrix.
Now gives the “ctrl+shift+enter” keys sequence
That is:
1. Press and keep down the CTRL and
 SHIFT keys
2. Press the ENTER key

The solution values fill all the cells that you have
selected.
Note that Excel shows the function surrounded by
two braces { }
These symbols mean that the function returns an
array.

The matrix returned is the shortest-path matrix

```
<table>
<thead>
<tr>
<th></th>
<th>city 1</th>
<th>city 2</th>
<th>city 3</th>
<th>city 4</th>
<th>city 5</th>
<th>city 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>city 1</td>
<td>0</td>
<td>18</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>city 2</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>x</td>
</tr>
<tr>
<td>city 3</td>
<td>x</td>
<td>15</td>
<td>0</td>
<td>x</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>city 4</td>
<td>10</td>
<td>10</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>24</td>
</tr>
<tr>
<td>city 5</td>
<td>x</td>
<td>8</td>
<td>9</td>
<td>x</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>city 6</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>24</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
```

E10: =PathFloyd(B2:G7)
Singular Value Decomposition

Function `SVDU(A)`
Function `SVDD(A)`
Function `SVDV(A)`

Singular Value Decomposition of a \((n \times m)\) matrix \(A\) provides three matrices, \(U, D, V\) performing the following decomposition\(^1\):

\[
A = U \cdot D \cdot V^T
\]

Where: \(p = \min(n, m)\)
\(U\) is an orthogonal matrix \((n \times p)\)
\(D\) is a square diagonal matrix \((p \times p)\)
\(V\) is an orthogonal matrix \((m \times p)\)

Each of the above functions returns one of the SVD matrices.

Example.

\[
\begin{bmatrix}
1 & 1 \\
0 & 1 \\
1 & 0
\end{bmatrix}
=
\begin{bmatrix}
-\sqrt{6}/3 & 0 \\
-\sqrt{6}/6 & -\sqrt{2}/2 \\
-\sqrt{6}/6 & \sqrt{2}/2
\end{bmatrix}
\begin{bmatrix}
\sqrt{3} & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
-\sqrt{2}/2 & \sqrt{2}/2 \\
-\sqrt{2}/2 & -\sqrt{2}/2
\end{bmatrix}^T
\]

\[
\begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
\sqrt{3} & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}
=
\begin{bmatrix}
-\sqrt{2}/2 & -\sqrt{2}/2 \\
-\sqrt{3}/2 & \sqrt{3}/2 \\
0 & -\sqrt{2}/2 \\
0 & -\sqrt{2}/2
\end{bmatrix}
\begin{bmatrix}
-\sqrt{6}/3 & 0 \\
0 & \sqrt{3}/2 \\
0 & \sqrt{6}/6
\end{bmatrix}
\begin{bmatrix}
-\sqrt{2}/2 & \sqrt{2}/2 \\
-\sqrt{2}/2 & -\sqrt{2}/2
\end{bmatrix}^T
\]

Example. Find the SVD decomposition for the given matrix.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>U</td>
<td>D</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-5</td>
<td>0.57</td>
<td>0.77</td>
<td>-0.3</td>
<td>7.35</td>
<td>0</td>
<td>0</td>
<td>-0.3</td>
<td>0.92</td>
<td>0.29</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-0.2</td>
<td>0.45</td>
<td>0.88</td>
<td>0</td>
<td>3.29</td>
<td>0</td>
<td>0.37</td>
<td>-0.2</td>
<td>0.81</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-3</td>
<td>5</td>
<td>-0.3</td>
<td>0.45</td>
<td>-0.4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-0.9</td>
<td>-0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

From the \(D\) matrix of singular values we get the max and min values to compute the **condition number** \(m^2\), used to measure the ill-conditioning of a matrix. In fact, we have:

\[
m = 7.95 / 1 = 7.95
\]

The SVD decomposition of a square matrix always returns square matrices of the same size, but for a rectangular matrix we should pay a bit more attention to the correct dimensions. Let’s see this example:

\(^1\) Some authors give a different definition for SVD decomposition, but the main concept is the same.
\(^2\) With respect to the norm 2
Sometimes it happens that the matrix is singular or “near singular”. The SVD decomposition evidences this fact, and allows computing the matrix rank in a very fast way. You have to count the singular values greater than zero (or greater than a small value, usually 1E-13). For this we need only the singular values matrix returned by the function SVDD. Let’s see.

Nomenclature: The matrices returned by the SVD are sometimes called U (hanger), D (stretcher), V (aligner).

So the decomposition for a matrix A can be written as:

$$(\text{any matrix}) = (\text{hanger}) \times (\text{stretcher}) \times (\text{aligner})$$

Condition Number

This number is conventionally used to indicate how ill-conditioned a matrix is. Formally the condition number of a matrix is defined by the SVD decomposition as the ratio of the largest element to the smallest element of diagonal matrix D.

Given the SVD decomposition:

$$A = UDV^T$$

where:

$$D = \text{diag}[d_1, d_2, \ldots, d_n]$$

The condition number is defined as:

$$\kappa = \max_i (d_i) / \min_j (d_j) \quad i = 1 \ldots n, j = 1 \ldots n$$

1. For further details see in Internet the web pages “Introduction to the Singular Value Decomposition” by Todd Will, UW-La Crosse, Wisconsin, 1999 and the web pages “Matrices Geometry & Mathematic” by Bill Davis and Jerry Uhl
A matrix is ill-conditioned if its condition number is very large. For 32bit double precision arithmetic this number is about 1E12. It can be easily calculated from the D matrix returned by the function SVDD

<table>
<thead>
<tr>
<th>Hilbert matrix</th>
<th>SVD_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 1/3 1/4</td>
<td>1 5002 0 0 0</td>
</tr>
<tr>
<td>1/2 1/3 1/4 1/5</td>
<td>0 0 1691 0 0</td>
</tr>
<tr>
<td>1/3 1/4 1/5 1/6</td>
<td>0 0 0.0067 0 0</td>
</tr>
<tr>
<td>1/4 1/5 1/6 1/7</td>
<td>0 0 0 0 1E-04</td>
</tr>
</tbody>
</table>

In this case, the 4x4 Hilbert matrix has \(\kappa = 15514 \)

The following functions return directly the condition number of a matrix and its decimal logarithm

Function MCond(A)

Function MpCond(A)

\[
\text{MCond} = \kappa \\
\text{MpCond} = -\log_{10}(\kappa)
\]

The following graph shows the \(p\kappa = -\log_{10}(\kappa) \) of Hilbert matrices of increasing order.
Function MMopUp(M, [ErrMin])

This function eliminates all round-off errors from a matrix. Each element that is has an absolute value less than \(\text{ErrMin} \) is substituted by zero.

\[
a_{ij} = \begin{cases}
0 & |a_{ij}| < \text{ErrMin} \\
0 & \text{otherwise}
\end{cases}
\]

Parameter \(\text{ErrMin} \) is optional (default \(\text{ErrMin} = 1E-15 \))

As we can see, MMopUp improves the readability.

Function MCovar(A)

Returns the covariance matrix (\(m \times m \)) of a given matrix (\(n \times m \)). The (column) covariance is defined by the following formulas:

\[
c_{ij} = \frac{1}{n} \sum_{k=1}^{n} (a_{ki} - \bar{a}_i)(a_{kj} - \bar{a}_j) \quad \text{for} \quad i = 1,..m, \quad j = 1,..m
\]

Where

\[
\bar{a}_j = \frac{1}{n} \sum_{k=1}^{n} a_{kj} \quad \text{for} \quad j = 1,..m
\]

See also the matrix correlation function MCorr()

This function is similar to the Excel built-in function COVAR for two variables.

