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Abstract. A structure theorem is proven for closed Euclidean 3-dimensional cone mani-
folds with all cone angles greater than 2π and cone locus a link (no vertices) which allows

one to deduce precisely when such a manifold is homotopically atoroidal, and to construct its

characteristic submanifold (torus decomposition) when it is not. A by-product of this struc-
ture theorem is the result that any Seifert-fibered submanifold of such a manifold admits a

fibration with fibers parallel to the cone locus. This structure theorem is applied to several
examples arising as branched covers over universal links.

Section 0 - Introduction.
Much of the recent progress in 3-manifold topology has to do with the link between

topology and geometry in 3-manifolds. There has been a great deal of work in the last
decade on homogeneous Riemannian metrics on 3-manifolds, spurred on by the tantalizing
prospect of the Thurston Geometrization Conjecture. At the same time, there has been a
renewed interest in branched covers, as a result of the notion of a universal link, a link in
S3 which has the property that all closed, orientable 3-manifolds are obtained as branched
covers over S3, branched over this fixed link (see, for example, [HLM]). It had, of course,
long been known that all such 3-manifolds were representable as branched covers over the
3-sphere, but in the older construction, it was a very simple kind of branched cover (namely
a 3-fold cover) over a possibly very complicated link in the 3-sphere. One advantage of
the newer branched cover construction is that many geometric structures on the fixed link
in S3 lift to the branched covers and thus, to all 3-manifolds. So, it seems likely that by
moving the complication from the link to the branched covering map itself we may gain
some real insight into the geometry of 3-manifolds.

One particular kind of geometric structure which has this lifting property is that of a
cone manifold structure (see, for example, [A-R], [Ho] and [Jo1]). The purpose of this paper
is to give a structure theorem for 3-manifolds possessing a certain type of cone manifold
structure, namely, a Euclidean cone manifold structure without vertices and with cone
angles greater than 2π. These are the “nonpositively curved” cone manifolds referred to in
the title. It will become clear subsequently why we refer to these as nonpositively curved.
This kind of cone manifold structure is possessed, for example, by all branched covers over
the figure-eight knot with branching indices greater than 2 and all branched covers over
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the Borromean rings with branching indices greater than 1 (both the figure-eight knot and
the Borromean rings are universal).

More specifically, we will prove

Theorem 2.1. Let M be a closed, orientable 3-dimensional Euclidean cone manifold with
no vertices and all cone angles > 2π. Then there is a canonical compact 2-complex C in
M such that

(1) the components of the complement of C (denoted by M1, . . . ,Mn) are each the
interior of a compact Seifert-fibered manifold (possibly with boundary)

(2) each Mi may be given a convex Euclidean cone metric
(3) M is atoroidal if and only if each Mi is an open solid torus

Note that here (and consistently throughout this paper) atoroidal means homotopically
atoroidal, i.e., admitting no nonperipheral π1-injectively immersed tori.

We will also deduce some corollaries of this structure theorem, including results related
to the Jaco-Shalen/Johannson torus decomposition of these manifolds, restricting the kinds
of geometric structures that can be present in these manifolds. We will also be able to
reproduce (only for manifolds of this type) Casson and Gabai’s recent result (see [Ga]) that
manifolds with π1-injectively immersed tori but no incompressible tori must be Seifert-
fibered.

We will then apply this theorem to several illustrative examples. The manifolds to
which this theorem applies are known to be irreducible and in fact to have universal cover
R

3, so finding the tori in these manifolds is the key to understanding how they fit into the
Thurston Geometrization Program.

Section 1 - Cone Manifolds.
We will begin by making a few brief definitions and state some preliminary results.

More details may be found in [Jo2].

Definition. A Euclidean cone manifold is a metric space obtained as the quotient space
of a disjoint union of a collection of geodesic n-simplices in En by an isometric pairing
of codimension-one faces in such a combinatorial fashion that the underlying topological
space is a manifold.

