
Primality Tests

Most of our more-sophisticated primality checking will rely on two results - the Rabin-
Miller test and the Pocklington test. The former is used as a “gatekeeper,” since it is only
capable of proving compositeness, while the second is used as a final check, since it is more
difficult to verify.

Theorem 1 (Rabin-Miller): If p = t2s + 1 is prime, where t is odd (i.e., s is
maximal), and 2 ≤ a ≤ p − 1, then either at ≡ 1 (mod p) or at2r ≡ −1 (mod p) for some
0 ≤ r ≤ s − 1.

Proof: If p is prime and 2 ≤ a ≤ p − 1, then Fermat’s Little Theorem implies that
ap−1 = at2s ≡ 1 (mod p). Furthermore, if p is prime, then the ring of integers modulo p
is a field, which implies that 1 has at most two square roots, namely 1 and −1 (which are
equal if p = 2). Consider, then, the sequence (modulo p)

at2s

, at2s−1

, at2s−2

, . . . , at

Each term in this sequence is one of the square roots of the preceding term, and the
first term is 1. There are, then, two possibilities: either the whole sequence consists of
1’s, or some element of the sequence after the first is a −1. These are precisely the two
possibilities in the conclusion of the theorem. Q.E.D.

We also note (proof later) that a composite p will pass this test for at most 1/4 of
the possible a values – a composite p that passes this test for the base a is said to be a
strong pseudoprime to the base a. We also note that performing a Rabin-Miller test for a
particular a requires only a single modular exponentiation, followed by repeated squaring
(up to s−1 times). It is also true that calculation of s and t is trivial on a binary computer,
since s is simply the number of trailing 0 bits in p − 1 and t is the result of shifting p − 1
right by s bits.

Theorem 2 (Pocklington): If p = qkr + 1, q is prime, q ∤ r, and there exists
2 ≤ a ≤ p − 1 such that ap−1 ≡ 1 (mod p) and (a(p−1)/q − 1, p) = 1, then every prime
factor of p is congruent to 1 modulo qk.

Proof: Let s be a prime factor of p and let m be the multiplicative order of a modulo
s (i.e., the smallest positive integer such that am ≡ 1 (mod s)). The first condition on a
ensures that m|p − 1 = qkr, while the second ensures that m ∤ (p − 1)/q = qk−1r. These
two imply that qk|m. Now, Fermat’s Little Theorem implies that m|s− 1, hence qk|s− 1,
or s ≡ 1 (mod qk). Q.E.D.

A couple of useful corollaries -
Corollary 3: Let p, q, r, a be as in Theorem 2. If, in addition, qk > r then p is

prime.
Proof: Using Theorem 2, we see that all prime factors of p are greater than qk >

√
p.

Hence, p is prime.Q.E.D.



Corollary 4: Let p, q, r, a be as in Theorem 2. If, in addition, q2k > r then either
p is prime or is the product of two primes congruent to 1 modulo qk.

Proof: Using Theorem 2, we see that all prime factors of p are greater than qk > 3
√

p.
Hence, there are at most 2 of them and they are both congruent to 1 modulo qk. Q.E.D.

Corollary 5: Let p, q, r, a be as in Corollary 4. Assume that p and q are both odd.
Let r = bqk + c where 0 ≤ c < qk. If b is not a multiple of 4 or c2 − 4b is not a square,
then p is prime.

Proof: We only need to rule out the case where p = p1p2, pi prime, pi = kiq
k + 1.

First, observe that, since p1p2 = p, we have k1k2 < qk. Furthermore, each ki must be
even and nonzero. Hence, we have 2 ≤ ki ≤ (qk − 1)/2 < qk. Furthermore, k1 + k2 ≤
2 + (qk − 1)/2 < qk, since the sum of two real numbers of constant product is a maximum
when one is as small as possible (the special case when q = 3, k = 1 is easily dealt with,
since no two even positive integers have product less than 3). Thus, we see that

(k1q
k + 1)(k2q

k + 1) = k1k2q
2k + (k1 + k2)q

k + 1

= bq2k + cqk + 1

implies that k1k2 = b, k1 + k2 = c. Since the ki are both even, b must be a multiple of 4.
Furthermore, c2 − 4b = (k1 − k2)

2, so c2 − 4b must be a square. Since one or the other of
these was assumed to be false, the other conclusion of Corollary 4 must hold, namely, p
must be prime. Q.E.D.

