Primality Tests

Most of our more-sophisticated primality checking will rely on two results - the Rabin-Miller test and the Pocklington test. The former is used as a "gatekeeper," since it is only capable of proving compositeness, while the second is used as a final check, since it is more difficult to verify.

Theorem 1 (Rabin-Miller): If $p = t2^s + 1$ is prime, where t is odd (i.e., s is maximal), and $2 \le a \le p - 1$, then either $a^t \equiv 1 \pmod{p}$ or $a^{t2^r} \equiv -1 \pmod{p}$ for some $0 \le r \le s - 1$.

Proof: If p is prime and $2 \le a \le p-1$, then Fermat's Little Theorem implies that $a^{p-1} = a^{t2^s} \equiv 1 \pmod{p}$. Furthermore, if p is prime, then the ring of integers modulo p is a field, which implies that 1 has at most two square roots, namely 1 and -1 (which are equal if p = 2). Consider, then, the sequence (modulo p)

$$a^{t2^s}, a^{t2^{s-1}}, a^{t2^{s-2}}, \dots, a^t$$

Each term in this sequence is one of the square roots of the preceding term, and the first term is 1. There are, then, two possibilities: either the whole sequence consists of 1's, or some element of the sequence after the first is a -1. These are precisely the two possibilities in the conclusion of the theorem. **Q.E.D.**

We also note (proof later) that a composite p will pass this test for at most 1/4 of the possible a values – a composite p that passes this test for the base a is said to be a strong pseudoprime to the base a. We also note that performing a Rabin-Miller test for a particular a requires only a single modular exponentiation, followed by repeated squaring (up to s-1 times). It is also true that calculation of s and t is trivial on a binary computer, since s is simply the number of trailing 0 bits in p-1 and t is the result of shifting p-1right by s bits.

Theorem 2 (Pocklington): If $p = q^k r + 1$, q is prime, $q \nmid r$, and there exists $2 \leq a \leq p-1$ such that $a^{p-1} \equiv 1 \pmod{p}$ and $(a^{(p-1)/q} - 1, p) = 1$, then every prime factor of p is congruent to 1 modulo q^k .

Proof: Let s be a prime factor of p and let m be the multiplicative order of a modulo s (i.e., the smallest positive integer such that $a^m \equiv 1 \pmod{s}$). The first condition on a ensures that $m|p-1 = q^k r$, while the second ensures that $m \nmid (p-1)/q = q^{k-1}r$. These two imply that $q^k|m$. Now, Fermat's Little Theorem implies that m|s-1, hence $q^k|s-1$, or $s \equiv 1 \pmod{q^k}$. Q.E.D.

A couple of useful corollaries -

Corollary 3: Let p, q, r, a be as in **Theorem 2**. If, in addition, $q^k > r$ then p is prime.

Proof: Using **Theorem 2**, we see that all prime factors of p are greater than $q^k > \sqrt{p}$. Hence, p is prime.**Q.E.D.** **Corollary 4:** Let p, q, r, a be as in **Theorem 2**. If, in addition, $q^{2k} > r$ then either p is prime or is the product of two primes congruent to 1 modulo q^k .

Proof: Using **Theorem 2**, we see that all prime factors of p are greater than $q^k > \sqrt[3]{p}$. Hence, there are at most 2 of them and they are both congruent to 1 modulo q^k . Q.E.D.

Corollary 5: Let p, q, r, a be as in **Corollary 4**. Assume that p and q are both odd. Let $r = bq^k + c$ where $0 \le c < q^k$. If b is not a multiple of 4 or $c^2 - 4b$ is not a square, then p is prime.

Proof: We only need to rule out the case where $p = p_1p_2$, p_i prime, $p_i = k_iq^k + 1$. First, observe that, since $p_1p_2 = p$, we have $k_1k_2 < q^k$. Furthermore, each k_i must be even and nonzero. Hence, we have $2 \le k_i \le (q^k - 1)/2 < q^k$. Furthermore, $k_1 + k_2 \le 2 + (q^k - 1)/2 < q^k$, since the sum of two real numbers of constant product is a maximum when one is as small as possible (the special case when q = 3, k = 1 is easily dealt with, since no two even positive integers have product less than 3). Thus, we see that

$$(k_1q^k + 1)(k_2q^k + 1) = k_1k_2q^{2k} + (k_1 + k_2)q^k + 1$$
$$= bq^{2k} + cq^k + 1$$

implies that $k_1k_2 = b$, $k_1 + k_2 = c$. Since the k_i are both even, b must be a multiple of 4. Furthermore, $c^2 - 4b = (k_1 - k_2)^2$, so $c^2 - 4b$ must be a square. Since one or the other of these was assumed to be false, the other conclusion of **Corollary 4** must hold, namely, p must be prime. **Q.E.D.**

To prove that a composite p is a strong pseudoprime to at most 25% of the possible bases, we need two lemmas:

Lemma 6: In a cyclic group of order n, there are (n, k) distinct elements x that satisfy $x^k = 1$.