Function MCorr(A)

Returns the correlation matrix (\(m \times m \)) of a given matrix (\(n \times m \)). The correlation matrix is definite by the following formulas:

\[
c_{ij} = \frac{1}{n} \sum_{k=1}^{n} (a_{ki} - \bar{a}_i)(a_{kj} - \bar{a}_j) \quad \text{for} \quad i = 1,..m, \quad j = 1,..m
\]

Where:

\[
\bar{a}_i = \frac{1}{n} \sum_{k=1}^{n} a_{ki} \quad \text{for} \quad i = 1,..m
\]

\[
\sigma_i = \frac{1}{n} \sqrt{\sum_{k=1}^{n} (a_{ki} - \bar{a}_i)^2} \quad \text{for} \quad i = 1,..m
\]

Note. Correlation matrix has always diagonal = 1
See also the matrix covariance function MCovar

Example - find the covariance and the correlation matrix for the following data table:

<table>
<thead>
<tr>
<th>x1</th>
<th>7</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>9</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>x2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>x3</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

There are three variables x_1, x_2, x_3 and 10 data observations. The matrix will be 3×3.
In the first columns A, B, C we have arranged the row data (orientation is not important).
In the last row we have calculate the statistics: average \bar{x}_i and standard deviation σ_{x_i} for each column.

In the column D, E, F we have calculated the normalized data; that is the data with average $= 0$ and standard dev. $= 1$.

We have calculated each column u_i with the following simple formulas:

$\frac{u_{ij}}{\sigma_{x_i}} = \frac{x_{ij} - \bar{x}_i}{\sigma_{x_i}}$

At the right we have calculated the covariance matrices for both row and normalized data: They are always symmetric.
At the right-bottom side we have calculated the correlation matrix for the row data; we note that the correlation matrix of row data and the covariance matrix of normalized data are identical. That is:

$\text{Covariance} \ (\text{Normalized data}) = \text{Correlation} \ (\text{Row data})$

The function MCorr() is useful to get the correlation matrix without performing the normalization process of the given data.

Correlation is a very powerful technique to detect hidden relations between numeric variables

Function **RegrL(Y, X, [Intcpt])**

Computes the multivariate linear regression with the SVD method.
Parameter Y is the $(n \times 1)$ vector of the dependent variable.
Parameter X is a list of independent variables. It may be a $(n \times 1)$ vector for monovariable regression or a $(n \times m)$ matrix for multivariate regression.
Parameter Intcpt calculates the intercept $y(0) = a_0$. Default is True
The function returns a $(m+1 \times 2)$ arry containing the coefficients of the linear regression in the first column and the standard deviation in the second column.

1 REGRL is maintained only for compatibility. From Excel 2003, the built-in function LINEST is accurate as REGRL.
Example - find the linear regression of the following data table

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.12</td>
</tr>
<tr>
<td>2</td>
<td>6.61</td>
</tr>
<tr>
<td>3</td>
<td>6.55</td>
</tr>
<tr>
<td>4</td>
<td>10.07</td>
</tr>
<tr>
<td>5</td>
<td>11.35</td>
</tr>
<tr>
<td>6</td>
<td>12.47</td>
</tr>
<tr>
<td>7</td>
<td>13.48</td>
</tr>
<tr>
<td>8</td>
<td>14.41</td>
</tr>
<tr>
<td>9</td>
<td>15.27</td>
</tr>
<tr>
<td>10</td>
<td>16.07</td>
</tr>
<tr>
<td>11</td>
<td>16.02</td>
</tr>
<tr>
<td>12</td>
<td>17.54</td>
</tr>
<tr>
<td>13</td>
<td>18.22</td>
</tr>
<tr>
<td>14</td>
<td>18.86</td>
</tr>
</tbody>
</table>

The linear model is: \(y = a_0 + a_1 x \)

In Matrix.xla there is no specific function for regression statistics but they can be computed using the standard statistic functions and the formula as shown in the above worksheet arrangement.

The function `RegrL` can also return the standard deviation of the estimate. For that simply select an array of two columns before inserting `RegrL`.

Setting `intcpt = False`, forces the regression intercept to zero.
Function RegrP(Degree, Y, X, [Intcpt])

Computes the polynomial regression \(f(x) \) of a dataset of points \([x_i, y_i]\).

\[
f(x) = a_0 + a_1x + a_2x^2 + \ldots a_m x^m
\]

Parameter Degree set the degree \(m \) of the polynomial.
Parameter Y is a \((n \times 1)\) vector of the dependent variable.
Parameter X is a \((n \times 1)\) vector of the independent variable.
Parameter Intcpt calculates the intercept \(y(0) = a_0 \). Default is True.

The function returns a \((m+1 \times 2)\) array containing the coefficients \([a_0, a_1, a_2, \ldots a_m]\) of the linear regression in the first column and the standard deviation in the second column.

Example: Given a table of \((x, y)\) points, find the 6th degree polynomial approximating the given data

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>polynomial coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

The function RegrP can also return the standard deviation of the estimate. For that simply select an array of two columns before inserting RegrP.

NIST Certification Test

The following table gives the LRE results from RegrL and RegrP on the NIST linear regression data set:

<table>
<thead>
<tr>
<th>StRD Datasets</th>
<th>Difficulty</th>
<th>Model of class</th>
<th>min</th>
<th>avg</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norris</td>
<td>low</td>
<td>Linear</td>
<td>12.3</td>
<td>13.3</td>
<td>14.4</td>
</tr>
<tr>
<td>Pontius</td>
<td>low</td>
<td>Quadratic</td>
<td>11.7</td>
<td>13.3</td>
<td>14.9</td>
</tr>
<tr>
<td>NoInt1</td>
<td>low</td>
<td>Linear</td>
<td>14.7</td>
<td>14.9</td>
<td>15.0</td>
</tr>
<tr>
<td>Filip</td>
<td>high</td>
<td>Polynomial</td>
<td>7.4</td>
<td>7.4</td>
<td>7.5</td>
</tr>
<tr>
<td>Longley</td>
<td>high</td>
<td>Multilinear</td>
<td>11.7</td>
<td>12.3</td>
<td>12.7</td>
</tr>
<tr>
<td>Wampler1</td>
<td>high</td>
<td>Polynomial</td>
<td>9.7</td>
<td>11.3</td>
<td>13.9</td>
</tr>
<tr>
<td>Wampler2</td>
<td>high</td>
<td>Polynomial</td>
<td>13.1</td>
<td>13.7</td>
<td>15.0</td>
</tr>
<tr>
<td>Wampler3</td>
<td>high</td>
<td>Polynomial</td>
<td>9.5</td>
<td>11.3</td>
<td>14.0</td>
</tr>
<tr>
<td>Wampler4</td>
<td>high</td>
<td>Polynomial</td>
<td>9.5</td>
<td>11.2</td>
<td>13.8</td>
</tr>
<tr>
<td>Wampler5</td>
<td>high</td>
<td>Polynomial</td>
<td>7.2</td>
<td>8.9</td>
<td>11.6</td>
</tr>
</tbody>
</table>

The average LRE for all datasets is about 11.8.
Function RegrCir(X, Y)

It computes the LS circular regression of a dataset \([x_i, y_i]\).
It returns a \((3 \times 2)\) array containing the radius \(R\) and the center coordinate \((X_c, Y_c)\) of the best fitting circle in the sense of the least squares.

\[(x - X_c)^2 + (y - Y_c)^2 = R^2\]

The second column contains the standard deviations of the estimates.

<table>
<thead>
<tr>
<th>R</th>
<th>R Stand. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xc</td>
<td>Xc Stand. Dev.</td>
</tr>
<tr>
<td>Yc</td>
<td>Yc Stand. Dev.</td>
</tr>
</tbody>
</table>

Example.

