
Generalized BCH codes

A Generalized BCH code has the following design parameters:
n = the base degree of the code
m = the extension degree of the code
t = the correction capability of the code
n is the number of bits per symbol, while 2nm − 1 is the size of a block (in symbols)

and t is the number of symbol errors that can be corrected per block.
Before we get started, a few special cases with special names: if m = 1 the code is

called a Reed-Solomon code, if n = 1 it is a “binary BCH code.”
In the discussion that follows, let m,n and t be fixed. If γ ∈ GF (2mn), let K(γ) denote

the smallest positive integer such that γ2nK(γ)
= γ. Also, let Pγ(x) denote the unique

monic polynomial of smallest degree with coefficients in GF (2n) such that Pγ(γ) = 0. It
is reasonably easy to show with a bit of algebra (and we’ll do so later) that

Pγ(x) =
K(γ)−1∏

i=0

(x + γ2ni

)

Let α be a generator for GF (2mn) (that is, an element α such that the powers of α
are all the nonzero elements of GF (2mn) (such an element always exists by a fairly high-
powered bit of mathematics which states that finite fields always have cyclic multiplicative
groups). Then, compute the polynomial

G(x) = LCM(Pα(x), Pα2(x), . . . , Pα2t(x))

Then, G(x) will have coefficients in GF (2n) and will be the generator of a Generalized
BCH Code with the desired properties.

The Big Question, though, is: What is the degree of G(x)?
Some estimates can be given in the special cases - in the case of a Reed-Solomon code,

Pγ(x) always has degree 1 (since K(γ) = 1 because the multiplicative group of GF (n)
has order 2n − 1 and hence γ2n−1 = 1 so that γ2n

= γ). Furthermore, all the factors in
the definition of G(x) are distinct, hence relatively prime, so that G(x) has degree 2t. An
example of a code like this would come from n = 8, m = 1, t = 3. The degree of G(x)
would be 6 and the block would have 255 8-bit symbols, 6 of which would be generated,
so that altogether we would have a (2040, 1992) code, which would be able to correct any
3 8-bit symbols in error (if the errors were aligned just right, it would be able to correct
up to 24 bits).

In the case of the binary BCH code, it’s harder to say exactly what degrees the Pαj

have, but it is easy to see that half of them are redundant. This is because n = 1 so that
Pγ = Pγ2 , thus all the even exponents from 2 up to 2t are redundant in the definition of
G(x). To get a bound on the degree of G(x), we observe that, for all γ, K(γ) ≤ K(α) and
K(α) = m so that deg(G(x)) ≤ mt. An example of a code like this would correspond to
n = 1, m = 11, t = 4 which would have a 2047 bit block size and (at most) 44 generated
bits, giving (at worst) a (2047, 2003) code, which would be able to correct any 4 bits in
error.



I will calculate an example of each of these special cases and give one general case
as well. For these cases, I will use arithmetic in GF (16) which will be performed using
the following scheme: each nonzero element in GF (16) can be written in one of two ways,
either as a nonzero 4-bit string (relative to which addition is easy) or as a power of α
(a generator of GF (16)), relative to which multiplication is easy. All we need, then, is a
means to translate between the two, which is provided by the following:

0001 = α0, 0010 = α, 0011 = α4,

0100 = α2, 0101 = α8, 0110 = α5, 0111 = α10,

1000 = α3, 1001 = α14, 1010 = α9, 1011 = α7,

1100 = α6, 1101 = α13, 1110 = α11, 1111 = α12

Example 1: m = 4, n = 1, t = 4 (a 4-bit-correcting binary BCH code) We need to
calculate Pα, Pα3 , Pα5 and Pα7 . We will do this by seeing what the zeroes of each of these
polynomials are: Pα has roots α, α2, α4, and α8. Pα3 has roots α3, α6, α12, and α9. Pα5

has roots α5, and α10. Pα7 has roots α7, α14, α13, and α11. None of these have factors in
common, so that G(x) has degree 14 and is equal to

G(x) =
14∏

i=1

(x + αi)

= x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

One might note that this is a (15, 1) code and probably would never be used in practice!
Example 2: m = 1, n = 4, t = 4 (a 4-symbol correcting (60,28) Reed-Solomon code)

Here, G(x) is easy to write down (but rather tedious to calculate its coefficients):

G(x) = (x + α)(x + α2)(x + α3)(x + α4)(x + α5)(x + α6)(x + α7)(x + α8)

= x8 + α14x7 + α2x6 + α4x5 + α2x4 + α13x3 + α5x2 + α11x + α6

Example 3: m = 2, n = 2, t = 2 (a 2-symbol correcting code with 2-bit symbols and
a 15-symbol block size). Here, we need to calculate Pα, Pα2 , Pα3 and Pα4 . As in Example
1, we will do this by seeing what the zeroes of each of these polynomials are: Pα has roots
α, α4 (and hence Pα = Pα4). Pα2 has roots α2, α8. Pα3 has roots α3 and α12. Except for
the redundancy between Pα and Pα4 , none of these has common factors, so that

G(x) = (x + α)(x + α2)(x + α3)(x + α4)(x + α8)(x + α12)

= x6 + β2x5 + x4 + x3 + βx2 + βx + 1

where β is a generator of GF (4) (arithmetic is generated by 01 = β0, 10 = β, 11 = β2).
This is a (30,18) code.