Such a space possesses a flat Riemannian metric on the union of the top-dimensional
cells and the codimension-1 cells. On each codimension-2 cell, the structure is completely
described by an angle, which is the sum of the dihedral angles around all of the codimension-
2 simplicial faces which are identified to give the cell. The cone locus of a cone manifold
is the closure of all the codimension-2 cells for which this angle is not 2π (the Riemannian
metric may be extended smoothly over all cells whose angle is 2π). For the purposes of
this paper, we are interested in the 3-dimensional case in which the singular locus is a
link (which must have constant cone angle on each component) and we make this blanket
assumption throughout the remainder of the paper.

One particularly useful feature of the cone manifold structure is its close relationship
with the notion of a branched cover. Recall that a branched covering map is a continuous
map of pairs ρ : (M̂, L̂) → (M,L) where M̂,M are n-manifolds, and L̂, L are (n − 2)-
complexes, which restricts to a covering map both on L̂ and on the complement of L̂ (we
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will make the stipulation that L̂ be saturated with respect to ρ for technical convenience).
The important result is that if M is a cone manifold with the cone locus contained in
L, then M̂ is a cone manifold with the cone locus contained in L̂. In particular, cone
metrics may be lifted to true covers as well as branched covers (a covering map is clearly
a branched covering map with any downstairs branch set whatever). Branched covering
maps of degree d, branched over a fixed branch set L are in one-to-one correspondence with
conjugacy classes of transitive representations of π1(M−L) into Sd (that is, representations
whose image acts transitively on the set {0, 1, . . . , d − 1} ). We also note that the cone
angles in the lifted cone manifold structure are the downstairs cone angles multiplied by
the branching indices of the branched covering (we will need this in our examples).

Geodesics in a Euclidean cone manifold are of three different types: straight lines joining
points on the cone locus which join in such a way as to have an angle of at least π measured
in either direction, straight lines disjoint from the cone locus, and straight lines contained
in the cone locus. One consequence of the nature of geodesics in Euclidean cone manifolds
is that when a geodesic encounters a point of cone angle less than 2π, that geodesic may
not be extended beyond that point, since no possible direction of an extension will have
the required angle measure. Conversely, however, when a geodesic encounters a cone point
with angle greater than 2π there are an infinite number of distinct ways to continue.

As mentioned earlier, there is a very strong analogy between cone angle and curvature,
as one might expect by considering, for example, the Gauss-Bonnet theorem. More specif-
ically, cone angles greater than 2π act like negative curvature and cone angles less than 2π
act like positive curvature. To be precise, we have the following

Proposition 1.1. Let M be a Euclidean cone 3-manifold with cone locus a link. If all the
cone angles of M are less than 2π, M admits a smooth Riemannian metric of nonnegative
sectional curvature. If all the cone angles of M are greater than 2π, M admits a smooth
Riemannian metric of nonpositive sectional curvature.

Proof. One constructs a metric of bounded sectional curvature which is flat outside of
a tubular neighborhood of the cone locus. See [Jo1], Theorems 2.1 and 2.2. Similar
techniques are used in [G-Th] with hyperbolic cone manifolds. �

One of the most useful aspects of this smoothing technique is that it gives us immediately
that the universal cover of a Euclidean cone manifold with singular locus a link and all
cone angles greater than 2π is R3 (apply the Cartan-Hadamard theorem to the smooth
metric). In particular, such a manifold is irreducible.

By being a bit more careful with the smoothing, we can also deduce the following
theorem, which is an analogue (and consequence) of a minimal surface result in Riemannian
geometry due to Schoen and Yau [S-Y].

Proposition 1.2. Let M be a compact Euclidean cone 3-manifold with cone locus a link
and all cone angles greater than 2π. Then, any π1-injective map of a torus into M is
homotopic to a totally geodesic torus (in the cone metric) which contains some component
of the cone locus.

Proof. See [Jo2], Lemma 3.1 for the details. Essentially, one shows that one can take a
sufficiently tight smoothing to which one applies the Schoen and Yau minimality result
and obtains a totally geodesic torus in the smooth metric which is homotopic to a totally
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geodesic torus in the cone metric. This torus can be translated in a normal direction and
remains totally geodesic until it hits some component of the cone locus, which it must in
fact contain. �

This result will be the key to the proof of part (3) of Theorem 2.1.