In the above example the best fitting circle has the parameters:

\[R = 1.90 \pm 0.13,\quad X_c = 2.05 \pm 0.05,\quad Y_c = 0.18 \pm 0.09\]

Of course when the dataset \((x_i, y_i)\) contains exactly 3 points, the function RegrCir returns the exact interpolating circle.

Example. Find the circle interpolating the points A(1,5), B(3,5), C(4,1)
Function MCmp(Coeff)

Returns the companion matrix of a monic polynomial, defined as:

\[a(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + x^n \]

\[
A = \begin{bmatrix}
 0 & 0 & \cdots & 0 & -a_0 \\
 1 & 0 & \cdots & 0 & -a_1 \\
 0 & 1 & \cdots & 0 & -a_2 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 0 & \cdots & 1 & -a_{n-1}
\end{bmatrix}
\]

Parameter Coeff is the complete coefficient vector. If \(a_n \neq 1\), the function performs the normalization before generating the companion matrix.

Example:

```
Function MCmp(B3:B4)
```

Function MCplx([Ar], [Ai], [Cformat])

Converts 2 real matrices into a complex matrix.

- \(Ar\) is the \((n \times m)\) real part and \(Ai\) is the \((n \times m)\) imaginary part.
- The real or imaginary part can be omitted. The function assumes the zero-matrix for the missing part.

Example:

A pure real matrix can be written as

\[
MCplx(Ar) = [Ar] + j[0]
\]

A purely imaginary matrix can be written as

\[
MCplx(, Ai) = [0] + j[Ai]
\]

(remember the comma before the 2nd argument)

This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string.

Optional parameter \(Cformat\) sets the complex input/output format (default = 1)

Use CTRL+SHIFT+ENTER to insert this function.

This function is useful for passing a real matrix to a complex matrix function, such as, for example the MMultC. If we have to multiply a real matrix by a complex vector, we can use the MMultC function; but, because this function accepts complex matrices, we have to convert the matrix \(A\) into a complex one (with a null imaginary part) by the MCplx function and then pass the result to MMultC. In other words we have simply to nest the two functions like that.
Function PolyRootsQR(poly)

This function returns all roots of a given polynomial
Poly can be an array of (n+1) coefficients [a0, a1, a2] or a string like “a0+a1x+a2x^2+...”
This function uses the QR algorithm. The process consists of finding the eigenvalues of a companion matrix with the given polynomial coefficients.
This process is very fast, robust and stable but may not be converging under certain conditions. If the function cannot find a root it returns “?”. Usually it is suitable for solving a polynomial up to 10^{th} degree with a good accuracy (1E-9 – 1E-12)

Example: Find all roots of the following polynomial of 8 degree
\[P(x) = 240 - 68x - 190x^2 - 76x^3 + 79x^4 + 28x^5 - 10x^6 - 4x^7 + x^8 \]

As we can see the polynomial has four real and four complex conjugate roots

Function PolyRootsQRC(Coefficients)

This function returns all roots of a given complex polynomial
Parameter Coefficients is a (n+1 x 2) array, where n is the degree of the polynomial
If the function cannot find a root it returns “?”. Usually this function is suitable for solving polynomials up to the 10^{th} degree
This function uses the QR algorithm. The process consists of iteratively applying the QR decomposition to the complex companion matrix.

Example. Find all the roots of the following polynomial
\[P(z) = z^4 - (5+2j)z^3 + (9+7j)z^2 - (22+2j)z + 8 + 24j \]
Function MRot(n, theta, p, q)

Returns the orthogonal matrix (n x n) that performs the planar rotation over the plane defined by axes p and q
Parameter theta sets the angle of rotation in radians
Parameters p and q are the columns of the rotation and must be: p <> q and p ≤ n and q ≤ n

Example: In the 3D space, the canonical rotation matrices are

\[
\begin{bmatrix}
 c & -s & 0 \\
 s & c & 0 \\
 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
 c & 0 & -s \\
 0 & 1 & 0 \\
 0 & s & c
\end{bmatrix},
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & c & -s \\
 0 & s & 1
\end{bmatrix}
\]

Where:
\[c = \cos(\theta)\]
\[s = \sin(\theta)\]

Note that all rotation matrices have determinant = 1

Example. Given two vectors in \(\mathbb{R}^2\) \((v_1, v_2)\), find the same vectors after a rotation of 30° deg

The transformation formula is:

\[
\begin{bmatrix}
w_{11} \\
w_{12} \\
w_{21} \\
w_{22}
\end{bmatrix} =
\begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
v_{11} \\
v_{12} \\
v_{21} \\
v_{22}
\end{bmatrix}
\]

That can be arranged in the following way:
Function VarimaxRot(FL, [Normal], [MaxErr], [MaxIter])

This function computes the orthogonal rotation for a Factor Loading matrix using the Kaiser's Varimax method for 2D and 3D factors.
Parameter FL is the Factor Loading matrix to rotate (n x m). The number of factors m, at this release, can only be 2 or 3.
Optional parameter Normal = True/False chooses the "Varimax normalized criterion". That is, it indicates if the matrix of loading is to be row-normalized before rotation (default = False).
Optional parameter MaxErr set sets the accuracy required (default = 10^-4). The algorithm stops when the absolute difference of two consecutive Varimax values is less than MaxErr.
Optional parameter MaxIter sets the maximum number of iterations allowed (default=500).

Algorithm
The Varimax rotation procedure was first proposed by Kaiser (1958). Given a \(\text{numberOfPoints} \times \text{numberOfDimensions} \) configuration \(\mathbf{A} \), the procedure tries to find an orthonormal rotation matrix \(\mathbf{T} \) such that the sum of variances of the columns of \(\mathbf{B}^* \mathbf{B} \) is a maximum, where \(\mathbf{B} = \mathbf{A} \mathbf{T} \) and \(^* \) is the element-wise (Hadamard) product of matrices. A direct solution for the optimal \(\mathbf{T} \) is not available, except for the case where \(\text{numberOfDimensions} \) equals two. Kaiser suggested an iterative algorithm based on planar rotations, i.e., alternate rotations of all pairs of columns of \(\mathbf{A} \).
For Varimax criterion definition see Varimax Index.

This function is widely used, by now, in many primarily (and expensive) statistical tools, but because it is very rare in freeware software, we have added it to our add-in.

Let’s see how it works with one popular example

Example 2D- Initial Factors Matrix

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td>0.879</td>
<td>-0.158</td>
</tr>
<tr>
<td>HouseValue</td>
<td>0.742</td>
<td>-0.578</td>
</tr>
<tr>
<td>Employment</td>
<td>0.714</td>
<td>0.679</td>
</tr>
<tr>
<td>School</td>
<td>0.713</td>
<td>-0.555</td>
</tr>
<tr>
<td>Population</td>
<td>0.625</td>
<td>0.766</td>
</tr>
</tbody>
</table>

The goal of the method is to try to maximize one factor for each variable. This will make evident which factor is dominant (most important) for each variable.

Rotate Factors Matrix: method Varimax

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Factor 1</td>
<td>Factor 2</td>
<td>Factor 1</td>
<td>Factor 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Services</td>
<td>0.879</td>
<td>-0.158</td>
<td>0.798</td>
<td>0.420</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HouseValue</td>
<td>0.742</td>
<td>-0.578</td>
<td>0.941</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Employment</td>
<td>0.714</td>
<td>0.679</td>
<td>0.141</td>
<td>0.975</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>School</td>
<td>0.713</td>
<td>-0.555</td>
<td>0.904</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Population</td>
<td>0.625</td>
<td>0.766</td>
<td>0.017</td>
<td>0.988</td>
<td></td>
</tr>
</tbody>
</table>

As we can see the varimax index is incremented after the varimax rotation method. Each variable has maximized or minimized its factors values.
Factor Loading is a very large topic and its explanation is out of the scope of this tutorial. See the specialized statistical literature.
Function VarimaxIndex(Mat, [Normal])

Returns the Varimax value of a given Factor matrix Mat

Varimax is a popular criterion (Kaiser (1958)) to perform orthogonal rotation of Factors Loading matrices.

