Primality Tests

Most of our more-sophisticated primality checking will rely on two results - the RabinMiller test and the Pocklington test. The former is used as a "gatekeeper," since it is only capable of proving compositeness, while the second is used as a final check, since it is more difficult to verify.

Theorem 1 (Rabin-Miller): If $p=t 2^{s}+1$ is prime, where t is odd (i.e., s is maximal), and $2 \leq a \leq p-1$, then either $a^{t} \equiv 1(\bmod p)$ or $a^{t 2^{r}} \equiv-1(\bmod p)$ for some $0 \leq r \leq s-1$.

Proof: If p is prime and $2 \leq a \leq p-1$, then Fermat's Little Theorem implies that $a^{p-1}=a^{t 2^{s}} \equiv 1(\bmod p)$. Furthermore, if p is prime, then the ring of integers modulo p is a field, which implies that 1 has at most two square roots, namely 1 and -1 (which are equal if $p=2$). Consider, then, the sequence (modulo p)

$$
a^{t 2^{s}}, a^{t 2^{s-1}}, a^{t 2^{s-2}}, \ldots, a^{t}
$$

Each term in this sequence is one of the square roots of the preceding term, and the first term is 1 . There are, then, two possibilities: either the whole sequence consists of 1 's, or some element of the sequence after the first is a -1 . These are precisely the two possibilities in the conclusion of the theorem. Q.E.D.

We also note (proof later) that a composite p will pass this test for at most $1 / 4$ of the possible a values - a composite p that passes this test for the base a is said to be a strong pseudoprime to the base a. We also note that performing a Rabin-Miller test for a particular a requires only a single modular exponentiation, followed by repeated squaring (up to $s-1$ times). It is also true that calculation of s and t is trivial on a binary computer, since s is simply the number of trailing 0 bits in $p-1$ and t is the result of shifting $p-1$ right by s bits.

Theorem 2 (Pocklington): If $p=q^{k} r+1, q$ is prime, $q \nmid r$, and there exists $2 \leq a \leq p-1$ such that $a^{p-1} \equiv 1(\bmod p)$ and $\left(a^{(p-1) / q}-1, p\right)=1$, then every prime factor of p is congruent to 1 modulo q^{k}.

Proof: Let s be a prime factor of p and let m be the multiplicative order of a modulo s (i.e., the smallest positive integer such that $\left.a^{m} \equiv 1(\bmod s)\right)$. The first condition on a ensures that $m \mid p-1=q^{k} r$, while the second ensures that $m \nmid(p-1) / q=q^{k-1} r$. These two imply that $q^{k} \mid m$. Now, Fermat's Little Theorem implies that $m \mid s-1$, hence $q^{k} \mid s-1$, or $s \equiv 1\left(\bmod q^{k}\right)$ Q.E.D.

A couple of useful corollaries -
Corollary 3: Let p, q, r, a be as in Theorem 2. If, in addition, $q^{k}>r$ then p is prime.

Proof: Using Theorem 2, we see that all prime factors of p are greater than $q^{k}>\sqrt{p}$. Hence, p is prime.Q.E.D.

Corollary 4: Let p, q, r, a be as in Theorem 2. If, in addition, $q^{2 k}>r$ then either p is prime or is the product of two primes congruent to 1 modulo q^{k}.

Proof: Using Theorem 2, we see that all prime factors of p are greater than $q^{k}>\sqrt[3]{p}$. Hence, there are at most 2 of them and they are both congruent to 1 modulo q^{k}. Q.E.D.

Corollary 5: Let p, q, r, a be as in Corollary 4. Assume that p and q are both odd. Let $r=b q^{k}+c$ where $0 \leq c<q^{k}$. If b is not a multiple of 4 or $c^{2}-4 b$ is not a square, then p is prime.