Section 2 - Structure Theorem.

Theorem 2.1. Let M be a closed, orientable 3-dimensional Euclidean cone manifold with
no vertices and all cone angles > 2π. Then there is a canonical compact 2-complex C in
M such that

(1) the components of the complement of C (denoted by M1, . . . ,Mn) are each the
interior of a compact Seifert-fibered manifold (possibly with boundary)

(2) each Mi may be given a convex Euclidean cone metric
(3) M is atoroidal if and only if each Mi is an open solid torus

Proof. We will construct this decomposition by working in M̂ , the universal cover ofM . We
will mimic, in some sense, the usual Dirichlet domain construction of differential geometry.

Begin with disjoint metrically regular tubular neighborhoods of the cone locus in M̂ .
Expand the radius of these tubular neighborhoods equivariantly. When two of the neigh-
borhoods touch, continue expanding in such a way as to maintain the product structure
of each neighborhood. That is, after the first point at which two of these bump into each
other, each neighborhood will be a round tubular neighborhood with a flat side cut off by
a plane parallel to the core geodesics of both of the intersecting neighborhoods (see Fig.
2.1). These boundary “ribbons” intersect (nontransversely) in parallelograms (generically
- they coincide if the core geodesics of the intersecting neighborhoods are parallel) and, as
the neighborhoods continue to expand, the ribbons widen until they bump into another
ribbon (or possibly the round part of another neighborhood if a tangency of the round parts
occurs exactly at a “corner” of the cross section). Note that at all times the cross section
of each neighborhood is convex. Note also that this expansion cannot continue indefinitely
(all cross sections must eventually be compact polygons) since a regular neighborhood of
the cross section is imbedded under the projection to M , which has finite volume.

When the expansion of these convex product neighborhoods has been carried as far
as it will go, the union of all the boundaries form an invariant (under the actions of
the deck transformations on M̂) 2-complex C1 whose complement is a collection of open
parallellepipeds with convex base (and a singular core geodesic) and a collection of open
Euclidean solid polyhedra. We note that each of these Euclidean polyhedra (the compo-
nents that do not contain a cone geodesic) has compact faces, since each face is the portion
of a ribbon between two of the nontransverse intersections with other ribbons. We need
to eliminate these Euclidean polyhedra. First, however, we will note the following lemma,
which will be useful subsequently.

Lemma 2.2. Let α be a cone geodesic in a Euclidean cone manifold M satisfying the
hypotheses of Theorem 2.1. Let α̂ be a component of the preimage of α in M̂ and let
Γα be the deck transformation on M̂ with minimum translation distance which leaves α̂
invariant (i.e., the deck transformation that “rolls up” α̂ into α). Then, Γα rotates a
tubular neighborhood of α̂ by an angle rationally related to the cone angle at α
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Figure 2.1

Proof of Lemma. Since the deck transformations act by isometries and the preceding con-
struction is geometrically canonical, any deck transformation that leaves a cone geodesic
invariant must leave the component of the complement of C1 containing that cone geodesic
invariant also. In particular, the isometry must take polygonal cross sections to polygonal
cross sections and so must act locally as a translation composed with a rotation rationally
related to the cone angle at the center point (other symmetries of the polygon are ruled
out by orientability). �

Now, we will eliminate the Euclidean polyhedra in the complement of C1 (at the cost of
convexity of the complement) by cutting each of these Euclidean regions up by considering
the shortest path from an interior point to the boundary. The set of points that admit
shortest paths to two or more faces (including those whose unique shortest path is to
the intersection of two faces) is an invariant 2-complex which decomposes the polyhedron
into contractible bounded polyhedra. We now alter C1 by removing the faces which are
part of the boundary of one of these Euclidean polyhedra and adding in the 2-complex
which subdivides each polyhedron to yield a 2-complex C2. The complement of C2 consists
entirely of polyhedra which retract to a cone geodesic. They are convex parallelepipeds with
non-convex “warts” attached to them along the faces which were between the intersections
with the other ribbons. C2 is still invariant under the action of the deck transformations
on M̂ and, since each component of the complement has exactly one cone geodesic in it,
has the property that the components of the complement are left invariant only by a deck
transformation that has an invariant cone geodesic. In particular, using Lemma 2.2, we see
that the complementary regions project to open solid tori in M which may be canonically
Seifert-fibered by the projections of lines parallel to the singular core geodesic (actually
the Seifert-fibration is canonical only on the complement of C1, but it may be extended
to the complement of C2 in an obvious, but noncanonical, fashion – this will cause us no
difficulties, as we will only need the fibration to be canonical near faces which are in both
C1 and C2).