Usually, the rotation stops when Varimax is maximized

Optional parameter Normal = True/False indicates if the matrix is to be row normalized before computing Varimax, for a \((p \times k)\) matrix \(A\) (i.e., with \(p\) rows and \(k\) columns), is defined as follows:

\[
V = \sum_{j=1}^{k} \sum_{i=1}^{p} (a_{ij})^4 - \frac{1}{p} \sum_{j=1}^{k} \left(\sum_{i=1}^{p} (a_{ij})^2 \right)^2
\]

where:

\[
b_{ij} = \begin{cases}
 a_{ij} & \text{if normal = false} \\
 \frac{a_{ij}}{|v|} & \text{if normal = true}
\end{cases}
\]

Function MNormalize(Mat, [NormType], [Tiny])

Performs the normalization of a real \((n \times m)\) matrix.

The optional parameter Normtype indicates what normalization is performed

The optional parameter Tiny sets the minimum error level (default 2E-14)

\[
u_i = \frac{v_i}{v_{\text{min}}}
\]

Normtype = 1. All vector’s components are scaled to the non-zero minimum of the absolute values

\[
u_i = \frac{v_i}{|v|}
\]

Normtype = 2 (default). All non-zero vectors are length = 1

\[
u_i = \frac{v_i}{v_{\text{max}}}
\]

Normtype = 3. All vector’s components are scaled to the maximum of the absolute values

Example - Normalize the following 3x3 matrix

<table>
<thead>
<tr>
<th></th>
<th>Normalized 1</th>
<th>Normalized 2</th>
<th>Normalized 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>-12</td>
<td>0.37</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>-15</td>
<td>0.44</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Function MNormalizeC(Mat, [NormType], [Cformat], [Tiny])

Returns the normalized vectors of a complex \((n \times m)\) matrix.

This function supports 3 different complex formats: 1 = split, 2 = interlaced, 3 = string

The optional parameter Cformat sets the complex input/output format (default = 1)

Example - Normalize the following complex vector
Function MNorm(v, [NORM])

Returns the norm of a matrix or vector
Parameter v can be a vector or a matrix; optional parameter Norm sets the specific norm to compute (default 2 for vectors, and 0 for matrices)

The norm returned can be:

For vectors

<table>
<thead>
<tr>
<th>Norm</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Absolute sum</td>
<td>$|v|_1 = \sum_i</td>
</tr>
<tr>
<td>2</td>
<td>Euclidean norm</td>
<td>$|v|_2 = \sqrt{\sum_i v_i^2}$</td>
</tr>
<tr>
<td>3</td>
<td>Maximum absolute</td>
<td>$|v|_3 = \max_i (</td>
</tr>
</tbody>
</table>

For matrices

<table>
<thead>
<tr>
<th>Norm</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Frobenius norm</td>
<td>$|A|f = \sqrt{\sum_i \sum_j (a{ij})^2}$</td>
</tr>
<tr>
<td>1</td>
<td>Maximum absolute column sum</td>
<td>$|A|_2 = \max_j \left(\sum_i</td>
</tr>
<tr>
<td>2</td>
<td>Euclidean norm</td>
<td>$|A|_2 = \sqrt{\rho(A^T A)}$</td>
</tr>
<tr>
<td>3</td>
<td>Maximum absolute row sum</td>
<td>$|A|_3 = \max_i \left(\sum_j</td>
</tr>
</tbody>
</table>

Note: norm 2 for vectors and norm 0 for matrices give the same values of the function MAbs

Example: Find norm 0, 1, 2, 3 for the given 4x3 matrix

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-7</td>
<td>-9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>-7</td>
<td>-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>-5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.2236</td>
<td>0.234</td>
<td>1</td>
<td>0</td>
<td>0.4443</td>
<td>-0.047</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.4682</td>
<td>4.4476</td>
<td>0</td>
<td>2</td>
<td>0.0936</td>
<td>0.8896</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- MNorm($A2:B2$) = 22.13
- MNorm($A3:B3$) = 29
- MNorm($A4:B4$) = 18.833
- MNorm($A5:B5$) = 25
Function MMultC(M1, M2, [Cformat])

Performs a complex matrix multiplication. If the dimension of the matrix M_1 is $(n \times m)$ and M_2 is $(m \times p)$, then the product is a matrix $(n \times p)$.

This function now supports 3 different formats: $1 = \text{split}$, $2 = \text{interlaced}$, $3 = \text{string}$.

Optional parameter $Cformat$ sets the complex input/output format (default = 1).

$$M_1 = A + jB \quad M_2 = C + jD$$

Where A, B, C, D are real matrices.

Examples:

Matrix multiplication of two 3x3 complex matrices

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Real</td>
<td>Im</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Matrix C</td>
<td>(=MMultC(A3:F5, H3:M5))</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Real</td>
<td>Im</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td>-3</td>
<td>3</td>
<td>-2</td>
<td>-2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-2</td>
<td>-3</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Imaginary part must always be provided even if it is entirely null. We see that we have added to the original real matrix A2:C4 the "0" range D2:F4.

In this example the 3x3 matrix is complex and the 3x1 vector is complex.

One can avoid to insert directly the imaginary part if is zero by the function $MCplx(re, im)$.

In this example the 3x3 matrix is real and the 3x1 vector is complex.

In this example the 3x3 matrix is complex and the 3x1 vector is real.

Of course, this function can be used for multiplying a matrix and a vector.
Function **MInvC(A, [Cformat])**

Complex matrix inversion
The complex matrix A must be square
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex input/output format (default = 1)
Complex split or interlaced matrix must have always an even number of columns

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imm</td>
<td></td>
<td>Real</td>
<td>Imm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>3</td>
<td></td>
<td></td>
<td>0.892</td>
<td>-0.11</td>
<td>0.021</td>
<td>0.095</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>0.249</td>
<td>0.249</td>
<td>0.009</td>
<td>-0.07</td>
<td>-0.07</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td></td>
<td>0.095</td>
<td>0.095</td>
<td>0.328</td>
<td>0.108</td>
<td>0.108</td>
</tr>
</tbody>
</table>

Example:

```
=MInvC(A3:F5)
```

Function **ProdScalC(v1, v2,)**

Returns the scalar product of two complex vectors

\[
\mathbf{a} \cdot \mathbf{b} = \sum_k (a_{rk} + ia_{im}) \cdot (b_{rk} - ib_{im})
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>re</td>
<td>im</td>
<td></td>
<td>re</td>
<td>im</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td></td>
<td>-6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the imaginary parts of vectors must always be inserted even if they are all 0 (real matrices).
In string format we can write complex numbers as string “a+ib” and need not insert zero real or imaginary components.
Look at the same example. Note the third optional parameter cformat = 3

```
=MProdScalC(A3:B5, C3:D5)
```
TUTORIAL FOR MATRIX.XLA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vector a</td>
<td>vector b</td>
<td>a • b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2+i</td>
<td>-1</td>
<td></td>
<td></td>
<td>-6+2j</td>
</tr>
<tr>
<td>3</td>
<td>3+2i</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4+5i</td>
<td>1-2i</td>
<td></td>
<td></td>
<td>ProdScaLC(A2:A4, B2:B4, 3)</td>
</tr>
</tbody>
</table>

Function SysLinC(A, b, [Cformat])

This function solves a complex linear system by the Gauss-Jordan algorithm.
Returns the vector solution of the given system
This function now supports 3 different formats: 1 = split, 2 = interlaced, 3 = string
Optional parameter Cformat sets the complex input/output format (default = 1)
Remember that for a linear system:

\[Ax = b \]