Proof: Let d = (n, k) and let the cyclic group be generated by g, so that the group is $\{g, g^2, g^3, \ldots, g^n = 1\}$. An element g^j satisfies the equation iff n|jk iff (n/d)|(jk/d) iff j is a multiple of n/d since n/d and k/d are relatively prime. There are d such values $1 \le j \le n$. Q.E.D.

Lemma 7: Let $p = t2^s + 1$ be prime with t odd. Then, the number of $1 \le x \le p - 1$ that satisfy $x^{u2^r} \equiv -1 \pmod{p}$ is 0 if $r \ge s$ and $2^r(u, t)$ otherwise.

Proof: Let g be a generator for the multiplicative group of nonzero elements modulo p and let $x = g^j$. Then, the number of distinct x that satisfy the condition is the same as the number of distinct exponents j that satisfy

$$ju2^r \equiv (p-1)/2 \pmod{p-1}$$
$$\equiv t2^{s-1} \pmod{t2^s}$$

Clearly, if $r \ge s$, this cannot occur since the left-hand side and the modulus both contain at least s factors of 2, while the right-hand side only has s - 1. On the other hand, if r < s, denote (u,t) by d. In this case, there is at least one solution since (u/d) is relatively prime to $(t/d)2^{s-r}$. This implies that there is a $1 \le k < (t/d)2^{s-r}$ which is the multiplicative inverse of (u/d) modulo $(t/d)2^{s-r}$. Now, let $j = k(t/d)2^{s-r-1}$. Observe that $j(u/d) \equiv (t/d)2^{s-r-1} \pmod{(t/d)2^{s-r}}$ which implies that

$$ju2^r \equiv t2^{s-1} \pmod{t2^s}$$

Once we have one solution, we can easily count the others using **Lemma 6**, since all solutions will be a product of the one fixed solution and a solution of $y^{u2^r} \equiv 1 \pmod{p}$. Thus, the total number of solutions is $(t2^s, u2^r) = 2^r(u, t)$. **Q.E.D.**

Theorem 8: If p is odd and composite, it is a strong pseudoprime to at most (p-1)/4 bases 0 < a < n.

Proof: We will break this up into 3 cases –

Case I: p is divisible by the square of an odd prime q. Suppose p is a strong pseudoprime relative to 0 < a < p, and $q^k | p$ (k maximal), $k \ge 2$. Then, $a^{p-1} \equiv 1 \pmod{q^k}$. The size of the group in question, the multiplicative group of the integers modulo q^k is $\varphi(q^k) = q^{k-1}(q-1)$. This tells us that, among the a less than q^k , there are $d = (q^{k-1}(q-1), p-1)$ solutions. Now, q is prime and q | p so $q \nmid p-1$. Therefore, d | q-1. Using the Chinese Remainder Theorem, then, we see that the number of such a is at most $(q-1)p/q^k$ and thus the proportion of solutions is at most

$$\frac{(q-1)p}{q^k(p-1)} \le \frac{(q-1)p}{q^k(p-(p/q^k))}$$
$$\le \frac{(q-1)p}{pq^k-p}$$
$$= \frac{q-1}{q^k-1}$$
$$\le \frac{q-1}{q^2-1}$$
$$= \frac{1}{1+q} \le 1/4$$

Note that this case does not really use the full strength of the Rabin-Miller test, only the Fermat portion.

Case II: p is the product of two distinct odd primes, $p = q_1q_2$. Let $q_1 = t_12^{s_1} + 1$ and $q_2 = t_22^{s_2} + 1$ (t_i odd). Suppose, without loss of generality, that $s_1 \leq s_2$. Note that $s_1 \leq s$ since

$$t2^{s} = p - 1$$

= $(q_{1} - 1)(q_{2} - 1) + (q_{1} - 1) + (q_{2} - 1)$
= $t_{1}2^{s_{1}}t_{2}2^{s_{2}} + t_{1}2^{s_{1}} + t_{2}2^{s_{2}}$
= $2^{s_{1}}(t_{1}t_{2}s^{s_{2}} + t_{1} + t_{2}2^{s_{2}-s_{1}})$

The Chinese Remainder Theorem then lets us reinterpret the strong pseudoprime condition: if p is a strong pseudoprime to base a, then either $a^t \equiv 1 \pmod{q_1}$ and $a^t \equiv 1$ (mod q_2) or, for some $0 \le r < s$, $a^{t2^r} \equiv -1 \pmod{q_1}$ and $a^{t2^r} \equiv -1 \pmod{q_2}$. Using **Lemma 6**, we see that the first condition holds for

$$(t, q_1 - 1)(t, q_2 - 1) = (t, t_1 2^{s_1})(t, t_2 2^{s_2})$$
$$= (t, t_1)(t, t_2)$$
$$\leq t_2 t_2$$

Next, Lemma 7 implies that, for $0 \le r < s_1 \le s_2$, that the second condition has

$$2^{r}(t,t_1)2^{r}(t,t_2) \le 4^{r}t_1t_2$$

solutions (there are none if $r \geq s_1$).