Proof: We only need to rule out the case where $p=p_{1} p_{2}, p_{i}$ prime, $p_{i}=k_{i} q^{k}+1$. First, observe that, since $p_{1} p_{2}=p$, we have $k_{1} k_{2}<q^{k}$. Furthermore, each k_{i} must be even and nonzero. Hence, we have $2 \leq k_{i} \leq\left(q^{k}-1\right) / 2<q^{k}$. Furthermore, $k_{1}+k_{2} \leq$ $2+\left(q^{k}-1\right) / 2<q^{k}$, since the sum of two real numbers of constant product is a maximum when one is as small as possible (the special case when $q=3, k=1$ is easily dealt with, since no two even positive integers have product less than 3). Thus, we see that

$$
\begin{aligned}
\left(k_{1} q^{k}+1\right)\left(k_{2} q^{k}+1\right) & =k_{1} k_{2} q^{2 k}+\left(k_{1}+k_{2}\right) q^{k}+1 \\
& =b q^{2 k}+c q^{k}+1
\end{aligned}
$$

implies that $k_{1} k_{2}=b, k_{1}+k_{2}=c$. Since the k_{i} are both even, b must be a multiple of 4 . Furthermore, $c^{2}-4 b=\left(k_{1}-k_{2}\right)^{2}$, so $c^{2}-4 b$ must be a square. Since one or the other of these was assumed to be false, the other conclusion of Corollary 4 must hold, namely, p must be prime. Q.E.D.

To prove that a composite p is a strong pseudoprime to at most 25% of the possible bases, we need two lemmas:

Lemma 6: In a cyclic group of order n, there are (n, k) distinct elements x that satisfy $x^{k}=1$.

Proof: Let $d=(n, k)$ and let the cyclic group be generated by g, so that the group is $\left\{g, g^{2}, g^{3}, \ldots, g^{n}=1\right\}$. An element g^{j} satisfies the equation iff $n \mid j k$ iff $(n / d) \mid(j k / d)$ iff j is a multiple of n / d since n / d and k / d are relatively prime. There are d such values $1 \leq j \leq n$. Q.E.D.

Lemma 7: Let $p=t 2^{s}+1$ be prime with t odd. Then, the number of $1 \leq x \leq p-1$ that satisfy $x^{u 2^{r}} \equiv-1(\bmod p)$ is 0 if $r \geq s$ and $2^{r}(u, t)$ otherwise.

Proof: Let g be a generator for the multiplicative group of nonzero elements modulo p and let $x=g^{j}$. Then, the number of distinct x that satisfy the condition is the same as the number of distinct exponents j that satisfy

$$
\begin{aligned}
j u 2^{r} & \equiv(p-1) / 2(\bmod p-1) \\
& \equiv t 2^{s-1}\left(\bmod t 2^{s}\right)
\end{aligned}
$$

Clearly, if $r \geq s$, this cannot occur since the left-hand side and the modulus both contain at least s factors of 2 , while the right-hand side only has $s-1$. On the other hand,
if $r<s$, denote (u, t) by d. In this case, there is at least one solution since (u / d) is relatively prime to $(t / d) 2^{s-r}$. This implies that there is a $1 \leq k<(t / d) 2^{s-r}$ which is the multiplicative inverse of (u / d) modulo $(t / d) 2^{s-r}$. Now, let $j=k(t / d) 2^{s-r-1}$. Observe that $j(u / d) \equiv(t / d) 2^{s-r-1}\left(\bmod (t / d) 2^{s-r}\right)$ which implies that

$$
j u 2^{r} \equiv t 2^{s-1} \quad\left(\bmod t 2^{s}\right)
$$

Once we have one solution, we can easily count the others using Lemma 6, since all solutions will be a product of the one fixed solution and a solution of $y^{u 2^{r}} \equiv 1(\bmod p)$. Thus, the total number of solutions is $\left(t 2^{s}, u 2^{r}\right)=2^{r}(u, t)$. Q.E.D.

Theorem 8: If p is odd and composite, it is a strong pseudoprime to at most $(p-1) / 4$ bases $0<a<n$.

Proof: We will break this up into 3 cases -
Case $I: p$ is divisible by the square of an odd prime q. Suppose p is a strong pseudoprime relative to $0<a<p$, and $q^{k} \mid p$ (k maximal), $k \geq 2$. Then, $a^{p-1} \equiv 1$ $\left(\bmod q^{k}\right)$. The size of the group in question, the multiplicative group of the integers modulo q^{k} is $\varphi\left(q^{k}\right)=q^{k-1}(q-1)$. This tells us that, among the a less than q^{k}, there are $d=\left(q^{k-1}(q-1), p-1\right)$ solutions. Now, q is prime and $q \mid p$ so $q \nmid p-1$. Therefore, $d \mid q-1$. Using the Chinese Remainder Theorem, then, we see that the number of such a is at most $(q-1) p / q^{k}$ and thus the proportion of solutions is at most

$$
\begin{aligned}
\frac{(q-1) p}{q^{k}(p-1)} & \leq \frac{(q-1) p}{q^{k}\left(p-\left(p / q^{k}\right)\right)} \\
& \leq \frac{(q-1) p}{p q^{k}-p} \\
& =\frac{q-1}{q^{k}-1} \\
& \leq \frac{q-1}{q^{2}-1} \\
& =\frac{1}{1+q} \leq 1 / 4
\end{aligned}
$$

Note that this case does not really use the full strength of the Rabin-Miller test, only the Fermat portion.