Ax = b

A is the system complex square matrix (n x n)
x is the unknown complex vector (n x 1)
b is the constant complex vector (n x 1)

As known, the above linear equation has only one solution if - and only if -, \(\text{Det}(A) \neq 0 \)

Example - solve the following complex 3x3 linear system

\[
\begin{align*}
-1 + (2-i) \cdot x_1 + 3i \cdot x_2 &= 5 + 10i \\
-x_1 + (3+2i) \cdot x_2 -(1+i) \cdot x_3 &= -11 - i \\
-(1+2i) \cdot x_2 + 4 \cdot x_3 &= 11 - 3i
\end{align*}
\]

We can also use directly the complex string format “a+bj”, Simply set the parameter cformat = 3

We can also use directly the complex string format “a+bj”, Simply set the parameter cformat = 3
Function Simplex(Funct, Constraint, [Opt])

This function performs the linear optimization with the Simplex method

Funct is the array (1 x n) containing the coefficients of the linear function to optimize

Constraint is the array (m x n+2) containing the coefficients of m linear constraints and the type of constraints (“<”, “>”, “=”)

Opt sets the optimization type: 1 (default) for maximization, 0 for minimization.

A typical linear programming problem, also called linear optimization, is the following.
Maximize the function z

$$z = a_1x_1 + a_2x_2 + ... + a_nx_n$$

With the following constraints:

$$x_i \geq 0$$

and for $j=1$ to m

$$b_{j1}x_1 + b_{j2}x_2 + ... + b_{jn}x_n \leq c_j$$

This function accepts the constraint symbols: “<”, “>”, and “=”

This function returns:
If an optimal solution exists – that is: all constraints are satisfied and the function is maximized – then it returns the solution vector and, in the last cell, the corresponding function value
If the constraints region is unbounded – that is, if the region is not closed - a finite solution cannot exist and the function return “inf”. Typically this happens when the constraints are insufficient
If the constraints region is bounded, but the solution doesn’t exist, the function returns “?” . Typically this happens when you add too many constraints

Note: The columns of Constraint must be n+2, where n is the number of columns of the function coefficients. If this condition is not true, the function returns “??”. Typically it happens when you select a region with wrong dimensions.

Now lets see how it works.
Example: find the maximum of the function:

$$F(x,y) = 1.2x + 1.4y$$

With the following constraints:

1. $40x + 25y \leq 1000$
2. $35x + 25y \leq 980$
3. $25x + 35y \leq 875$

Note that it is indifferent whether you write “<” or “<=” for the constraint symbols

The solution is about:

$$x = 16.935 , y = 12.903 , f(x, y) = 38.387$$

This function accept also mixed constraint symbols

Let’s see this example
Maximize $z = x_1 + x_2 + 3x_3 - 0.5x_4$

with all the x variables non-negative and also with:

\[
\begin{align*}
 x_1 + 2x_3 & \leq 10 \\
 2x_2 - 7x_4 & \leq 0 \\
 x_2 - x_3 + 2x_4 & \geq 10 \\
 x_1 + x_2 + x_3 + x_4 & = 9
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Linear Optimization of $f(x,y) = x_1 + x_2 + 3x_3 - 0.5x_4$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>function</td>
<td>x1</td>
<td>x2</td>
<td>x3</td>
<td>x4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>constraint</td>
<td>x1</td>
<td>x2</td>
<td>x3</td>
<td>x4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td><</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-7</td>
<td><</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>></td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>=</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>solution</td>
<td>x1</td>
<td>x2</td>
<td>x3</td>
<td>x4</td>
<td>max</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0</td>
<td>3.325</td>
<td>4.725</td>
<td>0.95</td>
<td>17.025</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>{=Simplex(B4:E4;B7:G10)}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Function MPPerm(Permutations)

Returns the permutations matrix. It consists of a sequence of \(n \) integer unitary vectors. The parameter is a vector indicating the sequence. Any permutations matrix can be indicated by a sequence vector, such as:

\[
P(3, 4, 1, 2) = (a_3, a_4, a_1, a_2) =
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
\]

\[
\begin{array}{cccccccccccc}
A & B & C & D & E & F & G & H & I & J & K \\
\hline
1 & \text{Perm. permutation matrix} & & & & & & & & & \\
2 & 3 & 0 & 0 & 1 & 0 & & & & & \\
3 & 4 & 0 & 0 & 0 & 1 & & & & & \\
4 & 1 & 1 & 0 & 0 & 0 & & & & & \\
5 & 2 & 0 & 1 & 0 & 0 & & & & & \\
\end{array}
\]

Function MHessenberg(Mat)

Returns the Hessenberg form of a square matrix. As known a matrix is in Hessenberg form if all values under the lower sub-diagonal are zero.

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & \ldots \\
a_{21} & a_{22} & a_{23} & a_{24} & \ldots \\
0 & a_{32} & a_{33} & a_{34} & \ldots \\
0 & 0 & a_{43} & a_{44} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{bmatrix}
\]

\[
\begin{array}{cccccccccccc}
A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P \\
\hline
1 & -10 & -4 & -3 & -10 & 6 & -3 & 0 & -10 & -3.4 & -2 & 10.3 & -11 & -0.7 & -3 \\
2 & 9 & 0 & 3 & 9 & 6 & -3 & 0 & 11.2 & 0.02 & -7 & 19.8 & -1.8 & 8.8 \\
3 & 7 & -1 & -2 & -1 & 6 & -5 & 0 & -15 & 8.89 & -3.84 & 27.3 & -8.3 & 1.33 \\
4 & 1 & 6 & 4 & 9 & -1 & -5 & 10 & 0 & 0 & 3.97 & 30.8 & -46 & 7.53 & -4.3 \\
5 & 8 & 1 & 9 & -1 & 4 & 1 & 5 & 0 & 0 & 0 & 50.8 & -51 & 13.2 & 2.87 \\
6 & -5 & -3 & 0 & -5 & 7 & 8 & 2 & 0 & 0 & 0 & 0 & 28.7 & 14.3 & 32.8 \\
7 & -1 & -3 & 9 & 3 & -2 & -5 & 0 & 0 & 0 & 0 & 0 & 0 & 2.3 & 1.33 \\
8 & \end{array}
\]

\[
\text{(=MHessenberg(A1 : A7))}
\]
Function MAdm(Branch)

Returns the Admittance Matrix of a Linear Passive Network Graph.

Branch is a list of 3 columns giving the basic information of each branch: node+, node-, admittance.
The number of rows must be equal to the number of branches of the graph.

A complex admittance has a real part (conductance) and an imaginary part (susceptance). In this case you have to provide a 4 columns list.

Nodal Analysis gives the following equation to solve the linear passive network, where V is the vector of nodal voltage, I is the vector of nodal current and [Y] is the admittance matrix.

If N+1 is the number of nodes, then the matrix dimension will be (N x N).

\[[Y] \cdot V = I \]

\[y_{ij} = \sum_{k=0}^{N} Y_{ik} \]

\[y_{ij} = -Y_{ji} \]

The function returns an (N x 2*N) array. The first N columns contain the real part and the last N columns contain the imaginary part. If all branch-admittances are real, the matrix will also be real, and the function returns a square (N x N) array.