Next, we will define a new invariant 2-complex C3 by removing all the interiors of
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all the noncompact faces from C2. These are all infinite strips which bisect an infinite
strip cobounded by two parallel cone geodesics. We note that this can be done without
disturbing the Seifert-fibration on the complement, since the Seifert-fibrations on the two
sides of all of the removed faces agree. If this face removal leaves any isolated geodesics in
C3, remove them also. Note that these may be additional singular fibers for the complement
of C3 – it is no longer true that all singular fibers of the fibration are cone geodesics.
Singular fibers of order 2 can also be introduced which bisect a type-II face (see definition
below) if that face is glued to an image of itself under a deck transformation.

Now, let C be the projection of C3 to M . We claim that C has the desired properties.
Let us now proceed to verify the conclusions of the Theorem: (1) is clear from the

construction. (2) follows from the following construction: let α̂ be a cone geodesic in M̂ .
Let N(α̂) be the convex parallelepiped obtained by expanding a tubular neighborhood
of α̂ until is hits either another cone geodesic or the perpendicular bisector of the strip
cobounded by α̂ and some parallel cone geodesic β̂. We will refer to the former faces as
“type-I faces” and the latter as “type-II faces.” N(α̂) has compact cross section since a
regular neighborhood of a polygon similar to the cross section, but shrunk by a factor of
two is imbedded under projection to M . Now, consider the collection of N(β̂) for all β̂
parallel to α̂ (here parallel means “cobounding a totally geodesic flat strip”). These may
be glued along the type-II faces to give a new parallelepiped P (α̂) which is still convex
since any type-I face which is adjacent to a type-II face corresponds to a cone geodesic
γ̂1 which is not parallel to the core geodesic and thus causes a type-I face adjacent to the
corresponding type-II face in the adjacent parallelepiped (adjacent across the type-II face)
making an angle of π with the first type-I face (see Fig. 2.2) unless another geodesic γ̂2

cuts it off exactly at the vertex, causing an angle less than π.

Figure 2.2

Now, it need not be the case that N(α̂) projects to an open solid torus in M , or that
P (α̂) projects to a Seifert-fibered subset of M , but it is true that P (α̂) is homeomorphic
to a component Mα̂ of the complement of C3 whose stabilizer Γ leaves P (α̂) invariant (it is
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generated by deck transformations that either “roll up” or permute the cone geodesics of
Mα̂ which are also the cone geodesics of P (α̂)) and thus, Mα̂ projects to a Seifert-fibered
subspace of M that is homeomorphic to P (α̂)/Γ which is the interior of a compact convex
Euclidean cone manifold.

(3) is somewhat more difficult to verify: we will define an associated convex cone 2-
manifold (similar to the technique used in [Jo2]) which has the property that M is atoroidal
if and only if the 2-manifold has no closed geodesics. (3) will follow from this. First, we will
define the associated 2-orbifold for M and subsequently define the associated 2-manifold
for M .

For each cone geodesic α in M , take a copy of the cross section of N(α̂), then take a
quotient of this cross section under the rotation guaranteed by Lemma 2.2 and denote this
quotient by O(α). O(α) is a convex “cone orbifold” – an orbifold in which the cone angles
at singular points are not necessarily 2π/n where n is the order of the isotropy group.
Thus, in a cone orbifold, one needs to record the cone angle at a singularity separately
from the order of the local isotropy group. Now, some boundary edges of the collection
of cone orbifolds will correspond to type-II faces of the N(α̂) and some will correspond
to type-I faces (note that the rotation of which O(α) is the quotient preserves face type).
Take the collection of O(α) for all cone geodesics α in M and glue corresponding type-II
faces together - this will perhaps introduce new orbifold singularities at vertices of the
O(α) and perhaps at the midpoints of edges (these must have isotropy order 2). Note that
we must orient the cone locus to fix a normal direction for the O(α) in order to insure
that the gluing is well-defined. The components of this new cone orbifold (which we will
denote by O(M)) are the base orbifolds for the Seifert fibrations on the various Mi.