To prove that a composite p is a strong pseudoprime to at most 25% of the possible
bases, we need two lemmas:

Lemma 6: In a cyclic group of order n, there are (n, k) distinct elements x that
satisfy xk = 1.

Proof: Let d = (n, k) and let the cyclic group be generated by g, so that the group
is {g, g2, g3, . . . , gn = 1}. An element gj satisfies the equation iff n|jk iff (n/d)|(jk/d) iff
j is a multiple of n/d since n/d and k/d are relatively prime. There are d such values
1 ≤ j ≤ n. Q.E.D.

Lemma 7: Let p = t2s + 1 be prime with t odd. Then, the number of 1 ≤ x ≤ p − 1
that satisfy xu2r ≡ −1 (mod p) is 0 if r ≥ s and 2r(u, t) otherwise.

Proof: Let g be a generator for the multiplicative group of nonzero elements modulo
p and let x = gj. Then, the number of distinct x that satisfy the condition is the same as
the number of distinct exponents j that satisfy

ju2r ≡ (p − 1)/2 (mod p − 1)

≡ t2s−1 (mod t2s)

Clearly, if r ≥ s, this cannot occur since the left-hand side and the modulus both contain
at least s factors of 2, while the right-hand side only has s − 1. On the other hand,



if r < s, denote (u, t) by d. In this case, there is at least one solution since (u/d) is
relatively prime to (t/d)2s−r . This implies that there is a 1 ≤ k < (t/d)2s−r which is the
multiplicative inverse of (u/d) modulo (t/d)2s−r. Now, let j = k(t/d)2s−r−1. Observe
that j(u/d) ≡ (t/d)2s−r−1 (mod (t/d)2s−r) which implies that

ju2r ≡ t2s−1 (mod t2s)

Once we have one solution, we can easily count the others using Lemma 6, since all
solutions will be a product of the one fixed solution and a solution of yu2r ≡ 1 (mod p).
Thus, the total number of solutions is (t2s, u2r) = 2r(u, t). Q.E.D.

Theorem 8: If p is odd and composite, it is a strong pseudoprime to at most (p−1)/4
bases 0 < a < n.

Proof: We will break this up into 3 cases –
Case I: p is divisible by the square of an odd prime q. Suppose p is a strong

pseudoprime relative to 0 < a < p, and qk|p (k maximal), k ≥ 2. Then, ap−1 ≡ 1
(mod qk). The size of the group in question, the multiplicative group of the integers mod-
ulo qk is ϕ(qk) = qk−1(q − 1). This tells us that, among the a less than qk, there are
d = (qk−1(q − 1), p− 1) solutions. Now, q is prime and q|p so q ∤ p− 1. Therefore, d|q − 1.
Using the Chinese Remainder Theorem, then, we see that the number of such a is at most
(q − 1)p/qk and thus the proportion of solutions is at most

(q − 1)p

qk(p − 1)
≤ (q − 1)p

qk(p − (p/qk))

≤ (q − 1)p

pqk − p

=
q − 1

qk − 1

≤ q − 1

q2 − 1

=
1

1 + q
≤ 1/4

Note that this case does not really use the full strength of the Rabin-Miller test, only the
Fermat portion.

Case II: p is the product of two distinct odd primes, p = q1q2. Let q1 = t12
s1 + 1 and

q2 = t22
s2 +1 (ti odd). Suppose, without loss of generality, that s1 ≤ s2. Note that s1 ≤ s

since
t2s = p − 1

= (q1 − 1)(q2 − 1) + (q1 − 1) + (q2 − 1)

= t12
s1t22

s2 + t12
s1 + t22

s2

= 2s1(t1t2s
s2 + t1 + t22

s2−s1)

The Chinese Remainder Theorem then lets us reinterpret the strong pseudoprime condi-
tion: if p is a strong pseudoprime to base a, then either at ≡ 1 (mod q1) and at ≡ 1



(mod q2) or, for some 0 ≤ r < s, at2r ≡ −1 (mod q1) and at2r ≡ −1 (mod q2). Using
Lemma 6, we see that the first condition holds for

(t, q1 − 1)(t, q2 − 1) = (t, t12
s1)(t, t22

s2)

= (t, t1)(t, t2)