Linear Electric Network

Nodal Analysis is widely used for Electric Networks. A passive linear network is composed of four basic components: Resistors, Inductors, Capacitors, and Current Sources. In sinusoidal state, with constant frequency, the admittance branch can be derived by the following formulas:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Admittance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>Value R (ohm)</td>
<td>Admittance y = 1/R</td>
</tr>
<tr>
<td>Capacitor</td>
<td>Value C (farad)</td>
<td>Admittance y = j ω C</td>
</tr>
<tr>
<td>Inductor</td>
<td>Value L (henry)</td>
<td>Admittance y = -j 1/(ω L)</td>
</tr>
<tr>
<td>Current source</td>
<td>Value I (ampere)</td>
<td>I = I_re + j I_im</td>
</tr>
</tbody>
</table>

Where: \(ω = 2 \pi f \) (rad / s)

Example. Compute the admittance matrix of the following linear passive electric network and find the nodal voltage.
The network has 8 branches, mixed real and complex, and 4 nodes (the ground is the reference node and is set to 0). So the network list has 8 rows and 4 columns. The independent current generators are indicated in another list. The linear complex system can be solved by SysLinC.

Thermal Network

There are also other networks than electrical ones, that can be solved with the same method. The same principles can be applied, for example to study one-dimensional heat transfer.

One-Dimensional Conductive Heat Transfer.

The rate of conductive heat transfer through a material, having a *thermal conductivity* "k", is proportional to the temperature gradient across the material

$$ Q = -\frac{k}{d} \cdot (T_H - T_L) = -g(T_H - T_L) $$

Thus, the network equations are the same as for the electric network after replacing:

- I (ampere) electric current ⇔ Q (cal/s) rate of conduction heat
- V (volt) Voltage ⇔ T (* Kelvin) temperature
- g (siemens) electric conductance ⇔ g (cal/m s °K) thermal conductance

Example: Find the temperature profile through a sandwich material of 3 layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>d (cm)</th>
<th>K (cal/cm s °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.12</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Where:

- $T_H = 400 ^\circ C$
- $T_L = 20 ^\circ C$
- $Q_H = T_H \cdot k_1/d_1 = 160 \text{ cal/s}$
- $Q_L = T_L \cdot k_3/d_3 = 8 \text{ cal/s}$

Internal temperature T_1 and T_2 are unknowns.
TUTORIAL FOR MATRIX.XLA

The thermal network equivalents to the above sandwich are shown in the following figures: the right one is obtained after substituting the temperature sources with their equivalent heat sources.

Where thermal conductance are:

\[g_1 = \frac{k_1}{d_1}, \quad g_{12} = \frac{k_2}{d_2}, \quad g_3 = \frac{k_3}{d_3} \]

A spreadsheet calculus can be arranged as the following:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \([A]\) is the admittance matrix, the vector of temperature can be solved with the following formula:

\[T = [A]^{-1}Q \]

With the internal temperatures \(T_1\) and \(T_2\) we can easily draw the thermal profile across the material.
Function MLeontInv(ExTab, Tot)

Returns the inverse of Leontief matrix of Input-Output Analysis Theory. Parameter `ExTab` is the interindustry exchange table (or IO-table). This table lists the value of the goods produced by each economic sector, and how much of that output is used by each sector. Parameter `Tot` is the total production vector.

Input Output Analysis

Recall theory definition. Input Output Analysis is an important branch of economics that uses linear algebra to model the interdependence of industries. Assuming EX the *Exchange table*

\[EX = [x_{ij}] \]

The *Technology matrix* (or *Consumption matrix*) is

\[A = \left[\frac{x_{ij}}{X_j} \right] \]

where \(X_j \) is the total production of the \(j \)-th sector.

Leontief matrix is

\[L = (I - A) \]

If \(d \) is the *Final Demand* vector, the production \(x \) is given by the following formula.

\[x = (I - A)^{-1} d = L^{-1} d \]

Example. Giving the following Exchange table of Goods and Services in the U.S. for 1947 (in billions of 1947 dollars), find the Leontief matrix and calculate the production for a final demand of: agriculture = 45, manufactory = 74, services = 130.

<table>
<thead>
<tr>
<th>Supply sectors</th>
<th>Agriculture</th>
<th>Manufact.</th>
<th>Services</th>
<th>total output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>34.69</td>
<td>4.92</td>
<td>5.62</td>
<td>85</td>
</tr>
<tr>
<td>Manufact.</td>
<td>5.28</td>
<td>61.82</td>
<td>22.99</td>
<td>163</td>
</tr>
<tr>
<td>Services</td>
<td>10.45</td>
<td>25.95</td>
<td>42.03</td>
<td>219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interindustry exchange matrix</th>
<th>Agriculture</th>
<th>Manufact.</th>
<th>Services</th>
<th>total output</th>
<th>external demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>34.69</td>
<td>4.92</td>
<td>5.62</td>
<td>85</td>
<td>45</td>
</tr>
<tr>
<td>Manufact.</td>
<td>5.28</td>
<td>61.82</td>
<td>22.99</td>
<td>163</td>
<td>74</td>
</tr>
<tr>
<td>Services</td>
<td>10.45</td>
<td>25.95</td>
<td>42.03</td>
<td>219</td>
<td>130</td>
</tr>
</tbody>
</table>

As we can see, in order to satisfy the demand of agriculture = 45, manufactory = 74, and services = 130, the total production should be increased by 9.8% for agriculture, and by 0.4% for manufactory, while decreased by -5.3% for services.
Matrix Tool

The Matrix toolbar

This floating toolbar is useful for several tasks: selecting and pasting scraps of matrices; generating different kind of matrices and several useful matrix operations. And, of course, it can be used also for recalling the Matrix help-on-line. You can display it by clicking on the Matrix icon

Topics available are:

- **Selector tool**: select matrix pieces
- **Generator tool**: generate random and special matrices
- **Macros**: starter for macros stuff
- **Help**: call the on-line manual

Selector tool.

It can be used for selecting several different matrix formats: diagonal, triangular, tridiagonal, adjoint, etc. Simply select any cell into the matrix and choose the menu item that you want.
Automatically the “Selector tool” works on the max area bordered by empty cells that usually correspond to the full matrix. If you want to restrict the area simply select the sub-matrix that you want before starting the Selector macro.

For example if you need to select the lower sub diagonal; simply select the sub-matrix containing the diagonal \[\begin{bmatrix} 10 & 9 & 7 & 6 & 5 \\ 8 & 7 & 5 & 4 & 3 \\ 9 & 6 & 4 & 3 & 2 \\ 10 & 8 & 7 & 6 & 5 \\ -1 & -2 & -3 & -4 & -5 \end{bmatrix}\].

Then choose the menu item: Selector\textit{diagonal 1st}

If you start the macro without selecting any matrix cell, the following pop-up window appears, asking you the top-left and the bottom-right corners of the range that you want to select. By the combo box you can choose the selection format that you like. The Paste button calls the Paster tool.

Scraps Paster tool.
The selection of matrix parts is obtained by a multi-range selection. Excel cannot copy it. If you try to give the usual sequence CTRL+C you will obtain an error message.

For this task, this smart little macro for pasting the range or multi-range that you have previous selected comes in handy.

Select Paster from the menu. This window pop-up appears. Simply indicate the destination top-left corner and chose OK.

That's all.
The destination cells will be filled with the values of the selected cells. No format will be copied. Only plain values.

Of course this tool has other interesting options. Let's see.

\textit{Fill unselecting cells with zero}: check this if you fill all other cell of the matrix with zero. This is useful to build a new matrix with a part of the original one.

Example: If you want to build a new lower triangular matrix with the elements of another one, you can use this simple option, and the result will be similar to the following:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 6 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 4 & 9 & 0 & 3 & 6 & -1 & 4 & 9 & 0 & 0 & 0 \\
-2 & 5 & 12 & -2 & 7 & -1 & -2 & 5 & 12 & -2 & 0 & 0 \\
-3 & 6 & 15 & -4 & 11 & -2 & -3 & 5 & 15 & -4 & 11 & 0 \\
-4 & 7 & 18 & -6 & 15 & 8 & -4 & 7 & 18 & -6 & 15 & 8
\end{bmatrix}
\]
Change the target range: Normally the range is copied as is. But sometimes we need to rearrange the geometry of the target range. This happens, for example, when we want to extract the diagonal elements from a given matrix and to convert it in a vertical vector.