Now, we are ready to define an associated 2-manifold for M , which we will denote by
Ô(M) (note that this is slightly different from the definition in [Jo2] – the 2-manifold in
[Jo2] is the union of the cross sections of the P (α̂) which is the universal cover of the
2-manifold we will define here). We use the fact that all orbifolds (with two families of
exceptions) have a finite cover which is a manifold and take Ô(M) to be the union of
the minimal-degree manifold covers for each component of O(M). This is perhaps not
uniquely defined, but we really only need some compact manifold cover, so our definition
will be sufficient for our purposes here. We need only show that none of the components
of O(M) are “bad” orbifolds (in Thurston’s terminology, see [Sc],[Th]). The bad orbifolds,
however, all have underlying space S2 and a simple Gauss-Bonnet argument shows that
S2 can admit a Euclidean cone metric only when there are at least 3 cone points with cone
angles less than 2π. But the only cone points on O(M) that have cone angle less than 2π
are points that have nontrivial isotropy groups, and thus the orbifold structure must have
at least 3 singularities. But all of the bad orbifolds have fewer than 3 singularities.

To see that Ô(M) has the property claimed, we use Proposition 1.2 to see that any
injectively immersed torus is homotopic to a totally geodesic torus containing some cone
geodesic α and thus corresponds to a closed geodesic in any component of the 2-manifold
which contains a cross section of N(α̂). To see this, lift the torus to a totally geodesic
plane in M̂ which contains a geodesic α̂ and observe that this plane stays entirely in P (α̂)
and thus meets any cross section of P (α̂) in a geodesic which projects to a closed geodesic
in Ô(M). Furthermore, any closed geodesic in Ô(M) corresponds to a totally geodesic
(and hence π1-injective) immersed torus in M . Thus, M is atoroidal if and only if there
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are no closed geodesics in the associated 2-manifold. It should be noted that, in general, a
torus corresponds to several distinct geodesics in Ô(M) which form an equivariant family
with respect to the orbifold covering projection to O(M).

It only remains to show that the associated 2-manifold of M contains no closed geodesics
if and only if each component of the complement of C is a solid torus. Since each component
of Ô(M) is a Euclidean cone manifold with all cone angles greater than 2π, there will be
closed geodesics in each free homotopy class of loops in Ô(M). Thus, M is atoroidal if
and only if each component of Ô(M) is simply connected. Since the 2-sphere does not
admit a Euclidean cone metric with all cone angles greater than 2π, no component of
Ô(M) can be a 2-sphere. Thus, the only obstruction to the existence of tori in M is the
possibility that each component of Ô(M) is a disk. But, the only orbifolds that are covered
by a manifold disk are disks with a single orbifold singularity and all of the Seifert-fibered
spaces corresponding to these bases are solid tori (again, see [Sc]). �

Actually, somewhat more can be said than the preceding theorem. For each one of the
Mi which is not an open solid torus, we observe that we can find a collection of disjoint
2-sided embedded tori (one for each end of Mi) which are parallel to C and saturated
with respect to the Seifert fibration on Mi (since each end of the interior of an orientable
Seifert-fibered manifold with boundary is a product of a torus with an open interval). Each
of these tori must in fact be incompressible, since this torus fibers over a boundary curve
of the associated 2-manifold to Mi. This boundary curve is homotopically nontrivial and
hence homotopic to a geodesic in the 2-manifold which is covered by a totally geodesic
torus (hence π1-injective) in M .

Thus, if there is more than one Mi, the manifold must be Haken unless all Mi are solid
tori, in which case the manifold is atoroidal. In particular, if M admits an injectively
immersed torus, there must be some Mi that is not a solid torus, and if M admits no
incompressible tori, there must be only one Mi. Thus, we recover the result (only for
manifolds of this form) that a manifold that admits an injectively immersed torus but not
an incompressible torus must be Seifert-fibered (see [Ga]).