As an exercise, work out the Reed-Solomon code corresponding to m = 1, n = 5, t = 2.
In order to work out the arithmetic in GF (32) you will need an irreducible polynomial
over Z2 of degree 5 - use

x5 + x2 + 1

With this polynomial, α = 00010 works as a generator. If you can work this example out
completely, then you really understand this stuff. . .



Why this works:
There are two aspects of all this to prove. First, we need to prove that the coefficients

of Pγ(x) are actually in GF (2n). Then, we also need to show that no multiples of G(x)
with degree less than 2mn − 1 have fewer than 2t + 1 nonzero coefficients.

Why Pγ(x) has coefficients in GF (2n):
We will need a couple of lemmas:
Lemma 1: Let x,m, n be positive integers with x ≥ 2. Then, (xm − 1)|(xn − 1) if

and only if m|n.
Proof: First, the “if” part – suppose m|n, say, n = mk. Then, using the usual

factorization of the difference of powers, xn − 1 = xmk − 1k = (xm − 1)
∑k−1

i=0 xmi. Thus,
(xm − 1)|(xn − 1).

To go the other direction, suppose that (xm − 1)|(xn − 1). Use the integer division
algorithm to write n = mq + r where q, r are nonnegative integers, and 0 ≤ r < m. Then,

xn − 1 = xmq+r − 1
= xmq+r − xr + xr − 1
= xr(xmq − 1) + (xr − 1)

= (xm − 1)xr

q−1∑
i=0

xmi + (xr − 1)

Since xm − 1 is a factor of the left-hand side and of the first term on the right, it must
be a factor of the second term as well. So, (xm − 1)|(xr − 1). Now, r < m and x ≥ 2
implies that xr − 1 < xm− 1 so that xr − 1 is a nonnegative multiple of xm− 1 that is less
than xm − 1. The only possibility is xr − 1 = 0 which implies that r = 0 and hence m|n.
Q.E.D. (Lemma 1)

Lemma 2: If K is a field of characteristic 2, then f : K → K given by f(x) = x2

is a 1-1 field homomorphism. Furthermore, if K is finite, f is an isomorphism (i.e., it is
actually onto K).

Proof: First, recall that characteristic 2 means that x + x = 0 for all x ∈ K.
Next, recall that to show that f is a field homomorphism, we merely need to show that
f(xy) = f(x)f(y) and f(x + y) = f(x) + f(y). The first equation is always true for the
indicated f , so the second is the only one we need worry about. Using the “characteristic
2” assumption, we have:

f(x + y) = (x + y)2

= x2 + xy + yx + y2

= x2 + y2 + (xy + xy)

= x2 + y2

= f(x) + f(y)

To show that f is 1-1, we need to show that any element of K that has a square root
has exactly one square root. Let a, b be in K and let b be a zero of of the polynomial
x2 − a. Since the linear term of this polynomial is zero, this implies that the “other” root



is the negative of b. But, again using characteristic 2, −b = b. Hence, this polynomial has
one repeated root and thus f is 1-1.

If K is finite, then we simply observe that f(K) has the same cardinality as K, so it
must be all of K. Q.E.D. (Lemma 2)

Now, back to the subject at hand - when you have one field contained in another field,
the easy way to show that an element is in the smaller field is to use Galois theory. The
part of this theory that we will need for our purposes is that the subfield is always the fixed
field of some group of transformations of the larger field, that is, the set of elements which
are left intact by every transformation in the group. Such a transformation is completely
determined by what it does to α, since α is a generator of the field. Now, the question
is: where can α be sent under such a transformation? The short answer is that it has to
go to another generator, that is, another element whose powers generate all the 2mn − 1
nonzero elements of GF (2mn). In other words, α must go to αk where k is relatively prime
to 2mn − 1. In addition, it must go to another root of the same irreducible polynomial
as α. This implies that there are at most mn possible values for k. Using Lemma 2, we
see precisely what values of k work, since that lemma tells us that k = 2 always works.
Repeating this transformation, we see that k = 4, k = 8, etc. work as well. This process
may be repeated until we arrive at k = 2mn which is the identity map since x2mn

= x for
all x ∈ GF (2mn). Hence, this lemma provides us with all mn possible values for k.