In this case, after you have selected the diagonal, check the option *vertical*. The diagonal element will be... "verticalized".

Sometimes we need the inverse of this transformation: from a vertical vector, we have to build the diagonal matrix having the vector elements on its diagonal.

For that select the vector that contains the elements. Start the *Scraps Paster* tool and check the *zero* and *diagonal* option. By giving your OK, you will generate the matrix to the left.

Or we can extract an adjoint sub-matrix. For example, select the a33 element and choose the menu *Selector\adjoint*. Then activate the Paster. Indicate the top-left corner and select the option "Adjoint". The macro will copy the selected elements rebuilding a new 5x5 matrix.

Flip. We can also invert the order of rows or columns of the target matrix. For example, select the full matrix (ctrl+shift+) and run the "Paster tool", choosing the *flip vertical* option.

The matrix target can also be the same as the original one. In that case the changing will be done "in place" in the same matrix. Of course the transformation makes sense only if the source and target range have the same dimensions: that is, for square matrices. For example, assume you want to transpose a square matrix on the same site.

Select the range B2:E5 and then run the "Paster tool", choosing B2 as target corner and *Transpose* as option. The result will be the transposed matrix in the same range.
Matrix Generator
This smart macro can generate different kind of matrices

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>Generates random matrices with the following parameter: dimension, max e min values, format: full, triangular, tridiagonal, symmetric, decimals number.</td>
</tr>
<tr>
<td>Rank / Determinant</td>
<td>Generates random matrices with given rank or determinant</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>Generates random matrices having given eigenvalues</td>
</tr>
<tr>
<td>Hilbert</td>
<td>Generates Hilbert’s matrices</td>
</tr>
<tr>
<td>Hilbert inverse</td>
<td>Generates the inverse of Hilbert’s matrices</td>
</tr>
<tr>
<td>Tartaglia</td>
<td>Generates Tartaglia’s matrices</td>
</tr>
<tr>
<td>Toeplitz</td>
<td>Generates Toeplitz’s matrices</td>
</tr>
<tr>
<td>Sparse</td>
<td>Generates sparse matrices</td>
</tr>
</tbody>
</table>

Using this macro is quite simple: select the area that you want to fill with the matrix and then start the macro with the Matrix.xla toolbar.

Random matrix with given format

Parameters:
- Random numbers x are generated with the following constrains:
 - Max value: upper limit of x
 - Min value: lower limit of x
 - Decimals: sets the number of decimals of x
 - Int checkbox: x as integers
 - Sym checkbox: the matrix will be symmetric
 - Sparse: index between 0 and 1: the number 0 (default) means full matrix, 1 very sparse matrix

Starting from: top-left matrix corner

Random matrix with given eigenvalues

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-13</td>
<td>-17</td>
<td>-2</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Random matrix with given determinant or rank

Generate a square matrix with given determinant or rank

Dimension: matrix dimension

Rank: rank of the matrix. For default is set equal to the dimension. If it is less than the dimension, the determinant is automatically set to 0.

Starting from: top-left matrix corner

Determinant: sets the determinant of the random matrix

Sym: generate a symmetric random matrix

Int: generate a random matrix with integer values

Tartaglia’s matrix

Generate the Tartaglia’s matrix with given dimension. See Function MTartaglia()

Hilbert’s matrix

Generate the Hilbert’s matrix with given dimension. See Function MHilbert()

Sparse matrix

Parameters:

- Random sparse matrix \([a_{ij}]\) is generated with the following constraints:
 - **Max:** value: upper limit of \(a_{ij}\)
 - **Min:** value: lower limit of \(a_{ij}\)
 - **Dim:** matrix dimension \((n \times n)\)
 - **Dom:** Dominance factor \(D\), with \(0 < D < 1\)
 - **Fill:** Filling factor \(F\), with \(0 < F < 1\)
 - **Spread:** Spreading factor \(S\), with \(0 < S < 1\)
 - **Sym:** check it for symmetric matrix
 - **Int:** check it for integer matrix

Starting from: left-top matrix corner

Output format

- **Coordinates:** generates a \((k \times 3)\) matrix in sparse coordinates format: \([i, j, a_{ij}]\)
- **Square:** generates a square sparse matrix \([a_{ij}]\)

There are several way to arrange a sparse matrix in order to save space, computation efficiency, etc. In this add-in we use the (old but simple) Coordinate format

The **Coordinate format** of sparse matrix consists a 3 columns array where the 1st and 2nd columns contains the indexes “i” and “j”, while the 3rd column contains the value \(a_{ij}\).

Of course, the space saving is valid only for sparse matrices with \(F < 1/3\)
Filling factor
The filling factor measures how "dense" a matrix is. In this document, it is defined as

\[F = 1 - \frac{N_{\text{zero}}}{N_{\text{tot}}} \]

\(N_{\text{zero}} \) = number of zero elements
\(N_{\text{tot}} \) = total of matrix elements

The factor is between 0 and 1; 1 means dense matrix, 0 empty matrix.
We see that the coordinate format of a square matrix is useful only if \(F < 1/3 \)
We note also that for a simple \((n \times n)\) diagonal square matrix, \(F = 1/n \)
The following pictures show 2 random sparse matrices having different filling factor

Usually large sparse matrices in applied science have a factor \(F \) less than 0.2 (20%)

Dominance Factor
The dominance factor measures how much a matrix is "diagonal dominant". In this document, it is defined as

\[D = \frac{1}{n} \sum_{i=1}^{n} D_i \]

where the single row dominance factor \(D_i \), for a not empty row, is defined as

\[D_i = \frac{d_i}{\sum_{j=1}^{n} |a_{ij}|} = \frac{d_i}{d_i + S_i} \]

\(d_i = |a_{ii}| \)
\(S_i = \sum_{j=1, j \neq i}^{n} |a_{ij}| \)

The row dominance factor \(D_i \) is always between 0 and 1;

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_i = 0)</td>
<td>The diagonal element is zero: (a_{ii} = 0)</td>
</tr>
<tr>
<td>(0 < D_i < 0.5)</td>
<td>The row is dominated: (d_i < S_i)</td>
</tr>
<tr>
<td>(D_i = 0.5)</td>
<td>The row is indifferent: (d_i = S_i)</td>
</tr>
<tr>
<td>(0.5 < D_i < 1)</td>
<td>The row is dominant: (d_i > S_i)</td>
</tr>
<tr>
<td>(D_i = 1)</td>
<td>The row contains only the diagonal element: (S_i = 0)</td>
</tr>
</tbody>
</table>
Spreading Factor
This factor is used for spreading the elements around the first diagonal. This has no definition and is used only in this macro. $S = 0$ means no spreading at all, that is a band-diagonal matrix; $S = 1$ means large spreading.

(30 x 30) $S = 0.05$ (30 x 30) $S = 0.2$ (30 x 30) $S = 0.5$
Macro stuff.
The menu >macros > Matrix operations contains several macros performing useful tasks.

Macro versus Function
In this Matrix package there are worksheet functions that perform the same tasks of the macros. The reason for also having macros is that macros are more suitable for large matrices and heavy long computation.
On the other hand, functions are suitable for automatic recalculation, but Excel becomes very slow for large worksheet full of active functions. You should see when it is convenient to use either macros or functions.

Available macros are:

- Matrix operations
- Complex matrix operations
- Sparse matrix operations
- Eigen-solving
- Gauss-step-by-step
- Shortest Path
- Draw Graph
- Block reduction
- Clean-up
- Round

Matrix operations
This macro performs several common matrix operations like: addition, subtraction, multiplication, inversion, scalar multiplication, etc.