Furthermore, these tori form a collection T containing the canonical collection of tori
in the Jaco-Shalen/Johannson torus decomposition (see [J-S] and [Jh]). To see this, we
observe that each torus in T cuts off a “collar” from its associated Mi. The components
of the complement of T thus fall into one of three categories:

(1) a manifold homeomorphic to a non-solid torus component of the complement of C
(2) a manifold consisting of a union of solid torus components of the complement of

C, together with one or more collars and components of C.
(3) a manifold consisting of collars and components of C.

We observe that each of these components must be Seifert-fibered or atoroidal: a com-
ponent in the first category is clearly Seifert-fibered. For a component, N , in the second
or third category, we observe that each collar may be extended metrically (away from the
component in question) until the torus boundary is totally geodesic in the cone metric.
This cannot necessarily be accomplished in M , since the geodesic homotopic to the bound-
ary curve in the associated 2-manifold need not be simple (also, the surface covering the
geodesic might be a one-sided Klein bottle instead of a torus), but it can certainly be done
metrically by working (for example) in the cover of M corresponding to the fundamental
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group of the particular torus in question. This metric extension is homeomorphic to N .
Repeat this procedure for all collars of N . We now have a Euclidean cone manifold with
totally geodesic boundary (note that it may have cone locus on the boundary) which we
may double to obtain a closed Euclidean cone manifold (call it N ′) which either has no cone
locus (possible only if N was in the third category) and is hence a Euclidean manifold and
thus Seifert-fibered or has nonempty cone locus and satisfies the hypotheses of Theorem
2.1. Note now that in N ′, all π1-injective tori may be homotoped to the doubling tori and,
thus, all tori are peripheral in each half (using standard free product with amalgamation
results). Note that we are not asserting that the atoroidal pieces obtained in this way are
not Seifert-fibered also – there are some spaces that are both atoroidal and Seifert-fibered
(the I-bundles over the torus and Klein bottle).

Finally, we observe that there is a restriction on the kinds of geometries that the Seifert-
fibered pieces can possess - the base orbifold must be negatively curved (since there are
cone points on the associated 2-manifold it must have negative Euler characteristic). So, a
maximal proper Seifert-fibered submanifold of a manifold of this type must have H2×R or
E

3 geometry (for the components that consist of collars only and have empty cone locus)
and, if the whole manifold is Seifert-fibered, it must have H2×R or S̃L2R geometry (again,
see [Sc] for the relevant definitions – for a different proof of a slightly weaker result, see
[Jo1], Chapter 5).

We collect these results in the following

Corollary 2.2. If M is a Euclidean cone manifold satisfying the hypotheses of Theorem
2.1, then

(1) if M admits a π1-injective torus but no incompressible torus, M must be Seifert-
fibered

(2) the collection of boundary-parallel tori in each non-solid torus component of Mi

forms a collection of tori containing the Jaco-Shalen/ Johannson characteristic
tori

(3) if M is Seifert-fibered, it must have H2 × R or S̃L2R geometry
(4) a maximal proper Seifert-fibered submanifold of M must have E3 or H2×R geometry

Section 3 - Examples.
The easiest way to get examples of cone manifolds of this type is to consider sufficiently

branched covers over Euclidean orbifolds, that is, branched covers over a topological space
which admits a Euclidean orbifold structure in which the downstairs branching locus is
equal to the singular locus of the orbifold and the branching indices over each component
are greater than or equal to the order of the isotropy group of that component in the
orbifold fundamental group of the base. Two particularly accessible orbifolds to use in this
context are the figure-eight knot and the 62

2 link (see the link tables in [Ro]) since both
of these have had their lattice of branched covers calculated up to degree 10 ([He], [Jo3]).
These links are of interest since they are both non-torus rational links and hence universal
[HLM].

