Primality Tests

Most of our more-sophisticated primality checking will rely on two results - the Rabin-
Miller test and the Pocklington test. The former is used as a “gatekeeper,” since it is only
capable of proving compositeness, while the second is used as a final check, since it is more
difficult to verify.

Theorem 1 (Rabin-Miller): If p = ¢2° + 1 is prime, where ¢ is odd (i.e., s is
maximal), and 2 < a < p — 1, then either a* = 1 (mod p) or a’>" = —1 (mod p) for some
0<r<s—1.

Proof: If p is prime and 2 < a < p — 1, then Fermat’s Little Theorem implies that
a?~! = a'* =1 (mod p). Furthermore, if p is prime, then the ring of integers modulo p
is a field, which implies that 1 has at most two square roots, namely 1 and —1 (which are
equal if p = 2). Consider, then, the sequence (modulo p)
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Each term in this sequence is one of the square roots of the preceding term, and the
first term is 1. There are, then, two possibilities: either the whole sequence consists of
1’s, or some element of the sequence after the first is a —1. These are precisely the two
possibilities in the conclusion of the theorem. Q.E.D.

We also note (proof later) that a composite p will pass this test for at most 1/4 of
the possible a values — a composite p that passes this test for the base a is said to be a
strong pseudoprime to the base a. We also note that performing a Rabin-Miller test for a
particular a requires only a single modular exponentiation, followed by repeated squaring
(up to s—1 times). It is also true that calculation of s and ¢ is trivial on a binary computer,
since s is simply the number of trailing 0 bits in p — 1 and ¢ is the result of shifting p — 1
right by s bits.

Theorem 2 (Pocklington): If p = ¢*r + 1, ¢ is prime, ¢ { r, and there exists
2 < a < p—1such that = = 1 (mod p) and (aP~1/9 — 1,p) = 1, then every prime
factor of p is congruent to 1 modulo ¢*.

Proof: Let s be a prime factor of p and let m be the multiplicative order of a modulo
s (i.e., the smallest positive integer such that a” =1 (mod s)). The first condition on a
ensures that m|p — 1 = ¢®r, while the second ensures that m { (p — 1)/q = ¢*~'r. These
two imply that ¢*|m. Now, Fermat’s Little Theorem implies that m|s — 1, hence ¢*|s — 1,
or s=1 (mod ¢*). Q.E.D.

A couple of useful corollaries -

Corollary 3: Let p,q,7,a be as in Theorem 2. If, in addition, ¢¥ > r then p is
prime.

Proof: Using Theorem 2, we see that all prime factors of p are greater than ¢* > V/D-
Hence, p is prime.Q.E.D.



Corollary 4: Let p,q,r,a be as in Theorem 2. If, in addition, ¢?* > r then either
p is prime or is the product of two primes congruent to 1 modulo ¢*.

Proof: Using Theorem 2, we see that all prime factors of p are greater than ¢* > /-
Hence, there are at most 2 of them and they are both congruent to 1 modulo ¢*. Q.E.D.

Corollary 5: Let p,q,r,a be as in Corollary 4. Assume that p and ¢ are both odd.
Let r = bg® + ¢ where 0 < ¢ < ¢*. If b is not a multiple of 4 or ¢ — 4b is not a square,
then p is prime.

Proof: We only need to rule out the case where p = pip2, p; prime, p; = k;¢* + 1.
First, observe that, since pips = p, we have kiko < ¢*. Furthermore, each k; must be
even and nonzero. Hence, we have 2 < k; < (¢* — 1)/2 < ¢*. Furthermore, k1 + ky <
2+ (¢* —1)/2 < ¢*, since the sum of two real numbers of constant product is a maximum
when one is as small as possible (the special case when ¢ = 3, k = 1 is easily dealt with,
since no two even positive integers have product less than 3). Thus, we see that

(k1g® + 1) (kag® + 1) = k1kog® + (k1 + k2)g® + 1
= bg®* + " + 1

implies that k1ks = b, k1 + ko = c¢. Since the k; are both even, b must be a multiple of 4.
Furthermore, ¢? — 4b = (k1 — k2)?, so ¢? — 4b must be a square. Since one or the other of
these was assumed to be false, the other conclusion of Corollary 4 must hold, namely, p
must be prime. Q.E.D.