Using this macro is quite simple. Select the matrix (or select any cell inside the matrix) and start the macro from its menu. Some tasks need only one matrix, and some others require two matrices.
Choose the operations that you want to perform. If the operation needs a second parameter - matrix or vector -, select it in the B field. Then, chose a starting point for output. Click "run", wait, and check the result. That's all.

The smart selector is useful for selecting large matrices. Simply select a cell inside the matrix and click on it. The entire matrix will automatically be selected. This tool works if there are only empty cells around the matrix.
Sparse Matrix operations
This macro solves sparse linear systems and performs some common matrix operations like:
transposition, addition, subtraction, vector multiplication, determinant
Same tasks need only one matrix and some others require two matrices

Sparse matrices require a special coordinates format (see Random sparse matrix). Matrix dimension
must be greater than 3.
The Linear System macros accept both sparse and standard square matrix formats

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpose</td>
<td>Returns the transpose. Input A is in sparse format</td>
</tr>
<tr>
<td>Determinant</td>
<td>Computes the determinant. Input A is in sparse format</td>
</tr>
<tr>
<td>Convert</td>
<td>Converts a matrix in sparse coordinates format and vice versa. Input A accepts both standard or sparse format</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Returns the true dimensions (n x m) and the filling factor of a sparse matrix (see Random sparse matrix). Input A is in sparse format.</td>
</tr>
<tr>
<td>Dominance</td>
<td>Returns the row dominance factor of a matrix (see Random sparse matrix). Input A accepts both standard or sparse format</td>
</tr>
<tr>
<td>A+B</td>
<td>Returns the addition of two sparse matrices. Inputs A and B are in sparse format</td>
</tr>
<tr>
<td>A-B</td>
<td>Returns the subtraction of two sparse matrices. Inputs A and B are in sparse format</td>
</tr>
<tr>
<td>A*b</td>
<td>Returns the product of a sparse matrix A for a vector b. Input A is in sparse format</td>
</tr>
<tr>
<td>A*b (Trid.)</td>
<td>Returns the product of a sparse tridiagonal matrix A for a vector b. Input A is in tridiagonal format (see Function MMult3)</td>
</tr>
<tr>
<td>Linear System</td>
<td>Solves a sparse linear system using the iterative ADSOR algorithm (Adaptive-SOR). Input A accepts both standard or sparse format. The Iterative algorithm always converges if the matrix is diagonal dominant. It is usually faster than other deterministic methods (Gauss, LR, LL). The iterations limit (default 400) can be modified by the top-right field</td>
</tr>
<tr>
<td>Linear System Ax = b (ADSOR)</td>
<td>Solves a sparse linear system using the iterative Gauss algorithm with partial pivot</td>
</tr>
</tbody>
</table>
Matrix.XLA Tutorial

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{Ax} = \mathbf{b}) (Gauss)</td>
<td>and back-substitution. Input (\mathbf{A}) accepts both standard or sparse format.</td>
</tr>
<tr>
<td>LL (Cholesky)</td>
<td>Returns the Cholesky factorization of a sparse symmetric matrix</td>
</tr>
<tr>
<td>Linear System (\mathbf{Ax} = \mathbf{b}) (Trid.)</td>
<td>Solves a tridiagonal linear system using the iterative Gauss algorithm with partial pivot and back-substitution. Input (\mathbf{A}) is in tridiagonal format (see Function MMult3)</td>
</tr>
<tr>
<td>Dominance improving</td>
<td>Tries to improve the dominance of a sparse matrix by rows exchanging. Input (\mathbf{A}) accepts both standard or sparse format. Useful for sparse linear solving (\mathbf{Ax} = \mathbf{b}). In that case, the macro also accepts the vector (\mathbf{b}).</td>
</tr>
</tbody>
</table>

Complex Matrix Operations

This macro performs several common matrix operations like: addition, subtraction, multiplication, inversion, scalar multiplication, etc. in complex arithmetic.

![Complex Matrix Operations](image)

The macros accept matrices in 3 different formats: 1) split, 2) interlaced, 3) string. (see About complex matrix format)

Choose the adapt format that you want simply by clicking repeatedly on the little button at the right
Macro Gauss-step-by-step

This macro performs, step by step, the reduction of the given matrix into a triangular or diagonal form by the Gauss and Gauss-Jordan algorithms. It works like the Function GJstep except that it traces all multiplication coefficients as well as all the swap actions.

Multiply the 1st row for 2
Multiply the 2nd row for -3
Add the two rows and substitute the result to the 2nd row

Exchange the 2nd row with the 3rd row

Using this macro is very easy. Select the matrix that you want to reduce and start the macro at the menu:
>macros > Gauss step by step
The reduction steps are traced below the original matrix.
For example, if you want to invert the following (3 x 3) matrix, add the (3 x 3) identity matrix to its right

3 2 1 0 0
2 2 -1 0 1 0
3 2 -1 0 0 1

Then select the 3x6 range and start the macro

The reduction type options make the reduction to diagonal form (Gauss-Jordan) or triangular (Gauss)

The pivoting options force the algorithm to search always for the max pivot along the column (partial pivoting) or, on the contrary, only when the diagonal element is zero.

The integer check box sets the reduction method in integer exact mode (only for integer matrices).

Errmax sets the round-off error

Last step check box writes only the last step. Useful for large matrices
Macro Shortest-Path

This macro generates the shortest-path matrix from a given distance-matrix. It works like the function PathFloyd except that it accepts larger matrices (up to 255 x 255). Using this macro is very easy. Select the matrix that you want to reduce and start the macro from the menu: >macros > Shortest path

In the example below we see a 20 x 20 distance matrix

For default, the output matrix begins at cell D25, just below the input matrix.

Macro Draw Graph

This useful stuff draws a simple graph from its adjacent matrix. (There is now an equivalent function for this macro). Using this macro is very easy. Select the matrix and start the macro from the menu:
>macros > Graph > Draw
Macro Block reduction

This macro transforms a square sparse matrix into a block-partitioned form using the score-algorithm. This macro works like the functions MBlock and MBlockPerm except that it is better adapted for large matrices.

Using this macro is very easy. Select the matrix and start the macro at the menu:

```plaintext
> macros > Block reduction
```

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
```

- **input sparse**
- **block partitioned**
- **permutation**
References

In this chapter we have collected, listed for subject, all the documents that we have consulted without regarding their source (paper books, electronics books, html web pages, pdf notes, etc.). For all internet documents we have used the web engine GOOGLE.

"LAPACK -- Linear Algebra PACKage" 3.0, Update: May 31, 2000

“Linear Algebra - Answers to Exercises” Jim Hefferon, Saint Michael's College, Colchester (Vermont), July 2001
“Calcolo Numerico” Giovanni Gheri, Università degli Studi di Pisa, 2002
“Introduction to the Singular Value Decomposition” by Todd Will, UW-La Crosse, University of Wisconsin, 1999
“Calcul matriciel et équation linéaires”, Jean Debord, Limoges Cedex, 2003
“Leontief Input-Output Modelling” Addison-Wesley, Pearson Education
“Scalar, Vectors & Matrices”, J. Walt Oler, Texas Teach University, 1980
"Numerical Methods that usually work", F. S. Acton, The Mathematical Association of America, 1990
"Calculo Numérico", Neide M. B. Franco, 2002
"Metodos Numericos" Sergio R. De Freitas, 2000
"Advanced Excel for scientific data analysis", Robert de Levie, Oxford University Press, 2004
Credits

Manu thanks to:

Gregory Klein,
Bernard Wagner
and Carlos Aya

The library FunCustomize.dll, appears by courtesy of Laurent Longre (http://longre.free.fr)

Many thanks are also due to Prof. Robert de Levie for numerous corrections and valuable comments.