First, we note that much of the actual calculation of the 2-complex C is unnecessary if
all we are interested in is, say, the homeomorphism types of the various components of the
complement of C. In this case, we really need only calculate the associated 2-manifolds
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of M corresponding to the various parallel classes of cone geodesics and look at how the
parallelepipeds over them fit together. This can be done quite conveniently in the case
of sufficiently branched covers over orbifolds by simply examining the monodromy of the
branched cover.

First, the figure-eight knot (a more detailed development of whose geometry may be
found in [Jo2]): S3 admits a Euclidean orbifold structure with cone angle 2π/3 along the
figure-eight knot. Therefore, any branched cover over S3, branched over the figure-eight
knot with all branching indices greater than 2 admits a Euclidean cone manifold structure
satisfying the hypotheses of Theorem 2.1. Let us fix some notation by letting K denote the
figure-eight knot and ϕ : π1(S3 −K) → Sd be a homomorphism with transitive image in
Sd (that is, whose image acts transitively on {0, 1, . . . , d− 1}). Then, ϕ is the monodromy
of a degree d cover of S3−K and thus a degree d branched cover of S3, branched over K.
We will use the presentation

〈a, b, c, d : d−1b−1c, b−1aba−1c, a−1d−1c〉

for π1(S3−K) and note that the group is generated by a and c so that we need only specify
ϕ on these generators. Then, a component of the cone locus corresponds to a cycle in ϕ(a)
of length 4 or greater. For each such cycle of length q, we have a parallelepiped with base
a 2q-gon which is the universal cover of a product neighborhood of the component of the
cone locus. It is possible that two or more of these cycles represent the same component
of the cone locus if ϕ of the longitude of the knot (ba−1c−1ad) takes one cycle to another.
Let us label the vertices of each polygon in the order of each cycle of ϕ(a) by the labels
0, 1, . . . , d− 1 alternating with 0′, 1′, . . . , (d− 1)′. We may ascertain which vertices of the
polygonal cross-section correspond to type-I faces and which correspond to type-II faces
by the following calculation: writing permutation actions on the right, and denoting the
set of fixed points of a permutation σ by fix(σ) we define

F = fix(ϕ(d3))ϕ(a−1cab−1) ∩ fix(ϕ(d3))ϕ(b−1)
∩ fix(ϕ(a3))ϕ(b−1) ∩ fix(ϕ(a3))ϕ(cab−1)

Then, we set
G = {j | orbit( 〈ϕ(ba−1c−1ad)〉, j ) ⊂ F}

Then, a vertex with a label i is a type-II face if and only if i ∈ G and it is glued to
the vertex with label (iϕ(bd−1))′. From this information, we can compute the associated
2-manifold.

For example, if we set
ϕ(a) = (0 2 1)(3 4 7)(5 6 9 8)

and
ϕ(c) = (0 5 2 4 9 7)(6 8)

(which is branched cover number 43 in [He]) We find that there is one component of cone
locus (cone angle = 8π/3) whose associated 2-orbifold is a disk with 2 orbifold singularities,
of orders 2 and 3. The 2-fold singularity comes from the fact that the monodromy of the
longitude in this cover rotates the disk normal to the cone locus through an angle of 4π/3,



EUCLIDEAN CONE 3-MANIFOLDS 11

yielding a quotient orbifold with 4 vertices in the boundary, each having angle 2π/3. The
3-fold singularity comes from the fact that two adjacent faces of this orbifold correspond
to type-II faces which are glued to each other, yielding the orbifold asserted above. Thus,
the torus decomposition of this space consists of an atoroidal Euclidean piece (which is in
fact a twisted I-bundle over the Klein bottle) and the Seifert-fibered space which fibers
over the disk with two exceptional fibers, of orders 2 and 3 (the trefoil knot complement).

Using another of Hempel’s examples (number 37), we set

ϕ(a) = (0 2 1)(3 7 5 8 4 9 6)

and
ϕ(c) = (0 3 5 6)(2 4 8 7)

and calculate that here there is also one component of cone locus (this time with cone
angle 14π/3) whose associated 2-manifold is a disk (there are no type-II faces) with only
one cone point and thus we have an atoroidal manifold (which is in fact computed to be
hyperbolic by Jeff Weeks’ computer program snappea).