To prove that a composite p is a strong pseudoprime to at most 25% of the possible
bases, we need two lemmas:

Lemma 6: In a cyclic group of order n, there are (n,k) distinct elements = that
satisfy % = 1.

Proof: Let d = (n,k) and let the cyclic group be generated by g, so that the group
is {g,9%,9%,...,9" = 1}. An element g’ satisfies the equation iff n|jk iff (n/d)|(jk/d) iff
J is a multiple of n/d since n/d and k/d are relatively prime. There are d such values
1<7<n. QE.D.

Lemma 7: Let p =12° + 1 be prime with ¢ odd. Then, the numberof 1 <z <p—1
that satisfy 22" = —1 (mod p) is 0 if r > s and 2" (u, t) otherwise.

Proof: Let g be a generator for the multiplicative group of nonzero elements modulo
p and let z = ¢/. Then, the number of distinct x that satisfy the condition is the same as
the number of distinct exponents j that satisfy

ju2" = (p—1)/2 (mod p — 1)
= 125" (mod 2°)

Clearly, if r > s, this cannot occur since the left-hand side and the modulus both contain
at least s factors of 2, while the right-hand side only has s — 1. On the other hand,



if r < s, denote (u,t) by d. In this case, there is at least one solution since (u/d) is
relatively prime to (¢/d)2°~". This implies that there is a 1 < k < (¢/d)2°~" which is the
multiplicative inverse of (u/d) modulo (t/d)2°~". Now, let j = k(t/d)2°7"~1. Observe
that j(u/d) = (t/d)257""1 (mod (t/d)25~") which implies that

ju2" = 12571 (mod t2%)

Once we have one solution, we can easily count the others using Lemma 6, since all
solutions will be a product of the one fixed solution and a solution of y“? =1 (mod p).
Thus, the total number of solutions is (2%, u2") = 2" (u,t). Q.E.D.

Theorem 8: If p is odd and composite, it is a strong pseudoprime to at most (p—1)/4
bases 0 < a < n.

Proof: We will break this up into 3 cases —

Case I: p is divisible by the square of an odd prime ¢q. Suppose p is a strong
pseudoprime relative to 0 < a < p, and ¢*|p (k maximal), k& > 2. Then, a?~! = 1
(mod ¢*). The size of the group in question, the multiplicative group of the integers mod-
ulo ¢* is ¢(¢*) = ¢ (¢ — 1). This tells us that, among the a less than ¢*, there are
d= (¢"1(¢—1),p— 1) solutions. Now, ¢ is prime and ¢|p so ¢ { p — 1. Therefore, d|q — 1.
Using the Chinese Remainder Theorem, then, we see that the number of such a is at most
(¢ — 1)p/q* and thus the proportion of solutions is at most
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Note that this case does not really use the full strength of the Rabin-Miller test, only the
Fermat portion.

Case II: p is the product of two distinct odd primes, p = q1¢2. Let ¢1 = t12° +1 and
g2 = t22°2 4+ 1 (t; odd). Suppose, without loss of generality, that s; < so. Note that s; <'s
since

12°=p—1
=@ —D(e-D+@-1)+(¢-1)
= 11211922 + 2% 4 19272
= 251 (tltgssz +t + t2252_51)

The Chinese Remainder Theorem then lets us reinterpret the strong pseudoprime condi-
tion: if p is a strong pseudoprime to base a, then either a® = 1 (mod ¢;) and a! = 1