Case II: p is the product of two distinct odd primes, $p=q_{1} q_{2}$. Let $q_{1}=t_{1} 2^{s_{1}}+1$ and $q_{2}=t_{2} 2^{s_{2}}+1$ (t_{i} odd). Suppose, without loss of generality, that $s_{1} \leq s_{2}$. Note that $s_{1} \leq s$ since

$$
\begin{aligned}
t 2^{s} & =p-1 \\
& =\left(q_{1}-1\right)\left(q_{2}-1\right)+\left(q_{1}-1\right)+\left(q_{2}-1\right) \\
& =t_{1} 2^{s_{1}} t_{2} 2^{s_{2}}+t_{1} 2^{s_{1}}+t_{2} 2^{s_{2}} \\
& =2^{s_{1}}\left(t_{1} t_{2} s^{s_{2}}+t_{1}+t_{2} 2^{s_{2}-s_{1}}\right)
\end{aligned}
$$

The Chinese Remainder Theorem then lets us reinterpret the strong pseudoprime condition: if p is a strong pseudoprime to base a, then either $a^{t} \equiv 1\left(\bmod q_{1}\right)$ and $a^{t} \equiv 1$
$\left(\bmod q_{2}\right)$ or, for some $0 \leq r<s, a^{t 2^{r}} \equiv-1\left(\bmod q_{1}\right)$ and $a^{t 2^{r}} \equiv-1\left(\bmod q_{2}\right)$. Using Lemma 6, we see that the first condition holds for

$$
\begin{aligned}
\left(t, q_{1}-1\right)\left(t, q_{2}-1\right) & =\left(t, t_{1} 2^{s_{1}}\right)\left(t, t_{2} 2^{s_{2}}\right) \\
& =\left(t, t_{1}\right)\left(t, t_{2}\right) \\
& \leq t_{2} t_{2}
\end{aligned}
$$

Next, Lemma 7 implies that, for $0 \leq r<s_{1} \leq s_{2}$, that the second condition has

$$
2^{r}\left(t, t_{1}\right) 2^{r}\left(t, t_{2}\right) \leq 4^{r} t_{1} t_{2}
$$

solutions (there are none if $r \geq s_{1}$).
Thus, the total number of solutions is at most

$$
t_{1} t_{2}\left(2+4+4^{2}+\cdots+4^{s_{1}-1}\right)
$$

Furthermore, $p-1>\left(q_{1}-1\right)\left(q_{2}-1\right)=t_{1} t_{2} 2^{s_{1}+s_{2}}$ so the proportion of solutions is at most

$$
\frac{1+\frac{4^{s_{1}}-1}{4-1}}{2^{s_{1}+s_{2}}}
$$

If $s_{1}<s_{2}$, then this is at most

$$
2^{-2 s_{1}-1}\left(\frac{2}{3}+\frac{4^{s_{1}}}{3}\right) \leq 2^{-3} \frac{2}{3}+\frac{1}{6}=\frac{1}{4}
$$

If $s_{1}=s_{2}$, then we must be a bit more careful. We claim that, in this subcase, at least one of the t_{i} is not a factor of t. For, if $t_{1} \mid t$, then

$$
\begin{aligned}
p-1 & =t 2^{s} \\
& =q_{1} q_{2}-1 \\
& =\left(q_{1}-1\right) q_{2}+\left(q_{2}-1\right) \\
& =t_{1} 2^{s_{1}} q_{2}+t_{2} 2^{s_{2}} \\
& =2^{s_{1}}\left(t_{1} q_{2}+t_{2}\right)
\end{aligned}
$$