Thus, the total number of solutions is at most

$$t_1 t_2 (2 + 4 + 4^2 + \dots + 4^{s_1 - 1})$$

Furthermore, $p-1 > (q_1-1)(q_2-1) = t_1 t_2 2^{s_1+s_2}$ so the proportion of solutions is at most

$$\frac{1 + \frac{4^{s_1} - 1}{4 - 1}}{2^{s_1 + s_2}}$$

If $s_1 < s_2$, then this is at most

$$2^{-2s_1-1}\left(\frac{2}{3} + \frac{4^{s_1}}{3}\right) \le 2^{-3}\frac{2}{3} + \frac{1}{6} = \frac{1}{4}$$

If $s_1 = s_2$, then we must be a bit more careful. We claim that, in this subcase, at least one of the t_i is not a factor of t. For, if $t_1|t$, then

$$p - 1 = t2^{s}$$

= $q_{1}q_{2} - 1$
= $(q_{1} - 1)q_{2} + (q_{2} - 1)$
= $t_{1}2^{s_{1}}q_{2} + t_{2}2^{s_{2}}$
= $2^{s_{1}}(t_{1}q_{2} + t_{2})$

so that $0 \equiv t_2 2^{s_1} \pmod{t_1}$, i.e. $t_1|t_2$. Similarly, if $t_2|t$, then $t_2|t_1$. Thus, if both t_i are factors of t, then they are equal and hence $q_1 = q_2$, a contradiction. So, at least one of the (t_i, t) is strictly less than t_i , hence less than t_i by at least a factor of 3. Recall that, in our counting of solutions, we replaced $(t_1, t)(t_2, t)$ by t_1t_2 . This argument shows that this was overly generous by at least a factor of 3, so we may now replace t_1t_2 by $t_1t_2/3$. This gives us the upper bound on the proportion of solutions of

$$2^{-2s_1}\left(\frac{2}{3} + \frac{4^{s_1}}{3}\right) \le \frac{1}{18} + \frac{1}{9} = \frac{1}{6} < \frac{1}{4}$$

Case III: p is the product of three or more distinct primes, $p = q_1 q_2 \dots q_n$ $(n \ge 3)$. Proceed as in Case II and let $q_i = t_i 2^{s_i} + 1$ with t_i odd. Assume, without loss of generality that $s_i \le s_{i+1}$. Arguing as before, we see that the proportion of solutions is at most

$$2^{-s_1-s_2-\dots-s_n} \left(1 + \frac{2^{ns_1}-1}{2^n-1}\right) \le 2^{-ns_1} \left(\frac{2^n-2}{2^n-1} + \frac{2^{ns_1}}{2^n-1}\right)$$
$$= 2^{-ns_1} \frac{2^n-2}{2^n-1} + \frac{1}{2^n-1}$$
$$\le 2^{-n} \frac{2^n-2}{2^n-1} + \frac{1}{2^n-1}$$
$$= \frac{2-2^{1-n}}{2^n-1}$$
$$= 2^{1-n}$$
$$\le \frac{1}{4}$$

since $n \geq 3$. Q.E.D.

Mihailescu's Prime-Generation Algorithm

To generate a provable prime p of n bits, Mihailescu has (more or less) proposed the following algorithm which combines a number of the above results:

Step 0: if $n \leq 16$, return an appropriately-size prime from a list of the 16-bit primes.

Step 1: Recursively generate a prime q of size at least $\lceil n/3 \rceil$.

Step 2: Set up a sieve with a start value of at least $\lceil (2^n - 1)/(2q) \rceil$ and a size of at least 10n.

Step 3: For all 16-bit primes r, remove from the sieve all values t such that r|2qt + 1. Note that this necessitates calculating $(2q)^{-1} \pmod{r}$.

Step 4: If the sieve is empty, go back to Step 2 (set up a nonoverlapping sieve). Otherwise, for each sieve output t, perform a base-2 Rabin-Miller test on p = 2qt + 1. If it fails, go back to Step 4. If it passes, go on to Step 5.

Step 5: Divide 2t by q, and call the quotient b and the remainder c. If b is a multiple of 4, and $c^2 - 4b$ is a square, go back to Step 4. (For somewhat subtle number-theoretic reasons, it's really only necessary to check whether or not $c^2 - 4b$ is a square – if it is, b is necessarily a multiple of 4).

Step 6: Let a denote a small prime (start with 2, continue to L). If you have reached L, go back to Step 4. Let d denote $a^{2t} \pmod{p}$. If d = 1, go back to Step 6 (next small prime). Otherwise, calculate $d^q \pmod{p}$. If this is not 1, go back to Step 4. Calculate (d-1,p). If this is not 1, go back to Step 4. If it is 1, then p is prime. Return it, and terminate the algorithm.

Note that Step 1 and Step 2 may be randomized so that different primes are produced each time.

A prime certificate is a list containing all information necessary for a third party to verify the calculations to prove primality. In this case, a certificate for p would be:

1) p itself,

2) q,

3) a prime certificate for q,

4) if b is not a multiple of 4, then b, else $c^2 - 4b$ (to verify it's not a square),

5) the a value that finally worked in Step 6.