≤ t2t2

Next, Lemma 7 implies that, for 0 ≤ r < s1 ≤ s2, that the second condition has

2r(t, t1)2
r(t, t2) ≤ 4rt1t2

solutions (there are none if r ≥ s1).
Thus, the total number of solutions is at most

t1t2(2 + 4 + 42 + · · · + 4s1−1)

Furthermore, p−1 > (q1 −1)(q2 −1) = t1t22
s1+s2 so the proportion of solutions is at most

1 + 4s1
−1

4−1

2s1+s2

If s1 < s2, then this is at most

2−2s1−1(
2

3
+

4s1

3
) ≤ 2−3 2

3
+

1

6
=

1

4

If s1 = s2, then we must be a bit more careful. We claim that, in this subcase, at
least one of the ti is not a factor of t. For, if t1|t, then

p − 1 = t2s

= q1q2 − 1

= (q1 − 1)q2 + (q2 − 1)

= t12
s1q2 + t22

s2

= 2s1(t1q2 + t2)

so that 0 ≡ t22
s1 (mod t1), i.e. t1|t2. Similarly, if t2|t, then t2|t1. Thus, if both ti are

factors of t, then they are equal and hence q1 = q2, a contradiction. So, at least one of the
(ti, t) is strictly less than ti, hence less than ti by at least a factor of 3. Recall that, in our
counting of solutions, we replaced (t1, t)(t2, t) by t1t2. This argument shows that this was
overly generous by at least a factor of 3, so we may now replace t1t2 by t1t2/3. This gives
us the upper bound on the proportion of solutions of

2−2s1(
2

3
+

4s1

3
) ≤ 1

18
+

1

9
=

1

6
<

1

4



Case III: p is the product of three or more distinct primes, p = q1q2 . . . qn (n ≥ 3).
Proceed as in Case II and let qi = ti2

si +1 with ti odd. Assume, without loss of generality
that si ≤ si+1. Arguing as before, we see that the proportion of solutions is at most

2−s1−s2−···−sn

(

1 +
2ns1 − 1

2n − 1

)

≤ 2−ns1

(

2n − 2

2n − 1
+

2ns1

2n − 1

)

= 2−ns1
2n − 2

2n − 1
+

1

2n − 1

≤ 2−n 2n − 2

2n − 1
+

1

2n − 1

=
2 − 21−n

2n − 1

= 21−n

≤ 1

4

since n ≥ 3.
Q.E.D.



Mihailescu’s Prime-Generation Algorithm

To generate a provable prime p of n bits, Mihailescu has (more or less) proposed the
following algorithm which combines a number of the above results:

Step 0: if n ≤ 16, return an appropriately-size prime from a list of the 16-bit primes.
Step 1: Recursively generate a prime q of size at least ⌈n/3⌉.
Step 2: Set up a sieve with a start value of at least ⌈(2n − 1)/(2q)⌉ and a size of at

least 10n.
Step 3: For all 16-bit primes r, remove from the sieve all values t such that r|2qt + 1.

Note that this necessitates calculating (2q)−1 (mod r).
Step 4: If the sieve is empty, go back to Step 2 (set up a nonoverlapping sieve).

Otherwise, for each sieve output t, perform a base-2 Rabin-Miller test on p = 2qt + 1. If
it fails, go back to Step 4. If it passes, go on to Step 5.

Step 5: Divide 2t by q, and call the quotient b and the remainder c. If b is a multiple
of 4, and c2 − 4b is a square, go back to Step 4. (For somewhat subtle number-theoretic
reasons, it’s really only necessary to check whether or not c2 − 4b is a square – if it is, b is
necessarily a multiple of 4).

Step 6: Let a denote a small prime (start with 2, continue to L). If you have reached
L, go back to Step 4. Let d denote a2t (mod p). If d = 1, go back to Step 6 (next small
prime). Otherwise, calculate dq (mod p). If this is not 1, go back to Step 4. Calculate
(d − 1, p). If this is not 1, go back to Step 4. If it is 1, then p is prime. Return it, and
terminate the algorithm.

Note that Step 1 and Step 2 may be randomized so that different primes are produced
each time.

A prime certificate is a list containing all information necessary for a third party to
verify the calculations to prove primality. In this case, a certificate for p would be:

1) p itself,
2) q,
3) a prime certificate for q,
4) if b is not a multiple of 4, then b, else c2 − 4b (to verify it’s not a square),
5) the a value that finally worked in Step 6.