At this point, a remark is in order about how the definitions for F and G were obtained:
this computation is done in detail in [Jo2] and consists of examining the flat planes extend-
ing out from the cone locus in the direction of a potentially parallel component of cone
locus and checking which components of the branching locus are intersected transversely
along the way – for the two components to be truly parallel (and thus separated by a
type-II face) it must be the case that all components of the branching locus encountered
must not be in the cone locus (in this case, they must be in the 3-fold branching locus).
The definitions for F and G are merely codifications of these intersection conditions in
terms of the monodromy of the branched cover.

The 62
2 link is somewhat more complicated than the figure-eight knot because it is a

2-component link. In fact, the Euclidean orbifold structure has different cone angles on the
two link components even though there is an involution of S3 that takes one component
to the other. The Euclidean orbifold structure has cone angle 2π/3 on one component and
π on the other.

We will use the presentation

〈a, b, c, d, e : ab−1d−1ba−1b−1, de−1a−1, ca−1e−1, bece−1〉

for the fundamental group of the 62
2 link complement and note that it is generated by a

and b (which are meridians of the two components) and thus we need only specify ϕ on
these two elements. We will use the orbifold structure in which a has cone angle 2π/3 and
b has cone angle π.

There are two distinct types of associated 2-manifolds here, the ones corresponding to
components of the cone locus that cover the a component and the b component, respec-
tively. For the former, as before, we set

F ′ = fix(ϕ(b2)) ∩ fix(ϕ(c2))
∩ fix(ϕ(a3))ϕ(ec−1) ∩ fix(ϕ(a3))ϕ(b−1a−1ec−1)
∩ fix(ϕ(d2))ϕ(a−1ec−1) ∩ fix(ϕ(d2))ϕ(ec−1)
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and let

G′ = {j | orbit( 〈ϕ(ce−1a−1b)〉, j ) ⊂ F ′}

and compute that the type-II faces run between the vertices labelled i (where i ∈ G′)
and (iϕ(ce−1d−1))′

For the components of the cone locus that cover the b component of the 62
2 link, we set

F ′′ = fix(ϕ(a3)) ∩ fix(ϕ(c2))
∩ fix(ϕ(b2))ϕ(a−1) ∩ fix(ϕ(a3))ϕ(e−1)

and let

G′′ = {j | orbit( 〈ϕ(ea−1ba−1)〉, j ) ⊂ F ′′}

and we set

F ′′′ = fix(ϕ(d2)) ∩ fix(ϕ(a3))ϕ(ae−1)
∩ fix(ϕ(c2))ϕ(ae−1) ∩ fix(ϕ(a3))ϕ(c−1ae−1)

and let
G′′′ = {j | orbit( 〈ϕ(ea−1ba−1)〉, j ) ⊂ F ′′′}

For covers over the 62
2 link, we have the type-II faces running between vertices labelled

i and iϕ(ea) where i ∈ G′′ and also between i′ and (iϕ(d))′ where i ∈ G′′′. We note also
that crossing a type-II face around a cone geodesic that covers b reverses the orientation
of the geodesic.

We will again apply this procedure to two examples. For the first (10.56 in [Jo3]), we
set

ϕ(a) = (0 1 2)(3 4 5)(6 7 8 9)

ϕ(b) = (0 3)(1 4)(2 6 7 5 8 9)

We find that there are two components of cone locus, one of which (covering b) has as-
sociated 2-orbifold a Möbius band with one order-2 singularity and the other of which
(covering a) has associated 2-manifold a disk with one cone point. Thus, we have a man-
ifold whose torus decomposition consists of a Seifert-fibered space over the Möbius band
with one singular fiber of order 2 and an atoroidal manifold with one cusp.

For our second example, we set

ϕ(a) = (0 1 2)(3 4 5)(6 7 8 9)

ϕ(b) = (0 1 3 4)(2 6 5 8)(7 9)

This is example 10.49 in [Jo3].
Here, we again have two components of cone locus (both of the 4-cycles in ϕ(b) are on

the same component of cone locus) and we find that there are no type-II faces, so that we
have an atoroidal manifold (which is in fact hyperbolic – again courtesy of snappea).
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