(mod ¢3) or, for some 0 < r < s, a’* = —1 (mod ¢1) and a**" = —1 (mod ¢3). Using
Lemma 6, we see that the first condition holds for

(t,qn —1)(t, g2 — 1) = (t,112°")(¢, 122%)
= (t,t1)(t,t2)
t

ol

Next, Lemma 7 implies that, for 0 < r < s7 < s9, that the second condition has
27 (t,11)2" (¢, t2) < 4"t1ty

solutions (there are none if r > s7).
Thus, the total number of solutions is at most

tito(2+44+4% + ... 44571

Furthermore, p—1 > (q1 —1)(g2 — 1) = t1£22°1752 50 the proportion of solutions is at most
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If s1 = s2, then we must be a bit more careful. We claim that, in this subcase, at
least one of the t; is not a factor of t. For, if ¢1|t, then

p—1=12°
=qi1q2 — 1
= (@ —1)g2+ (g2 — 1)
= 1121 qo + 122%2
= 27" (t1g2 + t2)

so that 0 = ¢22°1 (mod t1), i.e. t1|ta. Similarly, if to|t, then ¢2|t;. Thus, if both ¢; are
factors of ¢, then they are equal and hence ¢; = ¢2, a contradiction. So, at least one of the
(t;,t) is strictly less than ¢;, hence less than ¢; by at least a factor of 3. Recall that, in our
counting of solutions, we replaced (t1,t)(t2,t) by t1t2. This argument shows that this was
overly generous by at least a factor of 3, so we may now replace t1ts by t1t2/3. This gives
us the upper bound on the proportion of solutions of

2 4% 1 1
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Case III: p is the product of three or more distinct primes, p = qi1g2...q, (n > 3).
Proceed as in Case Il and let ¢; = t;2% + 1 with ¢; odd. Assume, without loss of generality
that s; < s;41. Arguing as before, we see that the proportion of solutions is at most
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since n > 3.
Q.E.D.



Mihailescu’s Prime-Generation Algorithm

To generate a provable prime p of n bits, Mihailescu has (more or less) proposed the
following algorithm which combines a number of the above results:

Step 0: if n < 16, return an appropriately-size prime from a list of the 16-bit primes.

Step 1: Recursively generate a prime ¢ of size at least [n/3].

Step 2: Set up a sieve with a start value of at least [(2" —1)/(2¢)] and a size of at
least 10n.

Step 3: For all 16-bit primes r, remove from the sieve all values ¢ such that r|2qt + 1.
Note that this necessitates calculating (2¢)~! (mod r).

Step 4: If the sieve is empty, go back to Step 2 (set up a nonoverlapping sieve).
Otherwise, for each sieve output ¢, perform a base-2 Rabin-Miller test on p = 2¢qt + 1. If
it fails, go back to Step 4. If it passes, go on to Step 5.

Step 5: Divide 2t by ¢, and call the quotient b and the remainder c¢. If b is a multiple
of 4, and ¢? — 4b is a square, go back to Step 4. (For somewhat subtle number-theoretic
reasons, it’s really only necessary to check whether or not ¢ — 4b is a square — if it is, b is
necessarily a multiple of 4).

Step 6: Let a denote a small prime (start with 2, continue to L). If you have reached
L, go back to Step 4. Let d denote a?' (mod p). If d = 1, go back to Step 6 (next small
prime). Otherwise, calculate d? (mod p). If this is not 1, go back to Step 4. Calculate
(d —1,p). If this is not 1, go back to Step 4. If it is 1, then p is prime. Return it, and
terminate the algorithm.

Note that Step 1 and Step 2 may be randomized so that different primes are produced
each time.

A prime certificate is a list containing all information necessary for a third party to
verify the calculations to prove primality. In this case, a certificate for p would be:

1) p itself,

2) q,

3) a prime certificate for ¢,
4) if b is not a multiple of 4, then b, else ¢ — 4b (to verify it’s not a square),
5) the a value that finally worked in Step 6.