so that $0 \equiv t_{2} 2^{s_{1}}\left(\bmod t_{1}\right)$, i.e. $t_{1} \mid t_{2}$. Similarly, if $t_{2} \mid t$, then $t_{2} \mid t_{1}$. Thus, if both t_{i} are factors of t, then they are equal and hence $q_{1}=q_{2}$, a contradiction. So, at least one of the $\left(t_{i}, t\right)$ is strictly less than t_{i}, hence less than t_{i} by at least a factor of 3 . Recall that, in our counting of solutions, we replaced $\left(t_{1}, t\right)\left(t_{2}, t\right)$ by $t_{1} t_{2}$. This argument shows that this was overly generous by at least a factor of 3 , so we may now replace $t_{1} t_{2}$ by $t_{1} t_{2} / 3$. This gives us the upper bound on the proportion of solutions of

$$
2^{-2 s_{1}}\left(\frac{2}{3}+\frac{4^{s_{1}}}{3}\right) \leq \frac{1}{18}+\frac{1}{9}=\frac{1}{6}<\frac{1}{4}
$$

Case III: p is the product of three or more distinct primes, $p=q_{1} q_{2} \ldots q_{n}(n \geq 3)$. Proceed as in Case II and let $q_{i}=t_{i} 2^{s_{i}}+1$ with t_{i} odd. Assume, without loss of generality that $s_{i} \leq s_{i+1}$. Arguing as before, we see that the proportion of solutions is at most

$$
\begin{aligned}
2^{-s_{1}-s_{2}-\cdots-s_{n}}\left(1+\frac{2^{n s_{1}}-1}{2^{n}-1}\right) & \leq 2^{-n s_{1}}\left(\frac{2^{n}-2}{2^{n}-1}+\frac{2^{n s_{1}}}{2^{n}-1}\right) \\
& =2^{-n s_{1}} \frac{2^{n}-2}{2^{n}-1}+\frac{1}{2^{n}-1} \\
& \leq 2^{-n} \frac{2^{n}-2}{2^{n}-1}+\frac{1}{2^{n}-1} \\
& =\frac{2-2^{1-n}}{2^{n}-1} \\
& =2^{1-n} \\
& \leq \frac{1}{4}
\end{aligned}
$$

since $n \geq 3$.
Q.E.D.

Mihailescu's Prime-Generation Algorithm

To generate a provable prime p of n bits, Mihailescu has (more or less) proposed the following algorithm which combines a number of the above results:

Step 0: if $n \leq 16$, return an appropriately-size prime from a list of the 16 -bit primes.
Step 1: Recursively generate a prime q of size at least $\lceil n / 3\rceil$.
Step 2: Set up a sieve with a start value of at least $\left\lceil\left(2^{n}-1\right) /(2 q)\right\rceil$ and a size of at least $10 n$.

Step 3: For all 16-bit primes r, remove from the sieve all values t such that $r \mid 2 q t+1$. Note that this necessitates calculating $(2 q)^{-1}(\bmod r)$.

Step 4: If the sieve is empty, go back to Step 2 (set up a nonoverlapping sieve). Otherwise, for each sieve output t, perform a base- 2 Rabin-Miller test on $p=2 q t+1$. If it fails, go back to Step 4. If it passes, go on to Step 5.

Step 5: Divide $2 t$ by q, and call the quotient b and the remainder c. If b is a multiple of 4 , and $c^{2}-4 b$ is a square, go back to Step 4. (For somewhat subtle number-theoretic reasons, it's really only necessary to check whether or not $c^{2}-4 b$ is a square - if it is, b is necessarily a multiple of 4).

Step 6: Let a denote a small prime (start with 2, continue to L). If you have reached L, go back to Step 4. Let d denote $a^{2 t}(\bmod p)$. If $d=1$, go back to Step 6 (next small prime). Otherwise, calculate $d^{q}(\bmod p)$. If this is not 1 , go back to Step 4. Calculate $(d-1, p)$. If this is not 1 , go back to Step 4. If it is 1 , then p is prime. Return it, and terminate the algorithm.

Note that Step 1 and Step 2 may be randomized so that different primes are produced each time.

A prime certificate is a list containing all information necessary for a third party to verify the calculations to prove primality. In this case, a certificate for p would be:

1) p itself,
2) q,
3) a prime certificate for q,
4) if b is not a multiple of 4 , then b, else $c^{2}-4 b$ (to verify it's not a square),
5) the a value that finally worked in Step 6.