Now, which of these transformations leave GF (2n) fixed? Well, which powers of α are
in GF (2n)? The easy way to see this is to use the “cyclic multiplicative group” theorem
referred to before. Then, one sees that the nonzero elements in GF (2n) sit inside GF (2mn)
as the powers of β = α(2mn−1)/(2n−1) (note that this exponent is an integer even though it
doesn’t look like one - it can also be written as 1 + 2n + 22n + . . . + 2(m−1)n). Hence, the
transformations of GF (2mn) which fix GF (2n) are precisely those for which α is taken to
α2k

and
2k(2mn − 1)/(2n − 1) ≡ (2mn − 1)/(2n − 1) (mod 2mn − 1)

or, more helpfully,

(2k − 1)(1 + 2n + 22n + . . . + 2(m−1)n) ≡ 0 (mod 2mn − 1)

which means that 2k − 1 is a multiple of 2n− 1. Using Lemma 1 now gives us that k must
be a multiple of n. Hence, the transformations that leave GF (2n) fixed are exactly the
transformations generated by α 7→ α2nk

for k = 0, 1, . . . ,m− 1. For our purposes, the key
fact is that anything which is preserved by all of these transformations must be in GF (2n).

The rest of this result is easy, since, for any γ ∈ GF (2mn), these transformations
permute the roots of Pγ and the coefficients of Pγ are symmetric functions of the roots
(sum, product, sum of products taken two at a time, etc.). Thus, these transformations
fix all the coefficients of Pγ and therefore the coefficients are in GF (2n).



Why all nonzero multiples of G have at least 2t + 1 nonzero coefficients:
We will need a lemma for this one as well.
Lemma 3: For n ≥ 2, let VDM(x1, x2, . . . , xn) denote the determinant of the matrix


1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n


Then, VDM(x1, x2, . . . , xn) =

∏
1≤i<j≤n(xj − xi)

Proof: This determinant is called the Van der Monde determinant. We will induct
on n. First, the base case n = 2 is clearly true. Now, assume that the theorem is true
for n = 2, 3, . . . , k − 1 and consider n = k. In particular, consider VDM(x1, x2, . . . , xk) as
a function f(x) where x = xk. By expanding the determinant along the last column, we
see that this is a polynomial of degree k − 1. Furthermore, if xk = xj for any j < k, the
determinant is zero, hence f(x) = C(x − x1)(x − x2) . . . (x − xk−1) where C is constant
with respect to x. Evaluating the coefficient of xk−1

k in the expansion by minors, we see
that C = VDM(x1, x2, . . . , xk−1). Hence (using the induction hypothesis),

VDM(x1, x2, . . . , xk) = VDM(x1, x2, . . . , xk−1)
k−1∏
i=1

(xk − xi)

=

 ∏
1≤i<j≤k−1

(xj − xi)

  ∏
1≤i≤k−1

(xk − xi)


=

∏
1≤i<j≤k

(xj − xi)

Q.E.D. (Lemma 3)
The main proof of this section now begins with the first two words of all good proofs:

“suppose not.” That is, suppose we have a nonzero polynomial H(x) such that:
(i) H has degree less than 2mn − 1,
(ii) H has coefficients in GF (2n), no more than 2t of which are nonzero, and
(iii) H(x) = G(x)Q(x) for some Q(x) with coefficients in GF (2n).
Believe it or not, the rest of this proof is just linear algebra (although it’s linear algebra

with all the coefficients in GF (2mn) so it’s a little different from what you’re accustomed
to).

Let’s represent H(x) as H(x) = A1x
k1 + A2x

k2 + · · · + A2tx
k2t where the Ai are in

GF (2n), not all are zero, and the ki are distinct integers between 0 and 2mn− 2, inclusive.
Then, (iii) simply implies that H(αi) = 0 for all 1 ≤ i ≤ 2t. This may be represented in



matrix form as Hv = 0 where

H =


αk1 αk2 · · · αk2t

α2k1 α2k2 · · · α2k2t

...
...

. . .
...

α2tk1 α2tk2 · · · α2tk2t



v =


A1

A2
...

A2t


Since H is a square matrix and not all the Ai are zero, the only way for this to be true is
for det H = 0. Now, factor αki from column i of H to get

detH = αk1+k2+···+k2t det


1 1 · · · 1

αk1 αk2 · · · αk2t

...
...

. . .
...

α(2t−1)k1 α(2t−1)k2 · · · α(2t−1)k2t


= αk1+k2+···+k2tVDM(αk1 , αk2 , . . . , αk2t)

= αk1+k2+···+k2t

∏
1≤i<j≤2t

(αkj − αki)

Since all of the ki are distinct and less than 2mn − 1, all of the αki are distinct and thus
detH is nonzero, contradicting our assumption.

Summary We have proven that G(x) is a well-defined polynomial with coefficients
in GF (2n) and that all its nonzero multiples of degree < 2mn must have at least 2t + 1
nonzero coefficients. It follows that the cyclic code generated by G(x) over GF (2n) is
capable of correcting t symbol errors.

It is also worth noting that it is not, strictly speaking, necessary to use α, α2, . . . , α2t

as the generating roots for G(x) – any sequence of 2t consecutive powers of α will work
(the same proof applies, except that the factor in front of the Van der Monde determinant
is different). Occasionally, this allows for a slightly more efficient code (lower degree for
G(x)).


